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Abstract. Aspiration thrombectomy is a life-saving interventional procedure to remove a blood 

clot from the brain of stroke patients. The pressure and blood flow dynamics during this 

procedure are crucial in determining the clinical outcomes. A mathematical model based on 

Hagen-Poiseuille law of fluid flow in a tube is adapted to simulate the pressure and fluid flow 

characteristics in an in vitro model of an occluded and unoccluded cerebrovascular network that 

mimics a poor (unilateral) and good (symmetrical) collateral flow within the Circle of Willis. 

The results show that in the absence of an occlusion, the pressure and pressure drop are higher 

in the symmetrical network compared to that in the unilateral network.  This is due to the 

additional limb in the symmetrical network that must be supplied, which is absent in the 

unilateral network. In the presence of an occlusion, the flow reduces in the obstructed vessel, the 

collateral flow, overall pressure and pressure drop increases in both systems, but is higher for 

the symmetrical network. The results compare qualitatively with those observed in in vitro 

studies and with clinical observations. The theoretical framework lays the foundation for more 

advanced models for the pressure and blood flow dynamics towards clinical applicability.  

 
1. Introduction 

A stroke is a serious life-threatening medical condition. It is the 2nd leading cause of mortality worldwide 

[1]. Approximately 85% of strokes are of ischemic nature caused by a thrombus occluding one or more 

arteries in the cerebral vasculature, leading to the reduction of cerebral blood flow (CBF). When CBF 

is interrupted for 30 seconds, there are complex modifications in brain metabolism [2]. However, in 

ischemic stroke, CBF is often disrupted for a longer period and the extent/evolution of the ischemic 

damage, predominately through damage of surrounding tissue due to cell death, is determined by the 

time it takes to re-establish circulation [3,4]. It has been reported that 1.9 million neurons, 14 billion 

synapses and 12 km of myelinated fibres are destroyed within one minute; rapid neuronal death can 

continue between a period of 6 and 18 hours after a stoke [4,5].  

Following an occlusion, tissue immediately surrounding the occluded vessel - the ischemic core - is 

the area of extensive irreversible ischemia [3], whereas tissue adjacent to the core - the penumbra - is 

an ‘at risk’ region, in contrast [6,7]. The impact of hypo-perfusion to these tissues does not affect to the 

same extent and time than that experienced at the core, and thus can be salvaged if prompt therapeutic 

intervention is conducted [8]. Consistent with this, evidence with both animal and human studies suggest 

that intervention and early restoration of CBF following the onset of a stroke is essential for the 

improved outcome/recovery of the patient and reduced brain injury [9–11].  

Currently, intravenous thrombolysis and endovascular treatment via mechanical thrombectomy 

(MT) remain the two approved therapeutic modalities. MT involves guiding a catheter through the 

cerebrovascular network to the location of the clot and then using either a stent retriever or aspiration 

(suction) device to remove it. MT demonstrates significantly higher recanalization (reopening) rates, 

however, clinical outcomes using suction are often variable [11]. Understanding the pressure and flow 

dynamics during this procedure are crucial in determining the clinical outcomes, and in the control and 

accuracy of this interventional procedure. 
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Benchtop experiments mimicking the MT procedure in a glass model system of the cerebrovascular 

network have been pioneered by Tennuci et al. [12] and Lally et al. [13] (Figure 1 A). More recently, 

Dinama [14] adapted the in vitro model to study collateral flow in the Circle of Willis network 

represented by a unilateral network (characterising poor collateral flow; Figure 1 B) and symmetrical 

network (characterising good collateral flow; Figure 1 B)  with an occlusion in the Middle Cerebral 

Artery (MCA).  

 

 
Figure 1. (A) Benchtop pulsatile flow and cerebrovascular network model system by Lally et al. [13]. 

The red arrows indicate the direction of the flow. (B) Unilateral and symmetrical model of the Circle 

of Willis with occlusion in the MCA adapted by Dinama [14] to replace the section highlighted in grey 

in the Lally et al. model. Figures courtesy Lally et al. [13] and Dinama [14]. 

 

Pressure sensors were connected to the network to record the changes in pressure as the clot in the 

MCA was removed using a catheter tube. Dinama [14] showed that a universal pattern of a pressure 

‘dip’ can be observed in the neighbouring branches of the MCA following clot removal (Figure 2 A 

shows the time variations in pressure in the unilateral network - pressure in the MCA is monitored by 

sensor 2). The dip in pressure in the branching vessels maybe due to the decongestion of the system 

[14]. 

 

Figure 2. (A) Pressure variations during aspiration thrombectomy in the unilateral network. Sensor 2 

monitors the pressure in the occluded MCA. (B) Comparison between the mean pressure gradient (rate 

of change in pressure) in the unilateral (poor collateral flow) and symmetrical system (good collateral 

flow). Figures courtesy Dinama [14]. 
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Dinama [14] also reported that the mean pressure gradient (referred to by Dinama as the rate of 

change in pressure) during clot removal in the symmetrical system was higher than that of the unilateral 

(Figure 2 B). Unfortunately, it is quite expensive and time consuming to run and visualise in vitro 

models; they are also not easily accessible to clinicians.  

The main aim of this study is to develop a mathematical model corresponding to the in vitro 

experiments by Dinama [14] in order to understand the pressure and flow variations within the occluded 

and unoccluded vessels prior to and following clot removal and reperfusion.  

2. Methods 

A mathematical model of blood flow in a network is developed representing the in vitro pulsatile flow 

system and cerebrovascular network model shown in Figure 1 A. This is based on the 0-dimensional 

modelling approach [15] which focuses on temporal changes in pressure and flowrate in the circulation 

network, rather than any spatial variations. 

2.1 The mathematical model 

The mathematical model is based on the Hagen-Poiseuille law of fluid flow in a tube. This relates the 

flowrate (Q) to the pressure drop along the tube (ΔP) by:  

                                                        Q=CΔP, C=πr4/8μL.                                  (1) 

In equation (1), C is the tube compliance (inverse of hydraulic resistance), r and L are the tube radius 

and length, respectively, and μ is the fluid viscosity. This law is based on the assumptions that the flow 

is fully developed and quasi-steady in time, and laminar. The typical Reynolds number for the in vitro 

pulsatile system is of the order of a hundred, so as a first approximation we assume the flow is viscous 

dominated and fluid inertia is neglected, and the flow is driven by the pressure drop across the circulation 

network. 

We adapt the Hagen-Poiseuille law to flow within a network of rigid tubes by applying it to each 

tube in the network, and using conservation of volumetric flowrate and continuity of pressure at each 

junction node in the network. An occlusion in a tube is modelled by making its compliance C very small. 

The removal of the occlusion from a tube and its subsequent reopening is modelled by making the 

compliance of the tube time dependent, namely,  

                            C(t)= (CREF- Cmin) H(t-t0) +Cmin,                                            (2) 

where CREF and Cmin are a reference and minimum compliance of the tube representing an unoccluded 

and occluded tube, respectively, t0 is the time of reopening, and H(t-t0) represents the Heaviside function 

which is zero if t<t0, and one otherwise. A time sequence of the removal of the occlusion and subsequent 

reopening of each vessel that the occlusion passes through in the network is modelled using a 

combination of Heaviside functions. The temporal dynamics in the pressure and flowrate is investigated 

in response to the changes in compliance and the boundary conditions (described in Section 2.3 below). 

 

2.2 Circuit diagrams 

Figure 3 shows a schematic of the unilateral (A) and symmetrical (B) system mimicking collateral flow 

in the Circle of Willis in vitro model studied in Dinama [14]. The arrows show the hypothesised flow 

direction through the network. 

 
Figure 3. Sketch of (A) unilateral and (B) symmetrical system based on Dinama [14]. Arrows indicate 

the hypothesised direction of the flow through the network. 
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Figure 4 shows the circuit diagrams for the unilateral (A) and symmetrical (B) systems mimicking 

the pulsatile flow system in Dinama [14].  

Figure 4. Circuit diagram mimicking the pulsatile flow system in Dinama [14] for (A) unilateral and 

(B) symmetrical network. The numbering of the pressures and flowrates in each tube in the network 

are shown for future reference. 

 

2.3 Boundary conditions and parameter values 

At the system inlet (ICA), the flowrate Q1=247mL/min is prescribed, based on a typical adult ICA 

flowrate [16]. The outlet blood pressure (p8 and p18 for the unilateral and symmetrical network, 

respectively) is 80 mmHg. Parameter values for the blood viscosity and the mean length and diameter 

of the vessels in the Circle of Willis is obtained from the literature, and used to calculate the compliance 

parameter values for each vessel in the Circle of Willis. Approximate values for the compliance of the 

vessels outside the Circle of Willis are chosen so as to obtain both realistic and comparable behaviour 

between the two representations. 

 

2.4 Model equations 

We obtain a system of equations for the pressure P and flowrate Q for each vessel in the network using 

equation (1), and conservation of flow and continuity of pressure at each junction node. They are 

parametrised by the compliance for each vessel. These equations are solved simultaneously in Wolfram 

Mathematica [17] for a prescribed inlet flowrate, outlet pressure, and prescribed function for the 

compliance in the case of an occlusion or removal of occlusion from the system (see Section 2,1). 

3. Results and Discussions 

3.1 Flowrate and pressure with and without MCA occlusion in unilateral and symmetrical networks  

The baseline compliance parameter of the MCA (vessel number 5 for the unilateral and 10 for 

symmetrical network in Figure 4) is CMCA, REF=1.5 mm4 kg s-1, and the occlusion in the MCA is assumed 

to reduce the compliance by 4/5ths of the baseline value, so CMCA, MIN= CMCA, REF/5=0.3. In the absence of 

the MCA occlusion, the flowrate Q5, indicating the flow in the MCA for the unilateral network, is 

calculated to be 0.537mL/s while the flowrate in the corresponding collateral vessel Q4 (denoted by 

LACA) is 0.258 mL/s. When the MCA is occluded in the unilateral network, Q5 is reduced to 

0.2039mL/s (-62%) while the flow in the collateral vessel LACA increases to Q4=0.293 mL/s (+13%). 

The pressure at the inlet P1, driving the fluid through the system, increases from 81.889 to 81.961mmHg 

(+0.08%) and the pressure in the occluded vessel P5 reduces from 80.366 to 80.139 mmHg when the 

MCA is occluded (-0.29%).  

For the symmetrical network, in the absence of the MCA occlusion, the flowrate in the MCA is 

calculated to be Q7=1.149 mL/s, while the flowrate of the collateral vessel LACA (1) (denoted by vessel 
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11) is Q8=0.298 mL/s. The corresponding flowrate in the MCA and LACA (1), when the occlusion is 

introduced is Q7=0.617 mL/s (-46%) and Q8=0.478 mL/s (+60%), respectively. The pressure at the MCA 

P11 reduces from 82.962 mmHg in the absence of the occlusion, to 82.200 mmHg (-0.9%), while the 

inlet pressure P1 increases from 84.389 mmHg to 84.855 mmHg (+0.55%).  

The reduction of pressure and flow rates within the MCA for both the unilateral and symmetrical 

networks are consistent with measurements of CBF and pressure in rat studies by Overgaard et al. [18].  

3.2 Comparison of pressure drop between unilateral and symmetric networks  

The pressure drop in the MCA in the symmetrical network P8-P11 is 2.084 mmHg and 0.774 mmHg in 

the presence and absence of the occlusion, respectively. While in the unilateral system, the pressure 

drop across the MCA P6-P5 is 0.689 mmHg and 0.363 mmHg in the presence and absence of the 

occlusion, respectively, which is lower compared to the symmetrical case. The mean pressure gradient 

in the symmetrical network is 1.429 mmHg and 2.581 mmHg in the presence and absence of the 

occlusion, respectively, while for the unilateral network it is 0.253 mmHg and 0.526 mmHg, 

respectively.  

The increased pressure and pressure drop in the symmetrical network is due to the additional limb 

that must be supplied which is absent in the unilateral network. The branching network surrounding the 

occluded vessel has to bear the flow burden due to this. This observation is supported by Liu et al., [19] 

in the cardiovascular system where the external carotid artery a possible limb of collateral flow when 

the internal carotid artery is occluded.  

Within the symmetrical system, a higher pressure drop is reported compared to the unilateral system 

consistent with the in vitro investigation by Dinama [14]. In the presence of a good collateral network, 

the CBF diverges more effectively throughout the network surrounding the occlusion, hence, resulting 

in a reduction in the pressure drop at the occluded portion of the system. Clinical studies have indicated 

that patients who had a good degree of collateral flow reported a positive neurological outcome for both 

thrombolysis and MT [20,21]. 

3.3 Time-dependent flowrate and pressure during removal of occlusion  

We have also simulated the time-dependence of the pressure and flowrate in each vessel as the occlusion 

is removed out of the system by using a combination of Heaviside functions (described in Section 2.1). 

These results are not shown here due to page limit constraints but confirm the static results above and 

are qualitatively similar to the in vitro results of Dinama [14] shown in Figure 2 A. 

 

4. Conclusions 

The mathematical model captures qualitatively many features of the variations in the blood flow and 

pressure in an occluded and unoccluded cerebrovascular network reported in in vitro and in vivo studies.  

While the model reproduces many features of the global dynamics of the cerebrovascular circulatory 

system, it disregards key components, such as the effect of suction on the flow and pressure dynamics 

[13], the role of fluid inertia, spatial variations of pressure and flow, and many others. Future studies 

need to implement advanced models to have a more accurate representation of the flow and pressure 

dynamics.  
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