Physiological oxygen causes the release of volatile organic compounds from human pluripotent stem cells with possible roles in maintaining self-renewal and pluripotency

Sara Barreto ^{1,+}, Mohammed A. Al-Zubaidi ^{1,2,+}, Tina P. Dale ¹, Amy J. Worrall ¹, Zoher Kapace ³, Susan J. Kimber ³, Josep Sulé-Suso ^{1,4}, Nicholas R. Forsyth ^{1,*} and Abigail V. Rutter ^{1,*}

- ¹ School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK; s.barretofrancisco@keele.ac.uk (S.B.); m.al_zubaidi@uomustansiriyah.edu.iq/mohmsc82@gmail.com (M.A.A.-Z.); t.p.dale@keele.ac.uk (T.P.D.); a.j.worrall1@keele.ac.uk (A.J.W.); zoher.kapacee@manchester.ac.uk (Z.K.); sue.kimber@manchester.ac.uk (S.J.K.); josep.sule-suso@uhnm.nhs.uk (J.S.-S.); n.r.forsyth@keele.ac.uk (N.R.F.); a.v.rutter@keele.ac.uk (A.V.R.)
- ² Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
- ³ Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Oxford Rd, Manchester M13 9PT
- ⁴ Cancer Centre, University Hospital of North Midlands, Newcastle Road, Stoke-on-Trent, Staffordshire, UK
- * Correspondence: a.v.rutter@keele.ac.uk; n.r.forsyth@keele.ac.uk
- + Co-first author, these authors contributed equally to this work

Supplementary Materials:

Table S1. Primer design and annealing temperature of the genes investigated in this study.

Gene of interested	Forward Primer	Reverse Primer	Annealing temperature (°C)
ACTB	5' GCCACGGCTGCTTCCAGC 3'	5' AGCCATGCCAATCTCATCTT 3'	57
POU5F1	5' GCAATTTGCCAAGCTCCTGAAGCAG 3'	5' CATAGCCTGGGGTACCAAAATGGGG 3'	55
NANOG	5' GGTGGCAGAAAAACAACTGGC 3'	5' TGCAGGACTGCAGAGATTC 3'	56
SOX1	5' CCAGGAGAACCCCAAGAGGC 3'	5' CGGCCAGCGAGTACTTGTCC 3'	56
AFP	5' AAGGATACCAGGAGTTATTGG 3'	5' GTTGGCATATGAAGAAGTGC 3'	56
Brachyury	5' GCATAAGTATGAGCCTCGAA 3'	5' GTTGTCAGAATAGGATTGGGA 3'	56
OTX2	5' CTCGCCACATCTACTTTGATA 3'	5' GGCGGTTGCTTAAGATAAGA 3'	57
SOX17	5' GCAAGATGCTGGGCAA 3'	5' GCCGGTACTTGTAGTTGG 3'	56
hTERT	5' GCAGCTCCCATTTCATCAGC 3'	5' CAGGATGGTCTTGAAGTCTG 3'	55
ADH4	5' CGCATTCAGATCATTGCTAC 3'	5' ACTGGTTCCAAAGAAATGGT 3'	56
ADH5	5' CGAATCAAGATCATTGCCAC 3'	5' CTGGCATTAATCCTTTCCCT 3'	56
CYP2E1	5' CTGGCTCCAGCTTTACAATA 3'	5' AGAATCAGGAGCCCATATCT 3'	56
ALDH1A1	5' TCATTCCTTGGAATTTCCCG 3'	5' GCCCATAACCAGGAACAATA 3'	57
ALDH1A3	5' GAAGAAGGAGATAAGCCCG 3'	5' CTGCAAAGTATCTGAGGGTT 3'	56
ALDH6A1	5' CTTGCTCCGCTATCAACAA 3'	5' AGGAAGGTATTTCCACACAC 3'	57

B

Metabolic reaction	Enzyme	Gene	
		ADH1B	
	Alcohol dehydrogenase (ADH)	ADH1C	
		ADH1A	
1		ADH5	
		ADH4	
		ADH7	
		ADH6	
1	Cytochrome P450 family	CPYP2E1	
	2 subfamily E member 1		
1	Catalase	CAT	
	Aldehyde dehydrogenase (ALDH)	ALDH2	
		ALDH1A1	
		ALDH1B1	
		ALDH7A1	
		ALDH3A1	
		ALDH1L1	
		ALDH3A2	
		ALDH5A1	
		ALDH1A2	
2		ALDH1A3	
		ALDH18A1	
		ALDH4A1	
		ALDH9A1	
		ALDH3B1	
		ALDH6A1	
		ALDH1L2	
		ALDH16A1	
		ALDH8A1	
		ALDH3B2	

Figure S1. Genes involved in ethanol metabolism that were selected for expression analysis. **(A)** Diagram of ethanol metabolism. In the cytosol, ethanol is oxidized by various enzymes, such as alcohol dehydrogenase (ADH), cytochrome P450 family 2 subfamily E member 1 (CYP2E1) and catalase (CAT), into acetaldehyde, which is then further oxidize into acetate by aldehyde dehydrogenase (ALDH) enzymes in the mitochondria. **(B)** Table of the selected genes known to be involved in stages of ethanol metabolism.

Figure S2. Viability of hPSCs exposed to different concentrations of the ADH and CYPE1 inhibitor 4-methyl pyrazole (4-MP) cultured in both 21% and 2% O₂. Viability was assessed using the MTT assay. MTT data demonstrated that the concentrations 0.5 mM and 5 mM had no significant effect on the viability of the hPSCs, except for hiPSC ZK2021L treated with 0.5 mM at 21%, which showed a significant increase in MTT reduction and consequently, higher number of viable cells were present. The concentration of 50 nM was toxic to all hPSCs. X-axis shows each hPSC line (SHEF-1, SHEF-2 and ZK2021L) cultured in both 2% O₂ and 21% O₂ conditions. Y-axis represents MTT absorbance at 570 nm. Blue bars indicate untreated cells (control), while red, green, and purple bars represent 0.5, 5 and 50 mM 4-MP concentrations, respectively. Errors bar are +/-SD. Asterisk indicates significant difference (p<0.01) be-tween non-treated and 4-MP treated samples.

Figure S3. Influence of physioxia (2% O₂) and air oxygen (21% O₂) on the proliferation and metabolic activity of hPSCs. **(A)** Effects of O₂ on the proliferation of hPSCs. Cell counts were performed daily over a 6-day period. SHEF-1 cell numbers increased significantly after day 3 in 2% versus 21% O₂ (p<0.05). In contrast, both SHEF-2 and ZK2012L numbers raised from day 2 onwards in 21% versus 2%, and this was significant for ZK2012L at days 2, 4 and 5 (p<0.05). X-axis indicates time (in days), while y-axis shows cells x 10⁴/mL. **(B)** Effects of O₂ on the mitochondrial activity of hPSCs assessed using MTT assay. MTT was performed at each day for a period of 6-days post-seeding. SHEF-1 displayed a significant increase in MTT at day 6 in 2% O₂, whereas both SHEF-2 and ZK2012L exhibited significant MTT declines across all time points tested (except for SHEF-2 at day 5 and ZK2012L at days 1). X-axis indicates time (in days), whereas y-axis indicates MTT absorbance (570 nm). Red and blue represent hPSCs cultured at 21% O₂ and 2% O₂, respectively. Error bars represent +/- SD. Asterisk (*) indicates p<0.05 between conditions.