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A morphism g is ambiguous with respect to a word u if there exists a second morphism 
h �= g such that g(u) = h(u). Otherwise g is unambiguous with respect to u. Thus 
unambiguous morphisms are those for which the structure of the morphism is preserved 
in the image. Ambiguity has so far been studied for morphisms of free monoids, where 
several characterisations exist for the set of words u permitting an (injective) unambiguous 
morphism. In the present paper, we consider ambiguity of morphisms of free groups, and 
consider possible analogies to the existing characterisations in the free monoid. While a 
direct generalisation results in a trivial situation where all morphisms are ambiguous, we 
discuss some natural and well-motivated reformulations, and provide a characterisation of 
words in a free group that permit a morphism which is “as unambiguous as possible”.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A morphism g is ambiguous with respect to a word u if there exists a morphism h �= g such that g(u) = h(u). For 
example the morphism g : {a, b}∗ → {a, b}∗ such that g(a) = aba and g(b) = b is ambiguous with respect to abba, as 
the same result may be achieved with the morphism h given by h(a) = a and h(b) = bab. Indeed, we have g(abba) =
h(abba) = ababbaba. On the other hand, the (identity) morphism g : {a, b}∗ → {a, b}∗ given by g(a) = a and g(b) = b
is unambiguous with respect to u = abba, since no other morphism g : {a, b}∗ → {a, b}∗ produces the same image when 
applied to u. However, if instead of the monoid {a, b}∗ , we consider the free group F {a,b} generated by a and b, then the 
identity morphism g : F {a,b} → F {a,b} becomes ambiguous with respect to u = abba, as verified by, e.g., the morphism 
h :F {a,b} →F {a,b} given by h(a) = abbab−2a−1 and h(b) = abbaba−1b−2a−1. Thus, we see that by moving from the free 
monoid to the free group, the ambiguity of morphisms can change.

The ambiguity of morphisms can be seen as both a property of the pair of words (u, g(u)), and of the morphism 
itself. Put another way, it provides some measure of (non-)determinism in the process of mapping u to g(u). Similarly to 
injectivity, the unambiguity of a morphism determines to some extent the information lost when the morphism is applied, 
and indeed unambiguity can be seen as a dual to injectivity. To substantiate this claim, consider two words u, v and a 
morphism g such that g(u) = v . It is possible to determine u from v and g whenever g is injective. Similarly, it is possible 
to determine g from u and v whenever g is unambiguous with respect to u. Of course, the final configuration, that v may 
be determined by u and g , occurs when g is a function.

Previous research addressing the topic of ambiguity directly considers only morphisms of the free monoid, and is surpris-
ingly recent (see e.g., Freydenberger et al. [6], Freydenberger, Reidenbach [5]), although earlier topics such as the Dual Post 
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Correspondence Problem (Culik II, Karhumäki [2]) have addressed ambiguity of morphisms indirectly. Due to its fundamen-
tal combinatorial nature, the ambiguity of morphisms has implications on many areas such as equality sets (Salomaa [19], 
Engelfriet, Rozenberg [4], Harju, Karhumäki [7]), the Post Correspondence Problem (Post [16]), and word equations (see, e.g., 
Lothaire [13]); however, arguably the biggest achievements of research on the ambiguity of morphisms have come in the 
world of pattern languages (Reidenbach [17]).

In the current work, we extend the study of ambiguity to morphisms of the free group. While ambiguity and indeed 
pattern languages have generally been studied in the context of a free monoid, or semigroup, many of these ideas overlap 
with areas of study related to free groups, in which morphisms play a central role. Recent publications have addressed 
pattern languages in a group setting (Jain et al. [9]), and a group-equivalent of the Post Correspondence Problem (Bell, 
Potapov [1]), while more established areas include test words for automorphisms (Turner [21]), automorphisms themselves 
and their fixed subgroups (see e.g., Ventura [22]), equations of the free group (Makanin [15]), and equalisers – all of which 
are connected to the ambiguity of morphisms.

We shall address in particular the question of whether a given word in a free group permits an unambiguous injective 
morphism, with particular emphasis on establishing analogies to existing characterisations of such words in the free monoid 
(cf. Theorem 3). Our first observation is that, due to the existence of non-trivial inner automorphisms, all morphisms are 
ambiguous with respect to all words in a free group. Of course this appears to be bad news for the concept of ambiguity 
in a free group and even contradictory to our claim that ambiguity is related to existing research in combinatorial group 
theory. However, on closer inspection, we show that provided a particular construction based on composition with inner 
automorphisms is disregarded, we once again have unambiguous morphisms.

Since inner automorphisms are particularly closely related – both combinatorially, and algebraically – to the identity 
morphism, a given morphism and its composition with an inner automorphism are also very closely related. In terms of the 
structure preserved, we see that the “unambiguous” morphic images in this context preserve the structure of the morphism 
up to composition with inner automorphisms, which is demonstrably maximal. We say such morphisms are unambiguous 
up to inner automorphism. Since the only inner automorphism in a free monoid is the identity morphism, our definition 
can be considered a direct generalisation. Similarly, since automorphisms are a superset of the inner automorphisms which 
are also closely related to the identity morphism and of wide interest, we define the slightly weaker notion of unambiguity 
up to automorphism in the same way.

Our main result is a characterisation of words in a free group for which there exists an injective morphism that is 
unambiguous up to inner automorphism in terms of fixed points of morphisms, replicating an existing result for words 
in the free monoid. The proof is purely combinatorial, and in the case that such a morphism exists, provides an explicit 
construction. The ideas of the proof are also sufficient to reduce the equivalent statement for ambiguity up to automorphism 
to a conjecture on certain non-trivial fixed points presented in Section 4.2.

We show that this (potential) characterisation for unambiguity up to automorphism is also equivalent to a natural gener-
alisation of the notion of morphic primitivity in a free monoid, and hence that, subject to the correctness of our conjecture, 
two existing characterisations in the free monoid also hold for unambiguity up to automorphism. Interestingly, the second 
(potential) characterisation does not hold when considering unambiguity up to inner automorphism, and so in this sense, 
we see that unambiguity up to automorphism seems to adhere more closely to unambiguity in a free monoid.

The rest of the paper is organised as follows. Firstly, we provide some necessary preliminary definitions and observations 
in Section 2. In Section 3 we consider generalisations of ambiguity and morphic primitivity. In Section 4 we present and 
prove our main result(s). Finally, in Section 5, we exploit our constructions from Section 4 to provide some simple proofs of 
properties of pattern languages over a group alphabet.

2. Preliminaries

An alphabet is a set of symbols, called letters. A word over an alphabet � is a string/sequence of letters from �, so that, 
for example, abaaba is a word over the alphabet � = {a, b}. The set of letters occurring in a word u is symb(u). We shall 
generally use � to refer to the specific alphabet {a, b} unless explicitly stated otherwise. For two words u, v we define the 
operation concatenation (·) such that u · v = uv . Hence a word is simply a concatenation of letters from a given alphabet. We 
shall generally omit the · symbol, and use it only when needed to avoid confusion (so for example when considering words 
over the alphabet N , so we can distinguish between, e.g., 1 · 1 · 2 and 11 · 2). The length of a word u is the number of its 
letters, and denoted by |u| so that, e.g., |abaaba| = 6. The word of length 0 is called the empty word and is denoted by ε. 
Hence the set of all words over a given alphabet X (including ε) forms a free monoid under the operation of concatenation, 
which we denote by X∗ . Likewise, X∗\{ε} is a free semigroup, which we denote by X+ .

For an alphabet X = {a1, a2, . . . , an}, we define its inverse X−1 to be an alphabet {a−1
1 , a−1

2 , . . . , a−1
n } such that X ∩ X−1 =

∅. The free monoid (X ∪ X−1)∗ , along with additional relations aia
−1
i = a−1

i ai = ε for each ai ∈ X , forms the free group 
F X . For example, for the alphabet � = {a, b}, we have �−1 = {a−1, b−1}, and e.g., words u1 = ba−1bb−1, u2 = ba−1, and 
u3 = aba−1b−1 are all words belonging to both the free monoid {a, b, a−1, b−1}∗ and the free group F� , but while u1
and u2 are not graphically equal (i.e. they appear differently when written on the page) and therefore not equal in the 
free monoid, they are equivalent in the free group since bb−1 = ε in F� , so u1 = ba−1 · ε = ba−1 = u2. In order to avoid 
2
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confusion, when dealing with words in a free group, we will always assume that we consider the more general equality 
(i.e., equality in context of the free group) unless specifically stated.1

For an alphabet X , let u ∈ F X be the word u = ap1
1 ap2

2 · · ·apn
n where ai ∈ X and pi ∈ {1, −1} for 1 ≤ i ≤ n. The inverse

of u in F X is the word u−1 = a−pn
n a

−pn−1
n−1 · · ·a−p1

1 , so that uu−1 = u−1u = ε, and it is unique (up to equivalence in the 
associated free group). Moreover u is reduced if api

i a
pi+1
i+1 �= ε for all i, 1 ≤ i < n. Otherwise u is unreduced. For two reduced 

words u, v ∈F X , u = v if and only if u and v are graphically equal (i.e., equal in the free monoid). For every word u ∈F X , 
there exists a unique reduced word v such that u = v . Two words in a free group are equal if and only if their respective 
reduced words are equal. An example of two words which are equal in the free group, with their (identical) reduced versions 
underlined is given below.

a a b a a−1 b b a−1 a b−1 b= a b b−1 a b b b= a a b b b

The result of concatenating n occurrences of a single word u is denoted by un , and a word v is primitive if v = un implies 
that n ∈ {1, −1}. The word u is a primitive root of v if v = un for some n ∈Z and u is primitive. The primitive root is unique 
(up to inverse) for all words except ε. If, for words u, v, w, x, u = v wx (graphical equality), then w is a factor of u. It is a 
proper factor if u �= w . If v = ε then w is a prefix and if x = ε then w is a suffix of u. If u = v w v (graphic equality) for some 
words v and w with v �= ε, it is bordered. Moreover, we say that the factor w occurs in u, and we may refer to specific 
(e.g., leftmost, rightmost, all, etc.) occurrences of w in u. For example there are 3 occurrences of the factor ab in the word 
abababa and the leftmost occurrence is underlined.

When we refer to occurrences of a factor u in a word in the free group, we mean occurrences of both u and u−1. If we 
wish to distinguish between the two, we call the former positive occurrences and the latter negative occurrences. By |u|v , 
we shall mean the number of positive occurrences of v in u minus the number of negative occurrences, and we shall refer 
to |u|v as the balance of v in u. For a word u = a1a2 . . .an , two factors v = ai . . .a j and w = ak . . .a� , for 1 ≤ i, j, k, � ≤ n, 
partially overlap if k < i and i ≤ � < j or if i < k and k ≤ j < �. It is straightforward to see that, for any non-empty factor 
u, no positive occurrence overlaps or partially overlaps with a negative occurrence of u. In particular, it follows from the 
fact that the only word in the free group satisfying x = x−1 is ε. Furthermore, if two occurrences of the same factor u do 
overlap, then u is bordered.

x = x−1 = ε

u = vx

u−1 = x−1 v−1

v−1v

Two words u, v commute if uv = vu. The following result is generally regarded as folklore (cf. e.g., [20,12]).

Lemma 1. Let u, v be words. Then the following conditions are equivalent:

1. u and v satisfy a non-trivial equation,
2. u and v commute, and
3. u, v have the same primitive root.2

A contraction is a non-empty factor which is equal to ε. For example, if u = aabb−1a−1abb−1a−1, then all the 
contractions occurring in u are as follows: bb−1 (twice), a−1a, abb−1a−1 (twice), bb−1a−1a, b−1a−1ab, a−1abb−1, 
bb−1a−1abb−1 and abb−1a−1abb−1a−1. We highlight some examples below.

a a

ε︷ ︸︸ ︷
b b−1 a−1 a b b−1︸ ︷︷ ︸

ε

a−1

Note that a word is reduced if and only if it contains no contractions. Let X be an alphabet and let u = ap1
1 ap2

2 · · ·apn
n

where ai ∈ X and pi ∈ {1, −1} for 1 ≤ i ≤ n. If the factor v = api
i · · ·ap j

j is a contraction, and either i = 1, j = n, or 
a

pi−1
i−1 a

p j+1
j+1 �= ε, then v is a maximal contraction. The maximal contractions of u = aabb−1a−1abb−1a−1 are: abb−1a−1

(twice), bb−1a−1a, a−1abb−1, and abb−1a−1abb−1a−1. We show two examples below.

1 If we wish instead to express graphical/monoid equality, then usually we will state this explicitly, or by specifying whether a word should be taken as 
reduced or unreduced as defined in the next paragraph.

2 For this final statement to hold, we must consider all primitive words to be primitive roots of the empty word. Note that this fits with our given 
definition, but is not always the case in the existing literature.
3
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a

ε︷ ︸︸ ︷
a b b−1 a−1 a b b−1︸ ︷︷ ︸

ε

a−1

A strictly maximal contraction is a maximal contraction which is not the concatenation of two or more maximal contrac-
tions. So, for example bb−1a−1a is not strictly maximal as it is the concatenation of bb−1 and aa−1 which are maximal. 
On the other hand u′ = aabb−1a−1abb−1a−1a−1 is a strictly maximal contraction.

A primary contraction is one which does not have a maximal contraction as a proper factor. For example, the contraction 
a−1abb−1 from the example above is not a primary contraction, since e.g., it has the maximal contraction bb−1 as a proper 
factor, while abb−1a−1 is primary, as the only proper factor which is also a contraction is bb−1, which is not maximal. It 
is straightforward to see that the reduced version of a word may be obtained by removing a sequence of primary maximal 
contractions, although the choice of these contractions is not necessarily fixed. For example the word aa−1a has two 
primary maximal contractions: aa−1 and a−1a, and removing either gives the (same) reduced word a.

For alphabets X , Y and their respective free groups/monoids AX , BY , a (homo)morphism is a mapping h :AX → BY such 
that, for all u, v ∈ AX , h(uv) = h(u)h(v). Hence a morphism preserves the structure of the monoid/group, and is compatible 
with the associated operation (in our case, concatenation). It follows from this definition that a morphism is fully defined as 
soon as it is specified for each x ∈ X . Thus we shall usually define morphisms in this manner. If, for a word u and morphism 
h, h(u) = u, then u is a fixed point of h, or equivalently, we say that h fixes u.

The set {y ∈ BY | y = h(x), x ∈ AX } is denoted by h(AX ). The composition of two morphisms g : AX → BY , h : BY → CZ

is the morphism h ◦ g : AX → CZ such that h ◦ g(x) = h(g(x)) for all x ∈ X . For a morphism h : AX → AX and n ∈ N , we 
define hn = h ◦ h ◦ . . . ◦ h︸ ︷︷ ︸

n times

. For a subset X ′ of X , h is periodic over X ′ if there exists some y ∈ BY such that for every x ∈ X ′ , 

h(x) = yn for some n ∈ N0. If X ′ = X then h is simply periodic. By idAX : AX → AX , we denote the identity morphism on 
AX . A bijective morphism h : AX → AX is an automorphism. It follows from the relationship between the rank of a free 
group and its (free) generating sets that h : AX → AX is an automorphism if and only if h(AX ) = AX . In the case of a free 
group AX , a word u ∈AX is called a test word if every morphism fixing u is an automorphism.

If there exists some y ∈ AX such that, for every x ∈ X , h(x) = yxy−1, then h is an inner automorphism generated by y. 
The only inner automorphism of a free monoid M is the identity idM . As a result of Lemma 1, we can infer the following:

Corollary 2. Let u, v be words in a free group. Then u = vuv−1 if and only if u, v share a primitive root. Consequently, for alphabets 
X, Y , a word u ∈F X , morphism g :F X →F Y and inner automorphism h :F X →F X generated by v ∈F X , we have g(u) = g ◦h(u)

if and only if g(u), g(v) share a primitive root.

For two morphisms g, h : AX → BY , g and h agree on a word u ∈ AX if g(u) = h(u). They are distinct if there exists 
x ∈ X such that g(x) �= h(x). For a word u ∈ AX , and morphism g : AX → BY , g is ambiguous with respect to u if there 
exists a morphism h : AX → BY such that g and h agree on u and are distinct. Otherwise g is unambiguous with respect 
to u. If there exists a morphism which is (un)ambiguous with respect to u then we say that u possesses an (un)ambiguous 
morphism.

In order to remain consistent with existing literature on ambiguity of morphisms, we shall borrow some terminology 
from the theory of pattern languages. In this respect, a pattern is simply a word (usually, to which we intend to apply 
morphisms). The letters of a pattern are called variables. Conversely, a word to which we no longer usually intend to apply 
morphisms is called a terminal word, consisting of terminal symbols – normally a and b. We shall generally use N (or subsets 
of N) as our set(s) of variables. We denote the set of variables occurring in α by var(α). The pattern language of a pattern 
α ∈N∗ over the alphabet � is the set L�(α) = {σ(α) | σ : var(α)∗ → �∗ is a morphism}. We extend this to patterns in the 
free group in the natural way: the (group) pattern language of a pattern α ∈FN over the alphabet � is the set:

L�(α) = {σ(α) | σ : Fvar(α) → F� is a morphism}.
A pattern α with pattern language L is succinct if it is the shortest pattern satisfying L�(α) = L.

We shall often use σ and τ to denote morphisms mapping patterns to terminal symbols, while ϕ, ψ and ρ shall be 
used to denote morphisms between patterns. Given patterns α, β and a set of variables X ⊂ var(α), if β may be obtained 
from α by erasing all occurrences of variables in X , then β is a subpattern of α. In the free monoid, two patterns α and 
β are morphically coincident if there exist morphisms ϕ : var(α)∗ → var(β)∗ and ψ : var(β)∗ → var(α)∗ such that ϕ(α) = β

and ψ(β) = α. A pattern α is morphically imprimitive if it is morphically coincident to a strictly shorter pattern β . Otherwise 
it is morphically primitive. We extend the definition of morphic coincidence to free groups in the natural way. On the other 
hand, we extend the idea of morphic (im)primitivity to a free group in a slightly non-trivial way (cf. Section 3): a pattern 
α ∈ FN is morphically imprimitive if it is morphically coincident to a pattern β ∈ FN such that | var(β)| < | var(α)|. It is 
not difficult to see that for patterns in the free monoid N∗ , these two definitions are equivalent.
4
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Next, we recall the following theorem, which provides several characterisations of those patterns in a free monoid which 
possess an injective unambiguous morphism,3 and which forms the starting point of the current paper which we aim to 
emulate as far as possible in the free group.

Theorem 3 (Reidenbach, Schneider [18]). Let α ∈N+ . The following statements are equivalent:

(i) α possesses an injective unambiguous morphism.
(ii) The only morphism ϕ : var(α)∗ → var(α)∗ of which α is a fixed point is the identity morphism.

(iii) α is morphically primitive.
(iv) α is succinct.

Finally, we introduce the following notation for replacing all occurrences of a factor in a word, pattern or morphism 
which we shall make regular use of in Section 4. Let X , Y be alphabets. Let u, w be words in F X such that u is unbordered4

and let v ∈F Y . Denote by R[u → v](w) the word obtained by replacing all occurrences of u in w with v . We replace both 
positive and negative occurrences so that each factor u is replaced with v and each factor u−1 is replaced with v−1. For 
example, we have R[a → b](abba−1) = bbbb−1 = bb.

For a set of variables Z and a morphism σ : F Z → F X , define the morphism R[u → v](σ ) : F Z → F X∪Y such that 
R[u → v](σ )(x) = R[u → v]σ(x) for each x ∈ Z . For example, for the morphism σ : F{1,2} → F� given by σ(1) = ab and 
σ(2) = aab, we have that R[a → aa](σ ) is the morphism σ ′ :F{1,2} →F� such that σ ′(1) = aab and σ ′(2) = a4b.

3. Ambiguity and morphic primitivity in a free group

Before we can consider an analogue of Theorem 3, we must first address the task of generalising the notions of ambiguity 
and morphic primitivity to free groups, which requires some closer attention. While these definitions can be applied in a 
straightforward way in the free group setting – simply replacing words and morphisms in a free monoid with their free 
group counterparts – this is not necessarily the most appropriate approach as will become clear from the remainder of the 
section. We shall also not consider succinctness of patterns in a free group, due to the lack of a clear suitable equivalent 
definition or generalisation.

We begin with ambiguity, and the observation that, when considering the most straightforward generalisation, we are 
left with a trivial situation: that all morphisms are actually ambiguous in the free group.

Theorem 4. Let α ∈FN be a pattern with | var(α)| > 1 and let σ :Fvar(α) →F� be a morphism. Then σ is ambiguous w.r.t. α.

Proof. Suppose that σ is periodic. We shall construct a morphism τ : Fvar(α) → F� with τ �= σ such that τ (α) = σ(α) as 
follows. Since σ is periodic, there exists a word w ∈F� with w �= ε such that σ(z) = wnz , nz ∈Z, for every z ∈ var(α). Let 
x, y ∈ var(α) with x �= y. Let p = |α|x and q = |α|y . If p = 0, then let τ :FN →F� be the morphism given by τ (x) = wnx+1

and τ (z) = σ(z) for all z �= x. The case that q = 0 can be treated in the same way. Since |α|x = 0, every extra occurrence of 
w in τ (α) will be cancelled out by an extra occurrence of w−1 and vice versa. Hence, σ(α) = τ (α), and σ is ambiguous as 
required. Otherwise, suppose p �= 0 and q �= 0. Let τ be the morphism given by τ (x) = wnx+q , τ (y) = wny−p and τ (z) = σ(z)
otherwise. Let k be the number of occurrences of w in σ(α). Then τ (α) = wk w p×q w−q×p = wk = σ(α), and σ is ambiguous 
as required.

Assume finally that σ is non-periodic. Let ϕ : Fvar(α) → Fvar(α) be the inner automorphism given by ϕ(x) = αxα−1 for 
each x ∈ var(α). Then writing α = xp1

1 xp2
2 · · · xpn

n where xi ∈N and pi ∈ {1, −1} for 1 ≤ i ≤ n, we have:

ϕ(α) = (
α x1 α−1)p1 (

α x2 α−1)p2 · · · (
α xn α−1)pn

= α xp1
1 α−1 α xp2

2 α−1 · · · α xpn
n α−1

= α xp1
1 xp2

2 · · · xpn
n α−1

= α α α−1

= α.

Thus σ ◦ϕ(α) = σ(α). It remains to show that σ �= σ ◦ϕ . Suppose to the contrary that σ = σ ◦ϕ . Then for each x ∈ var(α), 
σ(x) = σ(αxα−1). Recall from Corollary 2, that this implies σ(x) and σ(α) share a primitive root. Thus there exists w ∈F�

such that for every x ∈ var(α), σ(x) = wn for some n ∈ Z, and σ is periodic, which is a contradiction. Hence we have 
σ �= σ ◦ ϕ and σ is ambiguous. �

3 The theorem is actually given in a slightly stronger form which considers non-erasing morphisms (those which do not map any variable to the empty 
word).

4 By requiring that the factor u to be replaced is unbordered, no two occurrences can overlap, and thus R[u → v] is a well-defined function.
5
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The proof of Theorem 4 reveals two distinct causes of ambiguity. The first is periodicity of the morphism, while the sec-
ond is a specific construction involving composition with inner automorphisms. For periodic morphisms this fits perfectly 
well with our intuition: the images of periodic morphisms have no distinguishing structural features to restrict the possible 
alternatives. This is not true of those morphisms which are ambiguous only because of composition with inner automor-
phisms, however, and closer inspection reveals a structure which is combinatorially trivial. In fact, the second morphism 
τ is not only combinatorially very close to the original, but algebraically so as well. Thus it makes sense to disregard this 
particular structure, and instead to consider morphisms which have some combinatorially (or algebraically) significant dif-
ference and yet still produce the same morphic image. With this in mind, we define ambiguity up to inner automorphism 
and ambiguity up to automorphism in the following manner.

Definition 5. Let �1, �2 be alphabets and let α ∈ F�1 be a pattern. Let σ : F�1 → F�2 be a morphism. Then σ is unam-
biguous up to (inner) automorphism w.r.t. α if, for every morphism τ : F�1 → F�2 with τ (α) = σ(α), there exists an (inner) 
automorphism ϕ :F�1 →F�1 such that τ = σ ◦ ϕ . Otherwise, σ is ambiguous up to (inner) automorphism w.r.t. α.

Of course, Definition 5 actually gives two types of unambiguity: up to inner automorphism and up to automorphism. The 
former, as discussed above, is essentially the least restrictive definition possible which permits unambiguous non-periodic 
morphisms. It can be inferred from results on so-called C-test words (cf. Ivanov [8], Lee [11]) that our definition is indeed 
non-trivial, and in fact, there exist patterns for which all non-periodic morphisms are unambiguous up to automorphism.

Proposition 6 (Ivanov [8], Lee [11]). For every finite set of variables � there exists a pattern α with var(α) = � such that if σ(α) =
τ (α) for two morphisms σ , τ :Fvar(α) →F� , then either:

(i) σ and τ are periodic, and σ(α) = τ (α) = ε, or
(ii) τ = σ ◦ ϕ for some inner automorphism ϕ :Fvar(α) →Fvar(α) .

Corollary 7. There exist patterns α over every set of variables such that every non-periodic morphism is unambiguous up to inner 
automorphism w.r.t. α.

The second type of unambiguity we introduce, namely unambiguity up to automorphism, is a (strictly) weaker, and 
therefore more common. Since every inner automorphism is by definition an automorphism, it follows immediately that if 
a morphism is unambiguous up to inner automorphism then it is unambiguous up to automorphism. It can be seen that 
the converse does not hold however, as demonstrated by the following Proposition 8, whose proof constructs a (periodic) 
morphism σ which is unambiguous up to automorphism w.r.t. a pattern α but which is nevertheless ambiguous up to inner 
automorphism.

Proposition 8. Every periodic morphism is ambiguous up to inner automorphism w.r.t. every pattern α. However, the same does not 
hold for ambiguity up to automorphism.

Proof. The statement for periodic morphisms follows from the fact that every periodic morphism is ambiguous (in the 
strict sense, cf. Theorem 4). It can easily be seen that the second, “witness” morphism cannot be obtained by composition 
with inner automorphisms in this case and thus for each pattern α ∈ FN and each periodic morphism σ : Fvar(α) → F� , 
there exists a second morphism τ : FN → F� with σ(α) = τ (α) and σ �= σ ◦ ϕ for any inner automorphism ϕ . Hence 
σ is ambiguous up to inner automorphism w.r.t. α. To see that the same statement does not hold for ambiguity up to 
automorphism, we show that the morphism σ : F{1,2} → F� given by σ(1) = a−1 and σ(2) = aa is unambiguous up to 
automorphism w.r.t. the pattern α = 1 · 1 · 2 · 2.

To show this, we need the following observations. Firstly, that the set of morphisms τ : F{1,2} → F� such that σ(α) =
τ (α) is given by

M = {τ | τ (1), τ (2) ∈ F {a}, and |τ (1)| = −|τ (2)| + 1}.
We substantiate this claim, firstly by noting that any such morphism τ must be periodic, and furthermore have primitive 
root a (due to Lyndon, Schützenberger [14]), and secondly, observing that, given τ has primitive root a, we must have 
2|τ (1)| + 2|τ (2)| = 2.

Our second claim is that, for any k ∈Z, the morphism ϕk :F{1,2} →F{1,2} given by ϕk(1) = 2−1 ·1−k−1 and ϕk(2) = 1k ·2
is an automorphism. We verify this by observing that ϕk(1−1 ·2−1) = 1 and ϕk((2 ·1)k ·2) = 2. Hence the image F{1,2} under 
ϕk is exactly F{1,2} and thus ϕk is an automorphism.

We can now prove our main statement as follows. Let τ ∈M, and let k = −|τ (2)| + 2. Then we have

σ ◦ ϕk(1) = σ(2−1 · 1−k−1) σ ◦ ϕk(2) = σ(1k · 2)

= a−2a−1(−k−1) = a−ka2
6
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= ak−1 = a−(−|τ (2)|+2)+2

= a−|τ (2)|+1 = a|τ (2)|

= τ (1), = τ (2).

Thus σ ◦ ϕk = τ . So, for any morphism τ such that τ (α) = σ(α), there exists an automorphism ϕ such that σ ◦ ϕ = τ and 
σ is unambiguous up to automorphism with respect to α. �

We also note the following reasonably straightforward observation, which we shall use again later when considering 
characterisations of which patterns possess morphisms which are unambiguous up to (inner) automorphism.

Proposition 9. Let α ∈ FN . If α is fixed by a morphism ϕ : Fvar(α) → Fvar(α) which is not an automorphism, then all injective 
morphisms are ambiguous up to automorphism with respect to α. Likewise if α is fixed by a morphism ϕ :Fvar(α) →Fvar(α) which is 
not an inner automorphism, then all injective morphisms are ambiguous up to inner automorphism with respect to α.

Proof. We prove the statement for ambiguity up to automorphism. The proof for ambiguity up to inner automorphism 
is a straightforward adaptation. Suppose there exists a morphism ϕ : Fvar(α) → Fvar(α) which is not an automorphism, 
and such that ϕ(α) = α. Let σ : Fvar(α) → F� be an injective morphism. Note that σ ◦ ϕ(α) = σ(α). We shall now show 
that σ is ambiguous up to automorphism with respect to α by showing that, for τ = σ ◦ ϕ , there does not exist an 
automorphism ψ : Fvar(α) → Fvar(α) such that τ ◦ ψ = σ . In particular, suppose to the contrary that τ = σ ◦ ϕ = σ ◦ ψ for 
some automorphism ψ : Fvar(α) → Fvar(α) . Then due to the injectivity of σ , σ(ψ(x)) = σ(ϕ(x)) for all x ∈ var(α) implies 
that ψ(x) = ϕ(x) for all x ∈ var(α), and hence that ψ = ϕ . However, since ψ is an automorphism and ϕ is not, this is a 
contradiction. �

As with unambiguity, morphic primitivity requires some care when being adapted to the free group. In particular (as with 
succinctness) the problem stems from the fact that it relies heavily on the length of a word – a property which behaves 
very differently in the free group. However, we propose the following alternative definition which, in the free monoid, is 
equivalent to the existing one, and which fits more naturally with the free group, giving a closer analogy.

Definition 10. Let α ∈ FN be a pattern. If there exists a pattern β ∈ FN with | var(β)| < | var(α)| and morphisms ϕ, ψ such that 
ϕ(α) = β and ψ(β) = α, then α is morphically imprimitive. Otherwise, α is morphically primitive.

For example, the pattern α1 = 1 ·2 ·3 ·1−1 ·4 ·4 ·1 ·3 ·2 ·1−1 is morphically imprimitive, since ϕ(α1) = β1 and ψ(β1) = α1
where β1 = 2 · 3 · 4 · 4 · 3 · 2, ϕ :Fvar(α) → Fvar(β) is the morphism erasing 1 and mapping all other variables to themselves, 
and ψ : Fvar(β) → Fvar(α) is the morphism given by ψ(x) = 1 · x · 1−1 for x ∈ {2, 3} and ψ(4) = 4. On the other hand, any 
morphism mapping α2 = 1 · 2 · 1−1 · 2−1 to a pattern with fewer (i.e., 1) variables is clearly going to map α2 to the empty 
word ε. There exists no morphism mapping ε back to α2, so α2 is morphically primitive.

Motivating our new definition, and with regards to our aim of providing analogous results to Theorem 3, we are able to 
give the following statement which generalises the equivalence of Statements (ii) and (iii) of that theorem to a free group. 
Note that the only automorphisms in a free monoid are renaming morphisms and moreover that any renaming morphism 
fixing a pattern α must necessarily act as the identity over var(α). Consequently, in the free monoid, the statement “the 
only morphisms ϕ : Fvar(α) → Fvar(α) fixing α are automorphisms” is equivalent to the statement “the only morphism 
ϕ :Fvar(α) →Fvar(α) fixing α is the identity”.

Theorem 11. Let α be a pattern. Then α is morphically primitive if and only if, for every morphism ϕ : Fvar(α) → Fvar(α) such that 
ϕ(α) = α, ϕ is an automorphism.

Proof. We start by showing that if α is morphically imprimitive, it is fixed by a morphism ϕ : Fvar(α) → Fvar(α) which is 
not an automorphism. Let β ∈ FN with | var(β)| < | var(α)|, and suppose there exist morphisms ψ1 : Fvar(α) → Fvar(β) and 
ψ2 :Fvar(β) →Fvar(α) such that ψ1(α) = β and ψ2(β) = α. Clearly the morphism ψ2 ◦ ψ1 fixes α. In order to show ψ2 ◦ ψ1
is not an automorphism of Fvar(α) , consider the image ψ2 ◦ ψ1(Fvar(α)). In particular, note that ψ1(Fvar(α)) ⊆ Fvar(β) and 
hence ψ2(ψ1(Fvar(α))) ⊆ ψ2(Fvar(β)) ⊂Fvar(α) . Thus ψ2 ◦ ψ1(Fvar(α)) �=Fvar(α) , and ψ2 ◦ ψ1 is not an automorphism.

We now prove that if α is fixed by a morphism which is not an automorphism, then it is morphically imprimitive. The 
main step is to observe that if α is fixed by a morphism which is not an automorphism, then it is fixed by a morphism 
which is not injective.

For this part of the proof, we need the definition of a retract. For a (not necessarily free) group G , a subgroup H of G is 
a retract if there exists a morphism σ : G → G (called a retraction) such that

(1) σ(u) = u for every u ∈H, and
(2) σ(v) ∈H for every v ∈ G .
7
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Turner [21] showed that if a pattern α is not a test word (which is true if it is fixed by a morphism which is not 
an automorphism), then it belongs to a proper retract R of Fvar(α) . That is, a retract R of Fvar(α) with R �= Fvar(α) . Let 
σ Fvar(α) →Fvar(α) be the associated retraction. Now, since R �= Fvar(α) , there exists w /∈ R for some w ∈Fvar(α) . By Condi-
tion (2), there exists w ′ ∈ R such that σ(w) = w ′ . By Condition (1), σ(w ′) = w ′ . As w /∈ R and w ′ ∈ R , w �= w ′ and thus σ
is not injective. Furthermore, by Condition (1), and due to the fact that α ∈ R , we have σ(α) = α.

In the next step, we need some basic notions from group theory regarding generators and generating sets. A subset 
S = {g1, g2, . . . , gn} of a group G is a generating set for G if every element of G can be written as a product of elements 
of S . The gi s are called generators. S generates G freely if every element of G can be written uniquely as a product of the 
generators not containing any trivial products gi g−1

i or g−1
i gi (sometimes called a reduced product or reduced word over 

S). A group is free if and only if it has a set of generators which generate it freely. The rank of a group G is the cardinality 
of the smallest generating set. A well known fact is that if a set S of generators for a free group F of rank n generates F
freely, then |S| = n.

The Nielsen-Schreier Theorem tells us that σ(Fvar(α)) is a free group, and thus that there exists a set of generators 
{g1, g2, . . . , gm} which generate σ(Fvar(α)) freely. Since S ′ = {σ(x) | x ∈ var(α)} is a generating set for σ(Fvar(α)), the rank 
of σ(Fvar(α)) is at most | var(α)|. However, since σ is not injective, the rank of σ(Fvar(α)) is strictly less than | var(α)| and 
thus m < | var(α)|.

Define a morphism ρ :F {g1,g2,...,gm} →F {1,2,...,n} such that ρ(gi) = i. Since every word in σ(Fvar(α)) is a unique product 
of the generators gi , we can also define the morphism ϕ : Fvar(α) → F {1,2,...,m} by ϕ = ρ ◦ σ . Let ψ : F {1,2 ...,m} → Fvar(α)

be the morphism such that ψ(i) = gi . Let β ∈ F {1,2,...,m} such that ϕ(α) = β and note that ψ(β) = α. Since m < | var(α)|, it 
follows that α is morphically imprimitive. �
Corollary 12. Let α ∈FN . Then α is morphically primitive if and only if it is a test word of Fvar(α) .

Corollary 13. The set of patterns for which there exists an injective morphism which is unambiguous up to inner automorphism is a 
strict subset of the set of morphically primitive patterns.

Interestingly, we cannot show the same equivalence for ambiguity up to inner automorphism.

Proposition 14. There exists a morphically primitive pattern α and morphism ϕ : Fvar(α) → Fvar(α) such that ϕ(α) = α and ϕ is 
not an inner automorphism.

Proof. Recall that the pattern 1 · 2 · 1−1 · 2−1 is morphically primitive. Let ϕ : F{1,2} → F{1,2} be the morphism given by 
ϕ(1) = 1 · 2 and ϕ(2) = 2. Then

ϕ(1 · 2 · 1−1 · 2−1) = 1 · 2 · 2 · 2−1 · 1−1 · 2−1 = 1 · 2 · 1−1 · 2−1,

and it is clear that ϕ is not an inner automorphism. �
It can easily be verified that the pattern α = 1 · 2 · 1−1 · 2−1 is also morphically primitive according to the original 

(length-based) definition, and thus the above statement holds regardless of which definition we use.

4. Unambiguous injective morphisms

Our main result is a characterisation of when a pattern in a free group possesses an injective morphism which is unam-
biguous up to inner automorphism. It provides a direct analogy to the equivalence of Statements (i) and (ii) of Theorem 3.

We already know from Proposition 9 that if a pattern has an injective morphism σ :Fvar(α) →F� which is unambiguous 
up to (inner) automorphism, then the identity morphism idFvar(α)

:Fvar(α) →Fvar(α) is unambiguous up to (inner) automor-
phism. Our objective in this section is to show that the converse also holds: that if the identity morphism is unambiguous 
up to (inner) automorphism, then there exists an injective morphism σ : Fvar(α) → F� which is unambiguous up to (in-
ner) automorphism, hence establishing a complete characterisation of when a pattern has an injective morphism which is 
unambiguous up to inner automorphism.

Our strategy is to construct, for any two patterns α, β ∈ FN , a morphism σα,β : Fvar(α) → F� which encodes the pre-
image α over the alphabet � in such a way that any morphism τ mapping β to σα,β(α) induces a morphism ϕτ mapping 
β to α which is at least as ambiguous as τ . In the case that α = β , at least one possibility for τ is the morphism σα,β itself 
and ϕτ fixes α. Thus we get that the identity morphism is as ambiguous as σα,β and by ensuring that σα,β is injective, we 
can prove the required statement. Formally, we want to construct σα,β such that the following two properties hold.

(P1) If τ (β) = σα,β(α) for some morphism τ : Fvar(β) → F� , then there exists a morphism ϕτ : Fvar(β) → Fvar(α) mapping 
β to α.

(P2) If ϕτ is unambiguous up to inner automorphism w.r.t. β , then τ is unambiguous up to inner automorphism w.r.t. β .
8
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σα,β (α)

β α
ϕτ

σα,βτ

Fig. 1. A visual representation of the property (P1) which concerns a morphic encoding of the pattern α via the image of a morphism σα,β in the sense 
that any morphism τ mapping a pattern β to σα,β (α) necessarily induces a morphism ϕτ mapping β to α.

By considering the more general case that α is not necessarily equal to β , we do not introduce any substantial additional 
effort, but are able to take advantage of our construction again in Section 5 to easily prove some properties of terminal-free 
group pattern languages.

4.1. A morphic encoding

We begin by concentrating on the first property (P1) (cf. Fig. 1). Our morphism σα,β is a generalisation of a construction 
given by Jiang et al. [10] which satisfies the equivalent condition in a free monoid. We will see in the remainder of this 
section, our task is substantially more complicated due to the possible presence of contractions.

The following idea is central: for each variable x ∈ var(α), the image σα,β(x) has a uniquely associated factor Sx which 
acts as an anchor, holding the place of x. This encodes the pre-image α implicitly in the image σα,β(α), and we can recover 
α explicitly by replacing each occurrence of an anchor Sx with the variable x and erasing any remaining letters from �.

For any morphism τ : Fvar(β) → F� with τ (β) = σα,β(α) and set S = {Sx | x ∈ var(α)} of anchors, we derive the mor-
phism ϕτ in the same way. To ensure the replacement process is deterministic, we shall always consider sets of anchors 
which cannot overlap with one another. Formally, we define the following.

Definition 15. For any morphism τ : Fvar(β) → F� with τ (β) = σα,β(α) and set S = {Sx | x ∈ var(α)} of anchors, let τmod
S :

Fvar(β) → Fvar(α)∪� be the morphism such that for each y ∈ var(β), τmod
S (y) is obtained from τ (y) by replacing each 

occurrence of each anchor Sx with the corresponding variable x. Furthermore, define ϕτ,S : Fvar(β) → Fvar(α) to be the 
morphism obtained by erasing all the letters from � in τmod

S .5

Let W be the (reduced) image σα,β(α) and let W mod
S be result of replacing each occurrence of an anchor Sx ∈ S in W

by the appropriate variable x. Then the following two properties are sufficient to ensure that ϕτ,S (β) = α as desired.

(P3) W mod
S has α as a subpattern, and

(P4) τmod
S (β) = W mod

S .

Similarly to the construction in Jiang et al. [10], we shall achieve properties (P3) and (P4) by building our morphism 
σα,β from a high number of segments: factors unique to σα,β(x) for a given variable x which provide possible choices for 
the anchor Sx . We use segments of the form si = abia−ib due to the fact that it is impossible for any two occurrences 
(positive or negative) to overlap, meaning the result of replacing anchors with variables is uniquely defined.

One additional problem we have is that while in the free monoid it is trivial that any factor occurring in σα,β (x) will 
occur in σα,β(α) if x ∈ α, the same simple statement does not always hold in the free group context. For example, consider 
the morphism σ :F{1,2} →F� given by σ(1) = ab and σ(2) = b−1. Then σ(1 · 2) = abb−1 = a, and hence the factors b in 
σ(1) and b−1 in σ(2) do not “survive” in the reduced image σ(1 · 2).

In order to guarantee that each segment si in σα,β does in fact survive in the reduced image W = σα,β(α) we add 
contraction-blocking factors μi as prefixes and suffixes to each σα,β(x), x ∈ var(α). In particular, we will use factors abia as 
no one is a prefix or suffix of the other. This is sufficient to stop any contractions from occurring beyond these factors, and 
hence we guarantee that each segment si survives. We define these blocking factors, as well as segments, formally below 
for ease of reference.

Definition 16. For all i ∈N , let μi = abia and let si = abia−ib.

Remark 17. For any i, j ∈N with i �= j, we have μiμ
−1
j = abi− ja−1 (and likewise μ−1

i μ j = a−1b j−ia) with i − j �= 0.

The morphism σα,β will map each variable to the appropriate blocking factor – which must be unique to that variable – 
then the string of segments si which form our potential anchors, and finally a second blocking factor. In order to avoid any 

5 Note that we refine our notation from ϕτ to ϕτ,S to accommodate the fact that our construction relies on the choice of anchors.
9
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confusion between parts of the blocking factors and the segments, we ensure that the smallest segments are longer than 
the largest blocking factors. Hence we get a class of morphisms σk,� as follows, where k is the number of distinct, unique 
segments per variable and � is the set of variables (and hence provides the minimum “length” of the segments).

Definition 18. Let k ∈ N and let � = {y1, y2, . . . , ym} be a set of variables from N . Let σk,� : F� → F� be the morphism 
given by

σk,�(yi) = μi · sm+(i−1)k+1 · · · sm+ik · μi

for 1 ≤ i ≤ m.

For example if k = 3 and � = {1, 2, 3}, we have that σ3,� :F� →F� is the morphism given by:

σ3,�(1) = a b a a b4a−4b a b5a−5b a b6a−6b a b a,

σ3,�(2) = a b2a a b7a−7b a b8a−8b a b9a−9b a b2a,

σ3,�(3) = a b3a a b10a−10b a b11a−11b a b12a−12b a b3a.

Because the blocking factors μi severely restrict the manner in which any contractions may occur, it is straightforward 
to observe that, for a pattern α ∈F� , the reduced image σk,�(α) has the form

μ
p1
r U p1

1 V 1U p2
2 V 2 . . . Vn−1U pn

n μ
pn
s

where α = xp1
1 xp2

2 . . . xpn
n and r, s, xi ∈N, pi ∈ {1, −1} for 1 ≤ i ≤ n, μr, μs are defined according to Definition 16, the factors 

Ui consist of k consecutive segments s j which uniquely occur as factors of σk,�(xi) and

V i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

abqiaabqi+1a if pi = pi+1 = 1

a−1b−qia−2b−qi+1a−1 if pi = pi+1 = −1

abqi−qi+1a−1 if pi = 1, pi+1 = −1

a−1bqi+1−qia if pi = −1, pi+1 = 1

where qi, qi+1 ∈N .
Consequently, each segment s j occurs exactly once in each factor Ui for which s j is a factor of σ(xi), and nowhere else. 

Hence we may draw the following conclusions.

Remark 19. For any k ∈ N , � ⊂ N and α ∈ FN with var(α) = � such that α �= ε, we have that σk,�(α) �= ε and conse-
quently, σk,� is injective.

Remark 20. Let α ∈ FN , let � = var(α), and let k ≥ 1. For each x ∈ var(α), let Sx be a segment si such that Sx is a factor 
of σk,�(x). Let S = {Sx | x ∈ var(α)}. Let W be the result of replacing each occurrence of Sx in σk,�(α) with x. Then W has 
α as a subpattern.

Remark 20 allows us to conclude that property (P3) is satisfied whenever we take σα,β to be one of the morphisms 
σk,var(α) and for any set of anchors S = {Sx | x ∈ var(α)} such that Sx is a segment si occurring in σα,β(x). Now we turn our 
attention to the property (P4). We shall show that provided k is large enough, taking σα,β to be σk,var(α) also guarantees 
the existence of at least one such set of anchors for which (P4) is also satisfied.

Essentially, we need to guarantee that replacing the anchors in a morphism τ (so, in the images of individual variables) 
before its application yields the same result as replacing the anchors directly in the reduced image, after its application. 
In the free monoid, this is straightforward: it is enough to guarantee that the image contains no occurrence of an anchor 
which crosses a boundary between the images of two variables as this is the only way an occurrence of an anchor can exist 
which is not directly produced by an occurrence in the image of an individual variable. However, in the free group setting 
we must also consider the possibility that occurrences of anchors are produced or removed due to contractions.

We provide the following criteria which, as we show in what follows, provides a sufficient condition (although in a 
negated form) for when a factor is a good candidate for being an anchor in the free group case.

Definition 21. Let β ∈ FN and let τ : Fvar(β) → F� be a morphism. Let w be the unreduced image τ (β). Let u ∈ F� be an 
unbordered word. Then u is split by τ in τ (β) if:

(i) there exists an unreduced occurrence of u in w , or
(ii) there exists an occurrence of u in w which partially overlaps with τ (x) for some x ∈ var(β), or

(iii) there exists an occurrence of u in w which partially overlaps with a maximal contraction.
10
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Using Definition 21, we give the following criteria for a “good” set of anchor segments.

Definition 22. Let α, β ∈ FN , let � = var(α) and let k ∈N . Let τ : Fvar(β) → F� be a morphism such that τ (β) = σk,�(α). 
We say a set of anchor segments for τ is a set S = {Sx1 , Sx2 , . . . , Sxn } such that:

(i) {x1, x2, . . . , xn} = �, and
(ii) Sxi = s j for some j ∈N, j > |�|, and

(iii) Sxi is a factor of σk,�(xi), and
(iv) Sxi is not split by τ in τ (β).

For ease of exposition, we shall initially concentrate on the replacement of a single anchor segment Sx by the variable 
x. Recall from Section 2 that we use the notation R[u → v](w) to refer to the result of replacing all occurrences of u with 
v in the (possibly unreduced) word w . Hence, we want the following equation to hold:

R[Sx → x](τ (β)) = R[Sx → x](τ )(β) (1)

where the image τ (β) on the left hand side is reduced. As we shall see later, adapting Equation (1) to account for replacing 
all anchors and thus to (P4) is straightforward due to the fact that we shall consider only anchors which are segments si
which cannot overlap, and moreover that performing the replacements cannot induce any new contractions.

The following three examples demonstrate why each of the three cases in Definition 21 should be avoided by the anchors 
Sx if we want the property (P4) to hold.

Example 23. Let β = 1 · 2, and let τ : F{1,2} → F� be the morphism given by τ (1) = ab−1 and τ (2) = ba. Suppose that for 
x = 1 we choose Sx = aa. Then since Sx does not occur in τ (1) or τ (2), we have R[Sx → x](τ ) = τ and thus

R[Sx → x](τ )(β) = τ (β) = ab−1ba= aa.

However, while the reduced word Sx does not occur directly in the unreduced image τ (β), an unreduced version of Sx does 
occur, which results in an occurrence of Sx in the reduced version of τ (β). Thus

R[Sx → x](τ (β)) = R[Sx → x](aa) = x = 1.

Hence R[Sx → x](τ )(β) �= R[Sx → x](τ (β)).

Example 24. Let β = 1 · 2, and let τ : F{1,2} → F� be the morphism given by τ (1) = aa and τ (2) = bb. Suppose that for 
x = 1, we choose Sx = ab. Then since Sx does not occur in τ (1) or τ (2), we have R[Sx → x](τ ) = τ and thus

R[Sx → x](τ )(β) = τ (β) = aabb.

However, Sx does occur in τ (β), as a combination of the prefix of τ (1) and the suffix of τ (2). Therefore

R[Sx → x](τ (β)) = R[Sx → x](aabb) = a x b= a · 1 · b.

Hence R[Sx → x](τ )(β) �= R[Sx → x](τ (β)).

Example 25. Let β = 1 · 2, and let τ :F{1,2} →F� be the morphism given by τ (1) = abb and τ (2) = b−1a. Suppose that for 
x = 1, we choose Sx = abb. Then R[Sx → x](τ ) is the morphism τ ′ : F{1,2} → F�∪{1} given by τ ′(1) = 1 and τ ′(2) = b−1a. 
Hence

R[Sx → x](τ )(β) = 1 · b−1a.

However,

R[Sx → x](τ (β)) = R[Sx → x](abbb−1a) = R[Sx → x](aba) = aba.

Hence R[Sx → x](τ )(β) �= R[Sx → x](τ (β)).

Next, we shall prove that Definition 21 does indeed yield a condition for when a set of anchor segments results in 
Equation (1) and subsequently the property (P4) holding. We require the following lemmas regarding the combinatorics of 
replacements and how they interact with contractions and concatenations. The first is a direct observation which deals with 
concatenation and is therefore relevant to Condition (ii) of Definition 21.
11
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Lemma 26. Let w, u, v ∈ F� such that u is unbordered, and suppose that w = w1 w2 . . . wn for non-empty words wi ∈ F� , and 
suppose that no occurrence of u in w partially overlaps a factor wi. Then we have that

R[u → v](w1)R[u → v](w2) . . . R[u → v](wn) = R[u → v](w).

Proof. The statement follows from the definitions: since every occurrence of u is contained entirely inside a factor wi , 
replacing all the factors of u in each wi with v is equivalent to replacing all the factors of u in w . �

Our second lemma addresses the contractions, and is therefore relevant to Conditions (i) and (iii).

Lemma 27. Let w, u, v ∈ F� be words such that u is unbordered and reduced, and w is unreduced. Suppose that w = ε. If no 
occurrence of u in w partially overlaps with a maximal contraction and every occurrence of u is reduced, then

R[u → v](w) = ε.

Proof. We first prove the following statement: Let w1, w2 ∈ F� be such that w = w1xw2 where x is a maximal primary 
contraction. If no occurrence of u in w partially overlaps with x, then

R[u → v](w) = R[u → v](w1 w2).

To verify this claim, note that because no further maximal contractions occur in x, there exist reduced words x1, x2 such that 
x = x1x2 and x1 = x−1

2 . It follows that R[u → v](x1) = R[u → v](x−1
2 ) = R[u → v](x2)

−1. Furthermore, since u is reduced, 
there cannot be an occurrence of u in x which is contained partly in x1 and partly in x2 as it would then contain a 
contraction. Therefore by Lemma 26 we have that

R[u → v](x) = R[u → v](x1)R[u → v](x2)

= R[u → v](x2)
−1 R[u → v](x2)

= ε.

Now, if u does not partially overlap with x as we have assumed, but an occurrence of u partially overlaps with either w1

or w2, then that occurrence must have x as a factor. This contradicts the assumption that every occurrence of u is reduced. 
Hence we can assume that u does not partially overlap with w1, x or w2 and hence by Lemma 26, we have:

R[u → v](w) = R[u → v](w1) R[u → v](x) R[u → v](w2)

and therefore:

R[u → v](w) = R[u → v](w1)R[u → v](w2).

By the same argument there cannot be an occurrence of u in w1 w2 which partially overlaps either w1 or w2, since such 
an occurrence would imply an occurrence in w1xw2 which is unreduced. So we can again apply Lemma 26 to get:

R[u → v](w1 w2) = R[u → v](w1)R[u → v](w2)

= R[u → v](w).

Hence we have proven our claim. In order to see that the statement of the lemma follows, note that every occurrence of 
u in w1 w2 must be reduced and no occurrence of u can overlap a maximal contraction in w1 w2. Indeed, if an unreduced 
occurrence of u occurs in either w1 or w2, then it also occurs in w which is a contradiction. We have already seen 
that we cannot have an occurrence of u which partially overlaps with w1 or w2 in w1 w2, so all occurrences must be 
reduced. Similarly, any maximal contraction in w1 w2 will also correspond to a maximal contraction in w (possibly, but not 
necessarily also containing x). Therefore any occurrence of u partially overlapping a maximal contraction in w1 w2 results 
in an occurrence of u partially overlapping a maximal contraction in w which is again a contradiction.

To complete the proof of the lemma, it is enough to observe that if we continuously remove the primary maximal con-
tractions x from w , we eventually reach ε, and thus the statement can be obtained through a straightforward induction. �

As claimed, using Lemmas 26 and 27, we are able to turn Definition 21 into a sufficient condition on τ and Sx such that 
Equation (1) is satisfied.

Lemma 28. Let β ∈ FN and τ : Fvar(β) → F� be a morphism. Let u, v ∈F� such that u is unbordered. If no occurrence of u is split 
by τ in τ (β), then

R[u → v](τ )(β) = R[u → v](τ (β)).
12
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Proof. Let w be the unreduced image τ (β). Suppose that u is not split by τ in τ (β) (and thus that none of Condi-
tions (i), (ii) and (iii) of Definition 21 hold). By Lemma 26, if Condition (ii) does not hold, then R[u → v](τ )(β) = R[u →
v](w).

Hence it remains to show that R[u → v](w) = R[u → v](τ (β)). To do this, let w = w0z1 w1 . . . zm wm where each zi is 
a maximal contraction and w0 w1 . . . wm is the reduced image τ (β). If Condition (iii) of Definition 21 does not hold, then 
every occurrence of u is contained entirely within each wi or zi . Consequently, by Lemma 26,

R[u → v](w) = R[u → v](w0)R[u → v](z1)R[u → v](w1)R[u → v](z2) . . .

. . . R[u → v](zm)R[u → v](wm).

Furthermore, since Conditions (i) and (iii) do not hold, by Lemma 27,

R[u → v](zi) = ε

for 1 ≤ i ≤ m. Thus

R[u → v](w) = R[u → v](w0)R[u → v](w1) . . . R[u → v](wm).

Finally we conclude that no occurrence of u can partially overlap any wi in w0 w1 . . . wm , otherwise that occurrence of u
must also contain some z j as a factor in w0z1 w1 . . . zm wm , and would therefore contradict our assumption that Condition (i) 
does not hold. Hence by Lemma 26

R[u → v](w0)R[u → v](w1) . . . R[u → v](wm) = R[u → v](w0 w1 . . . wm)

= R[u → v](τ (β)),

and therefore

R[u → v](τ )(β) = R[u → v](w) = R[u → v](τ (β))

as claimed. �
The following proposition confirms that the existence of a set of anchor segments as defined in Definition 22 for a 

morphism τ mapping β to σk,�(α) is sufficient to guarantee that (P4) holds. For convenience in later proofs, we give a 
slightly more detailed statement regarding the morphism τmod

S from which the fact that ϕτ,S (β) = α follows directly.

Proposition 29. Let α, β ∈ FN , k ∈ N , � = var(α) and let τ : Fvar(β) → F� be a morphism such that τ (β) = σk,�(α). Suppose 
there exists a set S of anchor segments for τ as per Definition 22. For each x ∈ var(β), let wx be the prefix of σk,�(x) and w ′

x be the 
suffix of σk,�(x) such that σk,�(x) = wx Sx w ′

x. Then

τmod
S (β) = W mod

S = (
wx1 x1 w ′

x1

)p1
(

wx2 x2 w ′
x2

)p2 · · · (wxn xn w ′
xn

)pn

where W mod
S is the obtained from the reduced image W = σk,�(α) by replacing each occurrence of an anchor Sx ∈ S with the 

appropriate variable x, and α = xp1
1 xp2

2 · · · xpn
n , with xi ∈N , pi ∈ {1, −1}.

Proof. By definition, Sx1 is not split by τ in τ (β) and is unbordered, so by Lemma 28, we have that

R[Sx1 → x1](τ )(β) = R[Sx1 → x1](τ (β))

and since τ (β) = σk,�(α), this implies

R[Sx1 → x1](τ )(β) = R[Sx1 → x1](σk,�(α)).

Let τ (1) = R[Sx1 → x1](τ ). Note that because Sx1 and Sx2 occur independently (i.e., they do not overlap), and since no new 
contractions are introduced when replacing Sx1 by x1 (since x1 is a new symbol not already present), it follows from the 
fact that Sx2 is not split by τ in τ (β), that Sx2 is not split by τ (1) in τ (1)(β). In other words, replacing Sx1 with x1 does not 
affect whether Sx2 satisfies any of the conditions of Definition 21. Hence, for τ (2) = R[Sx2 → x2] 

(
τ (1)

)
, we have that

τ (2)(β) = R[Sx2 → x2]
(
τ (1)(β)

) = R[Sx2 → x2]
(

R[Sx1 → x1]
(
σk,�(α)

))
.

By repeating the same logic we eventually have:
13
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τ (m)(β) = R[Sxm → xm]
(

R[Sxm−1 → xm−1]
(
. . . R[Sx1 → x1](σk,�(α))

))

= W mod
S .

Clearly τ (m) = τmod
S , so τmod

S (β) = W mod
S . It remains to consider the second equality. Note that by definition, we have that:

σk,�(α) = W = (
wx1 Sx1 w ′

x1

)p1
(

wx2 Sx2 w ′
x2

)p2 . . .
(

wxn Sxn w ′
xn

)pn

such that α = xp1
1 xp2

2 . . . xpn
n , xi ∈ N , pi ∈ {1, −1} and σk,�(xi) = wxi Sxi w ′

xi
. Furthermore, by the construction of σk,� (see 

Remark 20), there are no other occurrences of each Sxi in W . Hence the result of applying the replacements R[Sxi → xi] to 
the word W is:

W mod
S = (

wx1 x1 w ′
x1

)p1
(

wx2 x2 w ′
x2

)p2 . . .
(

wxn xn w ′
xn

)pn

and our statement holds. �
The next step is to prove that if we chose σα,β to be σk,var(α) for large enough k, then we can guarantee that any 

morphism τ mapping β to σα,β(α) has a set of anchor segments satisfying Definition 22. As with the free monoid case, this 
centres around a counting argument: we shall show that for a given β , there is an upper bound on the number of segments 
si which may satisfy any of the three conditions of Definition 21.

The main observation we need is that the number of strict maximal contractions occurring in τ (β) is bounded by a 
function of |β|. We can then use this insight to show that the number of segments si which are split by τ in τ (β) is also 
bounded by a function of |β|.

Lemma 30. Let w1, w2, . . . , wn ∈ F� be reduced words. Let w be the unreduced word w1 w2 · · · wn. Then there are at most n(n−1)
2

strictly maximal contractions in w.

Proof. For the purposes of our proof, we will classify the strictly maximal contractions as follows: a primary strictly max-
imal contraction is degree-1. In general, a strictly maximal contraction u is degree-k + 1 if it contains a degree-k strictly 
maximal contraction, and removing all degree-k strictly maximal contractions yields a primary contraction. For example, 
aa−1 is degree-1 because it is primary, while abaa−1bb−2a−1 is degree-2 because removing the degree-1 strictly maximal 
contractions aa−1 and bb−1 yields the primary contraction abb−1a−1.

We will now count the maximum possible number of strictly maximal contractions of degree-m in w . We start with 
m = 1. Because each wi is reduced, and because each primary contraction must contain a factor aa−1 for some a ∈ � ∪�−1, 
we have at most n − 1 primary strictly maximal contractions (and therefore strictly maximal contractions with degree-1) 
in w . Consider the word w ′ = w ′

1 w ′
2 . . . w ′

n obtained by removing all the primary strictly maximal contractions, where 
w ′

1, w
′
2, . . . , w

′
n are obtained by removing the corresponding parts of each primary strictly maximal contraction from 

w1, w2, . . . wn respectively. Note that this may result in w ′
i being the empty word for some values i. Moreover, any factor 

of a reduced word is also reduced, so each w ′
i is reduced for 1 ≤ i ≤ n.

Now consider the primary strictly maximal contractions in w ′ . Note that each degree-2 strictly maximal contraction in w
must contain at least one of these. By the same logic as before, there can be at most n −1. However, we claim that there can 
be at most n − 2. This is clearly the case if w ′

i = ε for some i, 1 ≤ i ≤ n (since we then have n − 2 or less transitions where a 
factor aa−1 may occur, a ∈ � ∪�−1). We now show that if w ′

i �= ε for all i, 1 ≤ i ≤ n, then a much stronger statement holds, 
that there are no contractions. In particular, if w ′

i �= ε for 1 ≤ i ≤ n, then there exist xi, yi, zi ∈ F� for 1 ≤ i ≤ n such that 
wi = xi yi zi (and hence the latter is reduced), zi xi+1 is a strictly maximal contraction in w for 1 ≤ i < n, and w ′

i = yi �= ε.
Now suppose to the contrary that we have a primary strictly maximal contraction in w ′ . Then, since any primary strictly 

maximal contraction contains a factor aa−1, a ∈ � ∪ �−1, and since each w ′
i is reduced (and hence does not contain such 

a factor), we must have that for some k, 1 ≤ k < n, w ′
k = yk has a suffix a and w ′

k+1 = yk+1 has a prefix a−1 for some 
a ∈ � ∪ �−1. However, this contradicts the fact that the contraction zkxk+1 is a maximal contraction. Hence if there exist 
any primary strictly maximal contractions in w ′ , at least one w ′

i must be empty, and as we have already reasoned, there 
can be at most n − 2 primary strictly maximal contractions in w ′ .

By repeating this argument, we see there are n − p possible strictly maximal contractions of degree p until p = n and 

we have a reduced word w(p) . Thus we have at most 
n−1∑
j=1

j = n(n−1)
2 distinct strictly maximal contractions in w . �

Note that it follows directly from the definitions that if a segment si partially overlaps a maximal contraction, then 
it must partially overlap a strictly maximal contraction. We can therefore use Lemma 30, to infer that for any morphism 
τ : Fvar(β) → F� with τ (β) = σk,var(α)(α), the number of segments si satisfying Condition (iii) of Definition 21 is bounded 
by a (fixed) function of |β|. By observing that there are at most |β| − 1 segments satisfying Conditions (i) and (ii) of the 
same definition, we can also bound the total number of segments which are split by τ in τ (β) by some function of |β|. 
14
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Hence, to guarantee the existence of anchor segments Sx satisfying Definition 22, we simply need to choose a value of k
which is above this bound (and thus at least one segment occurring in each σk,var(α)(x) cannot be split by τ in τ (β)).

We will see from Proposition 32 that the exact number required is k = (|β| + 1)(|β| − 1) + 1. Hence we define the 
morphism σα,β as follows.

Definition 31. For α, β ∈ FN , let k = (|β| + 1)(|β| − 1) + 1. Then we define σα,β to be the morphism σk,var(α) as per 
Definition 18.

The next proposition confirms that any morphism τ mapping β to σα,β(α) has at least one set of anchor segments 
satisfying Definition 22.

Proposition 32. Let α, β ∈ FN and let τ : Fvar(β) → F� be a morphism such that τ (β) = σα,β(α). Then there exists a set S of 
anchor segments for τ .

Proof. Let segx be the set of segments si such that si is a factor of σα,β(x). Then by definition,

|segx| = k = (|β| + 1)(|β| − 1) + 1.

Moreover it is easily determined (e.g., from Remark 20 or the preceding discussion), that every segment s ∈ segx occurs as 
a factor of τ (β) = σα,β(α). We have the following claim.

Claim 1. Let x ∈ var(α). Then there exists s ∈ segx such that s is not split by τ in τ (β).

Proof (Claim 1). We consider the maximum number of segments s ∈ segx which may be split by τ in τ (β). We note that 
at most |β| − 1 segments may satisfy Condition (ii) of Definition 21, since there are at most |β| − 1 factors τ (x)τ (y) of τ (β)

with x, y ∈ N ∪ N−1. Similarly, any segment satisfying Condition (i) of Definition 21 contains a factor aa−1, which must 
necessarily occur across the border of a factor τ (x)τ (y) and so must also satisfy Condition (ii).

By Lemma 30, there are at most |β|(|β|−1)
2 different strictly maximal contractions in τ (β). Note that an occurrence 

of s ∈ segx partially overlaps a maximal contraction if and only if it partially overlaps a strictly maximal contraction. By 
definition, it must occur partly inside and partly outside the contraction, so it crosses the edge of the contraction. Since 
there are two edges per strictly maximal contraction, and since no two occurrences of segments overlap, there can be 
at most two segments partially overlapping each maximal contraction, and hence at most |β|(|β| − 1) segments s ∈ segx

satisfying Condition (iii) of Definition 21. In total, we have at most

|β| − 1 + |β|(|β| − 1) = (|β| + 1)(|β| − 1)

distinct segments s ∈ segx which satisfy any of the conditions of Definition 21. Consequently, since |segx| > (|β| +1)(|β| −1), 
there exists Sx ∈ segx which doesn’t satisfy any of the conditions of Definition 21, and hence is not split by τ in τ (β). �

By Claim 1, we can define a set S containing exactly one segment Sx from each segx , x ∈ var(α) such that Sx is not split 
by τ in τ (β). It follows that S satisfies Conditions (i) and (iv) of Definition 22. By definition, each Sx is a segment occurring 
as a factor of σα,β(x), so S also satisfies Conditions (ii) and (iii). Thus S is a set of anchor segments for τ as required. �

Summarising our reasoning so far, we have the following theorem confirming that σα,β satisfies the property (P1).

Theorem 33. Let α, β ∈ FN . There exists a morphism τ : Fvar(β) → F� such that τ (β) = σα,β(α) if and only if there exists a 
morphism ϕ :Fvar(β) →Fvar(α) such that ϕ(β) = α. In particular, there exists a set S of anchor segments for τ such that ϕτ,S(β) = α.

Proof. The “if” statement is straightforward, since we can just take τ = σα,β ◦ ϕ . The “only if” statement obtained as a 
straightforward consequence of Propositions 29 and 32. �

We also include the following remark which is necessary for our considerations later, in Section 5.

Remark 34. Our definition of σα,β relies only on the length of β and the set � = var(α): we choose σα,β based on σk,�

where k is derived from |β|. All the results of this section also hold if, instead, we base σα,β on σk′,� for any k′ ≥ k.
15
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σα,β (α)αβ
ϕτ,S1 σα,β

σα,β ◦ ϕτ,S

τ �= σα,β ◦ ϕτ,S

Fig. 2. For a given morphism τ mapping β to σα,β (α) we can construct a morphism ϕτ,S mapping β to α. In order to compare the ambiguity of τ and 
ϕτ,S , we need to consider the possibility that τ �= σα,β ◦ ϕτ,S .

4.2. Comparing the ambiguity of τ and ϕτ,S

Having fulfilled our aim in the previous section of constructing a morphism σα,β such that any morphism τ : Fvar(β) →
F� mapping β to σα,β(α) “encodes” an associated morphism ϕτ,S mapping β to α (cf. (P1)), we now turn our attention to 
the ambiguity of the morphisms τ . In particular, we wish to show that τ is as unambiguous as ϕτ,S (cf. (P2)).

In a rough sense, we wish to show that there are not “more” morphisms τ mapping β to σα,β(α), than morphisms 
ϕτ,S mapping β to α. In particular, we consider two cases based on whether or not τ = σα,β ◦ ϕτ,S for every morphism τ
mapping β to σα,β(α) and set S of anchor segments. The case that this is true is the simpler case since we get a direct 
correspondence between the morphisms τ and the morphisms ϕτ,S .

Proposition 35. Let α, β ∈ FN and suppose that for every morphism τ : Fvar(β) → F� such that τ (β) = σα,β(α) and for every 
set S of anchor segments, τ = σα,β ◦ ϕτ,S . Then τ is ambiguous up to inner automorphism w.r.t. β if and only if ϕτ,S is ambiguous 
up to inner automorphism w.r.t. β . Moreover τ is ambiguous up to automorphism w.r.t. β if and only if ϕτ,S is ambiguous up to 
automorphism w.r.t. β .

Proof. We shall prove the statement for ambiguity up to automorphism. The proof for ambiguity up to inner automorphism 
is a straightforward adaptation. Then for every morphism τ :Fvar(β) → F� mapping β to σα,β(α), there exists a morphism 
ϕ : Fvar(β) → Fvar(α) (namely ϕτ,S ) mapping β to α such that τ = σα,β ◦ ϕ . Moreover, for every morphism ϕ : Fvar(β) →
Fvar(α) mapping β to α we have that τ = σα,β ◦ ϕ is a morphism mapping β to σα,β(α). Hence the set of all morphisms 
mapping β to σα,β(α) is given by the set:

M = {σα,β ◦ ϕ | ϕ : Fvar(β) → Fvar(α) is a morphism such that ϕ(β) = α}.
Now let τ1 = σα,β ◦ ϕ1 and τ2 = σα,β ◦ ϕ2 be morphisms in M such that ϕ1, ϕ2 :Fvar(β) →Fvar(α) are morphisms mapping 
β to α. Note that, since σα,β is injective (cf. Remark 19), for every x ∈ var(β), σα,β(ϕ1(x)) = σα,β(ϕ2(x)) if and only if 
ϕ1(x) = ϕ2(x). Consequently, τ1 = τ2 if and only if ϕ1 = ϕ2, and by the same reasoning, τ1 = τ2 ◦ ψ for some automorphism 
ψ :Fvar(β) →Fvar(β) if and only if ϕ1 = ϕ2 ◦ ψ .

Hence, for τ = σα,β ◦ϕ , there exists a second morphism τ ′ such that τ (β) = τ ′(β) = σα,β(α) (i.e., τ ′ ∈ S) and τ ′ �= τ ◦ψ

for any automorphism ψ : Fvar(β) → Fvar(β) if and only if there exists ϕ′ : Fvar(β) → Fvar(α) mapping β to α such that ϕ′ �=
ϕ ◦ ψ ′ for any automorphism ψ ′ :Fvar(β) →Fvar(β) . This is equivalent to saying that τ is ambiguous up to automorphism if 
and only if ϕ is, and our statement follows. �

Now we consider the case that there exists some morphism τ mapping β to σα,β(α) such that τ �= σα,β ◦ ϕτ,S for 
some set S of anchor segments (cf. Fig. 2). In this case, we get the following technical statement which, as we shall see, is 
sufficient to construct a wide variety of morphisms ϕ mapping β to α.

Proposition 36. Let α, β ∈ FN and let τ : Fvar(β) → F� be a morphism such that τ (β) = σα,β(α). Suppose there exists a set S of 
anchor segments for τ such that τ �= σα,β ◦ ϕτ,S . Then there exists a morphism ψ :Fvar(β) →Fvar(α)∪� such that

(i) ψ(β) = α, and
(ii) � ∩ symb(ψ(x)) �= ∅ for some x ∈ var(β).

Proof. We begin by constructing our morphism ψ . To this end, for each x ∈ var(α), let Sx ∈ S be the anchor segment 
associated with x. Then from the definition of σα,β , there exist (unique) wx, w ′

x ∈ F� such that σα,β(x) = wx Sx w ′
x and 

wx Sx w ′
x is reduced. Let τmod

S be defined according to Definition 15, and let ρ : Fvar(α)∪� → Fvar(α)∪� be the morphism 
given by ρ(a) = a, ρ(b) = b and ρ(x) = w−1

x xw ′
x
−1 for all x ∈ var(α). We define our morphism ψ : Fvar(β) → Fvar(α)∪� to 

be ρ ◦ τmod
S . The following claim confirms that ψ satisfies Condition (i) of the proposition.

Claim 1. ψ(β) = α.
16
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Proof (Claim 1). Recall that ψ = ρ ◦ τmod
S . By Proposition 29, we have

τmod
S (β) = (

wx1 x1 w ′
x1

)p1
(

wx2 x2 w ′
x2

)p2 · · · (wxn xn w ′
xn

)pn

such that α = xp1
1 xp2

2 · · · xpn
n where xi ∈N and pi ∈ {1, −1}, and σα,β(xi) = wxi Sxi w ′

xi
such that wxi Sxi w ′

xi
is reduced. Now, 

since ρ(a) = a and ρ(b) = b, and each wxi , w ′
xi

∈F� , we have ρ(wxi ) = wxi and ρ(w ′
xi
) = w ′

xi
. Thus

ρ ◦ τmod
S (β) = (

wx1ρ(x1)w ′
x1

)p1
(

wx2ρ(x2)w ′
x2

)p2 · · · (wxnρ(xn)w ′
xn

)pn

=
(

wx1 w−1
x1

x1 w ′
x1

−1 w ′
x1

)p1
(

wx2 w−1
x2

x2 w ′
x2

−1 w ′
x2

)p2 · · ·
· · ·

(
wxn w−1

xn
xn w ′

xn

−1 w ′
xn

)pn

= xp1
1 xp2

2 · · · xpn
n

= α.

Therefore we have ψ(β) = ρ ◦ τmod
S (β) = α as claimed. �

In order to address the second condition, we present the following claim.

Claim 2. Suppose there exists x ∈ var(β) such that τ (x) is reduced and τ (x) �= σα,β ◦ ϕτ,S(x). Then � ∩ symb(ψ(x)) �= ∅.

Proof (Claim 2). In order to prove our claim, we must consider more closely the structure of the morphisms τ , τmod
S and 

ψ . Firstly, recall that τmod
S is obtained from τ by replacing the anchor segments Sx with their respective variables x. Thus, 

there exist u0, u1, . . . um ∈F� , y1, y2, . . . ym ∈N ,6 and p1, p2, . . . pm ∈ {1, −1} such that

τ (x) = u0 S p1
y1 u1 S p2

y2 u2 . . . S pm
ym um

and

τmod
S (x) = u0 y1

p1 u1 y2
p2 u2 . . . ym

pm um

where

yp1
1 yp2

2 · · · ypm
m = ϕτ,S(x).

Note that we may assume τ (x) is reduced as written above. Recall that ψ = ρ ◦ τmod
S where ρ(a) = a, ρ(b) = b, and 

ρ(y) = w−1
y yw ′

y
−1 such that σα,β(y) = w y S y w ′

y . Then since ui ∈F� for 0 ≤ i ≤ m, we have that ρ(ui) = ui and hence:

ψ(x) = ρ ◦ τmod
S (x)

= ρ
(
u0 y1

p1 u1 y2
p2 u2 . . . ym

pm um
)

= u0 ρ(y1)
p1 u1 . . . ρ(ym)pm um

= v0 y1
p1 v1 y2

p2 v2 . . . ym
pm vm,

where v0 = u0 w−1
y1

if p1 = 1 and v0 = u0 w ′
y1

if p1 = −1, likewise vm = w ′−1
ym

um if pm = 1 and vm = w ym um if pm = −1, 
and for 1 ≤ i < m,

vi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w ′−1
yi

ui w−1
yi+1

if pi = pi+1 = 1,

w yi ui w−1
yi+1

if pi = −1, pi+1 = 1,

w ′−1
yi

ui w ′
yi+1

if pi = 1, pi+1 = −1,

w yi ui w ′
yi+1

if pi = pi+1 = −1.

Now, because for each variable y ∈ var(α), σα,β(y) = w y S y w ′
y , we have

σα,β ◦ ϕτ,S(x) = (
w y1 S y1 w ′

y1

)p1
(

w y2 S y2 w ′
y2

)p2 . . .
(

w ym S ym w ′
ym

)pm .

It is clear that if vi = ε for 0 ≤ i ≤ m, then τ (x) = σα,β ◦ ϕτ,S(x). Consequently there exists i such that vi �= ε. If vi is not 
contracted in ψ(x) then since vi ∈F� , we have that � ∩ symb(ψ(x)) �= ∅ and our claim holds.

6 Note that in the case no anchor segments Sx occur in τ (x), we simply have τ (x) = u0 = τmod
S (x) = ψ(x), and the statement is straightforward.
17
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Suppose instead that vi is contracted. Consider a contraction c occurring in ψ(x) containing vi . Since vi �= ε, c must 
include at least one variable y ∈ {y1, y2, . . . , ym}. Since this y must also be contracted, c must necessarily contain a factor 
yuy−1 where y = y

p j

j for some j and u = ε (u need not be reduced). Consider such a factor for which u is a short as 

possible. Then we may conclude that u ∈ F� and hence that y
p j+1
j+1 = y

−p j

j and u = u j . However this implies that there is a 
factor S

p j
y j

u j S
p j+1
y j+1 which is unreduced and equal to ε, which in turn implies that τ (x) is unreduced, a contradiction to our 

previous assumption. �
We are now ready to prove our statement. In particular, note that if there exists τ : Fvar(β) → F� such that τ (β) =

σα,β(α) and such that for some x ∈ var(β), τ (x) �= σα,β ◦ ϕτ,S(x) and τ (x) is not reduced, then for the morphism τ ′ :
Fvar(β) → F� such that τ ′(x) is the reduced version of τ (x), we still have τ ′(β) = τ (α) and τ ′(x) �= σα,β ◦ ϕτ,S(x). Hence 
we may assume w.l.o.g. that τ (x) is reduced for each x ∈ var(β). Therefore, if τ �= σα,β ◦ ϕτ,S , then there exists x ∈ var(β)

such that τ (x) is reduced and τ (x) �= σα,β ◦ ϕτ,S(x). By Claim (2), this implies that the morphism ψ : Fvar(β) → Fvar(α)∪�

satisfies Condition (ii) of the Proposition, and by Claim (1), ψ also satisfies Condition (i), so the statement holds. �
For a morphism ψ satisfying the two conditions of Proposition 36, the existence of a letter a ∈F� which occurs in ψ(x)

for some x ∈ var(β) allows for the construction of many other morphisms ψ ′ mapping β to α. In particular, since a does 
not occur in α, we may replace each occurrence of a in ψ with any factor without disrupting the image α. Formally, ψ ′
can be obtained by composing ψ with a morphism ρ :Fvar(α)∪� →Fvar(α) such that ρ(y) = y for all y ∈ var(α).

Example 37. Let β = 1 · 2 · 2 · 3 · 1 · 2 · 3, let α = 1 · 24 · 3 · 1 · 22 · 3, and let ψ :Fvar(β) →Fvar(α)∪� be the morphism given by 
ψ(1) = 1 · a, ψ(2) = a−1 · 22 · a and ψ(3) = a−1 · 3. Then we have:

ψ(β) = 1 · aa−1 · 2 · 2 · aa−1 · 2 · 2 · aa−1 · 3 · 1 · aa−1 · 2 · 2 · a · 3

= 1 · 2 · 2 · 2 · 2 · 3 · 1 · 2 · 2 · 3

= α.

Let γa be any pattern in Fvar(α) , and let ρ : Fvar(α)∪� → Fvar(α) be the morphism such that ρ(y) = y for all y ∈ var(α), 
ρ(a) = γa . Then we have

ρ ◦ ψ(β) = 1γa · γ −1
a 2 · 2γa · γ −1

a 2 · 2γa · γ −1
a 3 · 1γa · γ −1

a 2 · 2γa · γ −1
a 3

= 1 · 2 · 2 · 2 · 2 · 3 · 1 · 2 · 2 · 3

= α,

while, for example, ρ ◦ ψ(1) = 1 · γa . Hence each possible γa results in a different morphism ρ ◦ ψ : Fvar(β) → Fvar(α)

mapping β to α.

The ability to replace the letter a with any factor leads to a combinatorially rich set of morphisms mapping β to α. 
Intuitively, one might expect that this guarantees that such morphisms are ambiguous. While we are unable to give a proof 
of this in general for both versions of ambiguity, we are able to provide a proof for ambiguity up to inner automorphism in 
the case that α = β (and thus ψ fixes α).

Proposition 38. Let α ∈FN . Suppose there exists a morphism ψ :Fvar(α) →Fvar(α)∪� such that:

(i) ψ(α) = α, and
(ii) � ∩ symb(ψ(x)) �= ∅ for some x ∈ var(α).

Then there exists a morphism ψ ′ :Fvar(α) →Fvar(α) which is not an inner automorphism, and such that ψ ′(α) = α.

Proof. For the purposes of this proof, we will say a word w is enclosed by a variable z if (the reduced version of) w has a 
prefix in {z, z−1} and a suffix in {z, z−1}. Let α ∈FN and let ψ :Fvar(α) →Fvar(α)∪� be a morphism satisfying Conditions (i) 
and (ii) of the proposition. In particular, we have a variable x ∈ var(α) such that � ∩ symb(ψ(x)) �= ∅. We will construct a 
morphism ρ : Fvar(α)∪� →Fvar(α) such that ρ(α) = α (and hence such that ρ ◦ ψ(α) = α), and such that ψ ′ = ρ ◦ ψ is not 
an inner automorphism.
18
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We define ρ as follows. W.l.o.g., suppose that 1, 2 ∈ var(α).7 Let α̂ be a primitive root of α (recall this is unique up to 
inverse). Let η ∈ Fvar(α) be a word which is enclosed by 1, such that neither η nor η−1 are a factor of α̂nxα̂−n for any 
n ∈Z.8 Let ρ :Fvar(α)∪� →Fvar(α) be the morphism given by

ρ(y) =

⎧⎪⎨
⎪⎩

1k · 2 · η · 2 · 1k if y = a,

12k · 2 · η · 2 · 12k if y = b,

y if y ∈ var(α),

where k = |ψ(x)| + 1. Clearly, since a, b /∈ var(α), ρ(α) = α, and hence ρ ◦ ψ(α) = ρ(α) = α. Thus it remains to show that 
ρ ◦ ψ is not an inner automorphism.

Suppose initially that ρ ◦ ψ is an inner automorphism. Then there exists a primitive pattern α̃ ∈ Fvar(α) such that ρ ◦ ψ

is generated by α̃n for some n ∈N (i.e. ρ ◦ψ(y) = α̃n yα̃−n for all y ∈ var(α)). Then ρ ◦ψ(α) = α̃nαα̃−n = α. By Corollary 2, 
we know that α and α̃ must share a primitive root, and since α̃ is primitive, we must have that α̃ is a primitive root of α
so α̃ ∈ {α̂, α̂−1}.

Hence, to show that ρ ◦ ψ is not an inner automorphism, it is sufficient to show that for some y ∈ var(α), we have 
ρ ◦ ψ(y) �= α̂n yα̂−n for any n ∈Z. We will choose y = x, and using the fact that � ∩ symb(ψ(x)) �= ∅, prove that η or η−1

occurs as a factor of ρ ◦ ψ(x). It is trivial, of course, that η or η−1 occurs as a factor of the unreduced image ρ ◦ ψ(x), 
however, we must show that at least one occurrence of η is not partially or entirely contracted, but rather “survives” and 
is hence a factor of the reduced word ρ ◦ ψ(x). Therefore we must consider all possible contractions occurring in ρ ◦ ψ(x). 
Firstly, we split ψ(x) into factors μ which contain only variables from N , and factors u only containing letters from �. 
More formally, we note that there exist μ0, μ1, . . .μm ∈FN , u1, u2, . . . um ∈F� such that

ψ(x) = μ0 u1 μ1 u2 . . . um μm,

where each ui �= ε, 1 ≤ i ≤ m, and each μi �= ε for 1 ≤ i ≤ m − 1. Since ψ(x) contains at least one letter from �, we have 
m > 0 (i.e., at least one ui exists). Moreover, since ρ(x) = x for all x ∈N , we have ρ(μi) = μi , and hence:

ρ ◦ ψ(x) = μ0 ρ(u1) μ1 ρ(u2) . . . ρ(um) μm. (2)

It follows from the fact that ψ(x) is reduced that each μi is reduced for 0 ≤ i ≤ m. We now consider the factors ρ(ui) with 
the following claim:

Claim 1. Let ui ∈F� . Then there exist pi, p′
i ∈ {k, −k, 2k, −2k} and qi, q′

i ∈ {1, −1} such that

ρ(ui) = 1pi · 2qi · wi · 2q′
i · 1p′

i

where wi is reduced, contains η or η−1 as a factor, and is enclosed by 1.

Proof (Claim 1). Let ui = aq1
1 aq2

2 . . .aq�

� such that a j ∈ � and q j ∈ {1, −1} for 1 ≤ j ≤ �. We remark that since ui is reduced, 
if a j = a j+1 then q j = q j+1. For each j, we have ρ(a

q j

j ) = γ j ηq j γ ′
j where γ j, γ ′

j depend on a j and q j . We can therefore 
write the following:

ρ(ui) =
ρ(a

q1
1 )︷ ︸︸ ︷

γ1 ηq1 γ ′
1

ρ(a
q2
2 )︷ ︸︸ ︷

γ2 ηq2 γ ′
2

ρ(a
q3
3 ...a

q�−1
�−1 )︷ ︸︸ ︷

γ3 . . . γ ′
�−1

ρ(a
q�
� )︷ ︸︸ ︷

γ� ηq� γ ′
� .

From the definition of ρ , γ ′
j is comprised of either 2 or 2−1, followed by a series of 1s or 1−1s, while γ j+1 is comprised of 

a series of 1s or 1−1s followed by 2 or 2−1. More precisely, we have

γ ′
j γ j+1 = 2q j · 1r · 2q j+1

where we can infer from the definition of ρ that r = 0 if and only if a j = a j+1 and q j = −q j+1. However, this would 
contradict the fact that ui is reduced, so we may assume r �= 0. It follows that

ρ(ui) = γ1 · ηq1 ·
γ ′

1γ2︷ ︸︸ ︷
2q1 · 1r1 · 2q2 ·ηq2 ·

γ ′
2γ3︷ ︸︸ ︷

2q2 · 1r2 · 2q3 · . . . ·
γ ′

�−1γ�︷ ︸︸ ︷
2q�−1 1r�−1 · 2q� ·ηq�γ ′

�

7 The case that | var(α)| = 1 is trivial, since the only morphism fixing a unary pattern is the identity and thus the conditions (i) and (ii) of the proposition 
cannot be satisfied.

8 η = 12|α̂| or η = 1 · 22|α̂| · 1 would suffice.
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such that r j �= 0 for 1 ≤ j < �. Recall that by definition, each ηqi is reduced and is enclosed by 1. Hence the above word 
does not contain any contractions and is thus reduced. We can observe that our claim holds simply by taking

wi = ηq1 · 2q1 · 1r1 · 2q2 · ηq2 · 2q2 · 1r2 · . . . · 1r�−1 · 2q� · ηq�

and noting that γ1 = 1pi · 2qi and γ ′
� = 2q′

i · 1p′
i for some pi, p′

i ∈ {k, −k, 2k, −2k} and qi, q′
i ∈ {1, −1}. �

Now, by the application of Claim 1 to each ρ(ui) in (2), we can write

ρ ◦ ψ(x) = δ0 w1 δ1 w2 . . . wm δm (3)

such that δ0 = μ0 · 1p1 · 2q1 , δm = 2q′
m · 1p′

m · μm and for 1 ≤ i < m,

δi = 2q′
i · 1p′

i · μi · 1pi+1 · 2qi+1

where p j, p′
jq j, q′

j and w j are defined in accordance with Claim 1 for 1 ≤ j ≤ m. In particular, each wi contains a factor η
or η−1, is reduced and is enclosed by 1. We now claim that the reduced δi are non-empty and enclosed by 2.

Claim 2. For each i, 1 ≤ i < m, the (reduced) word δi is enclosed by 2.

Proof (Claim 2). Firstly, suppose that μi does not consist only of 1s or 1−1s. Then there exist s1, s2 ∈ Z such that μi =
1s1 · v · 1s2 where v is non-empty, reduced, and does not start or end with 1 or 1−1. Hence

δi = 2q′
i · 1p′

i · 1s1 · v · 1s2 · 1pi+1 · 2qi+1

= 2q′
i · 1p′

i+s1 · v · 1pi+1+s2 · 2qi+1 .

Note that the claim holds provided p′
i + s1 �= 0 and pi+1 + s2 �= 0. To see that this is true, we simply recall that |p′

i | ≥ k and 
|pi+1| ≥ k, and since k > |ψ(x)| > |μi | we have k > |s1| and k > |s2|.

Now suppose instead that μi does consist only of 1s or 1−1s. Recall that by definition, μi �= ε. Hence there exists 
s ∈Z\{0} such that μi = 1s , so:

δi = 2q′
i · 1p′

i · 1s · 1pi+1 · 2qi+1

= 2q′
i · 1p′

i+s+pi+1 · 2qi+1 .

Again, since |p′
i | ≥ k and |pi+1| ≥ k and k > |ψ(x)| > |μi | > s, we have p′

i + s + pi+1 �= 0 and the claim follows. �
We now consider δ0 and δm . Recall that δ0 = μ01p1 2q1 . Since |μ0| < k we have μ0 = v1s for some s < k and such that 

v is reduced and does not end with 1 or 1−1. It follows that the reduced word δ0 equals v1p1+s2q1 . Since p1 ≥ k > s, and 
since v does not end with 1 or 1−1, there are no further possible contractions. A symmetrical argument can be made for 
δm . Hence, recalling (3), we have

ρ ◦ ψ(x) = δ0 w1 δ1 w2 . . . wm δm

such that, by Claim 2, each (reduced) δi is non empty and enclosed by 2, and by Claim 1, each wi is reduced, contains η
or η−1 as a factor and is enclosed by 1. Hence there are no contractions occurring outside the δi factors, and at least one 
factor η or η−1 survives in the reduced word ρ ◦ ψ(x), so ρ ◦ ψ(x) �= α̂nxα̂−n for any n ∈ Z. Hence, ψ ′ = ρ ◦ ψ is not an 
inner automorphism as required. �

We are now ready to prove our main result characterising the existence of injective morphisms which are unambiguous 
up to inner automorphism.

Theorem 39. Let α ∈ FN . There exists an injective morphism σ : Fvar(α) → F� which is unambiguous up to inner automorphism 
w.r.t. α if and only if every morphism ϕ :Fvar(α) →Fvar(α) fixing α is an inner automorphism.

Proof. The “only if” direction is given by Proposition 9. Hence we consider the “if” direction. Suppose that α is only 
fixed by inner automorphisms (and thus the identity morphism is unambiguous up to inner automorphism w.r.t. α). Let 
σα,α : Fvar(α) → F� be defined according to Definition 31. Note that σα,α is injective. Let τ : Fvar(α) → F� be a mor-
phism such that τ (α) = σα,α(α). Let S be a set of anchor segments for τ , and let ϕτ,S : Fvar(α) → Fvar(α) be defined 
according to Definition 15. Note that by Theorem 33, ϕτ,S (α) = α, and hence ϕτ,S must be an inner automorphism. By 
Proposition 36, either τ = σα,α ◦ ϕτ,S , or α is fixed by a morphism ψ : Fvar(α) → Fvar(α)∪� such that, for some x ∈ var(α), 
� ∩ symb(ψ(x)) �= ∅. By Proposition 38, this implies that α is fixed by a morphism which is not an inner automorphism 
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and that is a contradiction. Consequently, for any morphism τ : Fvar(α) → F� with τ (α) = σα,α(α), we must have that 
τ = σα,α ◦ ϕτ,S for some inner automorphism ϕτ,S . It follows that σα,α is unambiguous up to inner automorphism w.r.t. 
α. �

One way to prove the same result for the case of ambiguity up to automorphism would be to show that a stronger form 
of Proposition 38 holds, namely that if α = β , and ψ : Fvar(β) → Fvar(α)∪� is a morphism satisfying the two conditions of 
Proposition 36, then we are able to produce a morphism ψ ′ which is not an automorphism such that ψ ′(α) = α.

We expect this statement to indeed be true, due to the combinatorially rich set of morphisms fixing α induced by the 
existence of such a morphism ψ , as explained in Example 37. Nevertheless, the stronger statement seems to be considerably 
more complicated to prove, and thus we present it instead as a conjecture.

Conjecture 40. Let α ∈FN . If there exists a morphism ψ :Fvar(α) →Fvar(α)∪� such that:

(i) ψ(α) = α, and
(ii) � ∩ symb(ψ(x)) �= ∅ for some x ∈ var(α),

then there exists a morphism ψ ′ :Fvar(α) →Fvar(α) which is not an automorphism, and such that ψ ′(α) = α.

Using the same reasoning as for the proof of Proposition 38, we are able to construct a morphism ρ ◦ψ fixing α such that 
for any η ∈ FN , there exists x ∈ var(α), such that η occurs as a factor of ρ ◦ ψ(x). Hence we see that our conjecture holds 
for any pattern α for which there exists η ∈ Fvar(α) such that for every automorphism ϕ : Fvar(α) → Fvar(α) with ϕ(α) = α, 
η does not occur as a factor of ϕ(x) for any x ∈ var(α). Hence we can reduce our conjecture to the following. Note that 
it follows from Theorem 11 and Proposition 9 that all injective morphisms are ambiguous with respect to morphically 
imprimitive patterns, so we only need to consider those which are morphically primitive.

Conjecture 41. Given a morphically primitive pattern α ∈ FN , there exists η ∈ Fvar(α) such that, for every automorphism ϕ :
Fvar(α) →Fvar(α) fixing α, η does not occur as a factor of ϕ(x) for any x ∈ var(α).

We provide the following two comments concerning Conjecture 41. Firstly, we note that for any such factor η there 
exists an automorphism ϕ : Fvar(α) → Fvar(α) with η as a factor of ϕ(x) for some x ∈ var(α). For example, we may simply 
take the inner automorphism generated by η so that ϕ(x) = η · x · η−1. It is worth pointing out however, that these inner 
automorphisms only fix the restricted set of patterns sharing a primitive root with η, and therefore do not all fix a single 
pattern α and are not sufficient to disprove the conjecture.

Secondly, we point out that there exist patterns α such that, for every η ∈Fvar(α) , there exists a morphism ϕ :Fvar(α) →
Fvar(α) fixing α and such that η occurs as a factor of ϕ(x) for some x ∈ var(α). For example, let α = 1 · 2 · 3 · 1 · 2 · 2 · 3. For 
η ∈Fvar(α) , let ϕη :Fvar(α) →Fvar(α) be the morphism given by ϕ(1) = 1 · η−1, ϕ(2) = η · 2 · η−1 and ϕ(3) = η · 3. Then

ϕ(α) =
ϕ(1)︷ ︸︸ ︷

1 · η−1

ϕ(2)︷ ︸︸ ︷
η · 2 · η−1

ϕ(3)︷ ︸︸ ︷
η · 3

ϕ(1)︷ ︸︸ ︷
1 · η−1

ϕ(2)︷ ︸︸ ︷
η · 2 · η−1

ϕ(2)︷ ︸︸ ︷
η · 2 · η−1

ϕ(3)︷ ︸︸ ︷
η · 3

= 1 · 2 · 3 · 1 · 2 · 2 · 3 = α.

However, all such examples known to the authors can be shown to be morphically imprimitive, and thus do not possess 
an injective morphism which is unambiguous up to automorphism. Thus, while these comments provide an insight into the 
complexity of our open questions, they are not sufficient to disprove our conjecture. To the contrary, the structures involved 
seem to indicate a necessity that any pattern fixed by morphisms with “arbitrary” factors appearing in the images, must 
have some inherent ambiguous structure causing morphic imprimitivity, and hence appear to support the conjecture.

We conclude this section with the following theorem which deals with unambiguity up to automorphism, and also 
offers a characterisation of when a pattern in a free group possesses an injective morphism which is unambiguous up to 
automorphism subject to the correctness of Conjecture 40 (or Conjecture 41). Nevertheless, assuming the conjecture holds, 
we have a particularly interesting situation: not only are we able to recreate the same analogy to the free monoid as we 
have for ambiguity up to inner automorphism, but we are also able to generalise a second existing characterisation from 
the free monoid to the free group, implying that the weaker of the two forms of unambiguity has the closest relation to 
unambiguity in a free monoid.

Theorem 42. Let α ∈FN . If Conjecture 40 holds, then the following statements are equivalent:

1. There exists an injective morphism σ :Fvar(α) →F� which is unambiguous up to automorphism w.r.t. α.
2. The only morphisms ϕ :Fvar(α) →Fvar(α) fixing α are automorphisms (i.e., α is a test word).
3. α is morphically primitive.
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Proof. The equivalence of Statements (2) and (3) is given in Theorem 11. Hence it remains to show the equivalence of 
Statements (1) and (2). This can be derived straight from the proof of Theorem 39, using on Conjecture 40 in the place of 
Proposition 38. �
5. Application: properties of pattern languages

Finally, we take advantage of our construction from Section 4.1 to provide some simple proofs of properties of terminal-
free pattern languages over a group alphabet. Firstly, we are able to characterise when two such languages satisfy a subset 
relation. It is unsurprising that our construction leads to this result, as it is a generalisation of the construction of Jiang et 
al. [10] whose purpose was exactly to prove the equivalent statement for pattern languages in a free monoid.

Theorem 43. Let α, β ∈FN . Then L�(α) ⊆ L�(β) if and only if there exists a morphism ϕ :FN →FN such that ϕ(β) = α.

Proof. Suppose firstly that there exists a morphism ϕ : Fvar(β) → Fvar(α) such that ϕ(β) = α. By definition, for every w ∈
L�(α), there exists σ :Fvar(α) →F� such that σ(α) = w . Clearly, σ ◦ϕ(β) = w , so for every w ∈ L�(α), we have w ∈ L�(β)

and thus L�(α) ⊆ L�(β).
Now suppose that L�(α) ⊆ L�(β). Then since σα,β(α) ∈ L�(α) where σα,β is defined according to Definition 31, there 

exists a morphism τ : Fvar(β) → F� such that τ (β) = σα,β(α). By Theorem 33, this implies the existence of ϕ : Fvar(β) →
Fvar(α) such that ϕ(β) = α. �

Of course our characterisation of the inclusion problem for group pattern languages automatically provides a characteri-
sation for the equivalence problem.

Corollary 44. Let α, β ∈ FN . Then L�(α) = L�(β) if and only if there exist morphisms ϕ, ψ : FN → FN such that ϕ(β) = α and 
ψ(α) = β .

Moreover, Day et al. [3] use the construction of Jiang et al. [10] to give a characterisation of when the union of two 
(monoid) pattern languages is again a (monoid) pattern language. By using the same technique, we are able to exploit our 
construction in Section 4.1 further to provide the same result for group pattern languages.

Theorem 45. Let α, β ∈FN . Then there exists γ ∈FN satisfying L�(α) ∪ L�(β) = L�(γ ) if and only if L�(α) ⊆ L�(β) and L�(β) =
L�(γ ), or L�(β) ⊆ L�(α) and L�(α) = L�(γ ).

Proof. (Adapted from Day et al. [3].) The “if” direction is trivial. We consider the “only if” direction. Suppose that L�(α) ∪
L�(β) = L�(γ ). Let σγ ,α and σγ ,β be defined according to Definition 31. In particular, note that there exist k1, k2 ∈N such 
that σγ ,α = σk1,var(γ ) (as defined in Definition 18) and σγ ,β = σk2,var(γ ) . Let k = max(k1, k2). Note that for the union relation 
to hold, there exists a morphism τ : Fvar(α) → F� such that τ (α) = σk,var(γ )(γ ) or a morphism τ : Fvar(β) → F� such that 
τ (β) = σk,var(γ )(γ ). W.l.o.g. suppose that τ (α) = σk,var(γ )(γ ) for some morphism τ : Fvar(α) → F� . By Theorem 33 and 
Remark 34, this implies that there exists a morphism ϕ :Fvar(α) →Fvar(γ ) such that ϕ(α) = γ . It follows from Theorem 43
that L�(γ ) ⊆ L�(α). It is clear that L�(α) ⊆ L�(γ ) and L�(β) ⊆ L�(γ ), and hence by Corollary 44 L�(α) = L�(γ ), and our 
statement holds. �
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