
A refined model for the buckling of film/substrate bilayers

Guan Wanga, Yang Liua, Yibin Fu∗,b

aDepartment of Mechanics, Tianjin University, Tianjin 300072, China
bSchool of Computing and Mathematics, Keele University, Staffs ST5 5BG, UK

Abstract

The classical reduced model for a film/substrate bilayer is one in which the film is governed by

the Euler-Bernoulli beam equation and the substrate is replaced by an array of springs (the

so-called Winkler foundation assumption). We derive a refined model in which the normal

and shear tractions at the bottom of the film are expressed in terms of the corresponding

horizontal and vertical displacements, and the response of the half-space is described by the

exact theory. The self-consistency of the refined model is confirmed by showing that it yields

a four-term (in the incompressible case) or six-term (in the compressible case) expansion for

the critical strain that agrees with the expansion given by the exact theory.

Key words: Film/substrate, Timoshenko theory, Buckling, Winkler foundation, Nonlinear

elasticity.

1. Introduction

The buckling and post-buckling of a film/substrate bilayer, which is often idealised as

a coated hyperelastic half space, has received much attention in recent decades due to ap-

plications ranging from cell patterning (Dimmock et al., 2020), optical gratings (Lee et al.,

2010; Ma et al., 2013; Kim et al., 2013), and creation of surfaces with desired wetting and

adhesion properties (Chan et al., 2008; Yang et al., 2010; Zhang et al., 2012), to the de-

duction of material properties of ultrathin films (Stafford et al., 2004; Chan et al., 2009).

Under the framework of nonlinear elasticity, early studies include the linear analyses by Dor-

ris & Nemat-Nasser (1980), Shield et al. (1994), Ogden & Sotiropoulos (1996), Bigoni et al.

(1997), Steigmann & Ogden (1997), and the nonlinear post-buckling analysis by Cai & Fu

(1999). More recent studies have addressed the phenomenon of period doubling (Fu & Cai,

2015), effects of pre-stretching in the half-space (Hutchinson, 2013), compressibility (Liu &

Dai, 2014; Cai & Fu, 2019), multi-layering (Cheng et al., 2014; Wang et al., 2020; Zhou

et al., 2022), growth (Alawiye et al., 2019, 2020; Liu et al., 2020b), and magnetorheology

(Rambausek & Danas, 2021). There also exists a large body of literature based on various
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approximate models for the layer and substrate; see, e.g., Chen & Hutchinson (2004), Huang

et al. (2005), Audoly & Boudaoud (2008), Zhao et al. (2015), and the references therein.

With the use of the exact theory of nonlinear elasticity, Cai & Fu (1999) derived the

following asymptotic expansion for the critical strain when a neo-Hookean film bonded to a

much softer neo-Hookean substrate is subjected to a uni-axial compression:

1− λ =
r

2kh
+

1

12
(kh)2 − 13

480
(kh)4 − 3

8
· r2

(kh)2
+O((kh)5), (1.1)

where λ is the stretch ratio in the direction of compression (so that 1 − λ is the strain), k

is the wave number of the buckling mode, h is the layer thickness, and r = µs/µf with µf

and µs denoting the shear moduli for the film and substrate, respectively. Note that the

above expansion is only valid when r = O((kh)3), in which case the first two terms on the

right hand side of (1.1) are of the same order and the last two terms are of the same order.

Solving this expansion together with dλ/d(kh) = 0, we may determine the critical stretch

and associated wave number where the strain 1 − λ attains its minimum. This two-term

result extends the leading order result of Allen (1969) for the plane-stress case.

It can be shown that the leading order version of (1.1), with only the first two terms on

the right hand side retained, can be derived from the classical model

EI

1− ν2
y′′′′(x) +

Eh

1− ν2
(1− λ)y′′(x) = −γky, γ =

2Es(1− νs)
(1 + νs)(3− 4νs)

, (1.2)

by taking the incompressibility limit ν, νs → 1/2, where E and ν are the Young’s modulus

and Poisson’s ratio for the layer, respectively, Es and νs their counterparts for the half-space.

It was shown in Cai & Fu (2000) that equation (1.2) can be derived from the exact theory

of nonlinear elasticity using a self-consistent asymptotic procedure; see also discussions in

Audoly & Boudaoud (2008). When the half-space is absent, the right hand side of (1.2) is

zero, and the resulting equation is the well-known Euler-Bernoulli beam equation, which has

been justified in many studies; see, e.g., Steigmann & Ogden (2014), Destrade et al. (2016),

Steigmann (2007), and the references therein.

For a stand-alone beam that is only subject to a force P along its axis, the Timoshenko

beam theory is known to provide a self-consistent refinement on the Euler-Bernoulli beam

theory (Timoshenko, 1921; Elishakoff et al., 2015). It is then tempting to model the response

of the layer using the Timoshenko beam theory but still model the response of the half-space

using the Winkler assumption. This possibility has indeed been analysed by Erbas et al.

(2022) for the dynamic case without prestress; see also Kaplunov et al. (2019). Adapting

equation (17) in Goldenveizer et al. (1993) to our static case, we obtain

EI

1− ν2

{
y′′′′ +

(8− 3ν)

40(1− ν)
h2y(6)

}
+

Eh

1− ν2
(1− λ)y′′ + γky = 0, (1.3)
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where y(6) denotes the sixth-order derivative of y. However, on substituting a periodic solu-

tion y(x) = eikx into this equation, it is found that the resulting expression for 1− λ agrees

with the first three terms in (1.1), but not the fourth term. This means that this reduced

model has not taken care of the response of the foundation in a self-consistent manner. An

earlier attempt at refining the leading order model (1.2) was made by Shield et al. (1994).

However, as was shown by Cai & Fu (2000), their model is not self-consistent either. The

main purpose of the current study is to forsake the Winkler foundation assumption and

allow the interface to transmit both vertical and shear tractions so that the resulting re-

fined model can correctly predict the entire right hand side of (1.5). To this end, we derive

a Timoshenko-type plate theory for a prestressed plate using two different approaches, a

standard expansion method as used by Cai & Fu (2000) and the expansion scheme devel-

oped in Dai & Song (2014) where a consistent plate theory was proposed for compressible

hyperelastic materials. The latter methodology has been applied to derive consistent plate

models for incompressible materials (Wang et al., 2016), growing solids (Wang et al., 2018),

and nematic liquid crystal elastomers (Liu et al., 2020a). Recently, Wang et al. (2019) have

shown that the consistent plate model in Dai & Song (2014) can recover most existing plate

equations by assuming appropriate order relations between the applied load and the aspec-

t ratio. In deriving the above-mentioned Timoshenko-type plate theory for a pre-stressed

plate, we naturally obtain an additional connection between the shear traction and the two

displacement components at the interface, which then enables us to apply traction and dis-

placement continuity exactly. Thus, our reduced model consists of two differential equations

for the displacement components at the interface.

Our reduced model will be derived for a general hyperelastic material, but to illustrate

our results, we shall consider the case in which both the film and substrate are described by

the strain energy function

W =
1

2
µ(I1 − 2− 2 log J) +

µν

1− 2ν
(J − 1)2, (1.4)

where µ and ν are the ground state shear modulus and Poisson’s ratio, respectively, I1 is the

first principal invariant of the Cauchy-Green strain tensors and J expresses the determinant

of the deformation gradient. We denote the shear moduli for the film and substrate by µ

and µs, respectively, but assume that ν takes the same value for both the film and substrate.

A calculation with the aid of Mathematica (Wolfram, 1991), extending the analysis in Cai

& Fu (1999), reveals that the compressive strain now has the asymptotic expansion

1− λ =
2(ν − 1)2

3− 4ν

r

kh
+

1

12
(kh)2 + d0r + d1(kh)4 + d2r(kh) + d3

r2

(kh)2
+O((kh)5), (1.5)

where

d0 =
(1− ν)(1− 2ν)

3− 4ν
, d1 =

31ν2 + 33ν − 40ν3 − 29

1440(ν − 1)2
, (1.6)
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d2 =
23− 104ν + 156ν2 − 80ν3

24(3− 4ν)2
, d3 =

2(ν − 1)2 (32ν4 − 60ν3 + 47ν2 − 21ν + 5)

(4ν − 3)3
. (1.7)

As expected, the expansion (1.5) recovers (1.1) in the incompressible limit ν → 1/2. Our

aim is to derive a refined model that will yield the first six terms in (1.5) exactly. We

shall also demonstrate that including the next term in the asymptotic expansion (1.1) or

(1.5) can significantly improve its accuracy when the materials are incompressible or nearly

incompressible.

We note that the term d0r in the expansion (1.5) is of order (kh)3, which has no coun-

terpart in the incompressible limit. As a quick comparison, we note that the model adopted

by Shield et al. (1994) would give the following expansion:

1− λ =
2(ν − 1)2

3− 4ν

r

kh
+

1

12
(kh)2 + d0r +

(ν − 1)2

2(3− 4ν)
r(kh) +O((kh)6). (1.8)

This expression correctly predicts the term −d0r but differs from (1.5) in the O((kh)4) terms.

The rest of this paper is organised into four sections as follows. After formulating our

problem and deriving the exact bifurcation condition in the next section, we devote Section

3 to the derivation of the above-mentioned refined model. We first derive a Timoshenko-like

model for the film and then use Stroh formulation to describe the response of the substrate.

In Section 4, we specialise the model to the buckling analysis of a film/substrate bilayer and

show that the reduced model can indeed predict (1.5). The paper is concluded in Section

5 with a summary and a discussion of other possible applications of the current reduced

model.

2. Formulation and the exact bifurcation condition

We consider a hyperelastic layer bonded to a hyperelastic half-space. To simplify deriva-

tions, we assume for the moment that both the layer and half-space are compressible and

are in a state of plane strain. The corresponding results for the incompressible case will be

obtained by taking an appropriate limit. We first summarise the governing equations valid

for both the layer and half-space.

Consider a general, homogeneous elastic body B composed of a non-heat-conducting

elastic material. Three configurations are involved in our analysis: an initial unstressed

configuration B0, a finitely deformed configuration Be, and the current configuration Bt

that is obtained by superimposing a small incremental displacement on Be. The position

vectors of a representative particle are denoted by X, x and x̃ in B0, Be and Bt respectively,

and their Cartesian coordinates are denoted by XA, xi and x̃i. We write

x̃ = x + u, (2.1)
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where u, with components ui(x1, x2, x3), is the incremental displacement associated with the

deformation Be → Bt.

The deformation gradients arising from the deformations B0 → Bt and B0 → Be are

denoted by F̃ and F̄ respectively and defined by dx̃ = F̃ dX and dx = F̄ dX. It then follows

that

F̃iA = (δij + ui,j)F̄jA, (2.2)

where here and henceforth a comma indicates differentiation with respect to the implied

spatial coordinate.

It is well-known (see, e.g. Spencer (1970)) that in the absence of body forces the incre-

mental equilibrium equations may be written in the form

χij,j = 0, (2.3)

where χij are the Cartesian components of the incremental stress tensor and its linearized

formula is given by

χij = Ajilkuk,l. (2.4)

The Ajilk are the first-order instantaneous elastic moduli defined by (Chadwick & Ogden,

1971)

Ajilk = J̄−1F̄jAF̄lB
∂2W

∂FiA∂FkB

∣∣∣∣
F=F̄

, (2.5)

where W is the strain-energy function per unit volume. For the isotropic solids under

consideration, W can be assumed to be a function of the three principal stretches λ1, λ2, λ3.

Then the moduli can be computed according to the following formulae (Ogden, 1984):

Aiijj = λiλjWij, no summation on i or j,

Aijkl =
λ2
i

λ2
i − λ2

j

(λiWi − λjWj)δikδjl +
λiλj

λ2
i − λ2

j

(λjWi − λiWj)δilδjk, i 6= j,

where Wi = ∂W/∂λi, Wij = ∂2W/∂λi∂λj etc, and the principal stretches are understood to

correspond to the primary deformation B0 → Be. It is straightforward to verify that

A1212 −A1221 = σ̄1, A2121 −A2112 = σ̄2, (2.6)

where σ̄1 (= λ1W1) and σ̄2 (= λ2W2) are the principal Cauchy stresses.

In terms of the displacement components and in the absence of body forces, the equilib-

rium equation then takes the form

Ajilkuk,lj = 0. (2.7)

As indicated earlier, the finite deformation associated with B0 → Be only appears through

the moduli defined by (2.5). Thus, as it stands, the constitutive equation (2.4) is of the
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same form as that for an anisotropic elastic solid (Spencer, 1970), and so our results may be

adapted to describe anisotropic materials.

For plane strain problems, u3 is zero and u1 and u2 are only functions of x1 and x2. The

finite deformations that we consider (e.g. uni-axial compression) are always such that the

elastic moduli Ajilk is zero whenever there is an odd number of 1, 2 or 3 in the suffices. For

instance, A1112 = 0, A1123 = 0 etc. As a result, the equilibrium equations in (2.7) written

out for i = 1, 2 take the following form:

A1111u1,11 + (A1122 +A2112)u2,12 +A2121u1,22 = 0, (2.8)

A1212u2,11 + (A1221 +A2211)u1,12 +A2222u2,22 = 0. (2.9)

The traction vector t on any surface with normal pointing in the positive x2-direction has

components given by ti = χi2 = A2ilkuk,l. Thus, we have

t1 = A2112u2,1 +A2121u1,2, t2 = A2211u1,1 +A2222u2,2. (2.10)

We now specialize the above equations to a coated half-space. In the undeformed configura-

tions B0, the coating and half-space are defined by 0 ≤ X2 < H,H ≤ X2 <∞, respectively.

We assume that the primary deformation B0 → Be corresponds to a uni-axial compression

with stretch λ1 = λ in the x1-direction. We take λ to be our loading/bifurcation parameter.

The stretch λ2 in the x2-direction can be determined by solving σ̄2 = 0. It follows from

(2.6)2 that the identity A2121 = A2112 holds for all values of λ and will be used to eliminate

the component A2121 in the subsequent analysis. In the finitely deformed configuration Be,

the coating and half-space are defined by

0 ≤ x2 ≤ h, and h ≤ x2 <∞,

respectively, where h = λ2H is the thickness of the coating layer in Be.

The linearized buckling problem consists of solving the equilibrium equations (2.8) and

(2.9) subject to (i) the traction-free boundary conditions t = 0 at x2 = 0, (ii) continuity of

t and u at the interface x2 = h, and (iii) the decaying condition u → 0 as x2 → ∞. If the

solution is assumed to take the form

u = w(kx2)eikx1 , (2.11)

where k is the wave number and w is to be determined, then solving the above buckling

problem yields the bifurcation condition in the implicit form

ω(λ, kh) = 0, (2.12)
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where the expression for ω is obtained with the aid of Mathematica. Under the assumption

that r � 1, we expect kh and 1− λ to be both small. Writing r = (kh)3r0 with r0 an O(1)

constant, and looking for an asymptotic solution of the form

1− λ = ξ1(kh)2 + ξ2(kh)3 + ξ3(kh)4 + · · · , (2.13)

we may find the coefficients ξ1, ξ2, ... by substituting (2.13) into (2.12) and equating the

coefficients of kh as successive orders. This yields the asymptotic expansion (1.5).

3. Derivation of the reduced model

We now proceed to derive a refined model that will yield the same asymptotic expansion

(1.5) without having to solve the full 3D problem. We have used both the procedure outlined

in Cai & Fu (2000) and the expansion method pioneered by Dai & Song (2014) to derive

the same equations. We shall present our derivations corresponding to the latter method

since they are more compact than those obtained using the former method. We also wish

to promote the use of the latter method since this method was often explained and used

in more involved situations than the current one and as a result, its full potential does not

seem to have been fully appreciated in the wider community.

3.1. Refined model for the coating layer

Following the strategy proposed by Dai & Song (2014), we first look for a series solution

of the form

u1 =
∞∑
n=0

1

n!
Un(x1)xn2 , u2 =

∞∑
n=0

1

n!
Vn(x1)xn2 , (3.1)

where the coefficient functions U0(x1), V0(x1), U1(x1), V1(x1), etc are to be determined. We

note that the leading terms U0(x1) and V0(x1) are the displacement components at the

traction-free surface x2 = 0. Furthermore, the expansions in (3.1) ensure that the traction

and displacement conditions on the boundary x2 = 0 are exactly satisfied.

On substituting (3.1) into the traction-free boundary condition t(x1, 0) = 0 with the two

components T1 and T2 given by (2.10), we obtain

U1(x1) = −V ′0(x1), V1(x1) = −(A1122/A2222)U ′0(x1). (3.2)

On the other hand, on substituting (3.1) into (2.8) and (2.9) and equating the coefficients

of like powers of xn2 , we obtain the recurrence relations

A2121Un(x1) = −(A1122 +A1221)V ′n−1(x1)−A1111U
′′
n−2(x1) = 0, (3.3)

A2222Vn(x1) = −(A1122 +A1221)U ′n−1(x1)−A1212V
′′
n−2(x1) = 0, (3.4)
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which are valid for n = 2, 3, .... It can then be seen that these two recurrence relations

together with (3.2) can be used to express the right hand sides of (3.1) entirely in terms

of the leading terms U0(x1), V0(x1), and their derivatives. This process may be carried out

to any desired order. As a result, the traction vector t(x1, h) at the interface may also be

expressed in terms of U0(x1), V0(x1) and their derivatives to any desired order in h. These

expressions have the following special structure:

t1(x1, h) = hc1U
(2)
0 + h2c2V

(3)
0 + h3c3U

(4)
0 + h4c4V

(5)
0 + · · · , (3.5)

t2(x1, h) = hd1V
(2)

0 + h2d2U
(3)
0 + h3d3V

(4)
0 + h4d4U

(5)
0 + · · · , (3.6)

where the superscript “(n)”(n = 2, 3, ...) denotes the nth-order derivative with respect to x1

and the constant coefficients c1, d1, c2, d2 etc only depend on the elastic moduli. For instance,

the leading order coefficients are given by

c1 = A2
1122/A2222 −A1111, d1 = A2

1221/A2121 −A1212.

Observe the special feature that the nth-order derivatives U
(n)
0 and V

(n)
n in (3.5) and (3.6)

are multiplied by hn−1 (n = 2, 3, ...).

As the next step in deriving the reduced model, we need to express the traction vector

t(x1, h) in terms of the displacement components at x2 = h which, with the use of (3.1), are

given by

U(x1) ≡ u1(x1, h) =
∞∑
n=0

1

n!
Un(x1)hn, (3.7)

V (x1) ≡ u2(x1, h) =
∞∑
n=0

1

n!
Vn(x1)hn, (3.8)

where the sign “≡” defines the short notations U(x1) and V (x1) that will be the only

variables in our reduced model. Note that the sums in these two expressions only contain

U0(x1), V0(x1) and their derivatives. To express t(x1, h) in terms of U(x1) and V (x1) (and

their derivatives), we now invert (3.7) and (3.8) to express U0(x1), V0(x1) in terms of U(x1)

and V (x1).

Viewing the two expressions (3.7) and (3.8) as asymptotic expansions for U and V in

terms of the small parameter h, we may invert them by looking for an asymptotic solution

of the form

U0(x1) = U(x1)+hf1(x1)+h2f2(x1)+· · · , V0(x1) = V (x1)+hg1(x1)+h2g2(x1)+· · · , (3.9)

where the unknown functions f1(x1), g1(x1) etc can be obtained by substituting (3.9) into

(3.7) and (3.8) and equating the coefficients of like powers of h. It turns out that although

the right hand sides of (3.7) and (3.8) contain derivatives of f1(x1), g1(x1), ... and their
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derivatives, the determination of these unknown functions at successive orders only involves

the solution of linear algebraic equations, and these unknown functions can all be expressed

in terms of U, V and their derivatives. For instance, equating the coefficients of h and h2,

we obtain

f1(x1) = V (1)(x1), g1(x1) =
A1122

A2222

U (1)(x1), (3.10)

f2(x1) =

(
A1111A2222 +A1122A1221 −A2

1122

2A1221A2222

)
U (2)(x1), (3.11)

g2(x1) =

(
A1212 −A1221 +A1122

2A2222

)
V (2)(x1). (3.12)

As a result, on substituting (3.9) back into (3.5) and (3.6), the traction vector t(x1, h) can

be expressed in terms of U(x1), V (x1) and their derivatives to any desired order in h. These

expressions take the form

t1(x1, h) = hc1U
(2) + h2ĉ2V

(3) + h3ĉ3U
(4) + h4ĉ4V

(5) + · · · , (3.13)

t2(x1, h) = hd1V
(2) + h2d̂2U

(3) + h3d̂3V
(4) + h4d̂4U

(5) + · · · , (3.14)

where the new constant coefficients ĉ2, d̂2, ĉ3, d̂3, ... are also only dependent on the elastic

moduli. Again observe the special feature that the nth-order derivatives U (n) and V (n)

in these two expressions are multiplied by hn−1 (n = 2, 3, ...). The above derivation is

straightforward. Although the expressions for the higher order coefficients ĉ2, d̂2, ĉ3, d̂3, ...

are quite involved, the derivation can easily be implemented on a symbolic manipulation

platform such as Mathematica.

As pointed out by Dai & Song (2014), see also Wang et al. (2019), the expansions such

as (3.13) and (3.14) contain all the necessary terms that can be used to recover any existing

plate theories although this has not been carried out for higher order plate theories such as

the Timoshenko theory. We now use these expansions to derive our refined model.

We use Âjilk to denote the moduli for the half-space. We assume that the thickness

h, displacement ui and coordinates xi have all been scaled by a typical lengthscale L. For

instance, for analysis of buckling, we shall take L = 1/k with k denoting the wavenumber of

the buckling mode. We assume the scaled h to be small and, as indicated in the Introduction,

consider the case when Âjilk = O(h3Ajilk), that is, the layer is much stiffer than the half-

space. It is this parameter regime in which the layer behaviour can be modeled by the

Euler-Bernoulli beam theory to leading order. In this case, the layer will deform like a beam

in the sense that its vertical displacement will be much larger than its axial displacement;

more precisely, U = O(hV ). We expect that such a layer will buckle at small compressive

strains, that is with λ ≈ 1. Thus, we write

λ = 1 + h2ψ, (3.15)
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where ψ is a constant of O(1). As a result, the moduli can be expanded as

Ajilk = Ajilk|λ=1 + h2ψA′jilk +
1

2
h4ψ2A′′jilk + · · · , (3.16)

where e.g. A′jilk denotes the derivative of Ajilk with respect to λ evaluated at λ = 1. To

simplify notation, we shall write Ajilk|λ=1 simply as Ajilk. Since λ = 1 corresponds to the

undeformed state which is isotropic, if we denote the associated Lame constants by λ∗ and

µ, we have

Ajilk = λ∗δjiδlk + µ(δjlδik + δjkδil). (3.17)

The derivatives A′jilk are dependent on the strain-energy function used and are not written

out here for the sake of brevity.

We look for an asymptotic solution of the form

U(x1) = hw11(x1) + h2w12(x1) + h3w13(x1) + h4w14(x1) + · · · , (3.18)

V (x1) = w20(x1) + hw21(x1) + h2w22(x1) + h3w23(x1) + · · · , (3.19)

where the functions w20, w11, w21 etc are to be determined. Since the elastic moduli of the

half-space is of order h3, the tractions exerted by the half-space can at most be order h3.

It turns out that the vertical traction is indeed of order h3, but the horizontal traction can

only be of order h4 for asymptotic consistency (Cai & Fu, 2000). This of course is why the

Winkler assumption is valid to leading order. Thus, we write traction continuity in the form

t1(x1, h) = h4t̂1(x1), t2(x1, h) = h3t̂2(x1),

with h4t̂1(x1) and h3t̂2(x1) denoting the tractions exerted by the half-space. As a result,

(3.13) and (3.14) may be replaced by

h4t̃1(x1) = hc1U
(2) + h2ĉ2V

(3) + h3ĉ3U
(4) + h4ĉ4V

(5) + · · · , (3.20)

h2t̃2(x1) = d1V
(2) + hd̂2U

(3) + h2d̂3V
(4) + h3d̂4U

(5) + · · · , (3.21)

where we have divided (3.14) by h to ease our presentation.

On substituting (3.18) and (3.19) together with (3.15) and (3.16) into (3.20) and (3.21)

and equating the coefficients of like powers of h, we can find w11, w21 etc at successive orders

in terms of the traction functions t̃1(x1) and t̃2(x1). The two equations at order h are

automatically satisfied, whereas the two equations at order h2 are linear algebraic equations

and can be solved to give

w
(2)
11 = −1

2
w

(3)
20 , (3.22)

µ(λ∗ + µ)

3(λ∗ + 2µ)
w

(4)
20 − ψσ̄′1w

(2)
20 = t̃2(x1), (3.23)
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where σ̄1 has been defined in (2.6) and σ̄′1 stands for the derivative of σ̄1 with respect to λ

evaluated at λ = 1. The leading order result (3.23) corresponds to an Euler-Bernoulli beam

that is only supported by normal forces.

At order h3, the two linear algebraic equations can be solved to give

w
(2)
12 = −1

2
w

(3)
21 , (3.24)

µ(λ∗ + µ)

3(λ∗ + 2µ)
w

(4)
21 − ψσ̄′1w

(2)
21 = 0. (3.25)

At order h4, we solve the two equations to obtain

w
(2)
13 = −1

2
w

(3)
22 −

(λ∗ + µ)

6(λ∗ + 2µ)
w

(5)
20 +

λ∗σ̄′1ψ

8µ(λ∗ + µ)
w

(3)
20 −

(λ∗ + 2µ)

4µ(λ∗ + µ)
t̃1(x1), (3.26)

µ(λ∗ + µ)

3(λ∗ + 2µ)
w

(4)
22 − ψσ̄′1w

(2)
22 =

1

2
t̃′1(x1)− µ(λ∗ + µ)

15(λ∗ + 2µ)
w

(6)
20 + k4ψw

(4)
20 +

1

2
σ̄′′1ψ

2w
(2)
20 , (3.27)

where

k4 = − 1

12(λ∗ + 2µ)2

{
2λ∗(λ∗ + 2µ)σ̄′1 + (λ∗ + 2µ)2A′1111 − 2λ∗(λ∗ + 2µ)A′1122 + λ∗2A′2222

}
.

Multiplying (3.25) and (3.27) by h and h2 , respectively, and adding the two resulting

equations to (3.23), we obtain, after making use of (3.19),

µ(λ∗ + µ)

3(λ∗ + 2µ)
V (4) − ψσ̄′1V (2) = t̃2(x1) +

h2

2
t̃′1(x1) +

1

2
σ̄′′1ψ

2h2V (2)

+k4h
2ψV (4) − µ(λ∗ + µ)

15(λ∗ + 2µ)
h2V (6) +O(h3). (3.28)

On the other hand, multiplying (3.22) and (3.24) by h2 and h3, respectively, and adding the

two resulting equations together, we obtain, after making use of (3.18) and rearranging,

h4t̃1(x1) = −4µ(λ∗ + µ)

λ∗ + 2µ

(
hU (2)(x1) +

1

2
h2V (3)(x1)

)
− 2µ(λ∗ + µ)2

3(λ∗ + 2µ)2
h4V (5)(x1)

+
λ∗σ̄′1

2(λ∗ + 2µ)
h2(λ− 1)V (3)(x1) +O(h5), (3.29)

where we have used (3.15) to eliminate ψ. It can be shown that the same equations for U

and V are obtained even after solutions at the next order are incorporated. Thus, the error

terms in (3.28) and (3.29) may be replaced by O(h4) and O(h6), respectively.

Finally, on eliminating t̃1(x1) from (3.28) with the use of (3.29) and solving the resulting

equation for t2(x1), we obtain

h3t̃2(x1) =
µ(λ∗ + µ)

3(λ∗ + 2µ)
h3V (4) − (λ− 1)hσ̄′1V

(2) +
2µ(λ∗ + µ)

λ∗ + 2µ

(
h2U (3) +

1

2
h3V (4)

)
11



+
h5µ (6λ∗2 + 13λ∗µ+ 7µ2)

15(λ∗ + 2µ)2
V (6) + k̂4h

3(λ− 1)V (4) − 1

2
h(λ− 1)2σ̄′′1V

(2) +O(h7), (3.30)

where

k̂4 =
1

12(λ∗ + 2µ)2

{
−λ∗(λ∗ + 2µ)σ̄′1 + (λ∗ + 2µ)2A′1111 − 2λ∗(λ∗ + 2µ)A′1122 + λ∗2A′2222

}
.

Note that the first two terms on the right hand side of (3.30) corresponds to the leading order

theory, and we have not combined them with the other higher order terms. In particular,

although the second term involving h3V (4) is of the same order as the leading terms, the

sum h2U (3) + 1
2
h3V (4) together is of O(h5), as can be seen from (3.29) where all terms must

necessarily be of the same order.

3.2. Response of the half-space

Having derived the relation between traction and displacement at the interface from the

side of the coating layer, we now employ the Stroh formulation (Stroh, 1958) to derive its

counterpart from the side of half-space. The following derivations are adapted from Fu

(2007).

The equilibrium equations for the half-space are

Â1i1kûk,11 + (Â1i2k + Â2i1k)ûk,12 + Â2i12ûk,22 = 0,

or equivalently

Qû,11 + (R +RT )û,12 + T û,22 = 0, (3.31)

where the three matrices T,R and Q are defined by

Tik = Â2i2k, Rik = Â1i2k, Qik = Â1i1k. (3.32)

The traction vector t̂ on any surface with unit normal n = (δi2) is given by

t̂i = χ̂i2 = Â2ilkûk,l = Â2i1kûk,1 + Â2i2kûk,2, (3.33)

or equivalently,

t̂ = RT û,1 + T û,2. (3.34)

We define the Fourier transform (FT) of û and its inverse by

z(k, x2) ≡ F [û] =

∫ ∞
−∞

û(x1, x2)e−ikx1dx1, (3.35)

û(x1, x2) =
1

2π

∫ ∞
−∞

z(k, x2)eikx1dk, (3.36)
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where the first expression defines the vector function z(k, x2). Applying the FT to (3.31),

we obtain

Tz′′ + ik(R +RT )z′ − k2Qz = 0, (3.37)

where a prime denotes differentiation with respect to x2. On substituting a trial solution of

the form

z(k, x2) = a eikpx2 , (3.38)

into (3.37), we find that the constant scalar p and vector a satisfies the eigenvalue problem(
p2T + p(R +RT ) +Q

)
a = 0. (3.39)

Under the assumption that Âjilk satisfies the strong ellipticity condition, the eigenvalues of p

in (3.39) cannot be pure real. For the current plane-strain problem, we denote by p(1), p(2) the

two eigenvalues of p with positive imaginary parts and a(1),a(2) the associated eigenvectors.

Then for k > 0 a general solution that satisfies the decaying condition is

z(k, x2) =
2∑
j=1

cja
(j)eikp(j)x2 = A〈eikpx2〉 c = A〈eikpx2〉A−1 d, (3.40)

where c1, c2 are constants,

A = [a(1),a(2)], c = [c1, c2]T ,

d = Ac, and 〈eikpx2〉 denotes the diagonal matrix

diag {eikp(1)x2 , eikp(2)x2}.

For k < 0, we must choose the conjugates of p(1), p(2) in constructing the general solution in

order to satisfy the decaying condition. Thus, we have

z(k, x2) = Ā〈eikp̄x2〉Ā−1 d̄, k < 0, (3.41)

where an overbar signifies complex conjugation. It then follows that

z(k, x2) = z(−k, x2), k < 0. (3.42)

With the aid of (3.40) and (3.41), we deduce that

z′ = ik ·

{
A〈p〉A−1z(k, x2), when k > 0,

Ā〈p̄〉 Ā−1z(k, x2), when k < 0.
(3.43)

Thus, we have

z′ = (ReG+ i sgn(k) ImG) F
[
∂û

∂x1

]
, (3.44)
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where

G = A〈p〉A−1, (3.45)

Re and Im denote the real and imaginary parts, respectively, and sgn is the sign function.

To invert (3.44), we make use of the result that

sgn(k) = − 1

iπ
F [

1

x1

], (3.46)

where the Fourier transform is understood to take its principal value. It then follows by

inverting (3.44), followed by the use of the convolution theorem, that

û,2 = (ReG)û,1 − (ImG)
1

πx1

∗ û,1, (3.47)

where the star signifies integral convolution. Alternatively, we may write this result as

û,2 = (ReG)û,1 + (ImG)H[û,1], (3.48)

where H denotes the Hilbert transform defined by

H[g(x1)] =
1

π
p.v.

∫ ∞
−∞

g(y)

y − x1

dy = − 1

πx1

? g(x1). (3.49)

On eliminating û,2 from (3.34) with the use of (3.48), we obtain

t̂ =
{
RT + T (ReG)

}
û,1 + T (ImG)H[û,1]. (3.50)

Note that the continuity condition û(x1, h) = u(x1, h) at the interface may be differentiated

to yield û,1(x1, h) = u,1(x1, h). As a result, when evaluated at the interface x2 = h, the û

in (3.50) may be replaced by u(x1, h) = {U(x1), V (x1)}T .

It was shown in Fu (2007) that the matrix G is related to the surface impedance matrix

M (Ingebrigtsen & Tonning, 1969) by

M = −i(RT + TG), (3.51)

so that equation (3.50) may also be rewritten as

t̂ = −(ImM)û,1 + (ReM)H[û,1]. (3.52)

The surface impedance matrix M plays an important role in the surface wave theory (Barnett

& Lothe, 1985) and many useful results about M are known. In particular, it is positive

definite under the convexity assumption for the elastic moduli, and satisfies the matrix

Riccati equation

(M − iR)T−1(M + iRT)−Q = 0. (3.53)
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See Biryukov (1985), Fu & Mielke (2002). This matrix equation can be solved analytically

when there are enough symmetries in the problem. For the current plane-strain problem,

the three matrices Q,R, T have the simple forms

T =

(
T1 0

0 T2

)
, R =

(
0 R1

R2 0

)
, Q =

(
Q1 0

0 Q2

)
, (3.54)

where

T1 = Â2121, T2 = Â2222, R1 = Â1122,

R2 = Â2112, Q1 = Â1111, Q2 = Â1212.

As a result, equation (3.53) can be solved explicitly to yield

M =

(
M1 iM4

−iM4 M2

)
, Mi real, (3.55)

with

M1 =

√
T1Q1 −

T1

T2

(
R1 +R2

1 + γ

)2

, γ =

√
T1Q2

T2Q1

,

M2 = γ
T2

T1

M1, M4 =
γR1 −R2

1 + γ
, (3.56)

Returning to (3.52) and evaluating it at the interface x2 = h, we may replace t̂ by {h4t̃1, h
3t̃2}T

and û by {U, V }T to obtain

−M4V
(1)(x1) +M1H[U (1)(x1)] = h4t̃1, (3.57)

M4U
(1)(x1) +M2H[V (1)(x1)] = h3t̃2. (3.58)

With h4t̃1 and h3t̃2 given by (3.29) and (3.30), equations (3.57) and (3.58) are two ordinary

differential equations for U(x1) and V (x1), and are the refined film/substrate model that we

set out to derive.

The classical model corresponds to balancing the term M2H[V (1)(x1)] with the first two

terms in h3t̂2 and is given by

M2H[V (1)(x1)] =
µ(λ∗ + µ)

3(λ∗ + 2µ)
h3V (4) − (λ− 1)hσ̄′1V

(2). (3.59)

For the classical model, M2 may be evaluated at λ = 1 and we have

M2 =
2µs(λs + 2µs)

λs + 3µs

, σ̄′1 =
4µ(λ∗ + µ)

λ∗ + 2µ
, (3.60)

where λs and µs represent the Lame constants for the substrate. For sinusoidal solutions of

the form V (x1) = A sin(kx1) with A a constant, we have

H[V (1)(x1)] = AkH[cos(kx1)] = −Ak sin(kx1) = −kV (x1).

Equation (3.59) then recovers (1.2).
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4. Self-consistency of the refined model

On substituting a periodic buckling solution of the form

U(x1) = A sin(kx1), V (x1) = B cos(kx1) (4.1)

into the reduced model (3.57) and (3.58) and canceling sin(kx1) and cos(kx1), we obtain

two homogeneous linear equations for A and B. For a non-trivial solution, we must set the

determinant of the coefficient matrix to zero, which then yields the bifurcation condition.

By assuming that kh is small, and both λs/λ
∗ and µs/µ are of order (kh)3, we find from the

bifurcation condition that 1− λ has an asymptotic expansion given by

1− λ =
2(ν − 1)2

3− 4ν

r

kh
+

1

12
(kh)2 + d0r + d1(kh)4 + d2r(kh)

+d3
r2

(kh)2
+ d4(kh)2r + d5

r2

kh
+O((kh)6), (4.2)

where the constants d0, d1, d2 and d3 are the same as in (1.5), and the new constants d4 and

d5 are given by

d4 =
192ν4 − 512ν3 + 508ν2 − 218ν + 33

24(4ν − 3)3
, (4.3)

d5 =
256ν6 − 992ν5 + 1608ν4 − 1380ν3 + 644ν2 − 147ν + 11

2(4ν − 3)3
. (4.4)

Compared with (1.5), the expansion (4.2) contains two extra terms of order (kh)5. We have

checked to verify that the expansion (4.2) is the same as that given by the exact bifurcation

condition, thus verifying the self-consistency of the refined model. We now show that the

two extra order (kh)5 terms in (4.2) can significantly improve its accuracy.

The maximum stretch is attained when dλ/d(kh) = 0. On substituting (4.2) and

kh = g1r
1/3 + g2r

3/3 + g3r
4/3 +O(r5/3) (4.5)

into this equation and then equating the coefficients of like powers of r to zero, we obtain

g1 = 22/3 3
√

3
3

√
(ν − 1)2

3− 4ν
, g2 =

−1920ν4 + 3776ν3 − 2504ν2 + 500ν + 33

60(3− 4ν)2
, (4.6)

g3 =
256ν5 − 640ν4 + 592ν3 − 208ν2 − 2ν + 11

2 32/3(3− 4ν)2 3
√

8ν2 − 14ν + 6
. (4.7)

On substituting the expansion (4.5) back into (4.2), we obtain the corresponding expression

for the critical stretch

λcr = 1− 32/3(1− ν)4/3

(6− 8ν)2/3
r2/3 +

(ν − 1)(2ν − 1)

4ν − 3
r + g4r

4/3 + g5r
5/3 +O(r6/3), (4.8)
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where

g4 =
(1− ν)2/3 (480ν4 − 556ν3 + 199ν2 − 115ν + 72)

20 32/3 3
√

6− 8ν(3− 4ν)2
, (4.9)

g5 = −
3
√

3− 4ν (256ν6 − 1040ν5 + 1796ν4 − 1670ν3 + 863ν2 − 227ν + 22)

2 22/3 3
√

3(1− ν)2/3(4ν − 3)3
. (4.10)

In the incompressibility limit ν → 0.5, the expressions for the critical stretch and wavenumber

reduce to

λcr = 1− 1

4
(3r)2/3 +

11

160
(3r)4/3 − 1

24
(3r)5/3 +O(r2), (4.11)

(kh)cr = (3r)1/3 +
3

20
r +O(r5/3). (4.12)

Since care needs to be taken in using the truncated asymptotic expansion (4.2) to compute

dλ/d(kh), we have checked to verify that all the terms displayed in (4.6)−(4.12) are the same

as those given by the exact theory, and those remainder terms represented by the O symbol

cannot be derived using the current reduced model.

We observe that in the incompressible case, we have g3 = 0 so that adding the O((kh)5)

terms in (4.2) does not result in any change in (kh)cr but does give rise to an extra O(r5/3)

term in (4.11). In Fig.1(a,b), we have shown the effect of adding the O(r5/3) term in (4.11)

by comparing the asymptotic results with their exact counterparts. It is seen that adding

the O(r5/3) term in (4.11) significantly improves the accuracy of the resulting asymptotic

expansion for λcr.

0.2 0.4 0.6 0.8 1.0 r

0.6

0.7

0.8

0.9

1.0

λcr

ν=0.5

0.2 0.4 0.6 0.8 1.0 r

0.5

1.0

1.5

khcr

ν=0.5

(a) (b)

Figure 1: Comparison of asymptotic results (dashed lines) with exact results (black solid line) in the incom-

pressible case. The red dashed lines in (a) and (b) correspond to (4.11) and (4.12), respectively, and the

blue line in (a) corresponds to (4.11) with the O(r5/3) term neglected.

Having demonstrated the importance of the extra O((kh)5) terms in (4.2), we now in-

vestigate their effect for the compressible case. We note that the extra O((kh)5) terms in

(4.2) give rise to the g3r
4/3 term in (4.5) and the g5r

5/3 term in (4.8). In Fig. 2 to Fig. 4, we

have shown the counterparts of Fig. 1 for ν = 0.45, 0.3 and 0.1, respectively, where the red
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and blue dashed lines are asymptotic results with the these extra terms added or neglected,

respectively. It is seen that adding the extra terms continues to improve the accuracy for ν

close to 0.5 (e.g. ν = 0.45), but it has the opposite effect when ν = 0.3 and a mixed effect

when ν = 0.1 (in the sense that it improves the accuracy in λcr but worsens the accuracy in

(kh)cr). Thus, we conclude that including the O((kh)5) terms in (4.2) improves the accuracy

of the asymptotic results significantly only when the materials are incompressible or nearly

incompressible. For other values of ν, the optimal truncation of the asymptotic expansion

(4.2) will be dependent on ν.

0.2 0.4 0.6 0.8 1.0 r

0.4

0.6

0.8

λcr

ν=0.45

0.2 0.4 0.6 0.8 r

0.5

1.0

1.5

khcr

ν=0.45

(a) (b)

Figure 2: Comparison of asymptotic results (dashed lines) with exact results (black solid line) when ν = 0.45.

The red dashed lines in (a) and (b) correspond to (4.8) and (4.5), respectively, and whereas the blue lines

represent lower order approximations with g3 and g5 set to zero.

0.2 0.4 0.6 0.8 1.0 r

0.4

0.6

0.8

λcr

ν=0.3

0.2 0.4 0.6 0.8 r

0.5

1.0

1.5

khcr

ν=0.3

(a) (b)

Figure 3: Comparison of asymptotic results (dashed lines) with exact results (black solid line) when ν = 0.3.

The red dashed lines in (a) and (b) correspond to (4.8) and (4.5), respectively, and whereas the blue lines

represent lower order approximations with g3 and g5 set to zero.
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Figure 4: Comparison of asymptotic results (dashed lines) with exact results (black solid line) when ν = 0.1.

The red dashed lines in (a) and (b) correspond to (4.8) and (4.5), respectively, and whereas the blue lines

represent lower order approximations with g3 and g5 set to zero.

5. Conclusion

Reduced plate models have played an important role in engineering applications since

they allow the most important information to be extracted without having to solve the

fully three dimensional elasticity problem. In particular, the Euler-Bernoulli beam theory

has frequently been used in studying pattern formation in film-substrate bilayers. Together

with the Winkler assumption for the response of the substrate, this classical model is self-

consistent and yields a leading order asymptotic expansion for the critical strain that agrees

with that given by the exact 3D theory. In this paper, we have derived a refined model

for the film-substrate interaction. The main motivation for deriving such a model is our

planned study of pattern formation in a coated half-space where the coating has periodic

and piecewise homogeneous material properties. For this problem, it is much harder to use

the exact 3D theory to obtain analytical results than for the much studied case when the

coating is homogenous. Our preliminary study has shown that using the classical model

is an attractive option, but its effectiveness is seriously hampered by the limited range of

validity in which the theory is valid. It is hoped that the current refined model will increase

the range of validity and the relevant results will be published in a sequel to the current

paper.

We used the methodology first proposed by Dai & Song (2014) to derive the relationship

between the traction and displacement vectors at the interface. The derivation consists of

two steps. The first step is to express the traction and displacement vectors at the interface,

t(x1, h) and u(x1, h), in terms of the displacement vector at the traction-free surface, u(x1, 0).

The second step is to treat the expression for u(x1, h) as an asymptotic expansion in h and

invert it. The most attractive feature of this methodology is that all manipulations only

involve the solutions of linear algebraic equations and the expansions can be carried out to
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any order in h on a symbolic manipulation platform. Also, our treatment of both the coating

and half-space can be easily generalised to deal with anisotropic and/or inhomogeneous

materials (Spencer, 1984, 2005), nonlinear effects (Erbay, 1997), liquid crystal elastomers

(Goriely & Mihai, 2021; Liu et al., 2021), and the case when U and V depend on both of

the in-plane coordinates.
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