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We present new alternative complete asymptotic expansions for the time har-
monic low-frequency magnetic field perturbation caused by the presence of
a conducting permeable object as its size tends to zero for the eddy current
approximation of the Maxwell system. Our new alternative formulations enable
a natural extension of the well-known rank 2 magnetic polarizability tensor
(MPT) object characterization to higher order tensor descriptions by introducing
generalized MPTs (GMPTs) using multi-indices. In particular, we identify the
magnetostatic contribution, provide new results on the symmetries of GMPTs,
derive explicit formulae for the real and imaginary parts of GMPT coefficients
and also describe the spectral behavior of GMPT coefficients. We also introduce
the concept of harmonic GMPTs (HGMPTs) that have fewer coefficients than
other GMPT descriptions of the same order. We describe the scaling, translation
and rotational properties of HGMPTs and describe an approach for obtaining
those HGMPT coefficients that are invariant under the action of a symme-
try group. Such an approach is one candidate for selecting features in object
classification for hidden object identification using HGMPTs.
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1 INTRODUCTION
Characterizing highly conducting objects from low-frequency magnetic field perturbations is important in metal detec-
tion, where the goal is to locate and identify concealed inclusions in an otherwise uniform background material.
Applications of metal detection include airport, transport hub and event security, the search for artifacts of archeolog-
ical significance, the investigation of crime scenes using forensic science, the recycling of metals, and in the search for
landmines and unexploded ordnance (UXOs). Being able to better characterize objects offers considerable advantages in
reducing the number of false positives in metal detection and, in particular, to accelerate and improve object location and
discrimination.

Ammari et al1,2 have established the leading order term in an asymptotic expansion of the perturbed magnetic field
(H𝛼 − H0)(x) due to the presence of a highly conducting permeable object as its size, 𝛼, tends to zero, which describes
the metal detection problem. In Ledger and Lionheart,3 we have shown that the leading order term in the expansion
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2 LEDGER AND LIONHEART

includes a complex symmetric rank 2 magnetic polarizability tensor (MPT), which provides an object description. We
have obtained explicit formulae for the MPT coefficients that depend on the object geometry, its size, material properties,
and frequency of excitation. In a series of works, we have explored the properties of MPTs including providing several
different splittings and formulations for obtained MPT coefficients4,5 and also investigated the spectral properties of their
coefficients.5 Together with Wilson, we have also developed efficient computational algorithms for the computation of
the MPT coefficients and their spectral signature6 that have allowed us to generate a large dictionary of object characteri-
zations7 and apply machine learning algorithms to identify hidden objects using classification,8 which exploit the MPT's
spectral signature.

While using an MPT's spectral signature offers considerable benefits to using an object characterization based on an
MPT at a fixed frequency, the object description, in this case, is only through at most six independent complex coefficients
as a function of frequency, limiting the amount of information that can be said about hidden object and preventing its
material description to be separated from its shape. To improve this, a complete asymptotic expansion of (H𝛼 − H0)(x)
due to the presence of a highly conducting permeable object as 𝛼 → 0 has been established in Ledger and Lionheart,9
extending the expansion obtained by Ammari et al.1,2 This expansion provides improved object characterization through
the introduction of generalized MPTs (GMPTs), which, in their simplest form, agree with the MPT object characterization.
The higher order terms in the expansion play an important role when the background field at the position of the object
is non-uniform. This is indeed the case in many practical metal detection scenarios where the fields generated by coils at
the position of concealed objects is far from uniform and the GMPTs allow this information to be used in a smart way.
Recent work has also shown that GMPT coefficients can also be measured in practice and the measurement coefficients
agree with numerical simulations.10 For a related scalar electrical impedance tomography (EIT) problem, it is known that
the complete set of generalized polarization/polarizability tensors (GPTs) uniquely determine an object's shape and its
admittivity.11

While explicit formulae for GMPT coefficients have been established in Ledger and Lionheart,9 the properties of GMPTs
and the choice of suitable invariants for object classification remains open. This work addresses the properties of GMPTs
and introduces the concept of harmonic GMPTs (HGMPTs) building on the harmonic GPTs, which we have introduced
for a simpler scalar EIT problem and the concept of (contracted) GPTs ((C)GPTs).12 These object descriptions have fewer
independent coefficients than other GPTs of the same order. We also describe an approach for determining the indepen-
dent coefficients of HGMPTs that are invariant under the action of a symmetry group, which offers possibilities for object
classification using (H)GMPTs. Specifically, the novelties of this work are:

1. We derive complete asymptotic expansions of (H𝛼 − H0)(x) as 𝛼 → 0 using both tensorial index and multi-index
notation, which lead to improved object characterizations using higher order GMPTs that are a natural extension
of the rank 2 MPT description first obtained in Ledger and Lionheart.3

2. We provide a splitting of the GMPT obtained in 1., extending the result for MPTs in Ledger and Lionheart,4 which
makes the magnetostatic contribution to the GMPT explicit.

3. We derive symmetry properties of GMPTs, extending the known complex symmetric property of MPTs previously
obtained in Ledger and Lionheart.3

4. We derive explicit formulae for the real and imaginary parts of GMPTs, extending those known for MPTs previously
obtained in Ledger and Lionheart.5

5. We derive a result giving insights in to the spectral behavior of the GMPT coefficients, extending what is known
for the spectral behavior of MPT coefficients in Ledger and Lionheart.5

6. We derive a new form of GMPTs called HGMPTs, which have coefficients that are invariant under rotation for
objects that are a member of a particular symmetry group.

The work is organized as follows: We first fix some notation in Section 2. Then, in Section 3, we briefly recall the
mathematical model. In Section 4, we present a series of alternative complete asymptotic expansions for (H𝛼−H0)(x) and
introduce alternative forms of GMPTs using both tensorial and multi-indices. In Section 5, we explore some properties
of GMPTs. This is followed by the introduction of the concept of HGMPTs in Section 6. We finish with some concluding
remarks.

2 NOTATION

We denote by ek the unit basis vector associated with the kth coordinate direction in a standard orthonormal coordinate
system x = (x1, x2, x3), and hence, the kth component of a vector field v in this system is ek · v = (v)k = vk. We will
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LEDGER AND LIONHEART 3

often use Einstein index summation notation so that a vector can be described as v = vkek and a rank 2 tensor using a
calligraphic font as  = k𝑗ek ⊗ e𝑗 . We will use a Gothic font for higher order tensors so that a rank 3 tensor using
tensorial indices can be described as𝔇 = 𝔇i𝑗kei⊗e𝑗⊗ek. We will also use Gothic font for higher rank tensors that use both
tensorial and multi-indices. For example, when considering expressions of the form

∑
𝛽,𝛾,|𝛽|=|𝛾|=0

x𝛽𝔇𝛽𝛿

i𝑗 y𝛿ei ⊗ e𝑗 , involving

the coefficients𝔇𝛽𝛿

i𝑗 of a rank 2+|𝛽|+|𝛿| rank tensor, with the subscripts i and 𝑗 being tensorial indices and the superscripts
𝛽 and 𝛿 being multi-indices, and summation is implied over i and 𝑗 and is explicit over 𝛽 and 𝛿. Here, the multi-indices
𝛽 = (𝛽1, 𝛽2, 𝛽3) and 𝛿 = (𝛿1, 𝛿2, 𝛿3) have properties 𝛽! = 𝛽1!𝛽2!𝛽3!, |𝛽| = 𝛽1 + 𝛽2 + 𝛽3, x𝛽 = x𝛽1

1 x𝛽2
2 x𝛽3

3 , 𝜕
𝛽
x (·) = 𝜕

𝛽1
x1
𝜕
𝛽2
x2
𝜕
𝛽3
x3
(·).

Finally, we also use Gothic font for higher rank tensors that use both tensorial indices and additional indices associated
with instances m and n of polynomials Pm

p (x), Pn
q(x) of degree p and q. Hence, when considering expressions of the form∑

p=0

∑
q=0

p∑
m=−p

q∑
n=−q

Pm
p (x)𝔇

pmqn
i𝑗 Pm

q (y)ei ⊗ e𝑗 , involving the coefficients 𝔇pmqn
i𝑗 of a rank 2 + p + q rank tensor, summation is

implied over the tensorial indices while that over the indices associated with instances of the polynomials is explicit.

3 MATHEMATICAL MODEL

We briefly recall from Ammari et al1 and Ledger and Lionheart,3 the mathematical model of interest in this work: Our
interest lies in the characterization of a single homogeneous conducting permeable object. Following previous work, we
describe a single inclusion by B𝛼 ∶= 𝛼B + z, which means it can be thought of as unit sized object B, scaled by 𝛼 and
translated by z. We assume the background is non-conducting and non-permeable and introduce the position-dependent
conductivity and permeability as

𝜎𝛼 =
{

𝜎∗ in B𝛼,

0 in Bc
𝛼 = R3∖B𝛼,

𝜇𝛼 =
{

𝜇∗ in B𝛼,
𝜇0 in Bc

𝛼,

where 𝜇0 ∶= 4𝜋 × 10−7 H/m is the permeability of free space, 0 < 𝜇∗ < ∞ and 0 ≤ 𝜎∗ < ∞. In principal, 𝜇∗ and 𝜎∗ do
not need to be homogeneous in B𝛼 , and we have previously considered this situation for MPT object characterizations in
Ledger and Lionheart.13 In this work, we assume 𝜇∗ and 𝜎∗ are homogeneous in B𝛼 for simplicity of presentation. We will
also use the position-dependent relative permeability 𝜇r ∶= 𝜇𝛼∕𝜇0 with �̃�r = 𝜇r ∶= 𝜇∗∕𝜇0 inside B𝛼 and �̃�r = 1 in Bc

𝛼 . For
metal detection, the eddy current approximation of Maxwell's equations is appropriate, since 𝜎∗ is large and the angular
frequency 𝜔 = 2𝜋𝑓 is small (a rigorous justification involves the object topology14). In this case, the electric and magnetic
interaction fields, E𝛼 and H𝛼 , respectively, satisfy

∇ × H𝛼 = 𝜎𝛼E𝛼 + J0, ∇ × E𝛼 = i𝜔𝜇𝛼H𝛼, (1)

in R3 and decay as O(1∕|x|) as |x| → ∞. In the above, J0 is a solenoidal external current source with support in Bc
𝛼 . In the

absence of an object, the background fields E0 and H0 satisfy (1) with 𝛼 = 0.
The task is to find an economical description of (H𝛼 − H0)(x) at a position x away from B𝛼 , which characterizes the

object's shape and material parameters by a small number of parameters separately from its position z for the regime
where

𝜈 ∶= 𝜔𝜎∗𝜇0𝛼
2,

is order one and 𝜇r is also order one as 𝛼 → 0.

4 COMPLETE ASYMPTOTIC EXPANSION

In the following, we present several different equivalent complete asymptotic expansions for (H𝛼 − H0)(x) as 𝛼 → 0,
which allow us to introduce different object characterizations.

4.1 Original form using tensor indices
For comparison with subsequent sections, we first recall the complete asymptotic expansions for (H𝛼 − H0)(x) as 𝛼 → 0
previously derived in Ledger and Lionheart.9
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4 LEDGER AND LIONHEART

Theorem 4.1 (Ledger and Lionheart9). For any M > 0, the magnetic field perturbation in the presence of a small
conducting object B𝛼 = 𝛼B + z for the eddy current model when 𝜈 and 𝜇r are order one and x is away from the location z
of the inclusion is completely described by the asymptotic formula

(H𝛼 − H0)(x)i =
M−1∑
m=0

M−1−m∑
p=0

(D2+m
x G(x, z))i,K(m+1)𝔐K(m+1)J(p+1)(Dp

z (H0(z)))J(p+1) + (R(x))i,

J(p + 1) ∶= [𝑗, J(p)] = [𝑗, 𝑗1, 𝑗2, … , 𝑗p],
K(m + 1) ∶= [k,K(m)] = [k, k1, k2, … , km],

(2)

with |R(x)| ≤ C𝛼3+M||H0||W M+1,∞(B𝛼), G(x, z) ∶= 1∕(4𝜋|x−z|). In the above, J(p) and K(m) are p- and m-tuples of integers,
respectively, with each element taking values 1, 2, 3, and Einstein index summation is implied over K(m+1) and J(p+1).
Also,

(D2+m
x G(x, z))i,K(m+1) =

( m∏
𝓁=1

𝜕xk𝓁

)
(𝜕xk (𝜕xi(G(x, z)))),

(Dp
z (H0(z)))J(p+1) =

( p∏
𝓁=1

𝜕z𝑗𝓁

)
(H0(z) · e𝑗),

and the coefficients of a rank 2 + p + m GMPT are defined by

𝔐K(m+1)J(p+1) ∶= −ℭK(m+1)J(p+1) +𝔑K(m+1)J(p+1),

where

ℭK(m+1)J(p+1) ∶= − i𝜈𝛼3+m+p(−1)m

2(m + 1)!p!(p + 2)
ek · ∫B

𝝃 ×
(
(Π(𝝃))K(m)(𝜽J(p+1) + (Π(𝝃))J(p)e𝑗 × 𝝃)

)
d𝝃, (3a)

𝔑K(m+1)J(p+1) ∶=
(
1 − 𝜇−1

r
) 𝛼3+m+p(−1)m

p!m!
ek · ∫B

(Π(𝝃))K(m)

(
1

p + 2
∇𝜉 × 𝜽J(p+1) + (Π(𝝃))J(p)e𝑗

)
d𝝃. (3b)

Furthermore, 𝜽J(p+1) satisfies the transmission problem

∇𝜉 × 𝜇−1
r ∇𝜉 × 𝜽J(p+1) − i𝜈𝜽J(p+1) = i𝜈(Π(𝝃))J(p)e𝑗 × 𝝃 in B, (4a)

∇𝜉 · 𝜽J(p+1) = 0, ∇𝜉 × ∇𝜉 × 𝜽J(p+1) = 𝟎 in Bc ∶= R
3∖B̄, (4b)

[n × 𝜽J(p+1)]Γ = 𝟎 on Γ ∶= 𝜕B, (4c)

[n × �̃�−1
r ∇𝜉 × 𝜽J(p+1)]Γ = −(p + 2)[�̃�−1

r ]Γ(n × e𝑗(Π(𝝃))J(p)) on Γ, (4d)

∫Γ
n · 𝜽J(p+1)d𝝃 = 0, (4e)

𝜽J(p+1) = O(|𝝃|−1) as |𝝃| → ∞, (4f)

(Π(𝝃))J(p) ∶=
p∏

𝓁=1
𝜉𝑗𝓁 = 𝜉𝑗1𝜉𝑗2 … 𝜉𝑗p , and in the case J(p) = ∅, then (Π(𝝃))J(p) = 1. Furthermore, �̃�(𝝃) ∶= 𝜇(𝝃)∕𝜇0 so that

�̃�r = 𝜇r for 𝝃 ∈ B and �̃�r = 1 otherwise, and [·]Γ = ·|+ − ·|− denotes the jump with |+ denoting evaluation just outside of
Γ and |− just inside.

Note that, compared to Ledger and Lionheart,9 we have chosen simplified the notation so that ℭ̌ is now written as ℭ
and ̌̌𝔐 as 𝔐.
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LEDGER AND LIONHEART 5

Remark 4.2. In the case where M = 1, (2) reduces to

(H𝛼 − H0)(x)i = (D2
xG(x, z))ikk𝑗(H0(z))𝑗 + (R(x))i,

where |R(x)| ≤ C𝛼4||H0||W2,∞(B𝛼 ) and  = k𝑗ek ⊗ e𝑗 is the complex symmetric rank 2 MPT previously obtained in
Ledger and Lionheart3 with alternative explicit expressions for k𝑗 derived in Ledger and Lionheart4,5 agreeing with
those of 𝔐K(m+1)J(p+1) in this case.

4.2 Multi-index form
The asymptotic expansion presented in Theorem 4.1 can be alternatively obtained using a combination of tensor and
multi-indices. This is achieved by using tensor indices, to reflect the vectorial nature of the problem, and multi-indices, to
reflect summation over higher order derivatives of D2

xG(x, z) and H0(z). The alternative form is presented as the following
result:

Theorem 4.3. For any M > 0, the magnetic field perturbation in the presence of a small conducting object B𝛼 = 𝛼B + z
for the eddy current model when 𝜈 and 𝜇r are order one and x is away from the location z of the inclusion is completely
described by the asymptotic formula

(H𝛼 − H0)(x)i =
M−1∑

𝛽,|𝛽|=0

M−1−|𝛽|∑
𝛿,|𝛿|=0

𝜕
𝛽
x ((D2

xG(x, z))ik)𝔐𝛽𝛿

k𝑗 𝜕
𝛿
z ((H0(z))𝑗) + (R(x))i, (5)

with |R(x)| ≤ C𝛼3+M||H0||W M+1,∞(B𝛼). In the above, 𝛽 = (𝛽1, 𝛽2, 𝛽3)and 𝛿 = (𝛿1, 𝛿2, 𝛿3)are multi-indices, and the coefficients
of a rank 2 + |𝛽| + |𝛿| GMPT are defined by

𝔐𝛽𝛿

k𝑗 ∶= −ℭ𝛽𝛿

k𝑗 +𝔑𝛽𝛿

k𝑗 ,

where

ℭ𝛽𝛿

k𝑗 ∶= − i𝜈𝛼3+|𝛽|+|𝛿|(−1)|𝛽|
2𝛽!𝛿!(|𝛽| + 1)(|𝛿| + 2)

ek · ∫B
𝝃 ×

(
𝝃𝛽(𝜽𝛿𝑗 + 𝝃

𝛿e𝑗 × 𝝃)
)

d𝝃,

𝔑𝛽𝛿

k𝑗 ∶=
(
1 − 𝜇−1

r
) 𝛼3+|𝛽|+|𝛿|(−1)|𝛽|

𝛽!𝛿!
ek · ∫B

𝝃𝛽
(

1|𝛿| + 2
∇𝜉 × 𝜽𝛿𝑗 + 𝝃

𝛿e𝑗
)

d𝝃.

Furthermore, 𝜽𝛿𝑗 satisfies the transmission problem

∇𝜉 × 𝜇−1
r ∇𝜉 × 𝜽𝛿𝑗 − i𝜈𝜽𝛿𝑗 = i𝜈𝝃𝛿e𝑗 × 𝝃 in B, (6a)

∇𝜉 · 𝜽𝛿𝑗 = 0, ∇𝜉 × ∇𝜉 × 𝜽𝛿𝑗 = 𝟎 in Bc, (6b)

[n × 𝜽𝛿𝑗 ]Γ = 𝟎 on Γ, (6c)

[n × �̃�−1
r ∇𝜉 × 𝜽𝛿𝑗 ]Γ = −(|𝛿| + 2)[�̃�−1

r ]Γ(n × e𝑗)𝝃𝛿 on Γ, (6d)

∫Γ
n · 𝜽𝛿𝑗d𝝃 = 0, (6e)

𝜽𝛿𝑗 = O(|𝝃|−1) as |𝝃| → ∞. (6f)

Proof. This result can be obtained by following similar steps to the proof of Theorem 4.1 in Ledger and Lionheart,9
except instead of the form of the Taylor's series used in (23) and (24) in Ledger and Lionheart,9 the alternative forms

A0(𝛼𝝃 + z) = 𝜇0
∑

𝛽,|𝛽|=0

𝛼1+|𝛽|
𝛽!(|𝛽| + 2)

𝜕
𝛽
z ((H0(z))𝑗)𝝃𝛽e𝑗 × 𝝃, (7a)

∇ × A0(𝛼𝝃 + z) = 𝜇0H0(𝛼𝝃 + z) = 𝜇0
∑

𝛽,|𝛽|=0

𝛼|𝛽|
𝛽!

𝜕
𝛽
z ((H0(z))𝑗)𝝃𝛽e𝑗 , (7b)
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6 LEDGER AND LIONHEART

where 𝛽 = (𝛽1, 𝛽2, 𝛽3) are multi-indices. Similarly, (47) and (48) in Ledger and Lionheart9 are replaced by

∇xG(x, y) =
∞∑

𝛽,|𝛽|=0

(−1)|𝛽|
𝛽!

𝜕
𝛽
x (∇x(G(x, z)))(y − z)𝛽 , (8a)

D2
xG(x, y) =

∞∑
𝛽,|𝛽|=0

(−1)|𝛽|
𝛽!

𝜕
𝛽
x (D2

x(G(x, z)))(y − z)𝛽 , (8b)

then, by following the steps in Ledger and Lionheart,9 we arrive at the alternative form of the asymptotic formula
provided in (43) as

(H𝛼 − H0)(x) = − i𝜈𝛼3
M−1∑

𝛽,|𝛽|=0

M−1−|𝛽|∑
𝛿,|𝛿|=0

(−1)|𝛽|𝛼|𝛽|+|𝛿|
𝛿!𝛽!(|𝛽| + 1)(|𝛿| + 2)

∫B
(𝜕𝛽x (D2

xG(x, z))𝝃)𝝃𝛽 × (𝜽𝛿𝑗 + 𝝃
𝛿e𝑗 × 𝝃)d𝝃𝜕𝛿z ((H0(z))𝑗)

+ 𝛼3 (1 − 𝜇−1
r
) M−1∑
𝛽,|𝛽|=0

M−1−|𝛽|∑
𝛿,|𝛿|=0

(−1)|𝛽|𝛼|𝛽|+|𝛿|
𝛽!𝛿!

𝜕
𝛽
x ((D2

xG(x, z))ik)ei ⊗ ek

∫B
𝝃𝛽

(
1|𝛿| + 2

∇ × 𝜽𝛿𝑗 + 𝝃
𝛿e𝑗

)
d𝝃𝜕𝛿z ((H0(z))𝑗) + R(x).

(9)

Then, by introducing,

(H𝛼 − H0)(x)i =
M−1∑

𝛽,|𝛽|=0

M−1−|𝛽|∑
𝛿,|𝛿|=0

𝜕
𝛽
x ((D2

xG(x, z))𝓁k)𝔄𝛽𝛿

i𝓁k𝑗𝜕
𝛿
z (H0(z)𝑗)

+
M−1∑

𝛽,|𝛽|=0

M−1−|𝛽|∑
𝛿,|𝛿|=0

𝜕
𝛽
x ((D2

xG(x, z))ik)𝔑𝛽𝛿

k𝑗 𝜕
𝛿
z (H0(z)𝑗) + (R(x))i,

where
𝔄𝛽𝛿

i𝓁k𝑗 ∶= − i𝜈 (−1)|𝛽|𝛼3+|𝛽|+|𝛿|
𝛿!𝛽!(|𝛽| + 1)(|𝛿| + 2)

ei · ∫B
(𝝃)𝓁𝝃𝛽ek × (𝜽𝛿𝑗 + 𝝃

𝛿e𝑗 × 𝝃)d𝝃,

𝔑𝛽𝛿

k𝑗 ∶=
(
1 − 𝜇−1

r
) (−1)|𝛽|𝛼3+|𝛽|+|𝛿|

𝛽!𝛿!
ek · ∫B

𝝃𝛽
(

1|𝛿| + 2
∇ × 𝜽𝛿𝑗 + 𝝃

𝛿e𝑗
)

d𝝃,

and following similar steps to Lemma 6.3 and Lemma 6.4 in Ledger and Lionheart,9 we obtain

𝔄𝛽𝛿

i𝓁k𝑗 = 𝜖ikrℭ𝛽𝛿

r𝓁𝑗 ,

ℭ𝛽𝛿

r𝓁𝑗 = 𝜖𝓁rkℭ̌𝛽𝛿

k𝑗 ,

where 𝜖i𝑗k denotes the standard Levi–Cevita permutation symbol. Combining this with properties of D2
xG(x, z) leads

to the final result. □

4.2.1 Split field formulation
In order to separately identify the contributions to the GMPTs associated with conducting and magnetic effects, we derive
the following.

Theorem 4.4. For any M > 0, the magnetic field perturbation in the presence of a small conducting object B𝛼 = 𝛼B + z
for the eddy current model when 𝜈 and 𝜇r are order one and x is away from the location z of the inclusion is completely
described by the asymptotic formula

(H𝛼 − H0)(x)i =
M−1∑

𝛽,|𝛽|=0

M−1−|𝛽|∑
𝛿,|𝛿|=0

𝜕
𝛽
x ((D2

xG(x, z))ik)𝔐𝛽𝛿

k𝑗 𝜕
𝛿
z ((H0(z))𝑗) + (R(x))i, (10)
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LEDGER AND LIONHEART 7

with |R(x)| ≤ C𝛼3+M||H0||W M+1,∞(B𝛼). In the above, 𝛽 = (𝛽1, 𝛽2, 𝛽3)and 𝛿 = (𝛿1, 𝛿2, 𝛿3)are multi-indices, and the coefficients
of a rank 2 + |𝛽| + |𝛿| GMPT are defined by

𝔐𝛽𝛿

k𝑗 ∶= −(ℭ𝜎∗ )𝛽𝛿k𝑗 + (𝔑𝜎∗ )𝛽𝛿k𝑗 + (𝔑0)𝛽𝛿k𝑗 ,

where parenthesis have been used to make the presentation clearer and

(ℭ𝜎∗ )𝛽𝛿k𝑗 ∶= − i𝜈𝛼3+|𝛽|+|𝛿|(−1)|𝛽|
2𝛽!𝛿!(|𝛽| + 1)(|𝛿| + 2)

ek · ∫B
𝝃 ×

(
𝝃𝛽(𝜽(0),𝛿

𝑗
+ 𝜽(1),𝛿

𝑗
)
)

d𝝃, (11a)

(𝔑𝜎∗ )𝛽𝛿k𝑗 ∶=
(
1 − 𝜇−1

r
) 𝛼3+|𝛽|+|𝛿|(−1)|𝛽|

𝛽!𝛿!
ek · ∫B

𝝃𝛽
(

1|𝛿| + 2
∇𝜉 × 𝜽(1),𝛿𝑗

)
d𝝃, (11b)

(𝔑0)𝛽𝛿k𝑗 ∶=
(
1 − 𝜇−1

r
) 𝛼3+|𝛽|+|𝛿|(−1)|𝛽|

𝛽!𝛿!
ek · ∫B

𝝃𝛽
(

1|𝛿| + 2
∇𝜉 × 𝜽(0),𝛿𝑗

)
d𝝃. (11c)

In the above, 𝜽(1),𝛿
𝑗

and 𝜽(0),𝛿
𝑗

satisfy the transmission problems

∇𝜉 × 𝜇−1
∗ ∇𝜉 × 𝜽(1),𝛿𝑗

− i𝜈(𝜽(1),𝛿
𝑗

+ 𝜽(0),𝛿
𝑗

) = 𝟎 in B, (12a)

∇𝜉 · 𝜽(1),𝛿𝑗
= 0, ∇𝜉 × ∇𝜉 × 𝜽(1),𝛿𝑗

= 𝟎 in Bc, (12b)

[n × 𝜽(1),𝛿
𝑗

]Γ = 𝟎 on Γ, (12c)

[n × �̃�−1
r ∇𝜉 × 𝜽(1),𝛿𝑗

]Γ = 𝟎 on Γ, (12d)

∫Γ
n · 𝜽(1),𝛿

𝑗
d𝝃 = 0, (12e)

𝜽
(1),𝛿
𝑗

= O(|𝝃|−1) as |𝝃| → ∞, (12f)

and

∇𝜉 × 𝜇−1
r ∇𝜉 × 𝜽(0),𝛿𝑗

= 𝟎 in B, (13a)

∇𝜉 · 𝜽(0),𝛿𝑗
= 0, ∇𝜉 × ∇𝜉 × 𝜽(0),𝛿𝑗

= 𝟎 in Bc, (13b)

[n × 𝜽(0),𝛿
𝑗

]Γ = 𝟎 on Γ, (13c)

[n × �̃�−1
r ∇𝜉 × 𝜽(0),𝛿𝑗

]Γ = 𝟎 on Γ, (13d)

∫Γ
n · 𝜽(0),𝛿

𝑗
d𝝃 = 0, (13e)

𝜽
(0),𝛿
𝑗

− 𝝃𝛿e𝑗 × 𝝃 = O(|𝝃|−1) as |𝝃| → ∞, (13f)

respectively.

Proof. We cannot set 𝜽𝛿𝑗 = 𝜽
(1),𝛿
𝑗

+𝜽(0),𝛿
𝑗

− 𝝃𝛿e𝑗 × 𝝃 in Theorem 4.3 since ∇𝜉 · (𝝃𝛿e𝑗 × 𝝃) ≠ 0 in general. Instead, we need
to replace (39) in Ledger and Lionheart9 with

w0(𝝃) = w(1)
0 (𝝃) + w(0)

0 (𝝃) −
P∑

𝛿,|𝛿|=0
i𝜔𝜇0

𝛼|𝛿|
𝛿!

𝜕𝛿z ((H0(z))𝑗)𝝃𝛿e𝑗 × 𝝃,

where we can show that

∇𝜉 ·

( P∑
𝛿,|𝛿|=0

i𝜔𝜇0
𝛼|𝛿|
𝛿!

𝜕𝛿z ((H0(z))𝑗)𝝃𝛿e𝑗 × 𝝃

)
= 0,
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8 LEDGER AND LIONHEART

which, instead of the transmission problem for w0, allows the introduction of the transmission problems for w(1)
0 and

w(0)
0 as

∇𝜉 × 𝜇−1
r ∇𝜉 × (w(0)

0 + w(1)
0 ) − i𝜈(w(0)

0 + w(1)
0 ) = 𝟎 in B,

∇𝜉 × ∇𝜉 × w(1)
0 = 𝟎 in Bc,

∇𝜉 · w(1)
0 = 0 in Bc,

[n × w(1)
0 ]Γ = 𝟎, [n × �̃�−1

r ∇ × w(1)
0 ]Γ = 𝟎 on Γ,

w(1)
0 = O(|𝝃|−1) as |𝝃| → ∞,

and

∇𝜉 × 𝜇−1
r ∇𝜉 × w(0)

0 = 𝟎 in B,

∇𝜉 × ∇𝜉 × w(0)
0 = 𝟎 in Bc,

∇𝜉 · w(0)
0 = 0 in B ∪ Bc,

[n × w(0)
0 ]Γ = 𝟎, [n × �̃�−1

r ∇ × w(0)
0 ]Γ = 𝟎 on Γ,

w(0)
0 −

( P∑
𝛿,|𝛿|=0

i𝜔𝜇0
𝛼|𝛿|
𝛿!

𝜕𝛿z ((H0(z))𝑗)𝝃𝛿e𝑗 × 𝝃

)
= O(|𝝃|−1) as |𝝃| → ∞,

respectively. By introducing

w(0)
0 =

P∑
𝛿,|𝛿|=0

i𝜔𝜇0
𝛼|𝛿|
𝛿!

𝜕𝛿z ((H0(z))𝑗)𝜽(0),𝛿𝑗
,

w(1)
0 =

P∑
𝛿,|𝛿|=0

i𝜔𝜇0
𝛼|𝛿|
𝛿!

𝜕𝛿z ((H0(z))𝑗)𝜽(1),𝛿𝑗
,

and following similar steps to the proof of Theorem 4.3, the result then follows. □

Remark 4.3. Theorem 4.4 provides a natural extension of the splitting of an MPT, described in Lemma 1 of Ledger
and Lionheart,4 to the case of GMPTs in terms of multi-indices.

5 GMPT PROPERTIES

In this section, we consider some properties of GMPTs including their symmetries, explicit formulae for their real and
imaginary parts and also consideration of their spectral behavior.

5.1 GMPT symmetries
Introducing

𝔇K(m+1)J(p+1) ∶= (−1)m2(m + 1)!p!(p + 2)ℭK(m+1)J(p+1)

= − i𝜈𝛼3+m+pek · ∫B
𝝃 ×

(
(Π(𝝃))K(m)(𝜽J(p+1) + (Π(𝝃))J(p)e𝑗 × 𝝃)

)
d𝝃,

then we have the following result on the symmetry of the tensor coefficients:

Lemma 5.1. For objects with 𝜇∗ = 𝜇0, the following symmetry holds

𝔇K(m+1)J(p+1) = 𝔇J(p+1)K(m+1). (14)
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LEDGER AND LIONHEART 9

Proof. By using the transmission problem (4), we get

𝔇K(m+1)J(p+1) = − 𝛼3+m+p∫B
i𝜈
(
𝜽J(p+1) + (Π(𝝃))J(p)e𝑗 × 𝝃

)
· ek × 𝝃(Π(𝝃))K(m)d𝝃

= − 𝛼3+m+p∫B
∇ × 𝜇−1

r ∇ × 𝜽J(p+1) ·
1
i𝜈

(
∇ × 𝜇−1

r ∇ × 𝜽K(m+1) − i𝜈𝜽K(m+1)
)

d𝝃.

Next, by applying integration by parts

∫B
∇ × 𝜇−1

r ∇ × 𝜽J(p+1) · 𝜽K(m+1)d𝝃 = ∫B
𝜇−1

r ∇ × 𝜽J(p+1) · ∇ × 𝜽K(m+1)d𝝃 + ∫B
∇ ·

(
𝜇−1

r ∇ × 𝜽J(p+1) × 𝜽K(m+1)
)

d𝝃,

and then using the transmission conditions in (4) gives

∫B
∇ ·

(
𝜇−1

r ∇ × 𝜽J(p+1) × 𝜽K(m+1)
)

d𝝃 = ∫Γ
𝜽K(m+1) ·

(
n− × 𝜇−1

r ∇ × 𝜽J(p+1)
) |−d𝝃

= ∫Γ
𝜽K(m+1) ·

(
n− × ∇ × 𝜽J(p+1)

) |+d𝝃 + ∫Γ
(p + 2)[�̃�−1

r ]Γ𝜽K(m+1) ·
(

n− × e𝑗
)
(Π(𝝃))J(p)d𝝃

= − ∫Bc
∇ ·

(
∇ × 𝜽J(p+1) × 𝜽K(m+1)

)
d𝝃 + ∫B

(p + 2)[�̃�−1
r ]Γ∇ ·

(
e𝑗(Π(𝝃))J(p) × 𝜽K(m+1)

)
d𝝃

= ∫Bc
∇ × 𝜽J(p+1) · ∇ × 𝜽K(m+1)d𝝃

+ ∫B
(p + 2)[�̃�−1

r ]Γ
(
𝜽K(m+1) · ∇ × (e𝑗(Π(𝝃))J(p)) − ∇ × 𝜽K(m+1) · e𝑗(Π(𝝃))J(p)

)
d𝝃.

Considering the product (D2+m
x G(x, z))i,K(m+1)𝔇K(m+1)J(p+1) and the above expression, we have

(D2+m
x G(x, z))i,K(m+1)∫B

∇ ·
(
𝜇−1

r ∇ × 𝜽J(p+1) × 𝜽K(m+1)
)

d𝝃

= (D2+m
x G(x, z))i,K(m+1)

(
∫Bc

∇ × 𝜽J(p+1) · ∇ × 𝜽K(m+1)d𝝃

−∫B
(p + 2)[�̃�−1

r ]Γ
(
∇ × 𝜽K(m+1) · e𝑗(Π(𝝃))J(p)

)
d𝝃

)
.

So that

𝔇K(m+1)J(p+1) = − 𝛼3+m+p
(
∫B

1
i𝜈
∇ × 𝜇−1

r ∇ × 𝜽J(p+1) · ∇ × 𝜇−1
r ∇ × 𝜽K(m+1)d𝝃

−∫B∪Bc
�̃�−1

r ∇ × 𝜽J(p+1) · ∇ × 𝜽K(m+1)d𝝃 + ∫B
(p + 2)[�̃�−1

r ]Γ
(
∇ × 𝜽K(m+1) · e𝑗(Π(𝝃))J(p)

)
d𝝃

)
,

with the required symmetry following for 𝜇∗ = 𝜇0. □

Corollary 5.2. If using multi-indices, we can introduce

𝔇𝛽𝛿

k𝑗 ∶= (−1)|𝛽|2𝛽!𝛿!(|𝛽| + 1)(|𝛿| + 2)ℭ𝛽𝛿

k𝑗

= − i𝜈𝛼3+|𝛽|+|𝛿|ek · ∫B
𝝃 ×

(
𝝃𝛽(𝜽𝛿𝑗 + 𝝃

𝛿e𝑗 × 𝝃)
)

d𝝃,
(15)
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10 LEDGER AND LIONHEART

and following analogous steps to the proof of Lemma 5.1 obtain

𝔇𝛽𝛿

k𝑗 = − 𝛼3+m+p
(
∫B

1
i𝜈
∇ × 𝜇−1

r ∇ × 𝜽𝛿𝑗 · ∇ × 𝜇−1
r ∇ × 𝜽𝛽kd𝝃

−∫B∪Bc
�̃�−1

r ∇ × 𝜽𝛿𝑗 · ∇ × 𝜽𝛽kd𝝃 + ∫B
(|𝛿| + 2)[�̃�−1

r ]Γ
(
∇ × 𝜽𝛽k · e𝑗(𝝃)𝛿

)
d𝝃

)
,

and, hence,

𝔇𝛽𝛿

k𝑗 = 𝔇𝛿𝛽

𝑗k , (16)

for 𝜇∗ = 𝜇0.

Corollary 5.3. In the case of general 𝜇∗,

𝔐𝛽𝛿

k𝑗 ∶= − ℭ𝛽𝛿

k𝑗 +𝔑𝛽𝛿

k𝑗 ,

=𝛼3+m+p(−1)|𝛽|
𝛽!𝛿!

(
1

2(|𝛽| + 1)(|𝛿| + 2)

(
∫B

1
i𝜈
∇ × 𝜇−1

r ∇ × 𝜽𝛿𝑗 · ∇ × 𝜇−1
r ∇ × 𝜽𝛽kd𝝃

−∫B∪Bc
�̃�−1

r ∇ × 𝜽𝛿𝑗 · ∇ × 𝜽𝛽kd𝝃 + ∫B
(|𝛿| + 2)[�̃�−1

r ]
(
∇ × 𝜽𝛽k · e𝑗(𝝃)𝛿

)
d𝝃

)
+ [�̃�−1

r ]ek · ∫B
(𝝃)𝛽

(
1|𝛿| + 2

∇ × 𝜽𝛿𝑗 + 𝝃
𝛿e𝑗

)
d𝝃).

Thus, we see that we have the symmetry

𝔐𝛽𝛿

k𝑗

(−1)|𝛽| =
𝔐𝛿𝛽

𝑗k

(−1)|𝛿| = 𝔐𝛿𝛽

𝑗k ,

if |𝛿| = 2|𝛽|.
The analogous form of (15) for the split fields is

𝔇𝛽𝛿

k𝑗 ∶=(−1)|𝛽|2𝛽!𝛿!(|𝛽| + 1)(|𝛿| + 2)ℭœ∗𝛽𝛿

k𝑗

= − i𝜈𝛼3+|𝛽|+|𝛿|ek · ∫B
𝝃 ×

(
𝝃𝛽(𝜽(0),𝛿

𝑗
+ 𝜽(1),𝛿

𝑗
)
)

d𝝃,

and a related symmetry result for this case can be established also.

Remark 5.4. The symmetry properties listed in this section extend the known complex symmetric property of rank 2
MPTs obtained in Ledger and Lionheart.3,5

5.2 Real and imaginary parts of GMPTs
In this section, we establish explicit formulae for the real and imaginary parts of the coefficients of GMPTs through the
following result:

Lemma 5.5. For objects with 𝜇∗ = 𝜇0, the coefficients of 𝔇𝛽𝛿

k𝑗 satisfy

𝔇𝛽𝛿

k𝑗 = − 𝛼3+|𝛽|+|𝛿| (∫B

i
𝜈
∇ × 𝜇−1

r ∇ × 𝜽(1),𝛽k · ∇ × 𝜇−1
r ∇ × 𝜽(1),𝛿

𝑗
d𝝃

)
−∫B∪Bc

�̃�−1
r ∇ × 𝜽(1),𝛽k · ∇ × 𝜽(1),𝛿

𝑗
d𝝃

)
,

(17)
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LEDGER AND LIONHEART 11

and can be written in the form 𝔇𝛽𝛿

k𝑗 = ℜ𝛽𝛿

k𝑗 + iℑ𝛽𝛿

k𝑗 where

ℜ𝛽𝛿

k𝑗 = Re(𝔇𝛽𝛿

k𝑗 ) = 𝛼3+|𝛽|+|𝛿| (∫B∪Bc
�̃�−1

r ∇ × 𝜽(1),𝛽k · ∇ × 𝜽(1),𝛿
𝑗

d𝝃
)
, (18a)

ℑ𝛽𝛿

k𝑗 = Im(𝔇𝛽𝛿

k𝑗 ) = −𝛼3+|𝛽|+|𝛿| (∫B

1
𝜈
∇ × 𝜇−1

r ∇ × 𝜽(1),𝛽k · ∇ × 𝜇−1
r ∇ × 𝜽(1),𝛿

𝑗
d𝝃

)
, (18b)

and the overbar denotes the complex conjugate.

Proof. The first part of the proof follows similar steps to Lemma 5.1, but we note that since𝜇∗ = 𝜇0 then 𝝃𝛽ek×𝝃 = 𝜽(0),𝛽k
and since 𝜽(0),𝛽k ∈ R3, we have

𝝃𝛽ek × 𝝃 = 𝜽(0),𝛽k = 𝜽(0),𝛽k = 1
i𝜈

(
∇ × 𝜇−1

r ∇ × 𝜽(1),𝛽k − 𝜽(1),𝛽k

)
.

Thus, we obtain

𝔇𝛽𝛿

k𝑗 = −𝛼3+|𝛽|+|𝛿| (∫B

i
𝜈
∇ × 𝜇−1

r ∇ × 𝜽(1),𝛿
𝑗

· ∇ × 𝜇−1
r ∇ × 𝜽(1),𝛽k d𝝃 − ∫B

∇ × 𝜇−1
r ∇ × 𝜽(1),𝛿

𝑗
· 𝜽(1),𝛽k d𝝃

)
,

and a further application of integration parts gives (17). Next, we proceed in an analogous way to the proof of Theorem
5.1 in Ledger and Lionheart5 and introduce the real and imaginary parts of 𝔇𝛽𝛿

k𝑗 as

ℜ𝛽𝛿

k𝑗 = Re(𝔇𝛽𝛿

k𝑗 ) = 𝛼3+|𝛽|+|𝛿|Im
(
∫B

1
𝜈
∇ × 𝜇−1

r ∇ × 𝜽(1),𝛿
𝑗

· ∇ × 𝜇−1
r ∇ × 𝜽(1),𝛽k d𝝃

)
+ 𝛼3+|𝛽|+|𝛿|Re

(
∫B∪Bc

�̃�−1
r ∇ × 𝜽(1),𝛿

𝑗
· ∇ × 𝜽(1),𝛽k d𝝃

)
,

and

ℑ𝛽𝛿

k𝑗 = Im(𝔇𝛽𝛿

k𝑗 ) = − 𝛼3+|𝛽|+|𝛿|Re
(
∫B

1
𝜈
∇ × 𝜇−1

r ∇ × 𝜽(1),𝛿
𝑗

· ∇ × 𝜇−1
r ∇ × 𝜽(1),𝛽k d𝝃

)
+ 𝛼3+|𝛽|+|𝛿|Im

(
∫B∪Bc

�̃�−1
r ∇ × 𝜽(1),𝛿

𝑗
· ∇ × 𝜽(1),𝛽k d𝝃

)
,

respectively. Continuing to follow the proof of Theorem 5.1 from Ledger and Lionheart,5 and by using properties of
the complex conjugate and our earlier symmetry result (16) for the tensor in multi-index form, we achieve the desired
result. □

Remark 5.6. Lemma 5.5 shows that for 𝜇∗ = 𝜇0, explicit formulae for the real and imaginary parts of a GMPT can be
obtained that are similar to those known for a rank 2 MPTs obtained in Theorem 5.1 of Ledger and Lionheart.5

5.3 Spectral behavior of GMPT coefficients
The spectral behavior of 𝜽(1),𝛽k as a function of 𝜈 presented in the lemma below can be obtained in an analogous way to
that of 𝜽(1)k derived in Lemma 8.2 of Ledger and Lionheart.5

Lemma 5.7. The weak solution to (12) for 𝜈 ∈ [0,∞) can be expressed as the convergent series

𝜽
(1),𝛽
k = −

∞∑
n=1

i𝜈
i𝜈 − 𝜆n

Pn(𝜽(0),𝛽k ) =
∞∑

n=1
𝛽nPn(𝜽(0),𝛽k ), 𝛽n ∶= − i𝜈

i𝜈 − 𝜆n
,
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12 LEDGER AND LIONHEART

where Pn(𝜽(0),𝛽k ) = 𝝓n⟨𝜽(0),𝛽k ,𝝓n⟩L2(B), ⟨u, v⟩L2(B) ∶= ∫Bu · vd𝝃, (𝜆n,𝝓n) satisfy (39) in Ledger and Lionheart5 and

Re(𝛽n) = − 𝜈2

𝜈2 + 𝜆2
n
, Im(𝛽n) =

𝜈𝜆n

𝜈2 + 𝜆2
n
.

Furthermore, by applying similar arguments to the proof of Lemma 8.5 in Ledger and Lionheart,5 we can also obtain
the following result on the spectral behavior of ℜ𝛽𝛿

k𝑗 and ℑ𝛽𝛿

k𝑗 with 𝜈:

Lemma 5.8. The coefficients of ℜ𝛽𝛿

k𝑗 and ℑ𝛽𝛿

k𝑗 can be expressed as the convergent series

ℜ𝛽𝛿

k𝑗 = −𝛼3+|𝛽|+|𝛿|
4

∞∑
n=1

Re(𝛽n)𝜆n⟨𝝓n,𝜽
(0),𝛽
k ⟩L2(B)⟨𝝓n,𝜽

(0),𝛿
𝑗

⟩L2(B),

ℑ𝛽𝛿

k𝑗 = −𝛼3+|𝛽|+|𝛿|
4

∞∑
n=1

Im(𝛽n)𝜆n⟨𝝓n,𝜽
(0),𝛽
k ⟩L2(B)⟨𝝓n,𝜽

(0),𝛿
𝑗

⟩L2(B).

Remark 5.9. Lemma 5.8 shows that the spectral behavior of the GMPT coefficients is very similar to that of the MPT
coefficients previously obtained in Lemma 8.5 of Ledger and Lionheart.5 This has also been borne out in both the
measurement and computation of GMPT coefficients that has been presented in Özdeger et al.10

6 HGMPTS

For the purpose of this section, we assume that

• The object is located at the origin so that z = 𝟎.
• The background H0 is generated by a small exciting coil at position s sufficiently far from the object so that it can be

described as dipole source with moment d in the form

(H0(𝟎))i = (D2
z G(z, s))i𝑗(d)𝑗

= (D2
xG(x, s))i𝑗|x=𝟎(d)𝑗 , (19)

at the position of the object with derivatives

𝜕𝛿z ((H0(z))i)|z=𝟎 = 𝜕𝛿x ((D2
xG(x, s))i𝑗)|x=𝟎(d)𝑗

= (−1)|𝛿|𝜕𝛿s ((D2
s G(s, 𝟎))i𝑗)(d)𝑗 .

Application of these assumptions to (10) gives

(H𝛼 − H0)(x)i =
M−1∑

𝛽,|𝛽|=0

M−1−|𝛽|∑
𝛿,|𝛿|=0

(−1)|𝛿|𝜕𝛽x (D2
xG(x, 𝟎))ik)𝔐𝛽𝛿

k𝑗 𝜕
𝛿
s ((D2

s G(s, 𝟎))𝑗𝓁)(d)𝓁 + (R(x))i. (20)

6.1 Green's function expansions
Recall that the Laplace free space Green's function G(x, x′), where x and x′ are the points with spherical coordinates
(r, 𝜃, 𝜓) and (r′, 𝜃′, 𝜓 ′), respectively, can also be expressed in terms of the (complex) spherical harmonics Y m

n (𝜃, 𝜓) and
Y m

n (𝜃′, 𝜓 ′) of homogeneous degree n and order m, with −n ≤ m ≤ n and then in terms of the functions Km
n (x) =
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LEDGER AND LIONHEART 13

1∕rn+1Y m
n (𝜃, 𝜓) and Hm

n (x′) = r′nY m
n (𝜃′, 𝜓 ′) as (e.g., Ledger and Lionheart15)

G(x, x′) =
∞∑

n=0

|x′|n|x|n+1
1

2n + 1

n∑
m=−n

Y m
n (𝜃, 𝜙)Y m

n (𝜃′, 𝜙′)

=
∞∑

n=0

1
2n + 1

n∑
m=−n

Km
n (x)Hm

n (x′),
(21)

provided that |x′| < |x|. Noting that Hm
n (x′) are homogenous harmonic functions and that Km

n (x) are also harmonic, we
observe that (21) is harmonic with respect to x′ and x, respectively. Furthermore, G(x, x′) can be expressed in terms of
real valued harmonic polynomials I𝓁n (x) and I𝓁′n (x′) as

G(x, x′) =
∞∑

n=0

1
2n + 1

1|x|2n+1

n∑
m=−n

n∑
𝓁′=−n

n∑
𝓁=−n

aIH
𝓁′mI𝓁′

n (x′)aIH
𝓁mI𝓁n (x)

=
∞∑

n=0

1
2n + 1

1|x|2n+1

n∑
𝓁=−n

I𝓁n (x′)I𝓁n (x),

since the coefficients aIH
𝓁m satisfy

∑n
m=−n aIH

𝓁′maIH
𝓁m = 𝛿𝓁′𝓁 , provided that I𝓁n (x) are normalized appropriately.15 Furthermore,

from Ledger and Lionheart,15 we have

G(x, x′) =
∞∑

𝛽,|𝛽|=0

1
2|𝛽| + 1

|𝛽|∑
m=−|𝛽| Km|𝛽|(x)aMH

𝛽m (x′)𝛽 . (22)

For |x′| in a compact set and as |x| → ∞, a Taylor expansion11, p77 gives

G(x, x′) =
∞∑

𝛽,|𝛽|=0

(−1)|𝛽|
𝛽!

𝜕
𝛽
x G(x, 𝟎)(x′)𝛽 , (23)

so that
1

2|𝛽| + 1

|𝛽|∑
m=−|𝛽| Km|𝛽|(x)aMH

𝛽m = (−1)|𝛽|
𝛽!

𝜕
𝛽
x G(x, 𝟎). (24)

Building on the above, we can also relate higher derivatives of D2
xG(x, 𝟎) to higher order derivatives of Km|𝛽|(x) by

differentiating (22) term by term, since it is absolutely and uniformly convergent, giving

D2
xG(x, x′) =

∞∑
𝛽,|𝛽|=0

1
2|𝛽| + 1

|𝛽|∑
m=−|𝛽| D2

x(Km|𝛽|(x))aMH
𝛽m (x′)𝛽 , (25)

and constructing a Taylor series expansion of D2
xG(x, x′) for |x′| in a compact set as |x| → ∞ in the form

D2
xG(x, x′) =

∞∑
𝛽,|𝛽|=0

(−1)|𝛽|
𝛽!

𝜕
𝛽
x (D2

xG(x, 𝟎))(x′)𝛽 . (26)

Thus, by comparing (25) and (26),

(−1)|𝛽|
𝛽!

𝜕
𝛽
x (D2

xG(x, 𝟎)) = 1
2|𝛽| + 1

|𝛽|∑
m=−|𝛽| D2

x(Km|𝛽|(x))aMH
𝛽m = 1

2|𝛽| + 1

|𝛽|∑
m=−|𝛽| D2

x(Km|𝛽|(x))aMH
𝛽m , (27)

since D2
xG(x, x′) is real.
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14 LEDGER AND LIONHEART

6.2 HGMPT expansion
Using the alternative forms of Green function expansions allow us to introduce what we call a HGMPT expansion for
the assumptions listed in Section 6. The advantage of HGMPTs is that they require fewer coefficients than GMPTs to
characterize an object for a given rank.

Theorem 6.1. For any M > 0, the magnetic field perturbation in the presence of a small conducting object B𝛼 = 𝛼B + z
for the eddy current model when 𝜈 and 𝜇r are order one and x is away from the location z of the inclusion under the
assumptions in Section 6 is completely described by the asymptotic formula

(H𝛼 − H0)(x)i =
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝓁∑
p=−𝓁

t∑
q=−t

(
D2

x

(
1|x|2𝓁+1

Ip
𝓁(x)

))
ik
𝔐H,𝓁ptq

k𝑗

(
D2

s

(
1|s|2t+1 Iq

t (s)
))

𝑗o
do + (R(x))i, (28)

with |R(x)| ≤ C𝛼3+M||H0||W M+1,∞(B𝛼). In the above, 𝔐H,𝓁ptq
k𝑗 are the coefficients of rank 2 + 𝓁 + t HGMPTs given by

𝔐H,𝓁ptq
k𝑗 = i𝜈𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)
ek · ∫B

𝝃 ×
(

Ip
𝓁(𝝃)(𝝍

(0),t,q
𝑗

+ 𝝍 (1),t,q
𝑗

)
)

d𝝃

+
(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
ek · ∫B

Ip
𝓁(𝝃)

( 1
t + 2

∇𝜉 × 𝝍 (1),t,q
𝑗

)
d𝝃

+
(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
ek · ∫B

Ip
𝓁(𝝃)

( 1
t + 2

∇𝜉 × 𝝍 (0),t,q
𝑗

)
d𝝃,

(29)

where 𝝍 (0),t,q
𝑗

and 𝝍 (1),t,q
𝑗

satisfy the transmission problems

∇𝜉 × 𝜇−1
r ∇𝜉 × 𝝍 (0),t,q

𝑗
= 𝟎 in B, (30a)

∇𝜉 · 𝝍 (0),t,q
𝑗

= 0, ∇𝜉 × ∇𝜉 × 𝝍 (0),t,q
𝑗

= 𝟎 in Bc, (30b)

[n × 𝝍 (0),t,q
𝑗

]Γ = 𝟎 on Γ, (30c)

[n × �̃�−1
r ∇𝜉 × 𝝍 (0),t,q

𝑗
]Γ = 𝟎 on Γ, (30d)

𝝍
(0),t,q
𝑗

− Iq
t (𝝃)e𝑗 × 𝝃 = O(|𝝃|−1) as |𝝃| → ∞, (30e)

and

∇𝜉 × 𝜇−1
r ∇𝜉 × 𝝍 (1),t,q

𝑗
− i𝜈(𝝍 (1),t,s

𝑗
+ 𝝍 (0),t,q

𝑗
) = 𝟎 in B, (31a)

∇𝜉 · 𝝍 (1),t,q
𝑗

= 0, ∇𝜉 × ∇𝜉 × 𝝍 (1),t,q
𝑗

= 𝟎 in Bc, (31b)

[n × 𝝍 (1),t,q
𝑗

]Γ = 𝟎 on Γ, (31c)

[n × �̃�−1
r ∇𝜉 × 𝝍 (1),t,q

𝑗
]Γ = 𝟎 on Γ, (31d)

∫Γ
n · 𝝍 (1),t,q

𝑗
d𝝃 = 0, (31e)

𝝍
(1),t,q
𝑗

= O(|𝝃|−1) as|𝝃| → ∞. (31f)

Proof. Starting from (20) and using (27), we get
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LEDGER AND LIONHEART 15

(H𝛼 − H0)(x)i =
M−1∑

𝛽,|𝛽|=0

M−1−|𝛽|∑
𝛿,|𝛿|=0

𝛽!𝛿!
(2|𝛽| + 1)(2|𝛿| + 1)

|𝛽|∑
m=−|𝛽|

|𝛿|∑
n=−|𝛿|

(D2
x(Km|𝛽|(x)))ikaMH

𝛽m 𝔐𝛽𝛿

k𝑗 (D
2
s (Kn|𝛿|(s)))𝑗pdpaMH

𝛿n + (R(x))i,

=
M−1∑
𝓁=0

M−1−m∑
t=0

𝓁∑
m=−𝓁

t∑
n=−t

(D2
x(Km

𝓁 (x)))ik𝔐C,𝓁mtn
k𝑗 (D2

s (Kn
t (s)))𝑗odo + (R(x))i,

(32)

where, unlike in Ledger and Lionheart,15 we do not choose to take the complex conjugate of D2
x(Kn

t (s))a
MH
𝛿n since the

contracted type GMPTs 𝔐C are themselves complex and have coefficients

𝔐C,𝓁mtn
k𝑗 = 1

(2𝓁 + 1)(2t + 1)
∑

𝛽,|𝛽|=𝓁
∑

𝛿,|𝛿|=t
𝛽!𝛿!aMH

𝛽m 𝔐𝛽𝛿

k𝑗 aMH
𝛿n

= 1
(2𝓁 + 1)(2t + 1)

∑
𝛽,|𝛽|=𝓁

∑
𝛿,|𝛿|=t

(
aMH
𝛽m

i𝜈𝛼3+|𝛽|+|𝛿|(−1)|𝛽|
2(|𝛽| + 1)(|𝛿| + 2)

ek · ∫B
𝝃 ×

(
𝝃𝛽(𝜽(0),𝛿

𝑗
+ 𝜽(1),𝛿

𝑗
)
)

d𝝃aMH
𝛿n

+ aMH
𝛽m

(
1 − 𝜇−1

r
)
𝛼3+|𝛽|+|𝛿|(−1)|𝛽|ek · ∫B

𝝃𝛽
(

1|𝛿| + 2
∇𝜉 × 𝜽(1),𝛿𝑗

)
d𝝃aMH

𝛿n

+aMH
𝛽m

(
1 − 𝜇−1

r
)
𝛼3+|𝛽|+|𝛿|(−1)|𝛽|ek · ∫B

𝝃𝛽
(

1|𝛿| + 2
∇𝜉 × 𝜽(0),𝛿𝑗

)
d𝝃aMH

𝛿n

)
= 1
(2𝓁 + 1)(2t + 1)

(
i𝜈𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)
ek · ∫B

𝝃 ×
(

Hm
𝓁 (𝝃)(𝝓

(0),t,n
𝑗

+ 𝝓(1),t,n
𝑗

)
)

d𝝃

+
(
1 − 𝜇−1

r
)
𝛼3+𝓁+t(−1)𝓁ek · ∫B

Hm
𝓁 𝝃

( 1
t + 2

∇𝜉 × 𝝓(1),t,n
𝑗

)
d𝝃

+
(
1 − 𝜇−1

r
)
𝛼3+𝓁+t(−1)𝓁ek · ∫B

Hm
𝓁 (𝝃)

( 1
t + 2

∇𝜉 × 𝝓(0),t,n
𝑗

)
d𝝃

)
.

In the above, we have used
∑

𝛽,|𝛽|=𝓁aMH
𝛽m 𝝃

𝛽 = Hm
𝓁 (𝝃). The vector fields𝝓(0),t,n

𝑗
(𝝃) and𝝓(1),t,n

𝑗
(𝝃) satisfy the transmission

problems

∇𝜉 × 𝜇−1
r ∇𝜉 × 𝝓(0),t,n

𝑗
= 𝟎 in B, (33a)

∇𝜉 · 𝝓(0),t,n
𝑗

= 0, ∇𝜉 × ∇𝜉 × 𝝓(0),t,n
𝑗

= 𝟎 in Bc, (33b)

[n × 𝝓(0),t,n
𝑗

]Γ = 𝟎 on Γ, (33c)

[n × �̃�−1
r ∇𝜉 × 𝝓(0),t,n

𝑗
]Γ = 𝟎 on Γ, (33d)

𝝓
(0),t,n
𝑗

− Hn
t (𝝃)e𝑗 × 𝝃 = O(|𝝃|−1) as |𝝃| → ∞, (33e)

and

∇𝜉 × 𝜇−1
r ∇𝜉 × 𝝓(1),t,n

𝑗
− i𝜈(𝝓(1),t,n

𝑗
+ 𝝓(0),t,n

𝑗
) = 𝟎 in B, (34a)

∇𝜉 · 𝝓(1),t,n
𝑗

= 0, ∇𝜉 × ∇𝜉 × 𝝓(1),t,n
𝑗

= 𝟎 in Bc, (34b)

[n × 𝝓(1),t,n
𝑗

]Γ = 𝟎 on Γ, (34c)

[n × �̃�−1
r ∇𝜉 × 𝝓(1),t,n

𝑗
]Γ = 𝟎 on Γ, (34d)

∫Γ
n · 𝝓(1),t,n

𝑗
d𝝃 = 0, (34e)

𝝓
(1),t,n
𝑗

= O(|𝝃|−1) as|𝝃| → ∞, (34f)
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16 LEDGER AND LIONHEART

respectively. Recall from Ledger and Lionheart15 that

∑
𝛽,|𝛽|=𝓁 aMH

𝛽m 𝝃
𝛽 = Hm

𝓁 (𝝃) =
𝓁∑

u=−𝓁
aIH

umIu
𝓁(𝝃), (35)

are harmonic functions, and that Iu
𝓁(𝝃) are real valued, then we can also write

∑
𝛽,|𝛽|=𝓁 aMH

𝛽m 𝜽
(1),𝛽
k (𝝃) =𝝓(1),𝓁,m

k (𝝃) =
𝓁∑

u=−𝓁
aIH

um𝝍
(1),𝓁,u
k (𝝃),

∑
𝛽,|𝛽|=𝓁 aMH

𝛽m 𝜽
(0),𝛽
k (𝝃) =𝝓(0),𝓁,m

k (𝝃) =
𝓁∑

u=−𝓁
aIH

um𝝍
(0),𝓁,u
k (𝝃),

where, after an appropriate replacement of indices,𝝍 (0),𝓁,u
k (𝝃) and𝝍 (1),𝓁,u

k (𝝃) are solutions to the transmission problems
(30) and (31), respectively. This means that

𝔐C,𝓁mtn
k𝑗 =

𝓁∑
u=−𝓁

t∑
v=−t

aIH
um𝔐

H,𝓁utv
k𝑗 aIH

vn (36)

=
𝓁∑

u=−𝓁

t∑
v=−t

aIH
um

i𝜈𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)
ek · ∫B

𝝃 ×
(

Iu
𝓁(𝝃)(𝝍

(0),t,v
𝑗

+ 𝝍 (1),t,v
𝑗

)
)

d𝝃aIH
vn

+ aIH
um

(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
ek · ∫B

Iu
𝓁(𝝃)

( 1
t + 2

∇𝜉 × 𝝍 (1),t,v
𝑗

)
d𝝃aIH

vn

+ aIH
um

(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
ek · ∫B

Iu
𝓁(𝝃)

( 1
t + 2

∇𝜉 × 𝝍 (0),t,v
𝑗

)
d𝝃aIH

vn ,

(37)

and 𝔐H,𝓁utv
k𝑗 are coefficients of what we call HGMPTs. We then introduce (36) into (32) leading to

(H𝛼 − H0)(x)i =
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝓁∑
m=−𝓁

t∑
n=−t

𝓁∑
u=−𝓁

t∑
v=−t

(D2
x(Km

𝓁 (x)))ikaIH
um𝔐

H,𝓁utv
k𝑗 aIH

vn (D2
s (Kn

t (s)))𝑗odo + (R(x))i. (38)

Now, by using (35), we can write

Km
𝓁 (x) =

1|x|2𝓁+1
Hm

𝓁 (x) =
1|x|2𝓁+1

𝓁∑
p=−𝓁

aIH
pmIp

𝓁(x),

and substituting into (38), we get

(H𝛼 − H0)(x)i =
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝓁∑
m=−𝓁

t∑
n=−t

𝓁∑
u=−𝓁

t∑
v=−t

𝓁∑
p=−𝓁

t∑
q=−t(

D2
x

(
1|x|2𝓁+1

Ip
𝓁(x)

))
ik

aIH
pmaIH

um𝔐
H,𝓁utv
k𝑗(

D2
s

(
1|s|2t+1 Iq

t (s)
))

𝑗o
aIH

vn aIH
qndo + (R(x))i.
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LEDGER AND LIONHEART 17

Finally, using
𝓁∑

m=−𝓁
aIH

pmaIH
um = 𝛿pu

completes the proof. □

Corollary 6.2. It immediately follows from Theorem 6.1 that the voltage induced in a small receiving coil at position xr

with dipole moment f due to a small source coil at position xs with dipole moment d, after truncation, is

Vsr = (H𝛼 − H0)(xr)i(f)i =
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝓁∑
p=−𝓁

t∑
q=−t

𝑓i

(
D2

x

(
1|x|2𝓁+1

Ip
𝓁(x)

)|||||x=xr

)
ik

𝔐H,𝓁ptq
k𝑗

(
D2

x

(
1|x|2t+1 Iq

t (x)
)|||||x=xs

)
𝑗o

do,

where we note the use of Roman r and s to denote the receive and source, respectively.

For what follows, we define the HGMPT matrices CH,𝓁t
k𝑗 and NH,𝓁t

k𝑗 with coefficients

(CH,𝓁t
k𝑗 )pq ∶= − i𝜈ek · ∫B

𝝃 ×
(

Ip
𝓁(𝝃)(𝝍

(0),t,q
𝑗

+ 𝝍 (1),t,q
𝑗

)
)

d𝝃,

(NH,𝓁t
k𝑗 )pq ∶=

(
1 − 𝜇−1

r
)

ek · ∫B
Ip
𝓁(𝝃)

(
∇𝜉 × 𝝍 (1),t,q

𝑗

)
d𝝃

+
(
1 − 𝜇−1

r
)

ek · ∫B
Ip
𝓁(𝝃)

(
∇𝜉 × 𝝍 (0),t,q

𝑗

)
d𝝃,

which are of dimension (2𝓁 + 1) × (2t + 1), so that

𝔐H,𝓁ptq
k𝑗 = − 𝛼3+𝓁+r(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)
(CH,𝓁t

k𝑗 )pq +
𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
1

t + 2
(NH,𝓁t

k𝑗 )pq,

for −𝓁 ≤ p ≤ 𝓁,−t ≤ q ≤ t. Additionally, we define the 1×(2t+1) and 1×(2𝓁+1) matrices DIt
s𝑗 and DI𝓁rk with coefficients

(DIt
s𝑗)q ∶=

3∑
o=1

(
D2

x

(
1|x|2t+1 Iq

t (x)
)|||||x=xs

)
𝑗o

do, −t ≤ q ≤ t,

(DI𝓁rk)p ∶=
3∑

i=1

(
D2

x

(
1|x|2𝓁+1

Ip
𝓁(x)

)|||||x=xr

)
ik

𝑓i, −𝓁 ≤ p ≤ 𝓁,

where again the Roman r and s denote receiver and source, respectively. It then follows from Corollary 6.2 that, after
truncation,

Vsr = −
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)

3∑
k,𝑗=1

DI𝓁rkCH,𝓁t
k𝑗 (DIt

s𝑗)
T

+
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
1

t + 2

3∑
k,𝑗=1

DI𝓁rkNH,𝓁t
k𝑗 (DIt

s𝑗)
T ,

(39)

where T denotes the transpose. An alternative description of Vsr follows from (32) by introducing the matrices CC,𝓁r
k𝑗 and

NC,𝓁r
k𝑗 with coefficients

(CC,𝓁t
k𝑗 )pq ∶= −i𝜈ek · ∫B

𝝃 ×
(

Hp
𝓁(𝝃)(𝝓

(0),t,q
𝑗

+ 𝝓(1),t,q
𝑗

)
)

d𝝃, (40a)

(NC,𝓁t
k𝑗 )pq ∶=

(
1 − 𝜇−1

r
)

ek · ∫B
Hp

𝓁(𝝃)
(
∇𝜉 × 𝝓(1),t,q

𝑗

)
d𝝃 +

(
1 − 𝜇−1

r
)

ek · ∫B
Hp

𝓁(𝝃)
(
∇𝜉 × 𝝓(0),t,q

𝑗

)
d𝝃, (40b)
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18 LEDGER AND LIONHEART

which are of dimension (2𝓁 + 1) × (2t + 1), so that

𝔐C,𝓁ptq
k𝑗 = − 𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)
(CC,𝓁t

k𝑗 )pq +
𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
1

t + 2
(NC,𝓁t

k𝑗 )pq,

for −𝓁 ≤ p ≤ 𝓁,−t ≤ q ≤ t, and the 1 × (2t + 1) and 1 × (2𝓁 + 1) matrices DKt
s𝑗 and DK𝓁

rk with coefficients

(DKt
s𝑗)n =

3∑
o=1

(
D2

x(Kn
t (x))|x=xs

)
𝑗odo, −t ≤ n ≤ t,

(DK𝓁
rk)m =

3∑
i=1

(
D2

x(K
p
𝓁(x))|x=xr

)
ik𝑓i, −𝓁 ≤ m ≤ 𝓁.

Thus,

Vsr = −
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)

3∑
k,𝑗=1

DK𝓁
rkCC,𝓁t

k𝑗 (DKt
s𝑗)

T

+
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
1

t + 2

3∑
k,𝑗=1

DK𝓁
rkNC,𝓁t

k𝑗 (DKt
s𝑗)

T

is an alternative form to (39).

6.3 Transformation formulae for HGMPTs
We present results for the scaling, shifting and rotation of the HGMPT matrices. It is useful to introduce the (p+1)×(p+1)
matrices AIH

p with entries
(AIH

p )mn ∶= aIH
nm, −p ≤ n ≤ p,−p ≤ m ≤ p,

which is unitary if Hm
n and Im

n are chosen appropriately,15 so that we can write

CC,𝓁t
k𝑗 = AIH

𝓁 CH,𝓁t
k𝑗 (AIH

t )∗, NC,𝓁t
k𝑗 = AIH

𝓁 NH,𝓁t
k𝑗 (AIH

t )∗,

where ∗ denotes the complex conjugate transpose and

CH,𝓁t
k𝑗 = (AIH

𝓁 )∗CC,𝓁t
k𝑗 AIH

t , NH,𝓁r
k𝑗 = (AIH

𝓁 )∗NC,𝓁t
k𝑗 AIH

t .

6.3.1 Scaling
Lemma 6.3. For any positive integers 𝓁, t in the following and a real scaling parameter s > 0, the following holds:

CC,𝓁t
k𝑗 [s𝛼B, 𝜈, 𝜇r] = s3CC,𝓁t

k𝑗 [𝛼B, s2𝜈, 𝜇r],

NC,𝓁t
k𝑗 [s𝛼B, 𝜈, 𝜇r] = s3NC,𝓁t

k𝑗 [𝛼B, s2𝜈, 𝜇r],

where [s𝛼B, 𝜈, 𝜇r] indicates evaluation for an object s𝛼B with material parameters 𝜈 and 𝜇r.

Proof. Let 𝝓(0),t,n
𝑗,B (𝝃′) be the solution to (33). Then, since Hn

t (s𝝃
′) = stHn

t (𝝃
′), we find that

1
s1+t𝝓

(0),t,n
𝑗,sB (s𝝃′) = 𝝓(0),t,n

𝑗,B (𝝃′),

where 𝝓(0),t,n
𝑗,sB is the solution to (33) with B replaced by sB. If 𝝓(1),t,n

𝑗,B [s2𝜈] is the solution to (34) with 𝜈 replaced by s2𝜈,
we find that

1
s1+t𝝓

(1),t,n
𝑗,sB [𝜈](s𝝃′) = 𝝓(1),t,n

𝑗,B [s2𝜈](𝝃′),
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LEDGER AND LIONHEART 19

where 𝝓(1),t,n
𝑗,sB [𝜈] is the solution to (34) with B replaced by sB. Then, by the application of these results, we find that

𝔐C,𝓁mtn
k𝑗 [s𝛼B, 𝜈, 𝜇r] =

1
(2𝓁 + 1)(2t + 1)

(
i𝜈𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)
ek · ∫sB

𝝃 ×
(

Hm
𝓁 (𝝃)(𝝓

(0),t,n
𝑗,sB + 𝝓(1),t,n

𝑗,sB [𝜈])
)

d𝝃

+
(
1 − 𝜇−1

r
)
𝛼3+𝓁+t(−1)𝓁ek · ∫sB

Hm
𝓁 (𝝃)

( 1
t + 2

∇𝜉 × 𝝓(1),t,n
𝑗,sB [𝜈]

)
d𝝃,

+
(
1 − 𝜇−1

r
)
𝛼3+𝓁+t(−1)𝓁ek · ∫sB

Hm
𝓁 (𝝃)

( 1
t + 2

∇𝜉 × 𝝓(0),t,n
𝑗,sB

)
d𝝃

)
= 1

(2𝓁 + 1)(2t + 1)
s3
(

i𝜈𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)
ek·

∫B
s𝝃′ ×

(
Hm

𝓁 (s𝝃
′)(𝝓(0),t,n

𝑗,sB (s𝝃′) + 𝝓(1),t,n
𝑗,sB [𝜈](s𝝃′))

)
d𝝃′

+
(
1 − 𝜇−1

r
)
𝛼3+𝓁+t(−1)𝓁ek · ∫B

Hm
𝓁 (s𝝃

′)
( 1

t + 2
1
s
∇𝜉′ × (s1+t𝝓

(1),t,n
𝑗,B [s2𝜈])

)
d𝝃′,

+
(
1 − 𝜇−1

r
)
𝛼3+𝓁+t(−1)𝓁ek · ∫B

Hm
𝓁 (s𝝃

′)
( 1

t + 2
1
s
∇𝜉′ × (s1+t𝝓

(0),t,n
𝑗,B )

)
d𝝃′

)
= 1

(2𝓁 + 1)(2t + 1)
s3+𝓁+t

(
i(s2𝜈)𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)
ek·

∫B
𝝃′ ×

(
Hm

𝓁 (𝝃
′)(𝝓(0),t,n

𝑗,B (𝝃′) + 𝝓(1),t,n
𝑗,B [s2𝜈](𝝃′))

)
d𝝃′

+
(
1 − 𝜇−1

r
)
𝛼3+𝓁+t(−1)𝓁ek · ∫B

Hm
𝓁 (𝝃

′)
( 1

t + 2
∇𝜉′ × (𝝓(1),t,n

𝑗,B [s2𝜈])
)

d𝝃′,

+
(
1 − 𝜇−1

r
)
𝛼3+𝓁+t(−1)𝓁ek · ∫B

Hm
𝓁 (𝝃

′)
( 1

t + 2
∇𝜉′ × (𝝓(0),t,n

𝑗,B )
)

d𝝃′
)

= s3+𝓁+t𝔐𝓁mtn
k𝑗 [𝛼B, s2𝜈, 𝜇r],

which, by replacing m with p and n by q, and using the definitions of (CC,𝓁t
k𝑗 )pq and (NC,𝓁t

k𝑗 )pq in (40), completes the
proof. □

6.4 Translation
To deal with a translation (shift) of a HGMPT, we first recall the translation of Hm

n (𝝃) = rnY m
n (𝜃, 𝜑) where 𝝃 has spherical

coordinates (r, 𝜃, 𝜑). For z with spherical coordinates (rz, 𝜃z, 𝜑z) and 𝝃′ with spherical coordinates 𝝃 + z = (r′, 𝜃′, 𝜑′),
Ammari et al12 provide the following:

Hm
n (𝝃′) = r′nY m

n (𝜃′, 𝜑′) =
(n,m)∑
(𝜈,𝜇)

C𝜈𝜇nmrn−𝜇
z Y m−𝜇

n−𝜈 (𝜃z, 𝜑z)r𝜈Y𝜇
𝜈 (𝜃, 𝜑)

=
(n,m)∑
(𝜈,𝜇)

C𝜈𝜇nmHm−𝜇
n−𝜈 (z)H

𝜇
𝜈 (𝝃),

for the translation of a spherical harmonic, which we have chosen to write in terms of Hm
n (·). In the above, the real

coefficient C𝜈𝜇nm and the special form of summation are as defined in Ammari et al.12

Building on the translation invariance property of the rank 2 MPT established in Proposition 5.1 of Ammari et al,2 and
the translation properties of HGPTs in Lemma 4.2 of Ledger and Lionheart,15 we establish the following for the translation
of HGMPTs.
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20 LEDGER AND LIONHEART

Lemma 6.4. For any positive integers 𝓁, t in the following and a translation of B to Bz by a constant vector z, we have

(CC,𝓁t
k𝑗 [Bz])mn =

(𝓁,m)∑
(𝜈,𝜇)

C𝜈𝜇𝓁mHm−𝜇
𝓁−𝜈 (z)

(t,n)∑
(𝜏,𝜆)

C𝜏𝜆tnHn−𝜆
t−𝜏 (z)(C

C,𝜈𝜇
k𝑗 [B])𝜇𝜏 ,

(NC,𝓁t
k𝑗 [Bz])mn =

(𝓁,m)∑
(𝜈,𝜇)

C𝜈𝜇𝓁mHm−𝜇
𝓁−𝜈 (z)

(t,n)∑
(𝜏,𝜆)

C𝜏𝜆tnHn−𝜆
t−𝜏 (z)(N

C,𝜈𝜇
k𝑗 [B])𝜇𝜏 .

Proof. Let F(0),t,n
z satisfy

∇𝜉′ × 𝜇−1
r ∇𝜉′ × F(0),t,n

z = 𝟎 in Bz, (41a)

∇𝜉′ · F(0),t,n
z = 0, ∇𝜉 × ∇𝜉 × F(0),t,n

z = 𝟎 in R
3∖Bz, (41b)

[n × F(0),t,n
z ]Γ = 𝟎 on 𝜕Bz, (41c)

[n × �̃�−1
r ∇𝜉′ × F(0),t,n

z ]Γ = 𝟎 on 𝜕Bz, (41d)

F(0),t,n
z − Hn

t (𝝃
′)e𝑗 × 𝝃′ = O(|𝝃′|−1) as |𝝃′| → ∞, (41e)

and F(1),t,n
z satisfy

∇𝜉′ × 𝜇−1
r ∇𝜉′ × F(1),t,n

z − i𝜈(F(1),t,n
z + F(0),t,n

z ) = 𝟎 in Bz, (42a)

∇𝜉 · F(1),t,n
z = 0, ∇𝜉′ × ∇𝜉′ × F(1),t,n

z = 𝟎 in R
3∖Bz, (42b)

[n × F(1),t,n
z ]Γ = 𝟎 on 𝜕Bz, (42c)

[n × �̃�−1
r ∇𝜉 × F(1),t,n

z ]Γ = 𝟎 on 𝜕Bz, (42d)

∫
𝜕Bz

n · F(1),t,n
z d𝝃′ = 0, (42e)

F(1),t,n
z = O(|𝝃′|−1) as |𝝃′| → ∞, (42f)

and F(0),t,n
0 , F(1),t,n

0 be the corresponding solutions for z = 𝟎. Then,

Hn
t (𝝃

′)e𝑗 × 𝝃′ =
(t,n)∑
(𝜈,𝜇)

C𝜈𝜇tnHn−𝜇
t−𝜈 (z)H

𝜇
𝜈 (𝝃)e𝑗 × (𝝃 + z),

since C𝜈𝜇rn is real, we have

F(0),t,n
z =

(t,n)∑
(𝜈,𝜇)

C𝜈𝜇tnHn−𝜇
t−𝜈 (z)F

(0),𝜈,𝜇
0 +

(t,n)∑
(𝜈,𝜇)

C𝜈𝜇tnHn−𝜇
t−𝜈 (z)G

(0),𝜈,𝜇
0 , (43a)

F(1),t,n
z =

(t,n)∑
(𝜈,𝜇)

C𝜈𝜇tnHn−𝜇
t−𝜈 (z)F

(1),𝜈,𝜇
0 +

(t,n)∑
(𝜈,𝜇)

C𝜈𝜇tnHn−𝜇
t−𝜈 (z)G

(1),𝜈,𝜇
0 . (43b)

In the above, G(0),t,n
0 satisfies

∇𝜉 × 𝜇−1
r ∇𝜉 × G(0),t,n

0 = 𝟎 in B, (44a)

∇𝜉 · G(0),t,n
0 = 0, ∇𝜉 × ∇𝜉 × G(0),t,n

0 = 𝟎 in Bc, (44b)

[n × G(0),t,n
0 ]Γ = 𝟎 on 𝜕B, (44c)

[n × �̃�−1
r ∇𝜉 × G(0),t,n

0 ]Γ = 𝟎 on 𝜕B, (44d)

G(0),t,n
0 − Hn

t (𝝃)e𝑗 × z = O(|𝝃|−1) as |𝝃| → ∞, (44e)
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LEDGER AND LIONHEART 21

and G(1),t,n
0 satisfies

∇𝜉 × 𝜇−1
r ∇𝜉 × G(1),t,n

0 − i𝜈(G(1),t,n
0 + G(0),t,n

0 ) = 𝟎 in B, (45a)

∇𝜉 · G(1),t,n
0 = 0, ∇𝜉 × ∇𝜉 × G(1),t,n

0 = 𝟎 in Bc, (45b)

[n × G(1),t,n
0 ]Γ = 𝟎 on 𝜕B, (45c)

[n × �̃�−1
r ∇𝜉 × G(1),t,n

0 ]Γ = 𝟎 on 𝜕B, (45d)

∫
𝜕B

n · G(1),t,n
0 d𝝃 = 0, (45e)

G(1),t,n
0 = O(|𝝃′|−1) as |𝝃| → ∞. (45f)

Setting G(0),t,n
0 = Hn

t (𝝃)e𝑗 × z = ∇u in B, then we can define ũ to be the solution to

∇2ũ = 0 in Bc, (46a)

ũ = u on Γ, (46b)

ũ = O(|𝝃|−1) as |𝝃| → ∞, (46c)
we have

G(0),t,n
0 =

{
Hn

t (𝝃)e𝑗 × z in B
∇ũ in Bc , G(1),t,n

0 = 𝟎.

This means that

𝔐C,𝓁mtn
k𝑗 [Bz] =

i𝜈𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)
ek · ∫Bz

𝝃′ ×
(

Hm
𝓁 (𝝃

′)(F(0),t,n
z + F(1),t,n

z )
)

d𝝃′

+
(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
ek · ∫Bz

Hm
𝓁 (𝝃

′)
( 1

t + 2
∇𝜉′ × F(1),t,n

z

)
d𝝃′

+
(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
ek · ∫Bz

Hm
𝓁 (𝝃

′)
( 1

t + 2
∇𝜉′ × F(0),t,n

z

)
d𝝃′

= 𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)
ek · ∫Bz

𝝃′ ×
(

Hm
𝓁 (𝝃

′)∇𝜉′ × ∇𝜉′ × F(1),t,n
z

)
d𝝃′

+
(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
ek · ∫Bz

Hm
𝓁 (𝝃

′)
( 1

t + 2
∇𝜉′ × F(1),t,n

z

)
d𝝃′

+
(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
ek · ∫Bz

Hm
𝓁 (𝝃

′)
( 1

t + 2
∇𝜉′ × F(0),t,n

z

)
d𝝃′,

by using the transmission problem (42). Next, using (43) and (40), we get

(CC,𝓁t
k𝑗 [Bz])mn = −

(𝓁,m)∑
(𝜈,𝜇)

C𝜈𝜇𝓁mHm−𝜇
𝓁−𝜈 (z)

(t,n)∑
(𝜏,𝜆)

C𝜏𝜆tnHn−𝜆
t−𝜏 (z)ek · ∫B

(𝝃 + z) ×
(

H𝜇
𝜈 (𝝃)∇𝜉 × ∇𝜉 × F(1),𝜏,𝜆

0

)
d𝝃

(NC,𝓁t
k𝑗 [Bz])mn =

(𝓁,m)∑
(𝜈,𝜇)

C𝜈𝜇𝓁mHm−𝜇
𝓁−𝜈 (z)

(t,n)∑
(𝜏,𝜆)

C𝜏𝜆tnHn−𝜆
t−𝜏 (z)((

1 − 𝜇−1
r
)

ek · ∫B
H𝜇

𝜈 (𝝃)
(
∇𝜉 × F(1),𝜏,𝜆

0

)
d𝝃

+
(
1 − 𝜇−1

r
)

ek · ∫B
H𝜇

𝜈 (𝝃)
(
∇𝜉 × F(0),𝜏,𝜆

0

)
d𝝃

+
(
1 − 𝜇−1

r
)

ek · ∫B
H𝜇

𝜈 (𝝃)
(
∇𝜉 × G(0),𝜏,𝜆

0

)
d𝝃

)
,

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8856 by T

est, W
iley O

nline L
ibrary on [22/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



22 LEDGER AND LIONHEART

with our final result immediately following, since, by replacing 𝑗 with k in G(0),𝜈,𝜇
0 , and recalling ∇× G(0),𝜈,𝜇

0 = 𝟎, then

ek · ∫B
z ×

(
H𝜇

𝜈 (𝝃)∇𝜉 × ∇𝜉 × F(1),t,n
0

)
d𝝃 = ∫B

∇𝜉 × ∇𝜉 × F(1),t,n
0 · G(0),𝜈,𝜇

0 d𝝃 = 0,

by performing integration by parts. □

6.5 Rotation
Consider a general rotation matrix R in terms of the Euler angles 𝛾, 𝛽, 𝛼 where the rotations are expressed in the same
manner as Section 4.3 in Ammari et al12 as

R =

( cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0

0 0 1

)( cos 𝛽 0 − sin 𝛽
0 1 0

sin 𝛽 0 cos 𝛽

)( cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0

0 0 1

)
.

Following (4.8),12 we have

Hm
n (R𝝃) =

n∑
m′=−n

𝜌
m′,m
n (𝛼, 𝛽, 𝛾)Hm′

n (𝝃), (47)

for where 𝜌
m′,m
n is as defined in Ammari et al.12

In the following, we extend the results for the transformation of CGPTs under the action of R obtained by Ammari et al.
in their Lemma 3.212 and the transformation of MPTs under R obtained in Theorem 3.1 of Ledger and Lionheart3 to the
transformation of HGMPTs.

Lemma 6.5. For any positive integers 𝓁, r in the following and a transformation of B to R(B) by an orthogonal rotation
matrix R

CC,𝓁t
k𝑗 [R(B)] = (R)ku(R)𝑗v(Q𝓁(R)CC,𝓁t

uv [B]Qt(R)
T
),

NC,𝓁t
k𝑗 [R(B)] = (R)ku(R)𝑗v(Q𝓁(R)NC,𝓁t

uv [B]Qt(R)
T
),

where

Q𝓁(R) ∶=
⎛⎜⎜⎜⎝

𝜌
−𝓁,−𝓁
𝓁 𝜌

−𝓁+1,−𝓁
𝓁 … 𝜌

𝓁,−𝓁
𝓁

𝜌
−𝓁,−𝓁+1
𝓁 𝜌

−𝓁+1,−𝓁+1
𝓁 … 𝜌

𝓁,−𝓁+1
𝓁

… … ⋱ …
𝜌
−𝓁,𝓁
𝓁 𝜌

−𝓁+1,𝓁
𝓁 … 𝜌

𝓁,𝓁
𝓁

⎞⎟⎟⎟⎠ . (48)

Proof. Let F(0),t,n
B,e𝑗

satisfy

∇𝜉 × 𝜇−1
r ∇𝜉 × F(0),t,n

B,e𝑗
= 𝟎 in B, (49a)

∇𝜉 · F(0),t,n
B,e𝑗

= 0, ∇𝜉 × ∇𝜉 × F(0),t,n
B,e𝑗

= 𝟎 in Bc, (49b)

[n × F(0),t,n
B,e𝑗

]Γ = 𝟎 on 𝜕B, (49c)

[n × �̃�−1
r ∇𝜉 × F(0),t,n

B,e𝑗
]Γ = 𝟎 on 𝜕B, (49d)

F(0),t,n
B,e𝑗

− Hn
t (𝝃)e𝑗 × 𝝃 = O(|𝝃|−1) as |𝝃| → ∞, (49e)

and F(1),t,n
B,e𝑗

satisfy

∇𝜉′ × 𝜇−1
r ∇𝜉 × F(1),t,n

B,e𝑗
− i𝜈(F(0),t,n

B,e𝑗
+ F(1),t,n

B,e𝑗
) = 𝟎 in B, (50a)

∇𝜉 · F(1),t,n
B,e𝑗

= 0, ∇𝜉 × ∇𝜉 × F(1),t,n
B,e𝑗

= 𝟎 in Bc, (50b)

[n × F(1),t,n
B,e𝑗

]Γ = 𝟎 on 𝜕B, (50c)

[n × �̃�−1
r ∇𝜉 × F(1),t,n

B,e𝑗
]Γ = 𝟎 on 𝜕B, (50d)

∫
𝜕B

n · F(1),t,n
B,e𝑗

d𝝃 = 0, (50e)
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LEDGER AND LIONHEART 23

F(1),t,n
B,e𝑗

= O(|𝝃|−1) as |𝝃| → ∞. (50f)

then, by combining (47) and Proposition 5.3 of Ammari et al,2 we have

F(0),t,n
R(B),e𝑗

(R𝝃) =
t∑

n′=−t
𝜌

n′,n
t (𝛼, 𝛽, 𝛾)RF(0),t,n′

B,RT e𝑗
, F(1),t,n

R(B),e𝑗
(R𝝃) =

t∑
n′=−t

𝜌
n′,n
t (𝛼, 𝛽, 𝛾)RF(1),t,n′

B,RT e𝑗
,

for all 𝝃 ∈ R3. Hence,

𝔐C,𝓁mtn
k𝑗 [R(B)] = i𝜈𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)
ek · ∫R(B)

𝝃 ×
(

Hm
𝓁 (R𝝃)(F

(0),t,n
R(B),e𝑗

+ F(1),t,n
R(B),e𝑗

)
)

d𝝃

+
(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
ek · ∫R(B)

Hm
𝓁 (R𝝃)

( 1
t + 2

∇ × F(1),t,n
R(B),e𝑗

)
d𝝃

+
(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
ek · ∫R(B)

Hm
𝓁 (R(𝝃))

( 1
t + 2

∇𝜉 × F(0),t,n
R(B),e𝑗

)
d𝝃

= (R)ku(R)𝑗v

𝓁∑
m′=−𝓁

𝜌
m′,m
𝓁

t∑
n′=−t

𝜌
n′,n
t(

i𝜈𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)
eu · ∫B

𝝃 ×
(

Hm′

𝓁 (𝝃)(F(0),t,n′

B,ev
+ F(1),t,n′

B,ev
)
)

d𝝃

+
(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
eu · ∫B

Hm′

𝓁 (𝝃)
( 1

t + 2
∇ × F(1),t,n′

B,ev

)
d𝝃

+
(
1 − 𝜇−1

r
) 𝛼3+𝓁+t(−1)𝓁

(2𝓁 + 1)(2t + 1)
eu · ∫B

Hm′

𝓁 (𝝃)
( 1

t + 2
∇𝜉 × F(0),t,n′

B,ev

)
d𝝃

)
,

which follows by applying similar arguments to those in the proof of Proposition 5.3 in Ammari et al2 and Theorem
3.1 in Ledger and Lionheart.3 So that

(CC,𝓁t
k𝑗 [R(B)])mn =(R)ku(R)𝑗v

𝓁∑
m′=−𝓁

𝜌
m′,m
𝓁

t∑
n′=−t

𝜌
n′,n
t (CC,𝓁t

uv [B])m′n′

=(R)ku(R)𝑗vqm
𝓁 (C

C,𝓁t
uv [B])(qn

t )
T ,

(NC,𝓁t
k𝑗 [R(B)])mn =(R)ku(R)𝑗v

𝓁∑
m′=−𝓁

𝜌
m′,m
𝓁

t∑
n′=−t

𝜌
n′,n
t (NC,𝓁t

uv [B])m′n′

=(R)ku(R)𝑗vqm
𝓁 (N

C,𝓁t
uv [B])(qn

t )
T ,

where

qm
𝓁 ∶= (𝜌−𝓁,m𝓁 , … , 𝜌

𝓁,m
𝓁 ).

Introducing Q𝓁(R) from (48) completes the proof. □

6.6 HGMPT coefficients invariant under the action of a symmetry group
In this section, we consider how the voltage in a source–receiver pair changes if (1) the coils rotate and the object is fixed
and (2) if object rotates and the coils are fixed and then we also relate the two situations. Next, we consider a scalar EIT
problem where a procedure has already been established for determining HGPTs coefficients invariant under the action
of a symmetry group before presenting an approach to determine the HGMPTs coefficients that are invariant under the
action of a symmetry group in the vectorial eddy current case.
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24 LEDGER AND LIONHEART

6.6.1 Changes in voltage due to object rotation
If a coil arrangement rotates, with the rotation described by R, so that a new transmit location is xs′ = Rxs and its dipole
moment is m′ = Rm, the background magnetic field at the origin due a transmitter at xr′ can be expressed in terms of the
field obtained from a transmitter at xs as

(H′
0(𝟎))i = (D2

xG(x, 𝟎)|x=xs′ )i𝑗(m′)𝑗
= (R)ip(R)𝑗q(D2

xG(x, 𝟎)|x=xs)pq(R)𝑗t(m)t

= (R)ip(D2
xG(x, 𝟎))|x=xs)pq(m)q = (R)ip(H0(𝟎))p,

which follow using (19) and the properties of R.
We can also predict how the the coefficients of HGMPTs that we have derived in Theorem 6.1 will transform if the

coils are fixed and the object rotates. The coefficients of HGMPT are defined by two sets of indices; a set of tensorial
indices, which we denote by subscripts k, 𝑗, and a further set of indices, denoted by the subscripts 𝓁, p, t, q. The rank of
the HGMPT is 2 + 𝓁 + t and the indices k, 𝑗, p, q are used to identify different tensors of this rank, specifically 1 ≤ k, 𝑗 ≤
3, 0 ≤ 𝓁 ≤ M − 1, 0 ≤ t ≤ M − 1 − 𝓁,−𝓁 ≤ p ≤ 𝓁, and −t ≤ q ≤ t. In the simplest case, where M = 1, we have
𝔐H,𝓁prq

k𝑗 ≡ 𝔐C,𝓁mrn
k𝑗 = 𝔐00

k𝑗 = k𝑗 so that HGMPTs and GMPTs in this case agree with the rank 2 MPT coefficients (up to
a scaling dependent on the definition of I0

0 (𝝃)). Recall, that in Ledger and Lionheart,15 we chose the harmonic polynomials
to be defined so that ⟨Im

n (x), Ik
n(x)⟩L2(𝜕S) = 𝛿mk where ⟨u, v⟩L2(𝜕S) ∶= ∫

𝜕Suv̄dx denotes the L2 inner product over the surface
of the unit sphere S. If an object is rotated as B′ = R(B), the rank 2 MPT coefficients of the transformed object in terms of
those for the original configuration are

′
i𝑗 = ([R(B)])i𝑗 = (R)ip(R)𝑗q([B])pq = (R)ip(R)𝑗qpq,

with Section 6.5 providing the extension for HGMPTs.
We now consider how the voltage changes if an object B is fixed in position and both transmit and receive coils simulta-

neously rotate by the same rotation matrix R. In this case, the voltage induced in a source–receiver pair (s, r) with dipole
moments f and d and the prime indicates the rotated quantities is

V ′
sr =

M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝓁∑
p=−𝓁

t∑
q=−t

𝑓i
′(D2

x
(

Kp
𝓁(x)

) |x=xr′
)

ik(𝔐[B])C,𝓁ptq
k𝑗

(
D2

x
(

Kq
t (x)

) |x=xs′
)
𝑗odo

′
.

Then, noting that Kp
𝓁(x

r′ ) transforms in a similar way to Hp
𝓁(x

r′ ) = Hp
𝓁(Rxr), as described in (47), we get

V ′
sr =

M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝓁∑
p=−𝓁

t∑
q=−t

(R)iv𝑓v(R)iw(R)kn

𝓁∑
p′=−𝓁

𝜌
p′,p
𝓁 (𝛼, 𝛽, 𝛾)

(
D2

x

(
Kp′

𝓁 (x)
) |x=xr

)
wn
(𝔐[B])C,𝓁ptq

k𝑗

(R)ow(R)𝑗m(R)ou

t∑
q′=−t

𝜌
q′,q
t (𝛼, 𝛽, 𝛾)

(
D2

x

(
Kq′

t (x)
) |x=xs

)
mu

dw

=
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝓁∑
p=−𝓁

t∑
q=−t

𝑓v(R)kn

𝓁∑
p′=−𝓁

𝜌
p′,p
𝓁 (𝛼, 𝛽, 𝛾)

(
D2

x

(
Kp′

𝓁 (x)
) |x=xr

)
vn
(𝔐[B])C,𝓁prq

k𝑗

(R)𝑗m

t∑
q′=−t

𝜌
q′,q
t (𝛼, 𝛽, 𝛾)

(
D2

x

(
Kq′

t (x)
) |x=xs

)
mw

dw,
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LEDGER AND LIONHEART 25

by using properties of orthogonal matrices. Swapping the order of summation gives

V ′
sr =

M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝓁∑
p=−𝓁

t∑
q=−t

𝓁∑
p′=−𝓁

t∑
q′=−t

(
D2

x
(

Kp
𝓁(x)

) |x=xr
)

vn𝑓v(R)kn𝜌
p,p′

𝓁 (𝛼, 𝛽, 𝛾)(𝔐[B])C,𝓁p′tq′

k𝑗

(R)𝑗m𝜌
q,q′

t (𝛼, 𝛽, 𝛾)
(

D2
x
(

Kq
t (x)

) |x=xs
)

mwdw

=
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝓁∑
p=−𝓁

t∑
q=−t

(
D2

x
(

Kp
𝓁(x)

) |x=xr
)

vn𝑓v(𝔐[RT(B)])C,𝓁ptq
nm

(
D2

x
(

Kq
r (x)

) |x=xs
)

mwdw,

so that V ′
sr can also expressed in terms of fixed pair of source and receiver coils and a rotation of the object by RT .

Analogously, we have

V ′
sr =

M−1∑
𝓁=0

M−1−𝓁∑
r=0

𝓁∑
p=−𝓁

t∑
q=−t

𝑓i
′

(
D2

x

(
1|x|2𝓁+1

Ip
𝓁(x)

)|||||x=xr′

)
ik

(𝔐[B])H,𝓁ptq
k𝑗

(
D2

x

(
1|x|2t+1 Iq

t (x)
)|||||x=xs′

)
𝑗o

do
′

=
M−1∑
𝓁=0

M−1−𝓁∑
t=0

𝓁∑
p=−𝓁

t∑
q=−t

𝑓i

(
D2

x

(
1|x|2𝓁+1

Ip
𝓁(x)

)|||||x=xr

)
ik

(𝔐[RT(B)])H,𝓁ptq
k𝑗

(
D2

x

(
1|x|2t+1 Iq

t (x)
)|||||x=xs

)
𝑗o

do,

in terms of the HGMPT coefficients.

6.6.2 Scalar problem analogy
For a related scalar EIT problem, where object size is not considered, the induced voltage from a source, receiver pair due
to the presence of an object B with contrast k can be described as

Vsr =
∞∑

𝛼,𝛽,|𝛼|=|𝛽|=1

(−1)|𝛼|+|𝛽|
𝛼!𝛽!

(𝜕𝛼x (G(x, 𝟎))|x=xr )M𝛼𝛽(𝜕𝛽x (G(x, 𝟎))|x=xs), (51)

where M𝛼,𝛽 denote the coefficients of GPTs in terms of multi-indices, which we show in Ledger and Lionheart,3 can be
expressed in the alternative form

Vsr =
∞∑

p,q=1

1|xr|2p+1|xs|2q+1

p∑
i=−p

q∑
𝑗=−q

Ii
p(xr)MH

q𝑗piI
𝑗
q(xs),

where MH
q𝑗pi are what we call the coefficients of harmonic GPTs or HGPTs. In Ledger and Lionheart,3 we describe an

approach for reducing the number of independent coefficients of a rank 2 symmetric polarizability tensor using the rota-
tional and reflectional symmetries of an object. This means that in practice for many objects the number of independent
objects is much smaller than 6. Then, in Ledger and Lionheart,15 based on the induced voltage in a source, receiver pair
for a related expansion for a scalar EIT type problem involving HGPTs, we developed an approach for determining the
symmetric products of harmonic polynomials I(x) and J(x), of possibly different degrees, in the form

S(x, y) = S(y, x) = I(x)J(y) + J(x)I(y),

that have the property that
S(Rx,Ry) = S(x, y),

for all matrix representations R that make up the group 𝔊. This was then applied to reduce the number of independent
coefficients of HGPTs associated with objects that are members of a given symmetry group.

In order to establish the connection with HGMPTs, it is useful to rewrite (51) in the alternative form

Vsr =
∞∑

𝛼,𝛽,|𝛼|=|𝛽|=0

(−1)|𝛼|+|𝛽|
(|𝛼| + 1)(|𝛽| + 1)𝛼!𝛽!

(𝜕𝛼x (∇x(G(x, 𝟎)))i|x=xr )M𝛼𝛽

i𝑗 (𝜕
𝛽
x (∇x(G(x, 𝟎)))𝑗|x=xs), (52)
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26 LEDGER AND LIONHEART

where summation over the tensorial indices i, 𝑗 = 1, 2, 3 is implied and

M𝛼𝛽

i𝑗 ∶= ∫
𝜕B
𝑦𝛼i 𝜙𝑗,𝛽(y)dy, 𝜙𝑗,𝛽(y) ∶= (𝜆I − K∗

B)
−1(𝝂x · ∇(x𝛽i )|x=y), y ∈ 𝜕B. (53)

In the above, we have used the notation 𝑦𝛼i = 𝑦iy𝛼 . Still further, an alternative form M𝛼𝛽

i𝑗 can be established in terms of
the solution 𝜓𝑗,𝛽 to the scalar transmission problem

∇2𝜓𝑗,𝛽 = 0 in B ∪ Bc, (54a)

[𝜓𝑗,𝛽]Γ = 0 on Γ, (54b)
𝜕𝜓𝑗,𝛽

𝜕n
||||+ − k

𝜕𝜓𝑗,𝛽

𝜕n
||||− = n · (x𝛽e

𝑗
) on Γ, (54c)

𝜓𝑗,𝛽 → 0 as |x| → ∞, (54d)

in the form

M𝛼𝛽

i𝑗 = (k − 1)∫B
(x𝛼e

i ) · (x𝛽e𝑗)dx + (k − 1)2∫B
∇x𝛽e𝑗 · ∇𝜓𝛼

i dx. (55)

In (54), we note that of the possible combinations of ∇xx𝛽
𝑗
, we need only consider those functions that are harmonic,

and since the gradient of a harmonic function is still harmonic, we can restrict ourselves to x𝛽e𝑗 with 𝛽 being such that
the multi-indices lead to polynomials x𝛽 that are harmonic. The result in (55) follows from Lemma 4.3 in Ammari and
Kang11 since again only those multi-indices 𝛼 for which x𝛼e

i is harmonic need be considered. Furthermore,

M𝛼𝛽

i𝑗 = (k − 1)∫B
(x𝛼e

i ) · (x𝛽e𝑗)dx − (k − 1)2∫Bc
∇𝜓𝛽

𝑗
· ∇𝜓𝛼

i dx − (k − 1)2∫B
k∇𝜓𝛽

𝑗
· ∇𝜓𝛼

i dx,

which is obtained by integration by parts.
By beginning from (52), and repeating similar steps to Ledger and Lionheart,3 we arrive at

Vsr =
∞∑

𝓁,t=0

𝓁∑
p=−𝓁

t∑
q=−t

(
∇x

(
1|x|2𝓁+1

Ip
𝓁(x)

)|||||x=xr

)
k

MH,𝓁ptq
k𝑗

(
∇x

(
1|x|2t+1 Iq

t (x)
)|||||x=xs

)
𝑗

, (56)

where

MH,𝓁ptq
k𝑗 = (k − 1)∫B

(Ip
𝓁(x)ek) · (Iq

t (x)e𝑗)dx

− (k − 1)2∫Bc
∇𝜙k,𝓁p · ∇𝜙𝑗,tqdx − (k − 1)2∫B

k∇𝜙k,𝓁p · ∇𝜙𝑗,tqdx,
(57)

and

∇2𝜙k,𝓁p = 0 in B ∪ Bc, (58a)
[𝜙k,𝓁p]Γ = 0 on Γ, (58b)

𝜕𝜙k,𝓁p

𝜕n
||||+ − k

𝜕𝜙k,𝓁p

𝜕n
||||− = n · (Ip

𝓁(x)ek) on Γ, (58c)

𝜙k,𝓁p → 0 as |x| → ∞, (58d)

We observe that (56) has a similar form to (39) with summation over a set of tensorial indices 1 ≤ k, 𝑗 ≤ 3 and additional
summation over 𝓁, t = 0, 1, … with −𝓁 ≤ p ≤ 𝓁 as well as −t ≤ q ≤ t. Still further, for 𝜇r = 1, then 𝝍 (0),𝓁,u

k = Iu
𝓁(𝝃)ek × 𝝃,

and we can write the coefficients of the HGMPTs in the alternative symmetric form
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LEDGER AND LIONHEART 27

𝔐H,𝓁ptq
k𝑗 = i𝜈𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)
ek · ∫B

𝝃 ×
(

Ip
𝓁(𝝃)(𝝍

(0),t,q
𝑗

+ 𝝍 (1),t,q
𝑗

)
)

d𝝃

= 𝛼3+𝓁+t(−1)𝓁

2(𝓁 + 1)(t + 2)(2𝓁 + 1)(2t + 1)

(
∫B

1
i𝜈
∇ × 𝜇−1

r ∇ × 𝝍 (1),t,q
𝑗

· ∇ × 𝜇−1
r ∇ × 𝝍 (1),𝓁,p

k d𝝃

−∫B∪Bc
�̃�−1

r ∇ × 𝝍 (1),t,q
𝑗

· ∇ × 𝝍 (1),𝓁,p
k d𝝃

)
,

(59)

by applying similar arguments to Lemma 5.1. Also, defining �̃�H,𝓁ptq
k𝑗 ∶= 2(𝓁 + 1)(t + 2)𝔐H,𝓁ptq

k𝑗 , then we see we have the
symmetry �̃�H,𝓁ptq

k𝑗 = �̃�H,tq𝓁p
𝑗k .

6.6.3 Procedure to determine invariant HGMPT coefficients
Given the similarity between (56) to (39) we can proceed as follows to determine the coefficients of HGMPTs and HGPTs
(when expressed in the alternative form (57)) that are invariant under the action of a symmetry group :

1. For 𝓁 = t = 0, when the HGPTs and HGMPTs reduce to (complex) symmetric rank 2 tensors, we apply the previous
procedure from Ledger and Lionheart3 to determine the independent coefficients associated with indices 1 ≤ k, 𝑗 ≤ 3.

2. For other cases, and once independent H(G)MPTs coefficients for indices k and 𝑗 have been identified as above, we
propose to use the previously described approach in15 to determine the symmetric products of harmonic polynomials
that are invariant under the action of a symmetry group. This, in turn, allows us to additionally identify the independent
coefficients for indices 𝓁, p, t, q for HGMPTs.

3. Once the independent HGMPT coefficients have been identified, we propose to use these as features in classification
algorithms where objects of the same symmetry group are grouped together to form classes. We plan to investigate this
in a future publication.

Remark 6.6. We envisage that the above procedure could be used to identify UXOs, landmine components, and metal-
lic objects of archeological significance as well as for identifying objects for security screening and for other metal
detection applications. Just as with situation in EIT described in Ledger and Lionheart,15 in practice, the measured
Vsr will contain unavoidable errors and noise that are associated with measurements. Still further, buried objects (and
other objects that we wish to find) will often be dented and deformed, and so in practice, a hidden object's symmetries
may only hold approximately in practice.

7 CONCLUSION

In this work, we have derived complete asymptotic expansions of (H𝛼 − H0)(x) as 𝛼 → 0 using both tensorial index and
multi-index notation, which provide improved object characterizations using higher order GMPTs as a natural extension
of the rank 2 MPT description. We provide splittings of the GMPT object characterizations obtained, which make the
magnetostatic contribution to (H𝛼−H0)(x) explicit. We have derived symmetry properties of GMPTs, which extend those
already known for rank 2 MPTs, and have also obtained explicit formulae for the real and imaginary coefficients of GMPTs,
again, extending those already known for MPTs. We have derived results that explain the spectral behavior of GMPT
coefficients (i.e., their behavior as a function of frequency) and shown that their behavior is similar to that of the MPT
coefficients. We have also introduced the new concept of HGMPTs, which have fewer coefficients than GMPTs of the same
order. We have examined their scaling, translation, and rotational properties and provided an approach for determining
the coefficients of HGMPTs that are invariant under the action of a symmetry group, which could form a basis of object
classification for (H)GMPTs.
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