Connectionist learning of regular graph grammars

Peter Fletcher
School of Computing and Mathematics
Keele University
Keele
Staffordshire
ST5 5BG
UK.
tel: 01782 733260 (UK), +44 1782 733260 (overseas)
fax: 01782 734268 (UK), +44 1782 734268 (overseas)
e-mail: p.fletcher@maths.keele.ac.uk

Running heading: Learning graph grammars.

Keywords: graph grammars, grammatical inference, parallel parsing, regular gram-
mars, stochastic grammars, neural networks, symbol processing, unsupervised learn-
ing.

Published in 2001 in Connection Science, 13, no. 2, 127-188.

This is the final author’s version of the paper, revised in the light of referees’ com-
ments, prior to publication.

Connectionist learning of regular graph grammars

Abstract

This paper presents a new connectionist approach to grammatical inference. Using
only positive examples, the algorithm learns regular graph grammars, representing
two-dimensional iterative structures drawn on a discrete Cartesian grid. This work
is intended as a case study in connectionist symbol processing and geometric concept-
formation.

A grammar is represented by a self-configuring connectionist network that is
analogous to a transition diagram except that it can deal with graph grammars
as easily as string grammars. Learning starts with a trivial grammar, expressing
no grammatical knowledge, which is then refined, by a process of successive node
splitting and merging, into a grammar adequate to describe the population of input
patterns.

In conclusion, I argue that the connectionist style of computation is, in some
ways, better suited than sequential computation to the task of representing and
manipulating recursive structures.

1. Introduction

Connectionism is conventionally seen as standing in opposition to traditional symbol
processing, where ‘symbol processing’ in this context means representing recursive
structures and manipulating them according to their structural composition (Smolen-
sky 1988, Fodor and Pylyshyn 1988, Garfield 1997). Connectionist networks and
symbol processing systems are often considered to have complementary strengths
and weaknesses (Horgan and Tienson 1996, Hadley 1999). Many attempts have been
made to combine the virtues of connectionism and symbol processing in a single ar-
chitecture (Hadley and Hayward 1997, Browne 1998, Hadley and Cardei 1999), but
it turns out to be very difficult to mimic the systematic computational competences
afforded by dynamic recursive data structures in the conventional kind of connec-
tionist network, with its fixed architecture and weighted-sum activation functions
(Haselager and van Rappard 1998, Marcus 1998, Phillips 1999); this is known as the
‘variable-binding problem’ (Barnden and Pollack 1991, Dinsmore 1992, Sougné 1998).

However, if one takes a broader view of connectionism (as advocated and for-
malised in Fletcher (2000)), these difficulties can be overcome; connectionist computa-
tion is in some ways better suited than sequential computation to symbolic processing.
This paper is a case study to illustrate this proposition. It takes a traditional research
topic from artificial intelligence, the learning of structured concepts from example pat-
terns, and investigates how a connectionist network could solve it. The first step is to
choose the problem domain, that is, the population of input patterns and the system of
concepts available for the network to choose from. The problem domain must be very

2

carefully chosen if the exercise is to be meaningful: the requirements for a suitable
problem domain are as follows.

(1) The problem domain should be as simple as possible, so that one can understand
and analyse the network’s behaviour. However, it should not be so simple that
a solution can be found by exhaustive or random search; the problem should be
sufficiently non-trivial to allow a distinction to be drawn between intelligent and
unintelligent solutions. Ideally the domain should enable us to state difficult
problems in a few symbols. (Eventually we shall have to investigate how the
network’s performance scales with problem size, but there is no point in doing
this until we have a network that behaves sensibly on small examples.)

(2) The concepts of the problem domain should involve some form of recursion or
iteration, in view of the importance ascribed to recursive structures by the theo-
retical tradition based on the ‘language of thought’ hypothesis (Fodor 1975) and
the ‘physical symbol system’ hypothesis (Newell and Simon 1976).

(3) The problem domain should have a rich intuitive structure, so that we can tell
when a concept learned by the network is a significant discovery and when it is
merely an accidental construction that happens to fit the data. Ideally we would
have a formal criterion for evaluating the significance of the concepts found by
the network, but at present we do not. Such a criterion may emerge as a result
of artificial intelligence research when it is at a mature stage; it cannot be a
prerequisite for research otherwise we could never get started. So at the present
stage we must evaluate concepts on a case-by-case basis, using problem domains
in which we can recognise which ones are significant.

The first two of these requirements lead me to grammatical inference, the problem
of learning a grammar to represent a given set of sentences. Grammatical inference
involves the learning of recursive structures and is a very difficult problem even
for quite small grammars; the difficulty of the problem can be adjusted by imposing
various restrictions on the grammars. Hence the requirements (1) and (2) are met. To
meet requirement (3) I choose geometric patterns, line-drawings of two-dimensional
shapes such as lattices, staircases and tessellations, drawn on a discrete image grid
(see section 9 for examples). Geometry has a conceptually rich, highly organised
theory, developed over thousands of years; geometric concepts also involve invariance
under transformations such as translations, which is computationally very difficult to
cope with even when the image grid is small. This makes it suitable from the point
of view of all three requirements.

Hence the problem of learning to recognise simple geometric structures on a small
image grid is ideal as a case study for symbol processing. A research programme to do
this was outlined in Fletcher (1993), loosely inspired by Klein’s Erlangen Programme
(Tuller 1967), under which geometric concepts are to be learned in conjunction with
their associated invariances, with topological concepts learned first, followed by affine
concepts and then metric concepts. In this paper I shall only consider a small part

3

of this programme: supposing we have already learned the relations of horizontal
and vertical connection between neighbouring pixels in the image grid, the task is to
express geometric shapes in terms of combinations of horizontal and vertical connec-
tions.

The geometric patterns will be represented as graphs, with edges labelled as hor-
izontal or vertical. The networks used will be unsupervised self-configuring networks,
in which grammatical knowledge is represented in the network structure, in a gen-
eralisation of the way that regular string grammars are represented using transition
diagrams. The network is constructed during the course of learning, each learning
step being driven by statistical correlations in the patterns (hence the grammar is
stochastic). Since this is a connectionist approach, the network is not merely a knowl-
edge representation but is also a computational system that performs its own parsing
and learning.

This paper is the result of a complete rethink of my earlier work on self-configuring
networks (Fletcher 1991, 1992); these networks were able to learn non-recursive
grammars to represent hierarchical structure in the input patterns but were unable
to handle recursion or geometric invariances. One important theme however will
persist from the earlier work: the network needs a clear global semantics (so that one
can speak of the ‘correctness’ of the knowledge represented in the network), and a
clear division of labour between the nodes of the network (so that the local processing
of each node is correct with respect to the global semantics). The semantics guides
the learning process and avoids the need for a purely combinatorial search for an
architecture that solves the problem.

The rest of this paper is organised as follows. Section 2 is a survey of other
approaches to grammatical inference, in string and graph grammars, including con-
nectionist approaches. Section 3 defines formally the class of networks to be used and
the important concept of a homomorphism between networks, which is fundamental
to the theory of parsing and learning; networks and homomorphisms are used to
represent regular stochastic graph grammars and to state the parsing and learning
problems. Section 4 describes the connectionist parsing algorithm. Section 5 de-
scribes informally how the network learns by successively refining its architecture:
refinement is essentially a process of splitting nodes, and is defined formally in terms
of homomorphisms; the algorithm for this is derived in section 6. The inverse of
refinement is merging, a process described in section 7. The learning algorithm as
a whole is stated in section 8, and example simulations are described in section 9.
Conclusions are drawn in section 10.

2. Survey of related work

There is no previous work using connectionist networks to learn graph grammars, so
I shall survey relevant work in three areas separately: (a) grammatical inference for
string grammars, (b) graph grammars, and (c) connectionist grammatical processing.

4

Grammatical inference is the task of finding a grammar that generates a lan-
guage, given as input ‘positive’ examples (that is, strings belonging to the language)
and usually also ‘negative’ examples (strings not belonging to the language). The
problem of inferring string grammars has been studied since the 1960s; see Fu and
Booth (1975) for a survey of early work, and Sakakibara (1997) for more recent work.
There are various ways of framing the grammatical inference problem, according to
the input data and the criterion of success chosen. In Gold’s (1967) model, the user
supplies the algorithm with an infinite sequence of example strings; the algorithm
guesses a grammar and successively improves it as further patterns arrive; the al-
gorithm is considered successful if it eventually reaches a grammar that generates
the language and it does not change the grammar thereafter. This formulation of the
problem is called identification in the limit.

Valiant (1984) introduced a different learning problem, known as the probably
approximately correct learning model. This was formulated originally for learning
propositional functions but it is easily adapted to grammatical inference. The input
is a finite sample of positive examples; in addition, the algorithm may nominate
its own examples and ask whether they are in the language. From these data the
algorithm must find a grammar that matches the language to any required degree of
approximation. More precisely, given any real numbers & and ¢ in (0, 1) the algorithm
must find, with probability at least 1 — ¢, a grammar with accuracy at least 1 — o.
The algorithm is required to halt (unlike Gold’s, which runs for ever), within a time
polynomial in 1/, 1/¢, the size of the sample, and the size of the grammar.

A third version of the problem is due to Angluin (1988), who allows a more
elaborate interaction between the algorithm and the environment. The algorithm
attempts to identify the language L by asking questions of the form:

e is the string s in L?

e does the grammar G generate L?

The environment answers ‘yes’ or ‘no’; in the case of a ‘no’ answer to the second
question the environment also provides a counter-example, that is, a string that is in
L but is not generated by G or that is generated by G but is not in L. The algorithm
must find a grammar that generates L and then halt. This procedure is known as
learning with queries.

A variety of classes of string grammar are used in grammatical inference. Most
algorithms can only handle subclasses of the regular grammars, such as

e regular grammars corresponding to deterministic finite automata (Tomita 1982,
Lang 1992, Méakinen 1994),

e k-testable and k-piecewise testable languages (Garcia and Vidal 1990, Ruiz and
Garcia 1996),

e terminal-distinguishable regular languages (Radhakrishnan and Nagaraja 1987).

Some work has been done with context-free grammars; however, in this case inference
is so difficult that it is common to provide the algorithm with extra information in the

5

form of structural descriptions (that is, unlabelled derivation trees) for the positive
examples (Levy and Joshi 1978, Danyi 1993).

The problem of inferring stochastic regular grammars is roughly equivalent to
that of inferring hidden Markov models. Gregor and Thomason (1996) describe a
method for inferring non-recursive Markov models. Inferring Markov models with
recursion is much harder, but given a model structure the transition probabilities can
be estimated using the Forward-Backward algorithm (Sakakibara, 1997), a dynamic
programming technique involving expectation maximisation; the Inside-Outside algo-
rithm is a generalisation of this to context-free grammars (Lari and Young 1990).

Theoretical studies suggest that grammatical inference is a very hard problem.
Gold (1967) showed that deterministic finite automata cannot be identified in the limit
from only positive examples; using both positive and negative examples, the problem
of finding a minimal deterministic finite automaton consistent with a given sample
is NP-hard (Gold 1978, Angluin 1978). However, using Angluin’s query learning,
deterministic finite automata can be identified in polynomial time (Angluin 1987).
Learning of context-free grammars is computationally hard even with query learning
(Angluin and Kharitonov 1991). For further details of the theoretical background see
Angluin (1992).

These pessimistic results led, Lucas (1993) suggests, to a ‘general stagnation in
the growth of new algorithms’. However, their relevance to the practicability of gram-
matical inference is debatable. Gold’s and Angluin’s learning models demand exact
identification of the language, whereas in practice we might be satisfied with a gram-
mar that approximately represents the language (Valiant’s model of course allows for
this). The theoretical results are based on worst-case performance, that is, inference
of the most perverse grammar in the class, whereas in practice we might be more
concerned with typical or naturally-occurring grammars. Lang (1992) demonstrates a
clear-cut case in which worst-grammar performance is no guide to average-grammar
performance, and identification to a very high degree of accuracy is much easier than
perfect identification. In this paper I am concerned with identification in the limit of
regular (graph) grammars from positive examples; the above considerations suggest
that this is a difficult task but not necessarily a hopeless one, provided one does not
adopt too perfectionist a standard of success.

Next we turn to a classification of learning algorithms for string grammars. Algo-
rithms may be classified as incremental, where an initial grammar is constructed and
then successively improved, or non-incremental, where a single grammar is produced
(e.g. Bhattacharyya and Nagaraja 1993). I am primarily concerned with incremen-
tal methods; these may be subdivided into types, according to the way in which the
grammar is modified at each step.

Hill-climbing methods (Tomita 1982) randomly mutate the grammar in search of
one that performs better on the sample. There is no predictable theoretical relation
between the languages generated by the mutated and the unmutated grammar; the
mutation is simply accepted if it does not decrease the number of true positives minus

6

the number of false positives. This method works quite well on small deterministic
finite automata, but there is no explanation of why it works.

Enumerative methods work by adding production rules to the grammar in re-
sponse to misclassification of example strings. Learning is thus treated as a process
of acquiring more grammatical constructions as time goes on. The language therefore
grows monotonically over time (Naumann and Schrepp 1993).

Merging methods also enlarge the language monotonically. They begin with a
maximal grammar and successively merge pairs of non-terminals into one; learn-
ing is thus viewed as a process of erasing grammatical distinctions that are deemed
to be insignificant. Fu and Booth (1975) construct a ‘canonical definite finite-state
grammar’, representing a given positive sample of strings, and then form a ‘derived
grammar’ by merging non-terminals. Lang (1992) and Corbi et al. (1993) construct
a prefix-tree acceptor (a tree-like automaton that accepts precisely the positive ex-
amples) and then merge states to give a simpler automaton. By this method Lang
is able to learn very large (500 state) deterministic finite automata to a very high
degree of accuracy. It should be noted however that his automata contain very lit-
tle recursion, due to the random way their connections are chosen; in essence, his
method is concerned with classifying alternative substrings rather than recognising
iteration. Merging methods have become very popular recently and have been applied
to stochastic grammars (Stolcke and Omohundro 1994, de la Higuera 1998) and tree
grammars (Carrasco et al. 1998).

An opposite approach to merging is splitting, in which one begins with a tiny
grammar that can generate any string, and then refines it by a process of succes-
sively splitting a non-terminal (or a state of the corresponding automaton) into two.
This is a process of learning to make grammatical distinctions. Grammatical knowl-
edge increases over time, as each grammar contains all the knowledge of the earlier
grammars; the language generated decreases over time. This method has the merit of
avoiding the enormous space requirements of the merging method, where the initial
automaton is similar in size to the entire string sample. It is also better suited to
dealing with an infinite sequence of strings. Examples of this approach are Bell et al.
(1990) and Ron et al. (1994), in which each non-terminal corresponds to a suffix of a
string and splitting a non-terminal corresponds to extending the suffix.

A hybrid of splitting and merging could be expressed within the version space
approach to learning (Mitchell 1978). A rudimentary example of this is Giordano’s
(1994) algorithm. A lower set of grammars is formed (each generating a subset of
the language), together with an upper set of grammars (each generating a superset of
the language). The grammars are refined through specialisation and generalisation
operations, to converge on a correct grammar. The implemented algorithm just uses
two specialisation operations, substitution of the non-terminal on the left-hand side
of a production rule and deletion of a production rule, but clearly more operations
could be added within this framework. Another hybrid algorithm is Dupont’s (1996),
which uses a combination of splitting and merging to adjust a regular grammar to

7

each positive or negative example as it arrives; the grammar has to be kept consistent
with all the patterns seen previously, so the algorithm has to store the sets of positive
and negative examples seen so far (the positive examples being stored in the form of
a prefix-tree acceptor).

In this paper I am thinking of grammatical inference as a process of concept
formation, that is, progressive gain in knowledge by building on existing knowledge.
Hence splitting operations are of most relevance, though merging will also occasionally
be used to simplify the grammars produced. Only positive examples will be used, and
past patterns will not be stored: only the current pattern will be available to the
algorithm at each stage.

So far I have only considered string grammars. The fundamental ideas extend to
graph grammars, although there is a variety of ways of generalising the concept of
a production rule. The most general version is known as the set-theoretic approach
or the expression approach (Nagl 1987): production rules are of the form G — H,
where G and H are graphs; to apply such a rule to a graph, an isomorphic copy of G
is removed from the graph, together with all its incident edges, and a copy of H is
inserted in its place, together with new edges linking it to the rest of the graph. The
new edges are chosen according to an embedding transformation.

Common special cases of this are node-label controlled grammars, where G con-
sists of a single node with a certain label (Englefriet and Rozenberg 1991), and edge-
label controlled grammars, where G consists of an edge with a certain label and its two
incident nodes (Main and Rozenberg 1987). In node-label and edge-label controlled
grammars the embedding transformation is specified by a connection relation.

A theoretically more tractable framework is known as hyperedge replacement.
Whereas an edge is incident to two nodes, a Ayperedge is a more general entity that
may be incident to any fixed number of nodes; a hypergraph is a generalisation of a
graph consisting of nodes and hyperedges rather than nodes and edges. A production
rule involves replacing one hyperedge by any hypergraph (with the same number of
connecting points). These production rules may be used to generate languages of
graphs (Drewes and Kreowski 1991) or languages of hypergraphs (Habel 1992). This
type of grammar has many desirable theoretical properties that make it a natural
generalisation of context-free string grammars (Habel 1992).

The desirable properties of hyperedge replacement grammars are abstracted and
generalised further in the algebraic or category-theoretic approach (Ehrig 1979, Ehrig
et al. 1991), in which application of production rules is expressed in an elegant way
in terms of a pair of push-outs. (More recently, Bauderon (1996) has shown how to
encode the connection relation of node-label controlled grammars using pullbacks.) A
useful survey of recent extensions to all these types of graph grammar is provided by
Rozenberg (1997).

The parsing problem is harder for graph grammars than string grammars. As
with string grammars, the class of grammars needs to be restricted in order to make
the parsing problem decidable (Ehrig 1979, Main and Rozenberg 1987). Bartsch-
Sporl’s (1983) parsing algorithm works by exhaustive search. Most other algorithms

8

work by imposing a sequential ordering on the graph: chain code methods convert the
graph into a string by traversing it (Lucas and Damper 1990); Bunke and Haller (1992)
scan a plex structure, constructing all possible ways of deriving the part of the struc-
ture seen so far; Lichtblau (1991) ‘sequentializes’ the graph using an ordered spanning
tree; Flasinski (1993) also assigns a linear ordering to the nodes as a preliminary to
parsing. However, the imposition of a sequential ordering is somewhat artificial and
seems ill-suited to graphs, whose structure is inherently non-one-dimensional. Bran-
denburg and Skodinis (1996) relax the condition of strict sequentiality by using graph
automata, which scan the graph using several control heads (instead of one, as in
a conventional finite automaton), thus introducing a degree of parallelism. In my
algorithm (see section 4) I abandon the concept of traversal altogether, producing a
fully parallel procedure in which the whole of the graph is parsed at once.

There are few known algorithms for inference of graph grammars. In terms of
the classification of string grammars above, Bartsch-Sporl’s (1983) is an enumerative
method for a limited class of context-sensitive graph grammars, while Carrasco et al.’s
(1998) is a merging method for regular tree grammars and Jeltsch and Kreowski’s
(1991) is a merging method for hyperedge replacement grammars. Jeltsch and Kre-
owski propose four operations for transforming grammars: INIT, which constructs
a grammar to represent a given finite set of graphs; DECOMPOSE, which splits a
production rule into smaller rules (without altering the language); RENAME, which
renames nonterminals; and REDUCE, which removes redundant production rules.
The RENAME operation is the key one since it may merge non-terminals and thereby
enlarge the language generated. Jeltsch and Kreowski do not propose any way of
determining the sequence of operations to derive a correct grammar from examples;
their ‘algorithm’ is more a formal statement of the problem than a solution.

Turning now to connectionist grammatical processing, the problem of represent-
ing, parsing and learning grammars in a connectionist network involves additional
computational constraints: the storage and processing of the patterns and gram-
mars must be distributed across the network and subject to capacity bounds (Fletcher
2000). This rules out algorithms such as those of Lang (1992) and Jeltsch and Kre-
owski (1991), which begin by constructing a huge grammar similar in size to the
entire pattern set.

Attempts have been made to apply a standard three-layer back-propagation net-
work to inference of natural language grammar (Hanson and Kegl 1987). However,
for the purpose of learning regular string grammars it is more natural to use recur-
rent networks (which are essentially trainable deterministic finite automata). Various
architectures have been used: simple first-order recurrent networks (Elman 1990, Jor-
dan 1988); more complex first-order networks (Williams and Zipser 1989, Fahlman
1991); and second-order recurrent networks (Giles et al. 1992). Elman (1992) has
also applied recurrent networks to context-free grammars and found that they can
represent up to about three levels of recursive embedding; other authors (Kwasny and
Faisal 1990, Das et al. 1993, Zeng et al. 1994) deal with context-free grammars by

9

using a neural network in conjunction with a stack, or by using a simple recurrent
network to generate representation vectors for a recursive auto-associative memory
(RAAM) (Reilly 1991).

The question arises of how to relate the internal representations of a recurrent
network to conventional representations of the grammar in terms of production rules
or finite automata. Giles and Omlin (1992) and Das et al. (1993) have shown how
to insert rules into the network before learning begins, while Castafio et al. (1995)
describe several methods for converting the network’s learned internal representation
system into a finite automaton.

Some neural networks learn to parse sentences, without attempting to learn the
grammar (Ho and Chan 1997, 1999). The parse tree may be encoded using a RAAM, or
it may be converted into a sequential form by pre-order traversal and encoded using a
sequential RAAM or simple recurrent network. The sentence to be parsed is encoded
using a sequential RAAM or simple recurrent network. The parsing problem is then
a matter of transforming one connectionist encoding to another; alternatively, the
learning of the two encodings may be coupled to make them identical, thus dispensing
with the transformation stage. Ho and Chan (1999) test the error-resilience of these
methods using a regular string grammar; the sentences used appear to be quite short
and have little or no recursion. Ho and Chan are pessimistic about the chances of
scaling the method up to larger sentences and grammars.

Other connectionist parsing algorithms use specially-structured networks with
the grammar pre-programmed into them (Fanty 1985, Waltz and Pollack 1985, Selman
1985, Cottrell 1989, Charniak and Santos 1991). For example, Charniak and Santos’
network is a rectangular grid with the input sentence passing from right to left across
the bottom row and the parse tree being built up above it; each column of the grid
holds a branch of the parse tree. A few other networks are able to learn the grammar
by adapting their structure (Lucas and Damper 1990, Fletcher 1991, 1992, Roques
1994), but this is only possible so far for very simple classes of grammar without
recursion.

The objective of this paper is to extend my previous work to recursive graph
grammars. The class of grammars used will be the regular stochastic graph gram-
mars, defined in section 3; they will be represented, parsed and learned in a wholly
connectionist way.

3. Networks, homomorphisms and languages

This section sets up the theoretical framework for representing regular graph gram-
mars as networks and stating the parsing and learning problems; subsequent sections
will solve these problems.

3.1 Parsing without traversal

Let’s start with a regular string grammar, as represented by a transition diagram

(figure 1). To parse a given sentence, abbbcd, one traverses the sentence from left

10

to right, simultaneously traversing the transition diagram and matching the symbols
encountered in the sentence, a,b, b, ..., against the symbols encountered in the tran-
sition diagram. The dashed lines in figure 1 show which symbol in the sentence is
matched against which symbol in the transition diagram; the states of the sentence
(the circles) are also matched against the states of the transition diagram. The sen-
tence is accepted as grammatical if and only if the traversals of the sentence and the
transition diagram finish simultaneously.

transition
diagram

sentence

)
N

a

Figure 1. Parsing a sentence abbbcd using a transition diagram. The dashed
arrows show the correspondence between the sentence’s nodes and edges and
the transition diagram’s nodes and edges (not all arrows are shown).

Now, both the sentence and the transition diagram may be regarded as networks,
since they both consist of nodes connected by directed edges. However, from a con-
nectionist point of view, what is incongruous about the parsing process just described
is the notion of ¢traversal, which imposes an unnecessary sequential ordering on the
process. Parsing can be rephrased without reference to traversal: the task is simply
to find a mapping from the nodes and edges of the sentence to the nodes and edges
of the transition diagram such that:

e nodes map to nodes and edges map to edges;

e the direction and symbol label (a,b,c or d) of the edges are preserved under the
mapping;

e the end-points (initial and final nodes) of the sentence map to the end-points of
the transition diagram,;

e the mapping preserves incidence: if an edge is incident to a node in the sentence
then they remain incident when the mapping is applied to both.

Let us call such a mapping a homomorphism (this is defined formally below). Then the
parsing problem is simply to find a homomorphism from the sentence to the transition
diagram.

This reformulation of the problem has several advantages. First, by removing the
sequential notion of traversal we have made it possible to parse the whole sentence

11

in parallel; for very long sentences this may be quicker than sequential parsing.
Secondly, such parallel parsing may be more error-tolerant than sequential parsing.
If a sequential parser encounters a grammatical error (think of a compiler scanning
a source program, for example) it is liable to misunderstand the rest of the sentence
and generate spurious error messages; whereas a parallel parser would parse on both
sides of the error and thereby, perhaps, would be better able to locate and correct it.
(However, the parsing algorithm in this paper does not attempt any error correction.)

The third, and most important, advantage of parallel parsing is that it is easily
extended from string grammars to graph grammars. Let us redraw figure 1 in a
slightly different way. Suppose each node (except for the end-points) has two hooks,
labelled ‘in’ and ‘out’, and that all incoming edges are connected to the ‘in’ hook and
all outgoing edges to the ‘out’ hook. We may now rub out the arrows on the edges,
as they are redundant. (See figure 2.)

transition
diagram

Oouf in/o/ o i‘no‘ out inoout inoout inoout inC

b b b c d
Figure 2. A re-drawing of figure 1, without using traversal. The dashed
arrows indicate (part of) the homomorphism. The hooks are indicated by
small filled circles.

Note that now a homomorphism maps nodes to nodes, hooks to hooks, and edges
to edges. Now, to generalise this to graph grammars we simply rub out the labels
‘in’ and ‘out’ (since these are the last remnants of the obsolete notion of traversal)
and permit any number of hooks at each node. Figure 3 shows a sentence (which I
shall call a pattern from now on), the generalised transition diagram (which I shall
call a regular graph grammar, or just a grammar), and the homomorphism between
them. The edge labels H and V indicate horizontal and vertical edges. Note that
this sort of pattern is very awkward to handle using string grammars (as done in
the ‘chain code’ approach of Brandenburg and Chytel (1991), for example), as it is a
non-Eulerian graph and would have to be traversed in several sweeps, which would
obscure its geometric structure.

There is a possible problem here. By removing the notion of traversal there is a
danger that patterns may be parsed back-to-front: thus, in figure 2, the initial state
of the pattern may be mapped to the final state of the grammar, and vice versa; the

12

homomorphism
(only some
lines shown)

Figure 3. Parsing using a graph grammar.

same problem arises in a more severe form with graph grammars, since a pattern
node with 2 hooks can be mapped to a node in the grammar with the same number
of hooks in k! ways. This is called the direction ambiguity problem. To help deal
with this problem we give each edge in the pattern and the grammar an arbitrary
orientation; that is, we designate one of the edge’s ends as ‘first’ and the other as
‘second’. In diagrams it is convenient to represent this by drawing an arrow from the
‘first’ end to the ‘second’ end. Note that this is not a re-introduction of the concept
of traversal; it is just a diagrammatic convention for distinguishing one end of an
edge from the other. The direction ambiguity problem will be solved by the parsing
algorithm in section 4.

This convention is illustrated in figure 4, which shows the image grid on which
the pattern resides. A pattern, such as the one in figure 3, is drawn by activating a
subset of the nodes, hooks and edges of the image grid. The horizontal and vertical

13

connections in the image grid represent the geometric structure of the image space;
as mentioned in section 1, these should really be learned from example patterns, but
in this paper I am assuming this learning has already been done. The image grid
should be thought of as unbounded, though in simulations a grid of finite width and
height is used. See figures 11-15 in section 9 for some further examples of grammars,

patterns and parses.

Figure 4. The image grid, showing nodes, each with four hooks, connected by
horizontal and vertical edges. The edges are oriented (arbitrarily) rightwards

and upwards.

3.2 Formal definition of networks and homomorphisms

In order to define the foregoing notions formally we shall need the following standard
notation for logic, sets and functions.

NOTATION.
A, V, =, V and d mean ‘and’, ‘or’, ‘implies’, ‘for all’ and ‘there exists’.
A x B is the Cartesian product of the sets A and B: AxB = {(x,y) | xcAANyeB}.
;1 Si is the disjoint union of the sets S;: ¥,.;Si = {G,x) [ic I AxcS;}.
|A| is the number of elements in the set A.
f:A — B means that f is a function mapping the set A into the set B.
f(S) is the image of the set S under f: f(S) = {f(x) |x € S}.
f~1(S) is the pre-image of the set S under f: f~1(S) = {x | f(x) € S }.
f|s is the function obtained by restricting the domain of f to S.
f og is the composition of the functions f and g: (f o g)(x) = f(g(x)).

DEFINITION. A network is an octuple (N,H,E,L,A,F,S,M), where N, H, E and L are
disjoint sets, A:H - N, F:E —- H,S:E — H and M:E — L, such that F(E)US(E) = H.

The elements of N, H, E and L are called nodes, hooks, edges and labels, respectively.
If A(h) = n we say that the hook % is attached to, or incident to, the node n (for example,
in figure 3 all the nodes have one, two or four hooks attached to them). If F(e) = A, and

14

S(e) = he we say that the edge e is connected to, or incident to, h1 and hy; we also say
e is incident to the nodes A(h1) and A(hs); h1 is called the first hook and hs the second
hook of e. We call M(e) the label of the edge e. The image grid, the patterns and
the grammar are all networks. Formally, a pattern is a network (N,H,E,L,A,F,S,M)
such that for each A € H there is a unique e € F~1({h}) US~!({h}). The pattern
is said to be drawn in the image grid, Ng,Hg,Eg,Lg,Aq,Fg,Sq,Mg), iff N C Ng,
H - HG, E - E(;, L - LG, A = AG‘H7 F = FG|E, S = SG|E and M = MG|E The
pattern population is the set of patterns drawn in the grid that are presented by the
environment.

In what fOllOWS, Nl = (Nl,Hl,El,Ll,Al,Fl,Sl,Ml) and Nz = (Nz,Hz,Ez,Lz,Az,
Fy5, S5, M5) are networks.

DEFINITION. A homomorphism f: N1 — Nj is a function from N; UH; UE; UL, into
Ny UHy; UEy ULy such that

fIn: N1 — N,

VRENT fla,-1np:Ar " ({n}) = Ay 1 ({f(n)}) is a bijection,

fle,:E1 — Ep, Foof =folky, Sgof =f0o8y,

flo,:L1 — Lo, Msof =f oMj.

PROPOSITION 1. If f: N7 — Nz is a homomorphism then
fla,:Hy — Ho, Agof =f oAy, f(H1) = Ay 1 (Ff(NY)).

DEFINITION. An isomorphism is a homomorphism f: N7 — N3 that is a bijection from
NiUH{UE{UL; to Ny UHy UE5 U Ls.

PROPOSITION 2. If f: N7 — N3 is an isomorphism then so is the inverse function
f _12 N 9 — N 1.

DEFINITION. A network AN is a subnetwork of a network Ny iff
N; CN,, H; = Ay '(Ny), E, CE,, L, C Ly,
Ay =As|n,, Fy = Fs|g,, S1 = S2lg,, M; =Ms|g,.

PROPOSITION 3.

(a) If V7 is a subnetwork of Ay then the inclusion function i:N; UH; UE; UL; —
N, UH; UEy U Ly, defined by Vx i(x) = x, is a homomorphism from N7 to M.

(b) If f: N7 — N2 is a homomorphism then the image network f(N7) = (F(IN1), f(H1),
fED, fL1),As|raryy, Folra,), S2lr@,), Malra,)) is a subnetwork of Aj, and there is a
unique homomorphism f": N7 — f(N7) such that f =iof’, where i:f(N7) — Ns is
the inclusion homomorphism.

The formal definition of homomorphism is consistent with the informal description
given earlier, but is slightly more general in that it allows N; (representing the
pattern) to have a different set of labels from N, (representing the grammar). This is
useful in a wider context of geometric concept learning (see Fletcher 1993, especially
figure 4), but for the purposes of this paper we shall only deal with homomorphisms
for which L; = Ly and the label mapping f|z, is the identity.

15

3.3 Languages generated by networks

The language L(N) generated by a network N is defined as the set of finite connected
patterns P for which there exists a homomorphism p: P — N; p is called a parse of P.
The grid language GL(N) generated by N is the set of patterns drawn in the image
grid that are also in L(N).

The grammar network A will also contain stochastic information about the prob-
ability distribution of patterns. The network contains a real number n, for each edge
e and a real number n, for each node v. A probability distribution prob over L(N) is
said to be consistent with these numbers iff

VecE n,=Expp p~'({e})]

» (1)
YweN n, =Expp [p~ ({v}))

where N = (N,H,E,L,A,F,S,M), Exp, is the expectation operator over all patterns,
defined by

Expp X =) prob(P)X,
P

and p:P — N is the parse of P (assumed unique). The numbers [p~!({e})| and
lp~1({v})| are called the multiplicities of e and v in the pattern P, and the numbers n,
and n, are called mean multiplicities of e and v. The stochastic language generated by
N is L(N) with the maximum-entropy probability distribution over L(\') consistent
with the mean multiplicities; the stochastic grid language generated by N is defined
analogously. The stochastic aspect of the grammar will be important in sections 5-6,
but I shall disregard it for the rest of this section.

A network N is said to be unambiguous iff for every pattern P there is at most
one homomorphism from P to N. It is said to be simple iff Ve,e’ c E (F(e) = F(e’) A
Se) = S') AN M(e) = M(') = e =¢') and Ve € E F(e) # S(e). We shall largely be
concerned with grammars that are both simple and unambiguous.

The approach taken here, in which grammars are represented as networks, is dif-
ferent from the conventional notion of a graph grammar (Rozenberg 1997), in which
patterns are derived from a start symbol by a sequential application of production
rules. The relation between the two approaches can be seen by analysing the parsing
homomorphism p into simpler homomorphisms, as follows. A simple type of homo-
morphism is illustrated in figure 5. In this construction we start with an arbitrary
network N and split one node n into two nodes, n, and n_, to give a network N’.
N’ has one hook for every hook of N, except in the case of the hooks attached to n,
for each of which there are two hooks in A; for example, corresponding to hook A in
N are two hooks, A, and A_, in N’. Edges are a little more complicated. For each
of the edges u,v,x,y,z in N there are two edges v, ,u_,v.,v_,x\,x_,y.,¥y_,24,2_ in
N’; this is because these edges are connected at one end to a hook of n, which has
split into two. If an edge were connected to hooks of n at both ends then it would

16

indicator +{

edges

Figure 5. A node split and the associated homomorphism, r. (The letters
a,b,c,d,...are used to identify the edges uniquely: they are not edge labels.)

need to split into four in N’, since the hooks at each end would have split into two;
such an edge is called a re-entrant edge.

However, notice from figure 5 that the edges a,b,c,d,e connected to A have been
treated differently: for each of these there is only one corresponding edge in N,
connected to either 2, or A_. Hook A is called the governing hook, and its edges
a,b,c,d,e are called indicator edges, with a, b, c being positive and d,e negative. The
operation that takes us from N to N’ is called a node split, and can be specified
formally by the homomorphism r: N/ — N that maps each node, hook, edge and label
of N/ back to the one it came from in N (for example, r(ny) = n, r(u+) = u). (I shall
not give the formal construction of node splitting in general here, as it is a special
case of the splitting operation defined in §6.2 below.)

The reason for the special treatment of the governing hook A and the indicator
edges is revealed by the following proposition.

PROPOSITION 4. Let r: NV — N be a homomorphism representing a node split. For any
pattern P and parse p: P — N there is a unique parse p’: P — N’ such that p =rop’.

Proof. Given P and p, we can construct p’ in only one way, which I shall illustrate
with the example in figure 5. Each node ny in P such that p(ny) = n must have a
hook h(such that p(hy) = h, and hy must have a unique incident edge ey, which must
map under p to one of the edges a,b,c,d,e. If p(eg) is a, b or ¢ then we define p’(eg)
as ay, by or cy, respectively, and hence p’'(hy) = hy, p'(ng) = n, and so on for all
other hooks and edges incident to ny. Whereas if p(ey) is d or e instead then we define
p'(ep) as d_ or e_, and hence p’(hg) = h_, p’(ng) = n_ and so on for all other hooks

17

and edges incident to ny. The key point is that it is the edge ey incident to hook A
that determines whether ny maps to n, or n_ under p’. We then extend p’ to the
whole of P by defining p’(x) = p(x) for all other nodes, hooks, edges and labels, x. |

PROPOSITION 5. Let r: N/ — N be a homomorphism representing a node split.
(a) LIN') = L(N) and GL(N") = GL(N).

(b) N’ is unambiguous if N is.

(¢) NV’ is simple if N is.

Proof. (a) If a pattern P has a parse p: P — N then, by the previous proposition, it
has a parse p’: P — N’; conversely, if it has a parse p’: P — N’ then it has a parse
rop’:P — N. This establishes that L(N’) = L(N) and hence GL(N') = GL(N).

(b) For any parse of a pattern, p’: P — N’, we can produce a parse p = rop’: P — N.
But p is unique if A is unambiguous, so by proposition 4 p’ is unique.

(c) is straightforward. |

A second simple type of homomorphism corresponds to pruning unwanted parts of
the network. Given any network A we can remove nodes, hooks, edges (and possibly
labels) in such a way as to give a subnetwork N’. The pruning operation may be
represented formally by the inclusion homomorphism i: N/ — N. These two simple
types of homomorphism are sufficient to generate all parses.

PROPOSITION 6. Any parse p:P — N can be expressed (up to isomorphism) as a
composition of homomorphisms representing node splits and prunings.

Proof. Start with the network A/, prune any edges and nodes (and their hooks)
that have multiplicity 0 under the parse p, giving a subnetwork p(P), an inclusion
homomorphism i: p(P) — N, and a parse p’: P — p(P) (by proposition 3). Next, choose
a node n in p(P) of multiplicity greater than 1 (if there is one) and split n into two
nodes, n, and n_, giving a new network N’, a homomorphism r: N/ — p(P), and a
parse p”: P — N’ (by proposition 4). Then we have

rop” =p, iop' =p, and hence iorop” =p.
Some of the newly created edges in N/ may have multiplicity 0, so continue the
sequence of alternate prunings and node splits until one obtains a network N* in
which all nodes and edges have multiplicity 1 (this must happen eventually since the
multiplicities are reducing at each step). Hence N* is isomorphic to P. Thus p has
been analysed as a composition of node splitting and pruning homomorphisms. i

The process described in proposition 6 may be regarded as a grammatical derivation
of the pattern P. The start symbol is NV; figure 5 depicts a production rule, with n and
its incident hooks and edges as left-hand side, and n,, n_ and their incident hooks

18

and edges as right-hand side; application of a production rule consists of carrying out
a node split or a pruning. This gives us a kind of node-replacement graph grammar.

In general, networks and homomorphisms form a mathematical system called
a category, since every network has an identity homomorphism and composition of
homomorphisms is associative (see Goldblatt (1984) for an introduction to category
theory). This category is the search space for the learning problem; it is essen-
tially a generalisation of Dupont et al.’s (1994) representation of the search space
for string grammatical inference as a lattice of automata. The category has products
and pullbacks but not equalisers or a terminal object. The pullback construction is
particularly useful as it provides a Church-Rosser property for these grammars (cf
Rozenberg 1997: 173).

PROPOSITION 7. Given networks Ny, N1, Ve and homomorphisms r1: N7 — AN, and
re: No — Ny, there exist a network N and homomorphisms m;: NV — N7 and o: N — Ny
such that the following hold.

(a) If N7 and Ny are simple then so is N.

(b) riom =rgomy.

(c) For any network N* and homomorphisms mj: N* — N; and m: N* — Nj such
that 1 o T = ry o T}, there is a unique homomorphism k:N* — N such that
Mok ="j and Ty o k = T3,

(d) If Ny is unambiguous then L(N) = L(N7) N L(N3) and hence GL(N) = GL(N7) N
GL(N).

(e) If N7 and N, are unambiguous then so is N.

(f) If r; and ry represent node splits or prunings then m; and 1y represent node splits
or prunings, or the compositions of two node splits or prunings.

Proof. Let Ny = (No,Hy,Ey,Lg,Ao,Fo,So, M), let N1 = (N1,H1,E1,L1,A1,F1,S1,M1),
and let Ny = (Ng, Hy, E9, Lo, Ao, Fs,So, Ms).

Define N = {(n1,n2)€Ny x Ng | ri(n1) = re(ng) }.

Define H = {(h1,ho)€Hy x Hy | r1(h1) = ro(h9) }.

Define E = {(e1,e2)€E1 X Eg | ri(e1) = rale2) }.

Define L = {(l1,l9)€ L1 x Lo | r1(l1) = ra(l2) }.

Define A:H — N by V(hq,hs)eH A(hq,hs) = (A1(h1),As(hs)).

Define F: E — H by V(eq1,es)€E F(eq,es) = (F1i(e1), Fales)).

Define S:E — H by V(ei,es)€E S(eq,es) = (S1(eq1), Sales)).

Define M:E — L by V(e1,e2)cE M(eq,es) = (M1(e1), My(es)).

The obvious way to define the network N would be as (N,H,E,L,A,F,S,M).
However, this would be unsatisfactory, as H may contain hooks that have no incident
edges. Such hooks need to be removed from H; moreover, when a hook is removed its
node must also be removed, as must all the node’s hooks and edges; this may deprive
some other hooks of all their edges, so that they need to be removed, and so on. This
removal procedure is formally specified as follows.

19

Let N’, H' and E’ be the maximal subsets of N, H and E (respectively) such that
F(E)YUSE)=H =A"'WV).

(These sets can be constructed by considering all triples (N’,H’,E’) satisfying the
above equations and then taking the union of all the N’ sets, the union of all the H’
sets, and the union of all the E’ sets.) Then the pullback network N is defined as
N',H',E',L,Alg,F|g,S|g,M|g/). The homomorphisms m;: N — N7 and mo: N — Ny
are defined by

V(ni,na)eN' mni,ng) =ny mng,ng) =ng

V(hi,ho)eH' my(hi,ho) =hy To(hyi, ho) = hy

Vier,e)€E' my(er,es) =e1 Taler,es) = eg

V(l1,l)e L m(ly,le) =11 molly,lo) = ls.

It is routine to verify that this construction satisfies the proposition. 1

Hence, by part (f), if the homomorphisms r; and re each represent application of a
production rule then m; and 1, each represent the application of one or two production
rules. In fact, m; simply represents application of the analogous production rule(s) on
N7 to that of ro on Ny; and similarly for my. The composite homomorphism r; o Ty
may be regarded as representing a parallel application of the two production rules
represented by r; and ry (cf Rozenberg 1997: 175). Proposition 7 shows the context-
free nature of this class of graph grammar.

The operations of node splitting and pruning, together with propositions 3-7,
which I have introduced in the context of interpreting networks as graph grammars,
will be useful in a quite different way in section 5 in the theory of learning.

The outcome of this section is a statement of the parsing and learning problems:
the parsing problem is to find a homomorphism from a given pattern to a given
grammar; the learning problem is to find a grammar that generates a grid language
(or stochastic grid language) equal to a given pattern population.

4. Parsing

This section describes how patterns are parsed using a given graph grammar. Both
the pattern and the grammar are networks, as defined in section 3, and the task of
parsing is to find a homomorphism from the pattern to the grammar. I shall introduce
the algorithm informally with an example before stating it formally.

4.1 Informal account of parsing

The idea is to build up a parse of the pattern by piecing together parse-fragments. A
parse-fragment is a copy of a part of the pattern together with a homomorphic mapping
to the grammar. We begin with parse-fragments consisting of single edges (plus the

20

hooks, and possibly the node, at either end). Then consecutive parse-fragments are
combined in all consistent ways, until eventually we have a parse of the whole pattern
(or all possible parses, if the grammar is ambiguous).

Figure 6 shows the grammar and pattern to be used in our example. The edge
labels are a, b, c,d, but for ease of reference the edges in the grammar have also been
given numeric subscripts and the nodes have been indexed with Greek or capital
Roman letters.

O A R) SLG (O SEE (SN D

Figure 6. Parsing example: the grammar and pattern.

Step 1: copy edges.

We begin by constructing all possible parse-fragments involving one edge. There will
be one such parse-fragment for every pair consisting of an edge in the pattern and an
edge with the same label in the grammar. There is a function f mapping each of these
parse-fragments to the corresponding edge in the grammar, and a function g mapping
each parse-fragment to the corresponding edge in the pattern. In figure 7 each parse-
fragment is marked with the same label and subscript as the corresponding edge
in the grammar, while its horizontal position indicates which edge in the pattern it
corresponds to.

Step 2: copy hooks.

Next we attach hooks to each end of the parse-fragments (see figure 7). The functions
f and g are extended to map each of these hooks to the corresponding hooks in the
grammar and the pattern.

Step 3: copy nodes.

Next we attach nodes to some of the parse-fragments. For each pattern node we
choose one of its hooks at random and attach a node to the corresponding hooks in
the parse-fragments. The functions f and g are extended to map these nodes to the
corresponding nodes in the grammar and pattern; in figure 7 each node has been
marked with the name of the grammar node it maps to under f.

21

Step 1: copy edges

aq b, b, b el b,
d
8 b, b, b, a, : b,
Step 2: copy hooks
a b b b, a b,
% b, b, b, i T
Step 3: copy hodes
a b b b, a b,
& b, b, b, 3 o< b <9
R
LI

Step 5: prune
@ b, B b, c_ B Vo d

% b, a £3)

(B 8 Y9 Y9
Figure 7. The parse-fragments produced while parsing the example in fig-
ure 6. At each stage of step 4, the dashed boxes indicate the nodes, hooks
and edges that have changed.

Step 4: join.

Next we combine the parse-fragments into larger fragments. In stage (i) of this
step (see the figure) we have chosen (arbitrarily) to begin by joining at the points
corresponding to nodes C and F of the pattern (see the dashed boxes marked C and
F in the figure). At the position corresponding to node C there are (after step 3)
two nodes, marked y and B, and two dangling hooks to join to them, giving four
possible combinations. However, not all of these combinations are consistent with the

22

grammar: the grammar allows B to be followed by either b; or be, but does not allow
y followed by either b1 or by. So only two of the four combinations are grammatical,
we create a new node for each of the two consistent combinations (with hooks and
edges attached as appropriate), replacing the two nodes previously at that position
and their hooks and edges. This is shown in figure 7, stage (i): the newly created
nodes, hooks and edges are shown enclosed in the dashed box marked C. Note that the
node marked B has been duplicated, along with its hook and incident edge marked bs;
the node marked y has been removed, along with its hook and incident edge marked
bl.

Simultaneously, a join occurs at the position corresponding to node F. Here, there
is one hook to be joined to two nodes, but the grammar only allows the hook to connect
to one of the nodes (since ¢ can follow y, not a). So there is one new node, replacing
the two nodes previously at that position. The new node is given appropriate hooks
and edges; the new node, hooks and edges are shown enclosed in the dashed box
marked F in the figure.

Next suppose we join at the positions corresponding to nodes D and G in the
pattern, producing stage (ii) in the figure in a similar way. Again, the nodes at those
positions, together with their hooks and incident edges, are removed and replaced by
new ones; the new nodes, hooks and edges are shown enclosed in the dashed boxes
marked D and G.

Next we join at the remaining positions, corresponding to nodes B, E and H,
giving stage (iii) in the figure. All the parse-fragments have now been combined.

Step 5: prune.

At this stage the parse-fragments may contain dangling edges and nodes, which
ought to be removed, as shown in the figure. Also, the parse-fragments may provide
more than one complete parse, due to the direction ambiguity problem mentioned in
section 3. This is certain to be the case for the very first pattern, since every node in
the pattern with 2 hooks can map to a node with the same number of hooks in the
grammar in k! ways; we need to select a particular parse by breaking the symmetry.
We can deal with both problems simultaneously as follows. For each pattern edge es
we must select one edge in g~ 1({e;}) and for each pattern node ny we must select
one node in g~1({nz}). We assign each edge e; in the parse-fragments a real number
p(e1), constrained to lie between 0 and 1, the interpretation being that p(e;) =1 if ey
is selected to be part of the parse, p(e;) = 0 if it is not selected, and 0 < p(ey) < 1 if it
is not yet decided whether it is selected; the nodes n; are also assigned real numbers
p(n1) between 0 and 1. Each p(e;) and p(n1) is given an initial value between 0 and
1 (with random perturbations to break the symmetry), and then we perform gradient
ascent on the objective function

Z(neoJr Z p(e1)>ln<neo+ Z p(el)>

€o e1€f~1({eo}) e1€f~1({eo})

(summing over all edges ey in the grammar), subject to the following constraints:

23

e for every edge es in the pattern, Zeleg_l({es]) p(e1) = 1 (cf step 5.2 below);

o for every hook % in a parse-fragment, >, p(e1) = p(n1), where e; ranges over all
incident edges of 21 and n; is the node to which A is attached (cf steps 5.3-5.5
below).

While this is going on, edges e; in the parse-fragments with p(e;) = 0 are removed, as
are nodes that have a hook with no incident edges (see step 5.6 below). Eventually the
function g becomes injective and the pruning process is finished. The objective function
used above is consistent with that used for splitting and merging (equation (6) in
section 6.1 below), taking ne,+3 -, c¢-1(,}) P(€1) as an estimate of the mean multiplicity
of eg based on past and present values of multiplicity.

Step 6: result.

We should now have a single parse-fragment, with g an isomorphism from the parse-
fragment to the pattern and f a homomorphism from the parse-fragment to the
grammar. Then f og~! is the parse of the pattern. The alternative possibility that all
the parse-fragments have been pruned at step 5, in which case there is no parse.

4.2 Formal statement of the parsing algorithm
The algorithm uses the following notation for assignment statements.

NOTATION.
x : = E means assign the value of the expression E to the variable x;
f(X) : =Y means make the function f map the argument X to the value Y;
fX) := 1L means make the function f undefined for argument X.

The parsing problem is specified as follows. Given a grammar, represented as a
network Ny = (Ny,Hy, Eg,Lgy,Ay,Foy,So,My), and a pattern, represented as a network
P =WNy,Hy,Ey, Ly, Ay, F5, S5, Ms), the task is to find a homomorphism p: P — Nj.

The procedure is to construct an intermediate network A7 = (N1,H{,E{,L{,Aq,
F1,S1,M,), built up out of parse-fragments, and homomorphisms f: N7 — Ny, and
g:N1 — P as in the example above. There is one real parameter, n, used in the
gradient ascent in step 5, for which I adopt the value 0.01.

Step 1: copy edges.

We need to create one parse-fragment for each edge ey € Ey and each edge ey € E9 with
the same label. Each parse-fragment will consist of a single edge; it is mathematically
convenient to represent this edge by the pair (eg,e3). (We may restrict attention to
pairs (eg,e2) where the nodes incident to ey have the same number of hooks as the
nodes incident to eg, since only such parse-fragments can be extended to a parse of
the whole pattern.) The set of all such edges is E;. Formally, this is done as follows.

E; :={(eg,e2)eEy x Ey | Mo(eg) = Ma(ea) A
Ao 1 ({Ao(Foleo))})| = |As 1 ({A2(Fa(e2))})| A
Ao 1({Ao(Soleo))})| = |As~1({A2(S2(e2))})| }

24

L1 L= L2
V(eo,eg)GEl f(e(),ez) =€y g(eo,eg) =€y Ml(eo,eg) Z:Mz(eg)
ViieLy gly):=1 fly):=1

Step 2: copy hooks.

Next we create hooks for each end of every edge e; in E;. It is mathematically
convenient to represent each such hook as a pair (hg,hs), where hy and hs are the
corresponding hooks in the grammar and the pattern, respectively; that is, A is
Fy(f(e1)) or So(f(e1)), and Ay is Fo(g(e1)) or Sa(g(e1)). The set of all such hooks makes
up H;. Formally,

H,:= {(Fo(f(el)),Fg(g(el))) | e1 € Eq } U {(SO(f(el))a Sa(g(e1))) | e1 € £y }
VeicE1 Fi(er) := (Fo(f(er)), Falgler)) Siler) : = (So(f(e1)),Sa(gler))
V(ho,hg)EHl f(ho,hz) I:ho g(ho,hz) I:hz.

Step 3: copy nodes.

Now we create some nodes to attach to the parse-fragments; these will be represented
mathematically as pairs (h1,n2), where h1 € H; and ny € Ny, and will be collected
together in the set N;. First, set Ny := (). Then, for each ns € No, choose one
hocA, 1({ns}) and carry out the following assignments:

Ni:=N; U @ '({h2}) x {ns2})

Vhi Eg‘l({h2}) Ai(hy) :=(hy,ng) f(hy,n2) :=Ao(f(h1) glh1,n2) = na.

Step 4: join. (See figure 8 and accompanying text below.)

Carry out the following sequence of steps repeatedly as many times as possible.
(4.1) Choose hs € Hy such that g=1({hy}) Ndom(A;) = () (if there is no such kg then
step 4 is finished).

(4.2) Define
nodes = g7 1({Ay(ho)}) hooks = g7 1({hs})
newnodes = { (n,h)€nodes x hooks | f(n) = Ay(f(h)) },
¥(n,)€ newnodes Y, 5y = A1~ *({n}) U {h}
oldhooks = A;~Y(nodes) U hooks newhooks = |4
oldedges = F;~(oldhooks) U S1~1(oldhooks)
newedges = 4, ¢ pewnodes F1 (V) US11(Yy)

and carry out the following assignments

N; := (N7 \ nodes) U newnodes
H, :=(H; \ oldhooks) U newhooks
E, :=(E;1\ oldedges) U newedges.

xEnewnodes © X

(4.3) Update the incidence functions and homomorphisms accordingly:
V(n,h)enewnodes f(n,h):=f(n) gn,h):=gh)
Vnenodes f(n):=1 gh):=1
V(x,h)€newhooks Ai(x,h):=x f(x,h):=f(h) g, h):=gh)

25

Vheoldhooks Aq(h):=1 fth)y:=1 gh):=1
V(x,e) e newedges Fi(x,e):= (x,Fi(e)) Silx,e):= (x,S1(e))
Mi(x,e) :=Mi(e) f(x,e):=f(e) glx,e):=gle)
Ve € oldedges Fi(e) := 1 Si(e):= 1 Mq):= 1L fle):= 1L gle):=
1.

Step 5: prune.

Assign initial values as follows:
VeicEq1 pley) : = random(0.99,1.01)/|g~1({g(e1)})|
VeocEy pleg) :=random(0.7,1.4) x (n,, + Zelef,l({eo}) p(er))
where random(a,b) is a random number chosen from a uniform probability distri-
bution on the interval [a,b]. Then repeat the following sequence of steps until g is
injective.
(5.1) Ve1€E1 ple1) := pler) + n(np(fler)) + 1).
(5.2) VeacE5 Ver€g71({ea}) pler) : = max(p(e;) — 3,0)

Y el o ple)) —1
where 5 = max (cace ea) T max ple))—1].

[{e] e g 1({ea}) | ple)) > 0} ercg—1({es})

(5.3) YVhicH;y p(hl) = ZeleFl*1({h1})uS1*1({h1}) ple1)
(54) an ENl p(n1) = (Eh1€A1_1({nl}) p(hl))/|A1_1({n1})|

(5.5) Vn1eN; Vhy GAl_l({nl}) Ve, EFl_l({hl}) U Sl_l({hl})
p(e1) : = max(p(e;) — 6p,,0)

where 0y, =
{(p(hl) —p(m1)/|F1 7 ({h1 D US1 L ({h1})| if p(h1) < p(n1)
(p(h1) — p(n1))/]{e1 eF17 ' ({h1PDUS17Y({h1}) | pler) > 0 }’ if p(h1) > p(n1)

(5.6) Choose an n; €N such that Fh;cA; " ({n}) F171{h1})US11({Ah1}) = 0 and
carry out the following assignments:
N1 L= N1 \ {nl}
H,:=H, \Al_l({n1})
Ei:=E\F AT {ni) UST A {na)
f(ny):= 1 gny):= 1
Vhi€A1 ({n1}) Aihy):=1 fhy):=1 ghy):=1
Ve; € F1 1A '({n D) US1 A1 1({n1}))

Fie1):=1L Sile1):=1L Miey):=1L flep):=1L gley):= L.
Alternatively, if there is no such nq, then choose an e; € E; such that p(e;) =0
(if there is one) and carry out the following assignments:

E,:=E;\{ei}
File1):=1 Siler):=1L Mile)):=1L fle)):=1L gley):= L.

(5.7) YeocEy pleg) : = ne, + Zelef,l({eo}) p(eq).

26

Step 6: result.

If the homomorphism g is a bijection, let p = fog~1: P — Aj: this is the parse of the
pattern. If g is not a bijection then the parse has failed.

This completes the algorithm. See figure 8 for assistance in understanding step 4.
The aim is to combine the parse-fragments on the left of the diagram with all the
parse-fragments on the right; this means attaching all the hooks in the set hooks to
all the nodes in the set nodes in all ways consistent with the grammar, taking copies
where necessary. The set of all such consistent combinations is newnodes, and this
set is inserted in N7, replacing nodes. To each new node x € newnodes we need to
attach copies of the relevant hooks (in Y,) and all their incident edges.

—

g nE\IVHI"ISdeS g

. h,
the pattern: %
/

Figure 8. Step 4 of the parsing algorithm: we combine all the parse-fragments
terminating in nodes with all the parse-fragments terminating in hooks in
all ways consistent with the grammar; newnodes is the resulting set of com-
binations.

4.3 Comments on the computational complexity of parsing

Most of the work in the parsing algorithm is in step 4; the time complexity of this
step can be reduced by carrying out as many as possible of the ‘join’ operations in
parallel. To be precise, if two hooks A9 and A}, in the pattern belong to nodes that are
not neighbours (i.e. have no common incident edge), then the ‘join’ operations on A,
and A, can be executed in parallel. We can partition the nodes of the image grid into
two classes such that no two nodes in the same class are neighbours; then we can
apply ‘join’ operations simultaneously to one hook from every node in one class. Thus
all the ‘join’ operations can be completed in at most six parallel steps, regardless of
the size of the image grid, the pattern, and the grammar.

27

Since the parsing algorithm works by exhaustively exploring all parse-fragments,
it may appear that a very large number of parse-fragments is generated at the ‘copy
edges’ step and the number is multiplied at every ‘join’ operation. However, in reality
the proliferation of parse-fragments is limited tightly by grammatical constraints.
Moreover, there is scope for improving the efficiency of the algorithm by reducing the
number of edges generated at the ‘copy edges’ step. Before generating an edge (eg, e2),
we can check whether, for every edge e;, incident to the same node as ey, there is an
edge e; incident to the same node as ey (on the same side) with the same label and
direction as e;: if the answer is no then there is no need to generate the edge (eo, e2),
since it cannot be extended to a larger parse-fragment. I shall refer to this as the
parsimonious version of the algorithm.

The total size of the parse-fragments at any stage of parsing can be measured
by the number of edges in E;. In practice this number declines monotonically during
step 4, for unambiguous grammars. Table 1 shows the number of E; edges after step 1
and after step 4, for both the original algorithm and the parsimonious version, using
the ‘carpet’ patterns in section 9.5; m and n are the numbers of zigzags horizontally
and vertically. For purposes of comparison, the table also shows the number of edges in
the pattern of each size. Observe that the numbers of E; edges increase in proportion
to the number of pattern edges.

pattern original version parsimonious version

m n| edges | after step 1 after step 4 | after step 1 after step 4
5 5 200 2402 304 519 242
20 20 740 9242 1219 1989 902
40 40| 1460 18362 2439 3949 1782
60 60| 2180 27482 3659 5909 2662
80 80| 2900 36602 4879 7869 3542
100 100| 3620 45722 6099 9829 4422

Table 1. The numbers of edges in the parse-fragments, after step 1 and after
step 4, for two versions of the algorithm, when parsing carpet patterns.

5. Learning by splitting: informal account

We have seen in section 3 that homomorphisms are useful for specifying the parsing
problem without artificial sequentiality. They are also essential to describing the way
the grammar is learned. This section describes the principles of the learning method
informally; the formal algorithm is derived in the next section. Consider the example
in figure 9.

28

A, Ay

H H
r-2
¢———— - - - - v
H

A

]

]

]

\]
\]
\ I

grammars)

image grid

Figure 9. An example of how a grammar is learned, through a sequence of
steps N1, Na, N3, NVy. The homomorphisms p1,ps, p3, ps are parses of a typical
pattern, P; the homomorphisms ry,rs,r3 describe the refinement steps.

The patterns are isosceles right-angled ‘triangles’ consisting of a vertical segment,
a horizontal segment, and a ‘diagonal’ segment made of alternate horizontals and
verticals. These patterns are presented one at a time in the image grid and may
occur at any position and be of any size. The task is to learn a grammar to represent
them. We begin with an initial grammar A7, which is consistent with any pattern
that is a simple closed curve and hence embodies little or no grammatical knowledge.
We proceed to refine the grammar through a sequence of steps, producing Ns, N3, Ny,
the last of which describes the pattern population precisely. Each network A ; is
obtained from A; by node splitting followed by pruning of unwanted edges (see section
3.3).

The parses are represented by homomorphisms p1,ps,ps,ps from the pattern
network P to the grammar networks N7, Ny, N3, Ny respectively. There are also ho-
momorphisms r;: N;. 1 — N; representing the refinement operations, for i = 1,2, 3.
The diagram commutes: that is, p1 = r1 opg, ps = re ops, and p3 = r3 ops. A network
N’ is said to be a refinement of a network N iff there is a homomorphism r: N/ — N/;
if N is a refinement of AV then L(N') C L(N) and GL(N’) C GL(N), since for every

29

parse p’: P — N’ there is a parse rop’: P — N.

Now we can restate the learning problem as follows: given an initial network N7,
find a sequence of refinements N7 <= ANy < Nz < ... 21 N, such that GL(N,)
equals the pattern population. The initial network N7 is defined as follows. If the
patterns being considered have nodes with allowed numbers of hooks ki,ks,...%n
then N7 will consist of m nodes, with kq,ks, ...k, hooks respectively, and with an
edge of every possible label and direction connecting every hook to every other hook.

Proposition 7 of section 3.3 may be used to shed light on the tractability of the
learning problem. Suppose that at some stage of learning we have a grammar network
N and that we ought to refine it, in one or more steps, to a grammar network N’ that
represents the pattern population better, but due to a mistake in the learning process
we actually refine N in one or more steps to another network, A//. The question
is, can we recover from our mistake by refining N to N’ or to some equally good
network? Or is N/ a dead end, from which we cannot escape by further refinements?
Proposition 7 provides us with a canonical way of recovering, namely by refining
N to the pullback network N’’, which is also a refinement of A/. In the learning
process we shall restrict ourselves to simple unambiguous grammar networks whose
generated languages are a superset of the given pattern population. The pullback
grammar N’ will also be simple and unambiguous, and will represent the pattern
population at least as well as N/ and N (by part (d) of the proposition).

This shows that, in principle, learning can proceed directly to a solution by a
sequence of refinements, without need for backtracking in case of error.

In the algorithm to be used in this paper, the refinement steps will all consist of
splitting of a node, or of a larger portion of the network, combined with pruning of
redundant edges produced by the split. The main question is how, given a network
N at some stage of learning, to choose the next refinement step to N’. I have pointed
out that, in general, N’ will generate a smaller language than N and hence embody
more grammatical knowledge. However, this is not the full story. Consider again
the example node-splitting refinement shown in figure 5 in section 3.3. Recall from
section 3.3 that the grammars are stochastic, containing mean multiplicities n, and
n, for each edge e and node v, satisfying equations (1). The mean multiplicities are
related by equations such as

Np="Ny+Ny =Ny +Ny +N; =Ng +Np +Nc+Ng+Ne @

Mp, =Ny, + Ny, =Ny, + Ny, +Nz =Ng, +Np, +Ney .

These equations hold because any pattern node mapping to n must have an incident
edge mapping to either u or v, another edge mapping to one of x,y,z, and a third edge
mapping to one of a,b,c,d,e; and similarly for n,. The mean multiplicities of N are
related to those of N/ by equations such as

ny, +ny =ny, Ny, +ny,_ = ny, N, +Nnn_ =nNp, Ng, =Ng. (3)

+

30

The mean multiplicities for N are derivable from those of A/, but those of N/ contain
extra information. This extra information is new grammatical knowledge represented
in N’ but not in N.

These considerations can be used to choose the next refinement step. Suppose we
have the grammar N, and we wish to choose a node to split, the governing hook, and
the positive and negative indicator edges. We want to choose the split to maximise
the ‘extra information’ produced; this extra information can be understood in terms
of correlations between mapping of edges, as follows.

We have seen that any pattern node mapping to n must have three incident
edges, one of which has a choice between mapping to a, b, ¢, d or e, while another
has to choose between mapping to u or v. The mean multiplicities n,,ny,... record
the frequencies with which each of these choices is made, but they do not record the
correlations between the choices. In the absence of information about correlations
let us assume, by default, that the choices are uncorrelated. On this assumption we
would estimate that, if n is split as in figure 5, we would have

Ny, Ny Np_ Ny Ny, My Np_ny
n’u+ =) n, =) nv+ = T > ny_ =)
np np np np
Ny, =————, Ny = ny, =——, Ny =—, (4)
T s ’ Y+ ’ y
np ny np ny
Ny N, N, _n,
ng, =—— Nz = .
np np

since n,, , for example, is the frequency with which a node has an incident edge
mapping to a, b or ¢ and an edge mapping to u, under p. Now, the refined network
N’ is able to record the actual values for n,.,...n,,. If the actual values agree
with the estimated values, that is, if there really is no correlation, then there is no
point in splitting in this way, since refining N to N’ produces no extra grammatical
knowledge. If the actual values differ markedly from the estimated values then there
is some benefit in the split, as it brings to light statistical grammatical regularities
not observable in A/. The size of the correlation gives a measure of the fissility of n,
i.e. its suitability for splitting. We want to find the way of splitting A/ that maximises
the fissility measure.

Exactly how to define the measure of correlation is not immediately clear. We
want to measure the extent to which the equations (4) are violated, and we need a
measure that makes a fair comparison between different candidate splits on different
nodes involving different numbers of hooks, different numbers of incident edges, and
different magnitudes of mean multiplicities.

A principled and consistent way to do this is to define a numerical objective
function Obj on networks, such that our aim is to maximise Obj(N') while minimising
the complexity of N, as measured by a cost function Cost(N). Then we can define the
fissility of a possible split by

Obj(N") — Obj(N)

Cost(N") — Cost(N)’ 5)

fissility =

31

Fissility should always be non-negative and should be zero when and only when the
equations (4) hold. Defining fissility in this way gives coherence to the whole learning
process, since it means the algorithm is pursing the same goal at each learning step,
namely to maximise the ratio (Obj(N) — Obj(N7))/(Cost(N) — Cost(N7)), where N7 is
the initial network. The Obj and Cost functions will be defined at the start of the
next section.

So far we have considered the simplest possible type of refinement, in which one
node is split into two. It is sometimes desirable to split a larger portion of the network
than a single node. An example of this is given in figure 10, which shows part of a
grammar network A and a corresponding part of a pattern P. When P is parsed
using N, P must have an edge mapping to a or b, followed by zero or more edges
mapping to ¢, then an edge mapping to d or e; this can be written using regular
expression notation as (a|b)c*(d|e). Now suppose that the choice between a and b is
highly correlated with the choice between d and e: that is, the combinations ac*d and
bc*e are much more common than the combinations ac*e and bc*d. Then, to represent
this correlation, we should split the grammar to A" as shown in figure 10. The portion
of NV consisting of node n and edge ¢ has been duplicated as a unit (instead of just
duplicating a single node, as we did in the previous example); A is the governing hook,
a is a positive indicator edge and b a negative indicator edge; the edges d and e are
not part of the portion but they have been duplicated as a consequence of the split.
(If the correlation is perfect then we can prune the new edges d_ and e, as ny_ and
will be zero.)

Ne,

indicator
edges

portion
to be split

P

a

Figure 10. Splitting a portion (n and c¢) of the grammar N to give N’. The
homomorphisms p and p’ are parses of the pattern P using N and N’.

How does the network N determine the fissility of such a split? One way would be
to calculate Obj(N) and Cost(N), carry out the split to N/, and then calculate Obj(N”)

32

and Cost(N’) and apply equation (5). However, it would be computationally expensive
to do this for every possible way of splitting A; we want to evaluate many possible
splits of AV in parallel. So we need a way whereby N can estimate Obj(N’)—0bj(N) and
Cost(N') — Cost(N) without actually performing the split to A/'. Consider the example
in figure 10 again. A pattern arrives and is parsed using N, with a,A,B,B,y,C,d,D,¢
mapping to b,n,c,n,c,n,c,n,e respectively. N has to imagine what the parse would
be if it were split into N’; would y map to ¢, or ¢_, for example? Now, there is only
one possibility for a: it must map to b_. Hence A must map to n_, hence 3 must
map to ¢_, hence B must map to n_, y must map to ¢c_, C must map to n_, d must
map to c_, D must map to n_, and finally € must map to e_. We can record these
conclusions by putting ‘—1’ in the relevant nodes A, B, C, D of the pattern, to indicate
that this part of the pattern maps to the negative copy of the portion in N’. If a had
mapped to a instead of & in N then A,B,B,y,C,d,D, & would have had to map to the
positive copy of the portion in N’, so we would have put ‘+1’ in the nodes A,B,C, D.

The numbers ‘—1’ and ‘41’ express the additional information necessary to turn
a parse using N into a parse using N’. It is helpful to think of these numbers as
two ‘colours’ and to think of the assignment of the +1 numbers as a graph-colouring
problem. The colour at A is determined directly by whether a maps to a or b; then
the colour is propagated along B,y,d to B,C,D. Call the edges B,y,d transparent
because colour can propagate along them from node to node: in general an edge is
called transparent if and only if it is in the portion to be split or is mapped under p
to an edge in the portion (thus, c,B,y, d are transparent, a, b,d, e, a, € are not). Colour
always propagates in a consistent direction: away from the indicator edges. Thus
for example the colour of B arrives through B rather than y. This is specified by
designating one of the hooks of each node in the portion as a governing hook (A in
this case), and the hooks in the pattern that map to a governing hook are also called
governing hooks. Thus, the colour of a pattern node is always obtained through its
governing hook.

By this graph-colouring process A is able to simulate parsing using N’. Each
node and edge in N keeps a record of the mean colour over all nodes or edges mapping
to it, over all patterns. From these mean colours, together with its mean multiplicities
Ng,Mp,Ne, Ng, . .. it can calculate the mean multiplicities n,,,ny_,nc,,nq,,... for N’
and thereby calculate Obj(N’) — Obj(N) and Cost(N') — Cost(N).

The full details of this algorithm are derived formally in the next section. I should
like to stress three aspects of this process here:

e it enables the fissility of the split from N to A’ to be calculated without actually
carrying out the split;

e it only requires a modest amount of extra computation (the propagation of colours
in the pattern, the updating of mean colours in) in addition to the parsing that
N has to do anyway;

o fissility values for many possible splits can be calculated in parallel and hence
the best N’ can be found with a minimum of searching.

33

6. Derivation of the splitting algorithm

In this section the informal discussion of splitting in the previous section is turned into
a precise algorithm, called Choose-Split, by which a grammar network N determines
the best way of splitting. A summary of the Choose-Split algorithm is given at the
end of this section. It has to determine the portion of the grammar to be split, the
positive and negative indicator edges, and the governing hooks for all nodes in the
portion.

6.1 Global objective and cost functions

The learning process is guided by an objective function and a cost function. For any
grammar network N' = (N,H,E,L,A,F,S,M), we define

Obj(N) => n.lnn, — Y (k, — DnyInn,

eckE neN (6)
Cost(N) = = (ky — Dy Inn,.
neN

where n, and n, are the mean multiplicities defined in equations (1) of section 3.3,
and k, is |[A~1({n})|, the number of hooks of n. We adopt the usual convention that
01ln 0 = 0. Values of the objective and cost functions are usually negative, but this is
of no significance since only differences in their values matter. The learning process
seeks to refine the initial network A; into a network N that maximises the ratio

Obj(N) — Obj(N7)
Cost(N') — Cost(N7)’

This is done by maximising the fissility ratio (see equation (5) in the previous section)
at each refinement step. The justification for these definitions is that they lead to
splitting criteria that conform to the qualitative arguments in the previous section.
(As a matter of interest, it can be shown that, in the case of string or tree patterns,
—O0bj(N) is the entropy of the stochastic language generated by N .)

The values n, and n, can be stored in the grammar network at the edge e and the
node n, respectively, and calculated by a fading average of the observed multiplicities,
lp~1({e})| and |p~1({n})|; that is to say, whenever a pattern arrives and has been
parsed, n, and n, are updated by the following rule

VecE n,:=n.+e(p t{e})| —n.)

1 (7)
VneN n,:=n,+e(p ({n})|—ny,)

where ¢ is a small positive constant. This is done in step 2.6 of the Choose-Split
algorithm (see the end of this section).

34

6.2 Formal definition of splitting

To define the splitting operation we need to introduce a little more notation. It is
natural to speak of an edge as having two ‘ends’ and to consider an edge-end as an
object in its own right. For example, in section 5 I spoke of ‘indicator edges’, but it
would be more accurate to speak of ‘indicator edge-ends’. Mathematically, an edge-
end is represented as a pair (e, h), where e is the edge and 4 is the hook to which the
end is attached. Formally, an edge-end is a member of the set

EE={(e,h) e ExH|h=F)vVh=S8()}={(,F)|ecE}U{(e,S()) |ecE}.

Define a projection function m: EE — H by V(e,h) € EE m(e,h) = h. Given a homo-
morphism f: N7 — MN; between two networks, we can consider it also to include
a mapping f:EE; — EE; between their respective sets of edge-ends, defined by
V(e,h) € EE: f(e,h) = (f(e),f(h)).

The portion of the network that is to be split is identified by specifying the
nodes to be split, the governing hooks, the transparent edges, and the positive
and negative indicator edge-ends. Formally, define a portion P of N as a quintu-
ple (Np,Hp,Ep,I;',I,"), where Np CN, Hp CH, Ep CE, I}' CEE, I;' C EE, such
that

for all eec Ep, A(F(e)) € Np, A(S(e)) € Np, and either F(e) € Hp or S(e) € Hp;

Al|g, is a bijection from Hp to Np;

(Np, Ep), considered as a graph, is connected;
I;'nI;t =0, and If' UI,! = Ip, where Ip = {(e,h) € EE |e ¢ Ep Ah € Hp}.

Observe that every node in Np must have a unique governing hook and every trans-
parent edge must have a governing hook at one end; Ip is the set of all indicator
edge-ends.

Now, the task is to define what it means to refine A by splitting the portion
(Np,Hp,Ep, I, 151). 1 shall define a split network N = (N',H',E',L’,A’,F',S', M),
which is an isomorphic copy of AN except where nodes, hooks and edges have been
split, and a homomorphism r: N/ — N specifying the refinement relation between N’
and N. Let

N' =Np x {—1,+1} U (N \Np) x {0}

H =A"Y(Np) x {-1,+1} U (H\A~1(Np)) x {0}

E' ={(e,c,c)|ec Ep Nce{-1,+1}} U

{(e,c,d)|e ¢ E\Ep Nc € Kl(e,F(e)) Nd € K(e,S(e)) }

{c} if (e,h) € I§, for ¢ = +1
where Y(e,h)e EE Kl(e,h) = {—-1,+1} if (e,h) ¢ Ip and A(h) € Np
{0} if A(h) ¢ Np

L' =L
V(n,c)eN' r(n,c)=n
Y(h,c)eH' A'(h,c)=(A(h),c) r(h,c)=nh

35

V(e,c,d)eE" F'(e,c,d) = (F(e),c) S'(e,c,d)=(S(e),d)
Vie,e,d)cE' M'(e,c,d) =M(e) r(e,c,d)=c¢e
VieLl' r()=1.

Thus each node n in the portion is split into two nodes, (n, —1) and (n, +1), and each
of its hooks is similarly split. For every other node n in N there is only one node (n, 0)
in N’. For every edge e in NV, going from hook A1 to hook A, the corresponding edges
in N’ are of the form (e,c,d), going from the hook (h1,c) to the hook (hs,d), where
the numbers c,d are colours +1, or 0 if the hook is not split. There may be one, two
or four edges (e,c,d), depending on whether e is in the portion, whether e’s incident
nodes are in the portion, and whether either end of ¢ is an indicator edge-end.

If \V is simple then so is A/, If A/ is unambiguous then N’ will usually be as well.
In what follows I shall assume that /' and N’ are simple and unambiguous (I shall
comment on the exceptional case where splitting introduces ambiguity in section 6.8
below).

The mean multiplicities of A/' are defined analogously to those of N:

Ve'eE" n, = Expp |p'_1({€/})\,
vn'eN' n, =Exp, [p’t({n'}),

where p’ is the unique parse p’: P — N’. Note that, for all neN and ecE,
ne = Z Nes, np, = Z Ry, (8)

e’er—1({e}) n’er—1({n})

which is a generalisation of equations (3) in section 5.

6.3 The effect of a split on the objective and cost functions

Splitting N as specified above produces a change in the objective function, (6), of
AObj = Obj(N") — Obj(N)
_ In Nece) In Necd) k ~1 In na, c)
Z n'(ecc) + Z n(ecd) Z ()n'(n c) n,

ecEp e ecE\Ep neNp
ce{—1,+1} ceK(e,F(e)) ce{-1,+1}
decK(e,S(e))

Call the summations on the right-hand side Term 1, Term 2 and Term 3; I shall take
these terms in reverse order and consider how they can be computed from information
available in V.

Term 3. At each node n€N we can define a mean colour m, by

— 1 — (n(n,+1) - n’(n,—l))/nn if n € Np,
Mp ="~ Z Clne) = { 0 if n ¢ Np. ©)

np
¢ such that (n,c)eN’

36

Note that, for any n € Np, np, 11) =n 1i2’”". Now, if in Term 3 we hold n fixed and

evaluate the sum over ¢, we obtain

> (b — DngoIn Z”’ (Bn, — DnnAmy),

ce{—1,+1}

where the function A:[-1,1] — R is defined by Vx € [-1,1] A(x) = H=In 1F= +

1—x 1—x
5% In 5%,

Term 2 can be decomposed into three pieces, which I shall call Term 2.1, Term 2.2
and Term 2.3:

n(e c,d) Nec,e) Ne,e,d)
Z n'(e c d) In - Z n(e c o) In e Z n(e,o,d) In ;. + Z Re

e

eEE\Ep eEE\Ep eGE\Ep eGE\Ep
c€Kl(e,F(e)) ccKle,F(e) dcK(e,S(e))
deK(e,S(e))
where, for any e € E, any ¢ € K(e, F(e)), and any d € K(e, S(e)),
Nece) = Z Nec,d)s Ne,0d) = Z Ne.cd)>
d such that (e,c,d)cE’ ¢ such that (e,c,d)€E’
Reecd)e
R, = Z Ny 1N o
c¢,d such that (e,c,d)cE’ (e,c,0)™(e,0,d)
Note that ZcEK(e,F(e)) Nece) = Ne = ZdeK(e,S(e)) Ne,0,d)-
Term 2.1. Define a mean colour m; for each edge-end i = (e, k) by
1 IO
me = J 7e ZcEK(e,F(e)) Cleee 1f 1 =(e,Fle)), (10)
i=93 1 e .
e ZdGK(e,S(e)) dn(e,o,d) if i = (e, S(e));

for convenience I shall also use the notation n;,
n; =n., wherei =1 (e, h).

Note that, for any node n and hook A with A(h) = n,

N, = Z n;, n,m, = Z n;,m;, (11)

iem1({h}) iem1({n})

which conveys the same information as equations (2) in the example in section 5.
Now, for an edge-end i = (e, F(e)), with e € E \ Ep, we can evaluate the partial
sum over ¢ in Term 2.1, holding e fixed, by

Z Neco) 1N Mece) _ { ni\(@m;) if A(F(e)) € Np,

ccK(e,F(e)) e 0 if A(F(e)) ¢ Np.

37

Term 2.2. Similarly, for an edge-end i = (e, S(e)), with e € E\ Ep, we can evaluate the
partial sum over d in Term 2.2, holding e fixed, by

Y neesln n(«;.,d) - { ni\(m;) if A(S(e)) € Np,

dcK(e,S(e)) 0 if A(S(e)) ¢ Np.

Term 2.3. The term R, is always non-negative on account of the following standard
property of the In function.

PROPOSITION 8. If Vae{1,...N} ps,qq > 0 and Eév:lpa = Zév:l qq then
N
Zpd 1n& Z 07
a1 qa

with equality iff Va py = qq.

The term R, measures the correlation between the two colours c¢,d in ng g4 it
vanishes when and only when n(. 4) = N c.e)e,0.4)/7e for all c,d. The term R, can be
non-zero only for an edge e that is split into four edges (e,c,d), where ¢,d € {—1, +1};
this implies that the edge has both its incident nodes, A(F(e)) and A(S(e)), in the
portion but is itself outside the portion. Such an edge is called a re-entrant edge, and
R, is called the re-entrant correction.

Term 1. For an edge e € Ep we have the same m,; value for both its ends (that is,
M Fe) = MesSe))- Thus we can evaluate the partial sum over ¢ in Term 1, holding e
fixed, by

n
Z Niece I (;’C’C) = n;\(m;)
ce{—-1,+1} €
where i is either end of e.
We can combine Terms 2.1, 2.2 and 1 into a single expression,

Z nj/\(mj)

JE€Jp

where
Jp={(e,h) cEE |h € A"Y(Np) \ Hp }.

We need to check that this expression counts the correct n;/A(m;) values. For an edge
e in Ep, n;/\(m;) is counted for one of the ends of e, as required, since one end of e
will be attached to a governing hook and the other will not be. For any other edge,
the ends will be counted iff they are attached to nodes in Np, as required — with the
exception of indicator edge-ends i; these are omitted from the sum, but this makes no
difference since, for such an i, K(i) is {—1} or {+1} and hence m; = +1 and A(m,;) = 0.

Gathering together these simplifications, the total change in the objective function
0bj due to the split is

AObj = > niAm) — > (ky — DnyAma) + > Re.

jGJp nENp eEE\Ep

38

The m; and m, values are based on information locally available at j and n, so the
network is able to calculate the first two terms in this expression. It is not able to
calculate the re-entrant corrections R,, so it takes them as zero. Thus the network
estimates AObj by computing

UP) =Y nf\Nmj) = Y (kn — DraNimy,)

J€Jp ncNp

-y ¥ S mAm) — Amy)).

nENp heA-1({n})\Hp jem1({h})

(12)

In general, U(P) < AObj, with equality iff all the re-entrant corrections are 0. Thus
U(P) measures the increase in the objective function Obj guaranteed by local infor-
mation, neglecting any further increase due to correlations between the colours at
opposite ends of the re-entrant edges.

PROPOSITION 9. U(P) > 0, with equality iff VjedJp m; = Ma(r))-

Proof. For any n € Np and any h € A~'({n}) \ Hp we have, using (11),

Ay 1dm, 1dm
E: nj=g~ =NMn—g = E: nj=g—-

jem1({h}) Jem1({n})
Therefore,
S nAGmy) — Aimy)
Jjem1({n})
B (lmiy o 14my 14my, .. my, | 1-myy o 1-mp 1omy, 1., 1-my
= Z nj(—g In =g — Fge In Hgt 4 SR In = — 2o In S)
Jjem1({nr})
o (14m; 1+m; 1-m; 1-m;
= Z n; (5 In 0 + 2]1n1—mi)
Jjem1({n})

which is non-negative by proposition 8, and is zero iff Vje n'({}) m; = m,. Hence
the proposition follows from (12). |

The change in the cost function, (6), can be calculated exactly from the m, values:

ACost = Cost(N") — Cost(N) = — 3 (kn — Dty In n"l) — V(P)

I‘LGNP
ce{-1,1}

where
V(P) == (kn — Dn,A(my) > 0 (13)
neNp
as in Term 3 above.

We shall take U(P)/V(P) as our estimate of fissility. Proposition 9 shows that
this satisfies the requirements stipulated in section 5: it is always non-negative, and
is zero when and only Vj € Jp mj = myyj), which is analogous to equations (4) in
section 5.

39

6.4 Estimating fissility for several splits in parallel

So far we have just estimated the fissility due to a single split of a portion P. In
reality the network needs to consider many possible portions in parallel and choose
the one with the highest value for U(P)/V(P). Now, the value of U(P)/V(P) depends
only on the mean colours at the nodes of Np and adjacent edge-ends; therefore it
is possible to compute fissilities for two portions in parallel provided they have no
nodes in common. In fact, to make the most of the parallelism the network will
partition itself into portions Pq,...P;, with each node in one portion, and evaluate
UP,)/V(Py),...UP)/V(Py) simultaneously.

These portions are represented in the network by storing real numbers ¢., g, a;
at each e € E, h € H and i € |J'_, Ip,, such that

ok 1
te:{l if e ¢ U'_, Ep, gh:{l ifhe U Hp o) >0 FicUalp
0 otherwise 0 otherwise <0 ifieJ I P !

Thus, t, = 1iff e is a transparent edge of one of the portions, g5 = 1 iff & is a governing
hook, and sgn(a;) gives the sign of each indicator edge-end i (where sgn is the usual
signum function: sgn(x) = 1ifx > 0, sgn(x) = —1 if x < 0, sgn(0) = 0). These numbers
between them determine all the portions Pq,...P;. Let

k k
I=|JIp,={(h) €EE |t,=0ngy=1}, J=|]Jp ={(e,h) cEE|gy=0}.

r=1 r=1

6.5 Propagation of colour

Let P = (N*,H*,E*,L*,A*,F*,S*,M*) be a pattern, let EE* be its set of edge-ends
and m*: EE* — H* be the projection function with V(e*,h*)c EE* m*(e*,h*) = h*. Let
p:P — N be the unique parse of P using the grammar N, and let p’: P — N’ be the
parse of P using the refined grammar N’. Recall from section 5 that N simulates
N’ by assigning colours to the nodes of P. If a node n* € N* maps to p(n*) €¢ N
and is assigned a colour ¢ then this means that, if P were parsed according to N’
rather than N, then n* would map to p’(n*) = (p(n*), c) instead of p(n*). Similarly, a
hook h* € H*, presently mapping to p(h*), would map to p’(h*) = (p(h*),c), where c is
the colour of the node A*(h*); and an edge e* € E* would map to p’(e*) = (p(e*),c,d),
where ¢ and d are the colours of the nodes A*(F*(e*)) and A*(S*(e*)) respectively.
Hence we have

V(n,0)EN’ nge =Expp [p''({(n,0)})| = Expp [{n* € N* | p(n*) =n Acy =c}|
Vie,c,d)EE neeq =Expp [{e* €E* |ple*) =e Aca@ ey = C A Cars-e) =d }|
VecE VccK(e,F(e)) nece =Expp [{e* €E* |ple*) =e Acp@iey =}
VecE VdcK(e,S(€)) neeq =Expp [{e" € E* | ple*) =e Acprs ey =d }|

40

where c,- is the colour assigned to node n* € N*. Hence, by (10),

1 1
Ve€E mepen = Y Cneee = -~ Expp (> CA*(F*(e*)))
€ ceK(e,F(e)) ¢ e*ep—1({e})
1 1
Ve€E mesen = Y. dneea = — Expp (> CA*(S*(e*)))
¢ deK(e,S(e) ¢ exep—1({e})
which can be rewritten as
. 1
\V/JGEE mJ = n— Epr (Z CA*(T[*(/'*))>' (14)
J J*ep=1{i
Similarly, by (9),
1
Y = — x|,
neN m, - Expp (Z Cn) (15)
n*ep~1({n})

This confirms the interpretation of m; and m, as mean colours, taken over all pattern
nodes mapping to j or n and over all patterns.

The colours c,- of the nodes n* € N* are calculated by a process of propagation
through the pattern, starting at the indicator edge-ends and proceeding through the
transparent edges and governing hooks. This process can be defined formally as
follows. Define the set

E ={(ni,hi,e" hs,n3) | e" € E* N {F*(e*),S"(e")} = {h],h5}
NA*(R]) =n] NA™(hy) = ng A gpay =11
For any nodes nj,n; in P, let I',: ,. = 1 if there is a path through P by which colour

can propagate from nj to nj, and an,n; = 0 otherwise. Formally, an,n; is defined
recursively by

r 1 if nj = n3, (16)
"0t T | tpen nrne if 0} #ng and (n*,h*,e*,h3,n3) € €,
or, equivalently,
r 1 if n] =n3, an
M T 2, ke, e nnee toen U nsny 1 0y # ng,

where the summation is taken over all quintuples (nj,2},e*,2*,n*) in £ whose first
component equals the given node nj.
Then colour can be defined by

Cpx = Z Z rA*(n*(i*)),n* sgn(ai). (18)

iel i*ep—1({i})

Colour is calculated, from (16), by iterating the following operation for every (n},A],
e*,hy,n3)cé:

n2-

o {Sgn(a(p(e*),p(h;))) if tper) = 0, (19)

41

(This is done in step 2.11 of the Choose-Split algorithm: see the end of this section.)
Next, for any i € I and j € J, define

ng=Expp () Y. Taenasaegn)- (20)

i*ep~1({i}) jrep~H{D

Then, from (14), (18) and (20),

. 1 1
/ Jrep=1qh 7 iel

6.6 Choosing the a; values

Suppose that values of ¢, and g5, have been chosen (which amounts to choosing Np,
Ep and Hp for each portion); then the set of indicator edge-ends Ip is determined for
each portion, but the a; values (specifying which indicator edge-ends are positive and
which are negative) have not yet been chosen.

We are seeking values for a; for each edge-end i € I to maximise U(P,)/V(P,) for
each portion P,. It is simpler, and in practice sufficient, to maximise U(P,) for each
portion. This is equivalent to maximising the total U,

k
Utotal = Y _UP) =Y njANmp) — > " (kn — DnaAimy), (22)
r=1 JEJ neN

using (12). Consider an alternative formulation of this problem: consider the problem
of maximising

1 . 14 1—m: 1_m
U =Y (T S —) 23)
= 2 L+ Mawg) 2 1 = Maqgy

using new parameters m;, m,, which are free to vary in the interval [-1, 1], subject to

the constraint n,m, = ;. 1(ny) njM; for each hook 2 with g, = 0 and A(h) = n. This

optimisation problem can be solved by applying the following two steps alternately:

(i) keeping the a; parameters fixed, find the values for m; and m, that maximise U’;
(ii) keeping the m;, m, parameters fixed, find the values for a; that maximise U’.

Step (i) is easily performed. By (11), we have

1 + mj 1 + mj
D Wi T D My
jem1({h}) jem1({n})

for any hook A with g, = 0 and A(h) = n, so we can apply proposition 8, which shows
that

1 + mj 1 + mj
. >, m—g gy ,
Jjem1({nr})

42

is maximised by taking (1+m;)/(1+m,) = (1£m;)/(1+m,), i.e. mj = m; and m,, = m,,.
Therefore U’ is maximised by taking m; = m; for all j € J, and m,, = m,, for all n € N.
The maximum so obtained is

14+m; 14+m; 1—m; 1—m;
U/ = Zn](2 J 11’1 1 J + 2 J 111 1 J) = Utotal-
ic7 + M) — MA(()))

This shows that the problem of maximising U’ (with parameters m;, m, free to vary)
is equivalent to the problem of maximising Ujya (With m; and m, eliminated), so this
formulation of the problem is equivalent to the previous one.

Step (ii) is performed as follows. Consider the effect of changing a single value
of a; from negative to positive. The difference this makes to m;, A;m; (defined as the
value of m; with a; positive minus the value of m; with a; negative), is 2n;;/n;, by
(21). Hence, from (23), the difference this makes to U’ is

AU = ZnJAL;nJ (1 1+ m; —In i

n — —
= 1 4+ Maq) 1 — maqyg)
=Y nj(Aymp)(tanh (7)) — tanh ™ (May))
jed
= Z 2n;;(tanh ™ '(7;) — tanh ™ (A j)))
jed
— Epr {2 Z Z Z FA*(T[*(i*)),A*(n*(j*))(tanh_l(mj) — tanh_l(mA(n(]’))))}

JeJ i*ep—1({i}) j*ep~1({i})

=Expp {2 D Spqraon}
i*ep—1({i})

where, for any node n* € N*,

6n* = Z Z rn*,A*(n*(j*))(tanh_l(mj) — tanh_l(mA(n@))). (24)
Jjed jrep~1{j}h
The 3,- values can be computed, from (17), using the following recurrence relation

VniEN* &= > (1—gu) Y (tanh (M) — tanh ™ (Fye:)
hreA*—1({nz}) jrem =1}

+ Y toer)On;

(nf,hf,e*,h;,n;)eg

(25)

where the second summation is taken over every quintuple in £ whose first component
equals the given node nj. This recurrence relation shows that the 6 values can be
calculated by a spreading-activation process flowing backwards (i.e. in the opposite
direction to colour) from nodes in A*(*(p~1(J))) to nodes in A*(m*(p—1(I))). (This is
done in step 2.8 of the algorithm below.)

Now, if we set a; = %AiU " (where the purpose of the factor of % is merely to get
rid of the factor of 2 in the formula for A;U’) then the a; will be positive or negative

43

as required to maximise U’. This procedure can be carried out simultaneously for
each i € I, the result being a set of values for a; that maximises U’, as required.

In summary, this procedure requires the network to store values of a; for every
i € I, mj for every j € J, and m, for every node n. These values are updated for every
pattern so as to maintain the conditions

a; = EXprP { Z 6A*(T[*(l*))}
i*ep~1{i})

B 1
m; = m; = - Expp { > g} (26)
J Jep~1{jp

1
mn:mn:n—nExpp { Z Cn+ }-
n*ep~1({n})
These updates may be carried out in parallel (rather than alternately, as I said above),
since they only involve incremental changes for each pattern. From now on I shall
simply write ‘m;’ as ‘m;’ and ‘m,’ as ‘m,’. The precise update rules are shown at
steps 2.9 and 2.12 in the algorithm below.

One problem that occurs in practice with this process is that, after the first few
patterns, all the a; values in a portion can become positive, or all negative, in which
case all the m; values will go to +1, or all to —1, and the network is then stuck in
this state. A good way of preventing this is to enforce the normalisation condition

Zai =0 (27)
iclp
for each portion P. This condition ought to hold approximately anyway, since from
(26) we have

Y ai=Expp { DY Spqraon}

i€lp i*ep—1(Ip)
= Expp { Z (tanh ™' (M) — tanh ™ (M- e o)) }
Jj*ep~UJp)
= Z nj(tanh_l(mj) - tanh_l(mA(n(j))))
JEJp

which vanishes, by (11), if we approximate tanh ! x by x.
The normalisation condition (27) is enforced as follows. For each node n € N

calculate
Up := > a= Y & Yy (1-t)a

iel N1 A~1({n})) heA-1({n}) iem1({R})
Vo 1= > ni= > & »y, (-tin
ieInm 1 A-1({n}) heA-1({n}) iemn1({h})
(thus giving > Un =3 ;@i and >y Vi = 3, p ni)- Next, spread the U, and
V., values evenly throughout the nodes of the portion. Then all nodes n in a single
portion P will have common values U, = (3 ;. @))/|Np| and V, = (3 ;. ni)/|Np|,
so we subtract n;U,/V, from each a;, thus making (27) true. See step 2.10 of the
Choose-Split algorithm for the precise details.

(28)

44

6.7 Choosing the t, and g values

I have described how a; values are found, assuming ¢, and g; values have already been
determined. The problem of choosing the ¢, and g;, values is much harder. There are
hardly any systematic relationships between the fissilities for different assignments
of t, and g5 values; there is no way to find out whether a particular assignment
produces a high fissility except by trying it. Hence the algorithm proceeds as follows.

First, a random assignment of ¢, and g; values is chosen (see steps 2.1 and 2.2 of
the Choose-Split algorithm). This must be done in a way consistent with the definition
of a portion: each node must have one governing hook, and each transparent edge
must have a governing hook at one end. Step 2.3 of the algorithm enforces these
conditions.

Next, the algorithm chooses a; values, as in section 6.6 above, and calculates the
resulting mean colours and fissilities of the portions. A good estimate of fissility can
be obtained quickly from as few as 10 patterns.

Next, all portions with low fissility are recycled: that is, their ¢, and g; values
are reset in a random but consistent way, producing a new partitioning of the network
into portions. Then the process is repeated. Most choices of ¢, and g; produce very
low fissilities and are quickly changed, so the algorithm can examine a large number
of possibilities quickly. If portion has a high fissility then it is allowed to persist for
a certain number, MaxAge, of patterns, to produce an accurate measure of fissility,
before being recycled.

We are primarily interested in small portions, involving no more than three or
four nodes and edges, so this process of randomly varying ¢, and g;, is a feasible search
strategy (see the examples in section 9).

During this process, the following records are kept.

At each node n € N, age, records the age of the current portion containing n,
i.e. the number of patterns that have been dealt with since this portion was formed.
These values are set to 0 in step 1 of the Choose-Split algorithm and incremented at
step 2.7 every time a pattern is processed. Also, every time we decide to recycle a
portion, the age, values are reset to 0 throughout the portion (steps 2.16-2.18); the
actual recycling is then carried out in steps 2.1-2.3.

At each node n, fissility, records the estimated fissility of the current portion,
P, containing n. It is calculated, from (12) and (13), by a similar process to the
normalisation of the a; parameters in section 6.6: first we calculate

Up:i= >, (—gw) Y, nAm)—A0my)
heA-1({n}) jem 1) (29)

V, := —(k, — Dn,Nim,)

at each n, giving > . U, = U(P) and }_ . V, = V(P); then we spread the U, and
V, values evenly throughout the portion; then, at each n, U,/V, = U(P)/V(P), the
estimated fissility of the portion (see step 2.14).

45

Also, at each node n, best, records the highest fissility seen so far in any portion
containing n. Every time a portion survives to the maximum age, MaxAge, its fissility
is compared with best,, and best,, is updated if necessary (step 2.16.1).

At each edge e € E, bestt, records the best value of £, found so far, i.e. the one
used in the most fissile portion containing the nodes at either end of e. Likewise, at
each hook h € H, bestg; records the best value of g, found so far, i.e. the one used in
the most fissile portion containing the node of 4. At each edge-end i, besta; records
the best a; so far. The bestt,, bestg, and besta; values are updated at the same time
as the best, values (step 2.16.1).

When this process has been continued over a sufficiently large number of patterns,
the best set of portions can be read off from the bestt., bestg;, and besta; values. From
these, the best portion is selected as the one where the best, values are highest. (See
step 3.)

There is one final way in which the efficiency of this search process can be
improved. Many portions considered are unnecessarily large: that is, they contain
edges that could be removed without any reduction in fissility. To state this as a
precise criterion: a value of £, = 1 should always be changed to 0 if this can be done
without reducing Ujta = Zle U(P,;). We can estimate the effect that changing ¢,
has on Uyya by calculating 0Uya/0t.. For this, we have to think of ¢, temporarily
as a parameter that can vary continuously between 0 and 1, and rewrite the rule for
colour propagation, (19), as

Cny 1= (1 = tper)) $8NAp(e), pthg)) T Epter) Cns (30)
for every (n},h},e*,h;,n5)c&. Now, let e be an edge in E with t, = 1, and let j = (e, h1)

and i = (e, hg) be its edge-ends, with g5, = 0 and g5, = 1. Then, from (22), (14) and
(15),

ag;"tal > njtanh™'(m; 8mj —) (kn — Dy tanh_l(mn)agz L
€ JjeJ neN €
80 * * (7%
_ —1, A* (1 (7))
= Ztanh (m;) Expp { Z | ot }
= Jrep~{ih
= Yk - Dtanh) Expp { Y ‘9"’;*}
neN nrep~i{n}) ~°
OCp= (e i+
= Expp {Z tanh™'(m;)) %
jed Jep~1{h ¢
— Y ke~ Dtanh M) Y 85:*}
neN n*ep=i({n}) ¢
— — aC * * (7%
= EXpP {Z (tanh 1(m]) — tanh 1(mA(n(]-)))) Z %}
jed Fep@ip

46

Now, we can evaluate Jc,-/0t., for any node n* € N*, by the following argument.
Changing ¢, will change the colour that flows through each edge e* € p~'({e}). In
fact, for each (n],h},e*,h;,n;) € £ such that p(e*) = e, the colour arriving at n; is
changed, with a multiplying factor of ¢,- —sgn(a;), by (30). Each of these changes will
have an effect on c,- iff there is a path from n; to n*. Hence

oec,

e > (cn: — sgn@) T nz n-.
¢ (ny,hy,e",hy,ny)EE

such that p(e*)=e

This allows us to complete our calculation:

0 Utotal
Ot,

= Exp, {Z (tanh™(m;) — tanh ™' (macy))
JjedJ

x) > (Cns —Sgn(ai))rn;,A*(n*(j*»}

Jrep~{j}) (i, hi,e",h5,n;)eE
such that p(e™)=e

=Expp { Y (e —sgn(@)y;) (31)

(nr hi,e* by nl)EE

such that p(e*)=e
using (24). In this expression, i is the edge-end that would become an indicator if we
changed ¢, from 1 to 0. We assume its sign, sgn(a;), would be the same as that of the
mean colour presently flowing through the edges e* € p~1({e}), which is m;. Hence

we take sgn(a;) to be equal to sgn(m;).
The value of this partial derivative, OUyota1/ 0%, is calculated and stored as 6, (see
step 2.13 of the Choose-Split algorithm below). If an edge e with ¢, = 1 has a low

value of 6, then ¢, is set to 0 in step 2.19, thus simplifying the portion.

6.8 Checking for ambiguity

The splitting process normally produces unambiguous grammar networks. If the
grammar N is unambiguous and we choose a portion in which definite colours +1
can be assigned to all pattern nodes, then when we split the portion the grammar
will remain unambiguous. However, it is possible that for some portions and some
patterns, some nodes n* receive no colour because there is no edge-end i* € p~1(I)
with I gy, n = 1 (see equation (18)). In this case if we were to split the portion
the grammar network would become ambiguous. Portions of this sort are rare and
can be detected by the presence of a zero colour. Step 2.15 carries out this check:
whenever a pattern node has a colour of 0 the corresponding portion of A is given an
age of 0, which causes it to be recycled next time we reach step 2.1.

6.9 Summary of the Choose-Split algorithm

The argument above describes how to determine the best way to split the network.
This procedure is carried out by the Choose-Split algorithm, as follows.

47

In the grammar network, N, the following real numbers are stored: n,,m,,age,,
best,,U,,V,, fissility, at each node n; g3, bestg;,, at each hook k; n,,t,., bestt., 0, at each
edge e; and m;,a;, besta; at each edge-end i. For each pattern the real numbers c,-,
0.+ are stored at each node n* of the pattern. There are five global parameters, for
which I use the following values: ¢ = 0.001,© = 0.1, NumPatterns = 1000, MaxAge =
150, CheckInterval = 10. The algorithm is as follows.

(1) Set the initial values of the parameters:
Vec E bestt, : =0
VicEE besta; := 0
VheH bestg, : =0
VYneN best, :=0, age, := 0.

(2) Repeat the following sequence of steps NumPatterns times.

(2.1) For each ecE, if ageare) = 0 and ages(se) = 0 then
set . := 0 or 1, randomly, with equal probability; and set 6, : = 0.

(2.2) For each node n, if age, = 0 then
choose one hook %2 in A~1({n}) randomly (with equal probability) and set
gn :=1; set g5 : = 0 for the other hooks 2 € A~1({n});
vhe A~1({n}) Vien '({h}) a; : =0, m; : = random(—0.1,0.1);
VheATI({n}) Vienw \({hY) m; 1= mi — o= 30 aqny i
m, :=0;
where random(a,b) is a random number chosen from a uniform proba-
bility distribution over the interval [a, b].

(2.3) Reconcile the ¢, values with the g, values by repeating the following two
operations, in a random order, as many times as possible.
(2.3.1) Select randomly an edge e with ¢, = 1 and gp,) = 0 = gg(), choose
h := F(e) or S(e) randomly, set g, : = 1, and set g5, : = 0 for all hooks A’
other than A in A~1({A(R)}).
(2.3.2) Select randomly an edge e with ¢, = 1 and gp,) = 1 = gg(), choose
h := F(e) or S(e) randomly, set g, : = 0, and set gj+ : = 1 for one randomly
chosen hook A’ other than A in A=1({A(h)}).
(2.4) Receive a pattern P = (N*,H*,E*,L*,A*, F*,S*,M*) from the environment.
(2.5) Parse the pattern, using the parsing algorithm in section 4, giving the homo-
morphism p: P — N.
(2.6) Update the n values:

VecE n,:=n,+e(pt{e})| —n.)

cf (7)
VneEN n, :=n,+e(pt{n})| —n,)

(2.7) Update the age values: VneN age, := age, + 1.
(2.8) Propagate the & values through the pattern, as follows.

48

(2.8.1) For each n*eN*, §,- :=0.
(2.8.2) Repeat the following operation at each njcN* until convergence

Opy 1= Z (1—gn:) Z(tanh_l(mp(,-ik))—tanh_l(mp(ni«))) + Z tp(e=)On;

hreA<—1({n:}) jrem—1({hr}) (n*,h¥,e*,hs,n})EE
where the second summation is over all quintuples in £ whose first
element equals the given node nj (cf (25)).
(2.9) For every i €1,

1
a;:=a; + —— Z 6A*(T[*(i*)) — ai> cf (26)
AECATD N p iy

(2.10) Normalise the a; values (i.e. enforce equation (27)), as follows.
(2.10.1) For every node n € N,

U, = Z gn Z 1-¢)a;

heA-1({n}) iem1({h})

Vn = Z 8h Z (1_te)ni

heA—-1({n}) iem1({h})

cf (28)

(2.10.2) Repeat the following at every edge e € E with ¢, = 1 until convergence:
1 1
Unl, Un2 L= §(Un1 + Unz) ana Vng ‘= §(Vn1 + Vnz)

where ny = A(F(e)) and ny = A(S(e)).
(2.10.3) For every 1el,a;:=a; —n; UA(T[(i))/VA(T[(i))'

(2.11) Propagate colour through the pattern, as follows.
(2.11.1) For each n*eN*, ¢, : = 0.
(2.11.2) Repeat the following operation until convergence:

sgn(a (e~ « if £,y =0,
i e e o1 { OO0 Hher =0 g
1

(2.12) Update the mean colours:

njageamyy — Dm;j + 2 e cp 145y CA* e G+

Vjed m;:= .

J / njagearyy — D + p~1{j}D) of (26)
n,(age, —)m, + n*ep—1({nt) Cn*
VneN m, := & 2 ip n)
nn(age, — 1)+ [p~1({n})|
where each m; and m,, is limited to the range [-1,1].
(2.13) For every e € E such that t, =1,
1

0,:=0, + ——— Z ((cnf — sgn(m;)) &,; — 6.) cf (31)

age
ECAF) (7 b7 ,e* by ni)ee
such that p(e™)=e

49

where j = (e, h1) is the end of e with g5, = 0.

(2.14) Calculate fissilities, as follows.
(2.14.1) For every node n € N,

Up:i= >, (—gw) Y., nAm)—A0my)
heA=1({n}) jemt{r}) cf (29)
Vo i = —(A72({n})] — DnaAm,).

(2.14.2) Repeat the following at every edge e € E such that ¢, = 1, until conver-
gence:

1 1
Unla U)‘Lg L= §(Un1 + Unz) an, Vnz L= §(Vn1 + Vnz)

where n; = A(F(e)) and ny = A(S(e)).
(2.14.3) For every n € N, fissility, := U, /V,.

(2.15) Check for ambiguity: for every ncN, if, for some n*cp~1({n}), c,~ = 0, then
set age, := 0.
(2.16) For each node neN, if age, = MaxAge then do the following.
(2.16.1) If best, < fissility, then
for every h € A~1({n}), do:
bestgy, : = gn;
for each i = (e, h) € m 1({h}),
if i € I then besta; : = a;;
if best,: < fissility, then bestt, : = t,,
(where {n,n'} = {A(F(e)),A(S(e))});
and set best,: = fissility,
(2.16.2) age, :=0

(2.17) For each node ne N, if age, is a multiple of CheckInterval and if fissility, <
max(0.05, best,, x min(0.95,2 x age, /MaxAge)) then age, : = 0.

(2.18) Spread age values throughout each portion, by executing the following oper-
ation repeatedly at each edge ec E such that #, = 1, until convergence:

agen,,agen, : = min(age,,,agen,)

where n; = A(F(e)) and ngy = A(S(e)).

(2.19) For each edge e € E,
if t, = 1, ageare) is a multiple of CheckInterval, and 6, < O then set
te := 0 and a; : = m;, where j = (e,h1) and i = (e, hy) are the edge-ends of
e, with g, = 1.

(3) Identify the best portion as follows. Consider the graph whose nodes are N and
whose edges are those of E with bestt, = 1, and select the connected component

50

of this graph with the greatest value of best,. Let Np and Ep be the nodes and
edges of this connected component. Let

Hp := {hcA~Y(Np) | bestg, = 1}

Ij':={i=(e,h)cEE |e¢ Ep AN h € Hp A besta; > 0}

I;l :={i=(e,h)eEE |e¢ Ep N h € Hp N\ besta; <0}.
Then the best portion is (Np, Hp, Ep, I51,I57).

7. Merging

Merging is the inverse operation to splitting; a merger is desirable when it simplifies
the grammar N, reducing Cost(N) without reducing Obj(N) appreciably. In section 5
I showed that errors in splitting can be corrected by further splitting (which pro-
duces a refinement of the desired grammar) followed by merging (which simplifies the
grammar to the desired one). In this paper I shall only consider the simplest kind of
merger, in which two nodes are merged into one.

The first task is to define this merging operation formally. Let N' = (N,H,E, L,
A, F,S,M) be the grammar, and assume that it is unambiguous and simple (these
terms were defined in section 3). Let n; and ns be the nodes in N that are to be
merged, and let 5:A~1({n1}) — A~1({n2}) be a bijection specifying how the hooks of
ni are to be merged with the hooks of ns. The merger produces a network N’ with a
homomorphism m: N — N’ such that

vn,n’eN (m(n) =m@') < (n =n' v {n,n'} = {n1,nq})),
Vhy EA—1({”1}) Vho EA_l({nz}) (m(h1) = m(hg) < b(h1) = ho).

We can construct N/ and m satisfying these conditions as follows.
N =N\ {n1}

YneN m(n) = { ng ifn= ’?1
n otherwise

H =H\A'({n{})
VheH' A'(h) = A(h)

_ [(bh) ifAh) =nq
H —
vheH m(h) { h otherwise

E' = {(m(F(e)),m(S(e)),M(e)) |ec E }

V(h*,hT,)eE" F'(h*,hT,1)=h* S'(h*,hT,1)=ht MG Akt =1
Vec E m(e) = (m(F(e)), m(S(e)), M(e))

L' =L VieL m(l) =1.

Finally let N/ = (N',H',E',L’,A’,F’,S’,M’). The network N’ is simple, provided that,
for all 2 in A=({n1}), there is no edge between h and b(h).

The second task is to identify the changes to the objective and cost functions
produced by a merger. Merging uses the same criterion function as splitting, namely

Obj(N) — Obj(N7)
Cost(N) — Cost(N")

cf (5)

o1

The denominator of this ratio is always non-negative (see below). A good merger
will be one where the ratio is close to zero or negative. This ratio is called the
immiscibility (reluctance to merge) of the two nodes, n; and nq, given the bijection
b:A71({n1}) — A~1({nz2}) between their hooks. As with the calculation of fissility
in the splitting algorithm, we should like a way of calculating immiscibility without
actually carrying out the merger; this would allow us to consider all possible mergers
and pick the best one. Hence we need a formula for immiscibility expressed in terms
of \V; this can be obtained as follows. From (6),

Cost(N) — Cost(N') = —(k — Dn,, Inn,, — (k — Dn,, Inn,,
+ (k - 1)(nn1 + nnz)ln(nnl + nnz)
=k -1C (32)

where k& = [A~'({n1})| = [A"1({nz})| and
C = (nnl + nnz)ln(nnl + nnz) — Np, In Np, — Np, In Np, Z 0.

Also,
Obj(N) — Obj(N") =Y “nelnn, — > neInne + (& — 1)C.

eckE e’'ck’
Now, any edge e € E can be identified uniquely by specifying its hooks, F(e) and S(e),
and the edge m(e) it corresponds to in E’; so, for any hooks ~A*, At € H and edge ¢’ € E/,
let us introduce the temporary notation np.j.p+;, defined by nyj.4t; = n., where e is
the unique edge such that m(e) = ¢/, F(e) = h* and S(e) = h', or nyp-1; = 0 if there
is no such edge e. This notation allows us to write

Obj(N) — ObJ(N') = Y nppepiInnppepiy — Y e Inne + (k — 1)C

e'€E’ e’ €k’
h*hteH
Riorp*pt
= > e hT]lnM +(k-1C (33)
e'cE’
h*hteH

since ;. tcp Merh+nt] = Ner- 1f we also introduce the notation npept) = > e Miernont]
and nep-e] = Y _ptcg Merh+ht], W€ can express (33) as

Obj(N) — Obj(N) = Z PISRRUY el LA Ne'h*hi] n Z Rpepry In T Ne'n*ht]

n n 1h*
o e [e’ oh] o e [e'h*e]
h*hteH h* hteH
Ny, Tn
— > AppepnIn —EEE 4 - 1)C
o' cE' Nie/eh 1M e’ h* o]
h*hteH
Niorp+pt Niorp*pt
< Z n[e’h htl In =2 2= le] + Z n[e/h htl In ===—= le] —|—(k)C (34)
, Nierent] , Nieh~e]
e'cE e'cE
h*htecH h*,hTeH

52

using proposition 8 from section 6.3. These two sums over e¢’,2*, AT can be combined
into a simpler expression if we express them in terms of edge-ends. Define two
equivalence relations, ~ and =, on edge-ends of N by

(e1,h1) ~ (eg,hg) < M(e1) = M(ez) A ([F(e1) = h1 A Fleg) = ha A S(er) = S(eg)] V
[S(e1) = hy A S(ez) = hy A Fley) = Fleg)])
(e1,h1) = (e2,h2) < m(hy) =mlhg) A (e1,h1) ~ (ez, ha).

(Note that (e, 1) ~ (eg, ho) is a sufficient condition for (e1, 21) and (es, he) to be merged
by any merger that merges h; and hso; (e1,h1) = (es, hs) is sufficient for (e,h1) and
(e2,hs) to be merged by m.) Then, for any edge-end i = (e,h*), where F(e) = h*,
S(e) = A" and m(e) = ¢/, the term np-p1; is simply n; and np;1 is the sum of n;
over all edge-ends j such that j = i. Similarly if i = (e, "), where F(e) = h*, S(e) = h'
and m(e) = €', then n,;1) is n; and njp-q) is the sum of n; over all j such that j =1i.
Hence (34) simplifies to

n;

Obj(N) — Obj(N') < Y niln

+ (& — 1)C.
icEE =i

The summation here is over EE, the set of all edge-ends of N'. However, the summand
is non-zero only when i is incident to n; or ng, so we may restrict the summation to
these i, giving

: Ve _ ni, _ n;, B
Obj(N) — Obj(N) < Y >, (uIn—"—tn,In——2)+ (k- 1)C

. +n n
hi€A-1({n1}) (11’l2)ERh1,b(h1) “ ‘2 “ ‘2

=k-1DC-) > Ly, (35)

hi€A=1({n1}) G1i2)ERL, b))

Where
Vhi,he€H Rp p, = {(i1,02) | @1) = A1 A Tig) = hg Nig ~ig}
n; n;
Vii,iscEE I; ;, = —-n; In—2— —n; In—2—.
1 2 Ll1,lg 151 nll+nl2 12)] nll+nl2

From this we can obtain an estimate (in fact, an upper bound) on the immiscibility
of n1 and ne. By (35) and (32),

ObjN) — ObjN) _
Cost(N) — Cost(N7) = mnzb

immiscibility =

where
(k - l)C - ZhleAil({nl}) Z(il’iZ)eRhl,b(hl) Iil,iZ

frumd = & —1)C
= k%[Y oa- 2t i€ I”’”) — 1]

C
hl EA*l({nl})

1
ij[> DLusay — 1]
hleAfl({nl})

93

where the non-negative quantity I, 5, is defined as 1 — % Z(il,iz)eRhl,hz Li ;.

We now have a firm theoretical basis for searching for the least-immiscible way of
merging two nodes. We have a cautious estimate I, ,,, 5 of the harm done in merging
ni and ng using the bijection b: it is an upper bound on the true immiscibility, so if
I, n,p is low we can be sure that the true immiscibility is low. We have also analysed
I, »,» into contributions from each pair of merged hooks, I, 5,, where Ay = b(hy),
and even into contributions from pairs of merged edge-ends, I;, ;,, so we can seek the
lowest possible I, », » by trying to make the contributions I, 5, as small as possible.

The algorithm for doing this is called Choose-Merge, and is as follows.

(1) For each node n; € N, do the following step.

(1.1) Identify the nodes ne € N that are potentially mergeable with ni: these are
the ones for which |[A~1({n1})| = |A=1({n2})| and there exist an edge-end i,
incident to n; and an edge-end iy incident to ny such that i; ~ i5. For each
such node ngy, do the following steps.

(1.1.1) Construct a bijection b:A~1({n1}) — A~1({ny}) by taking each hook A; €
A~1({ny}) in turn and doing the following step.
(1.1.1.1) For each hook hy € A~1({n3y}), if he ¢ b(A~'({n1})) and there is no
edge between A, and hg, then do the following steps.
(1.1.1.1.1) Compute
Z(ihiz)GRhl,hz Ii1,i2
C

Ihl,hZ - 1 -

where

n; n;
=-n,In—— —n; In—2—
ni, + ni, ni, + nj,

C = (n,, +n,,)In(n,, +n,,) —n,, Inn, —n,,Inn,,

I;

Li2

(1.1.1.1.2) Ifthis value of I, ;, is the lowest one found so far (for the present
h1), record it at h; (call it Ij,,), and modify the function & so that
it maps h; to hs.

(1.1.2) Calculate

1
Inany = - I L 1
n2b A 1({”1})|_1£16Azl({n1})h |

using the I, values recorded at each hook A;.
(1.1.3) If this value of I,,, ,, is the lowest one found so far (for the present n;)
record it at n; (call it I,,), and also record the current ny and b.
(2) Select the node n; € N with the lowest recorded value of I,,. The output
of the algorithm is n;, the corresponding node ng, the constructed bijection
b:A=1({n1}) - A='({ng}), and the immiscibility I,, = I, »,5-

04

8. The entire learning algorithm

This section puts together the pieces from previous sections to give the complete
learning algorithm. The whole algorithm is implemented in the connectionist pro-
gramming language defined in Fletcher (2000), although I am presenting it here in a
higher-level and less formal way, for ease of understanding.

At the outset we have:

e the image grid;

e a population of patterns, arriving one at a time on the image grid from the
environment;

e an initial grammar.

All these are described in sections 3 and 5. There are two positive real parameters,
for which I use values p, = 0.05, op = 0.07. The learning algorithm is as follows.

(1) Let N be the initial grammar. For every node n and edge e in N, set n,:= 0 and
ne:= 0.

(2) Repeat the following sequence of steps until no further splits or merges take
place.
(2.1) Apply the Choose-Split algorithm (section 6).
(2.2) Apply the Choose-Merge algorithm (section 7).
(2.3) Remove any edge e with n, = 0 and any node n with n, = 0.
(2.4) If the minimum immiscibility found by Choose-Merge is below p, then

merge the nodes n; and ng, using the bijection b, as given by Choose-
Merge

else

if the maximum fissility found by Choose-Split exceeds o then split the
portion identified by Choose-Split.

9. Examples

In this section I shall illustrate the behaviour of the learning algorithm using five
pattern populations. The aim of the algorithm is to find a grammar network N that
generates a grid language GL(N) equal to the pattern population. The image grid
is as described in section 3 (see figure 4) and is 20 nodes in height and 40 nodes in
width (except in the last example where a slightly larger grid is used); a pattern is
drawn in the grid by activating a subset of the nodes, hooks and edges of the grid.

At the end of the section I shall provide a table of the size of the search space,
as an indication of the computational difficulty of the task.

95

9.1 Staircases

The first example uses only nodes with two hooks. The patterns are staircases,
consisting of n stairs, a horizontal base, and a vertical strut; n ranges between 1 and
19 (19 being the maximum size that can fit on the grid), with all the values of n equally
probable. A typical pattern, with n = 3, is shown on the right-hand side of figure 11.
The staircase can occur at any position on the grid. The initial grammar is shown at
step 1 in figure 11: it consists of a single node with two hooks, and edges connecting
the hooks in all possible ways. By a sequence of four splits, each involving only one
node, the initial grammar is refined into a grammar N that represents the pattern
population. No further splits occur. Figure 11 shows the grammar networks at each
stage, following the split and removal of unused edges: i.e. it shows the network as
it is after step 2.3 of the learning algorithm (section 8). Because the algorithm goes
directly to a solution, no merges are necessary. The right-hand side of the figure
shows how a typical pattern is parsed at each stage: each grammar node is marked
with a unique letter and each pattern node is marked with the letter of the grammar
node it maps to. Edge labels and arrows in the pattern are omitted from the figure,
for the sake of clarity, but they are in accordance with figure 4: i.e. horizontal edges
have arrows pointing rightwards and vertical edges have arrows pointing upwards.
(The same display conventions will be used for all the examples.) It can be seen from
figure 11 how the learning process works by making successively finer grammatical
distinctions. The language generated by the final grammar, L(N), is c*a*(dbe)* (using
regular expression notation, traversing the pattern anti-clockwise), which is a superset
of the pattern population; but the requirement that the pattern be drawable in the
grid restricts the language to GL(N) = {c>"la"Ndbe)" | 1 < n < 19}, which is
exactly the pattern population. It would be impossible for L(N\) to equal the pattern
population as this would require a context-sensitive grammar.

Notice that if, after learning had finished, the image grid were enlarged, then
the grid language would change to {c?**1a” !(dbe)" | 1 < n < N} for some N; thus
the algorithm has been trained exclusively on staircases of up to 19 steps, but it is
capable of recognising staircases of any size. A similar comment applies to all the
pattern populations that follow.

Step 1: theinitial grammar.

Step 2: splitainto b and a.

Figure 11. The ‘staircase’ pattern population. On the left are shown the

grammar networks at each step of learning, and on the right is shown how
a typical pattern is parsed.

57

9.2 Trellis patterns

The second example involves patterns that are less string-like. A trellis pattern
consists of a sequence of n squares connected together at their top-right and bottom-
left corners, where n is distributed as min(1 + Exp(9), 19). (Exp(m) denotes a discrete
exponential probability distribution with mean m.) Figure 12 shows a typical pattern,
with n = 4. The pattern may occur at any position on the grid. The algorithm proceeds
directly in three single-node splits to a solution (step 4 in the figure) in which GL(N)
equals the pattern population. However, in this case it does not stop there but splits
a portion consisting of nodes a, b and ¢ and the edges between them, to give the
network shown in step 5. This last split does not alter GL(N), but it does reduce
L(N) to bring it closer to the pattern population. Further splits of the same kind
follow, reducing L(N\) further without changing GL(N'). These splits following step 4
involve learning grammatical constraints that are already enforced by the structure
of the image grid, and hence these splits may be considered unnecessary. If the aim
is merely to make GL(N) equal the pattern population then it would be best to stop
the learning at step 4; whereas if the aim is to make L(\) approximate the pattern
population as closely as possible then the learning should be continued forever. As
in the staircase example, L(\) will never equal the pattern population exactly, since

this would require a context-sensitive grammar.

o8

Step 3: split cintod and c.

Figure 12. The ‘trellis’ pattern population. As in figure 11, the grammar
network at each stage is shown on the left and a typical pattern is shown on
the right.

9.3 Stalagmites

The third example involves non-Eulerian graphs and nested iteration. A pattern con-
sists of a sequence of n vertical rectangles (‘stalagmites’) on a horizontal base, where
n is distributed as min(1 + Exp(9), 20); the pattern may occur at any position on the
grid. The stalagmites have variable height, distributed as min(1 + Exp(4), headroom),
where headroom is the space between the base and the top of the grid. Figure 13
shows an example pattern with four stalagmites. The algorithm proceeds directly in
four single-node splits to the network shown in the figure, for which GL(N) equals
the pattern population. As in the previous case, further splits follow, which reduce
L(N) without affecting GL(V).

99

Figure 13. A ‘stalagmites’ pattern and the associated grammar network.

9.4 Tessellations

The next example involves an iteration in two dimensions and requires a much larger
grammar. A pattern is a tessellation of squares and crosses, with a rectangular border.
The number of squares in each row, m, is distributed as min(1 + Exp(4),6) and the
number of squares in each column, n, is distributed as min(1 + Exp(3), 6); figure 14
shows an example with m = 3 and n = 2. The tessellation may occur at any position
in the grid.

This time the learning process is less straightforw