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Connectionist learning of regular graph grammars

Abstract

This paper presents a new connectionist approach to grammatical inference. Using

only positive examples, the algorithm learns regular graph grammars, representing

two­dimensional iterative structures drawn on a discrete Cartesian grid. This work

is intended as a case study in connectionist symbol processing and geometric concept­

formation.

A grammar is represented by a self­configuring connectionist network that is

analogous to a transition diagram except that it can deal with graph grammars

as easily as string grammars. Learning starts with a trivial grammar, expressing

no grammatical knowledge, which is then refined, by a process of successive node

splitting and merging, into a grammar adequate to describe the population of input

patterns.

In conclusion, I argue that the connectionist style of computation is, in some

ways, better suited than sequential computation to the task of representing and

manipulating recursive structures.

1. Introduction

Connectionism is conventionally seen as standing in opposition to traditional symbol

processing, where ‘symbol processing’ in this context means representing recursive

structures and manipulating them according to their structural composition (Smolen­

sky 1988, Fodor and Pylyshyn 1988, Garfield 1997). Connectionist networks and

symbol processing systems are often considered to have complementary strengths

and weaknesses (Horgan and Tienson 1996, Hadley 1999). Many attempts have been

made to combine the virtues of connectionism and symbol processing in a single ar­

chitecture (Hadley and Hayward 1997, Browne 1998, Hadley and Cardei 1999), but

it turns out to be very difficult to mimic the systematic computational competences

afforded by dynamic recursive data structures in the conventional kind of connec­

tionist network, with its fixed architecture and weighted­sum activation functions

(Haselager and van Rappard 1998, Marcus 1998, Phillips 1999); this is known as the

‘variable­binding problem’ (Barnden and Pollack 1991, Dinsmore 1992, Sougné 1998).

However, if one takes a broader view of connectionism (as advocated and for­

malised in Fletcher (2000)), these difficulties can be overcome; connectionist computa­

tion is in some ways better suited than sequential computation to symbolic processing.

This paper is a case study to illustrate this proposition. It takes a traditional research

topic from artificial intelligence, the learning of structured concepts from example pat­

terns, and investigates how a connectionist network could solve it. The first step is to

choose the problem domain, that is, the population of input patterns and the system of

concepts available for the network to choose from. The problem domain must be very
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carefully chosen if the exercise is to be meaningful: the requirements for a suitable

problem domain are as follows.

(1) The problem domain should be as simple as possible, so that one can understand

and analyse the network’s behaviour. However, it should not be so simple that

a solution can be found by exhaustive or random search; the problem should be

sufficiently non­trivial to allow a distinction to be drawn between intelligent and

unintelligent solutions. Ideally the domain should enable us to state difficult

problems in a few symbols. (Eventually we shall have to investigate how the

network’s performance scales with problem size, but there is no point in doing

this until we have a network that behaves sensibly on small examples.)

(2) The concepts of the problem domain should involve some form of recursion or

iteration, in view of the importance ascribed to recursive structures by the theo­

retical tradition based on the ‘language of thought’ hypothesis (Fodor 1975) and

the ‘physical symbol system’ hypothesis (Newell and Simon 1976).

(3) The problem domain should have a rich intuitive structure, so that we can tell

when a concept learned by the network is a significant discovery and when it is

merely an accidental construction that happens to fit the data. Ideally we would

have a formal criterion for evaluating the significance of the concepts found by

the network, but at present we do not. Such a criterion may emerge as a result

of artificial intelligence research when it is at a mature stage; it cannot be a

prerequisite for research otherwise we could never get started. So at the present

stage we must evaluate concepts on a case­by­case basis, using problem domains

in which we can recognise which ones are significant.

The first two of these requirements lead me to grammatical inference, the problem

of learning a grammar to represent a given set of sentences. Grammatical inference

involves the learning of recursive structures and is a very difficult problem even

for quite small grammars; the difficulty of the problem can be adjusted by imposing

various restrictions on the grammars. Hence the requirements (1) and (2) are met. To

meet requirement (3) I choose geometric patterns, line­drawings of two­dimensional

shapes such as lattices, staircases and tessellations, drawn on a discrete image grid

(see section 9 for examples). Geometry has a conceptually rich, highly organised

theory, developed over thousands of years; geometric concepts also involve invariance

under transformations such as translations, which is computationally very difficult to

cope with even when the image grid is small. This makes it suitable from the point

of view of all three requirements.

Hence the problem of learning to recognise simple geometric structures on a small

image grid is ideal as a case study for symbol processing. A research programme to do

this was outlined in Fletcher (1993), loosely inspired by Klein’s Erlangen Programme

(Tuller 1967), under which geometric concepts are to be learned in conjunction with

their associated invariances, with topological concepts learned first, followed by affine

concepts and then metric concepts. In this paper I shall only consider a small part
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of this programme: supposing we have already learned the relations of horizontal

and vertical connection between neighbouring pixels in the image grid, the task is to

express geometric shapes in terms of combinations of horizontal and vertical connec­

tions.

The geometric patterns will be represented as graphs, with edges labelled as hor­

izontal or vertical. The networks used will be unsupervised self­configuring networks,

in which grammatical knowledge is represented in the network structure, in a gen­

eralisation of the way that regular string grammars are represented using transition

diagrams. The network is constructed during the course of learning, each learning

step being driven by statistical correlations in the patterns (hence the grammar is

stochastic). Since this is a connectionist approach, the network is not merely a knowl­

edge representation but is also a computational system that performs its own parsing

and learning.

This paper is the result of a complete rethink of my earlier work on self­configuring

networks (Fletcher 1991, 1992); these networks were able to learn non­recursive

grammars to represent hierarchical structure in the input patterns but were unable

to handle recursion or geometric invariances. One important theme however will

persist from the earlier work: the network needs a clear global semantics (so that one

can speak of the ‘correctness’ of the knowledge represented in the network), and a

clear division of labour between the nodes of the network (so that the local processing

of each node is correct with respect to the global semantics). The semantics guides

the learning process and avoids the need for a purely combinatorial search for an

architecture that solves the problem.

The rest of this paper is organised as follows. Section 2 is a survey of other

approaches to grammatical inference, in string and graph grammars, including con­

nectionist approaches. Section 3 defines formally the class of networks to be used and

the important concept of a homomorphism between networks, which is fundamental

to the theory of parsing and learning; networks and homomorphisms are used to

represent regular stochastic graph grammars and to state the parsing and learning

problems. Section 4 describes the connectionist parsing algorithm. Section 5 de­

scribes informally how the network learns by successively refining its architecture:

refinement is essentially a process of splitting nodes, and is defined formally in terms

of homomorphisms; the algorithm for this is derived in section 6. The inverse of

refinement is merging, a process described in section 7. The learning algorithm as

a whole is stated in section 8, and example simulations are described in section 9.

Conclusions are drawn in section 10.

2. Survey of related work

There is no previous work using connectionist networks to learn graph grammars, so

I shall survey relevant work in three areas separately: (a) grammatical inference for

string grammars, (b) graph grammars, and (c) connectionist grammatical processing.
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Grammatical inference is the task of finding a grammar that generates a lan­

guage, given as input ‘positive’ examples (that is, strings belonging to the language)

and usually also ‘negative’ examples (strings not belonging to the language). The

problem of inferring string grammars has been studied since the 1960s; see Fu and

Booth (1975) for a survey of early work, and Sakakibara (1997) for more recent work.

There are various ways of framing the grammatical inference problem, according to

the input data and the criterion of success chosen. In Gold’s (1967) model, the user

supplies the algorithm with an infinite sequence of example strings; the algorithm

guesses a grammar and successively improves it as further patterns arrive; the al­

gorithm is considered successful if it eventually reaches a grammar that generates

the language and it does not change the grammar thereafter. This formulation of the

problem is called identification in the limit.

Valiant (1984) introduced a different learning problem, known as the probably

approximately correct learning model. This was formulated originally for learning

propositional functions but it is easily adapted to grammatical inference. The input

is a finite sample of positive examples; in addition, the algorithm may nominate

its own examples and ask whether they are in the language. From these data the

algorithm must find a grammar that matches the language to any required degree of

approximation. More precisely, given any real numbers δ and ε in (0, 1) the algorithm

must find, with probability at least 1 − ε, a grammar with accuracy at least 1 − δ.
The algorithm is required to halt (unlike Gold’s, which runs for ever), within a time

polynomial in 1/δ, 1/ε, the size of the sample, and the size of the grammar.

A third version of the problem is due to Angluin (1988), who allows a more

elaborate interaction between the algorithm and the environment. The algorithm

attempts to identify the language L by asking questions of the form:

• is the string s in L?

• does the grammar G generate L?

The environment answers ‘yes’ or ‘no’; in the case of a ‘no’ answer to the second

question the environment also provides a counter­example, that is, a string that is in

L but is not generated by G or that is generated by G but is not in L. The algorithm

must find a grammar that generates L and then halt. This procedure is known as

learning with queries.

A variety of classes of string grammar are used in grammatical inference. Most

algorithms can only handle subclasses of the regular grammars, such as

• regular grammars corresponding to deterministic finite automata (Tomita 1982,

Lang 1992, Mäkinen 1994),

• k­testable and k­piecewise testable languages (García and Vidal 1990, Ruiz and

García 1996),

• terminal­distinguishable regular languages (Radhakrishnan and Nagaraja 1987).

Some work has been done with context­free grammars; however, in this case inference

is so difficult that it is common to provide the algorithm with extra information in the
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form of structural descriptions (that is, unlabelled derivation trees) for the positive

examples (Levy and Joshi 1978, Dányi 1993).

The problem of inferring stochastic regular grammars is roughly equivalent to

that of inferring hidden Markov models. Gregor and Thomason (1996) describe a

method for inferring non­recursive Markov models. Inferring Markov models with

recursion is much harder, but given a model structure the transition probabilities can

be estimated using the Forward­Backward algorithm (Sakakibara, 1997), a dynamic

programming technique involving expectation maximisation; the Inside­Outside algo­

rithm is a generalisation of this to context­free grammars (Lari and Young 1990).

Theoretical studies suggest that grammatical inference is a very hard problem.

Gold (1967) showed that deterministic finite automata cannot be identified in the limit

from only positive examples; using both positive and negative examples, the problem

of finding a minimal deterministic finite automaton consistent with a given sample

is NP­hard (Gold 1978, Angluin 1978). However, using Angluin’s query learning,

deterministic finite automata can be identified in polynomial time (Angluin 1987).

Learning of context­free grammars is computationally hard even with query learning

(Angluin and Kharitonov 1991). For further details of the theoretical background see

Angluin (1992).

These pessimistic results led, Lucas (1993) suggests, to a ‘general stagnation in

the growth of new algorithms’. However, their relevance to the practicability of gram­

matical inference is debatable. Gold’s and Angluin’s learning models demand exact

identification of the language, whereas in practice we might be satisfied with a gram­

mar that approximately represents the language (Valiant’s model of course allows for

this). The theoretical results are based on worst­case performance, that is, inference

of the most perverse grammar in the class, whereas in practice we might be more

concerned with typical or naturally­occurring grammars. Lang (1992) demonstrates a

clear­cut case in which worst­grammar performance is no guide to average­grammar

performance, and identification to a very high degree of accuracy is much easier than

perfect identification. In this paper I am concerned with identification in the limit of

regular (graph) grammars from positive examples; the above considerations suggest

that this is a difficult task but not necessarily a hopeless one, provided one does not

adopt too perfectionist a standard of success.

Next we turn to a classification of learning algorithms for string grammars. Algo­

rithms may be classified as incremental, where an initial grammar is constructed and

then successively improved, or non­incremental, where a single grammar is produced

(e.g. Bhattacharyya and Nagaraja 1993). I am primarily concerned with incremen­

tal methods; these may be subdivided into types, according to the way in which the

grammar is modified at each step.

Hill­climbing methods (Tomita 1982) randomly mutate the grammar in search of

one that performs better on the sample. There is no predictable theoretical relation

between the languages generated by the mutated and the unmutated grammar; the

mutation is simply accepted if it does not decrease the number of true positives minus
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the number of false positives. This method works quite well on small deterministic

finite automata, but there is no explanation of why it works.

Enumerative methods work by adding production rules to the grammar in re­

sponse to misclassification of example strings. Learning is thus treated as a process

of acquiring more grammatical constructions as time goes on. The language therefore

grows monotonically over time (Naumann and Schrepp 1993).

Merging methods also enlarge the language monotonically. They begin with a

maximal grammar and successively merge pairs of non­terminals into one; learn­

ing is thus viewed as a process of erasing grammatical distinctions that are deemed

to be insignificant. Fu and Booth (1975) construct a ‘canonical definite finite­state

grammar’, representing a given positive sample of strings, and then form a ‘derived

grammar’ by merging non­terminals. Lang (1992) and Corbí et al. (1993) construct

a prefix­tree acceptor (a tree­like automaton that accepts precisely the positive ex­

amples) and then merge states to give a simpler automaton. By this method Lang

is able to learn very large (500 state) deterministic finite automata to a very high

degree of accuracy. It should be noted however that his automata contain very lit­

tle recursion, due to the random way their connections are chosen; in essence, his

method is concerned with classifying alternative substrings rather than recognising

iteration. Merging methods have become very popular recently and have been applied

to stochastic grammars (Stolcke and Omohundro 1994, de la Higuera 1998) and tree

grammars (Carrasco et al. 1998).

An opposite approach to merging is splitting, in which one begins with a tiny

grammar that can generate any string, and then refines it by a process of succes­

sively splitting a non­terminal (or a state of the corresponding automaton) into two.

This is a process of learning to make grammatical distinctions. Grammatical knowl­

edge increases over time, as each grammar contains all the knowledge of the earlier

grammars; the language generated decreases over time. This method has the merit of

avoiding the enormous space requirements of the merging method, where the initial

automaton is similar in size to the entire string sample. It is also better suited to

dealing with an infinite sequence of strings. Examples of this approach are Bell et al.

(1990) and Ron et al. (1994), in which each non­terminal corresponds to a suffix of a

string and splitting a non­terminal corresponds to extending the suffix.

A hybrid of splitting and merging could be expressed within the version space

approach to learning (Mitchell 1978). A rudimentary example of this is Giordano’s

(1994) algorithm. A lower set of grammars is formed (each generating a subset of

the language), together with an upper set of grammars (each generating a superset of

the language). The grammars are refined through specialisation and generalisation

operations, to converge on a correct grammar. The implemented algorithm just uses

two specialisation operations, substitution of the non­terminal on the left­hand side

of a production rule and deletion of a production rule, but clearly more operations

could be added within this framework. Another hybrid algorithm is Dupont’s (1996),

which uses a combination of splitting and merging to adjust a regular grammar to
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each positive or negative example as it arrives; the grammar has to be kept consistent

with all the patterns seen previously, so the algorithm has to store the sets of positive

and negative examples seen so far (the positive examples being stored in the form of

a prefix­tree acceptor).

In this paper I am thinking of grammatical inference as a process of concept

formation, that is, progressive gain in knowledge by building on existing knowledge.

Hence splitting operations are of most relevance, though merging will also occasionally

be used to simplify the grammars produced. Only positive examples will be used, and

past patterns will not be stored: only the current pattern will be available to the

algorithm at each stage.

So far I have only considered string grammars. The fundamental ideas extend to

graph grammars, although there is a variety of ways of generalising the concept of

a production rule. The most general version is known as the set­theoretic approach

or the expression approach (Nagl 1987): production rules are of the form G → H,

where G and H are graphs; to apply such a rule to a graph, an isomorphic copy of G

is removed from the graph, together with all its incident edges, and a copy of H is

inserted in its place, together with new edges linking it to the rest of the graph. The

new edges are chosen according to an embedding transformation.

Common special cases of this are node­label controlled grammars, where G con­

sists of a single node with a certain label (Englefriet and Rozenberg 1991), and edge­

label controlled grammars, where G consists of an edge with a certain label and its two

incident nodes (Main and Rozenberg 1987). In node­label and edge­label controlled

grammars the embedding transformation is specified by a connection relation.

A theoretically more tractable framework is known as hyperedge replacement.

Whereas an edge is incident to two nodes, a hyperedge is a more general entity that

may be incident to any fixed number of nodes; a hypergraph is a generalisation of a

graph consisting of nodes and hyperedges rather than nodes and edges. A production

rule involves replacing one hyperedge by any hypergraph (with the same number of

connecting points). These production rules may be used to generate languages of

graphs (Drewes and Kreowski 1991) or languages of hypergraphs (Habel 1992). This

type of grammar has many desirable theoretical properties that make it a natural

generalisation of context­free string grammars (Habel 1992).

The desirable properties of hyperedge replacement grammars are abstracted and

generalised further in the algebraic or category­theoretic approach (Ehrig 1979, Ehrig

et al. 1991), in which application of production rules is expressed in an elegant way

in terms of a pair of push­outs. (More recently, Bauderon (1996) has shown how to

encode the connection relation of node­label controlled grammars using pullbacks.) A

useful survey of recent extensions to all these types of graph grammar is provided by

Rozenberg (1997).

The parsing problem is harder for graph grammars than string grammars. As

with string grammars, the class of grammars needs to be restricted in order to make

the parsing problem decidable (Ehrig 1979, Main and Rozenberg 1987). Bartsch­

Spörl’s (1983) parsing algorithm works by exhaustive search. Most other algorithms
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work by imposing a sequential ordering on the graph: chain code methods convert the

graph into a string by traversing it (Lucas and Damper 1990); Bunke and Haller (1992)

scan a plex structure, constructing all possible ways of deriving the part of the struc­

ture seen so far; Lichtblau (1991) ‘sequentializes’ the graph using an ordered spanning

tree; Flasiński (1993) also assigns a linear ordering to the nodes as a preliminary to

parsing. However, the imposition of a sequential ordering is somewhat artificial and

seems ill­suited to graphs, whose structure is inherently non­one­dimensional. Bran­

denburg and Skodinis (1996) relax the condition of strict sequentiality by using graph

automata, which scan the graph using several control heads (instead of one, as in

a conventional finite automaton), thus introducing a degree of parallelism. In my

algorithm (see section 4) I abandon the concept of traversal altogether, producing a

fully parallel procedure in which the whole of the graph is parsed at once.

There are few known algorithms for inference of graph grammars. In terms of

the classification of string grammars above, Bartsch­Spörl’s (1983) is an enumerative

method for a limited class of context­sensitive graph grammars, while Carrasco et al.’s

(1998) is a merging method for regular tree grammars and Jeltsch and Kreowski’s

(1991) is a merging method for hyperedge replacement grammars. Jeltsch and Kre­

owski propose four operations for transforming grammars: INIT, which constructs

a grammar to represent a given finite set of graphs; DECOMPOSE, which splits a

production rule into smaller rules (without altering the language); RENAME, which

renames nonterminals; and REDUCE, which removes redundant production rules.

The RENAME operation is the key one since it may merge non­terminals and thereby

enlarge the language generated. Jeltsch and Kreowski do not propose any way of

determining the sequence of operations to derive a correct grammar from examples;

their ‘algorithm’ is more a formal statement of the problem than a solution.

Turning now to connectionist grammatical processing, the problem of represent­

ing, parsing and learning grammars in a connectionist network involves additional

computational constraints: the storage and processing of the patterns and gram­

mars must be distributed across the network and subject to capacity bounds (Fletcher

2000). This rules out algorithms such as those of Lang (1992) and Jeltsch and Kre­

owski (1991), which begin by constructing a huge grammar similar in size to the

entire pattern set.

Attempts have been made to apply a standard three­layer back­propagation net­

work to inference of natural language grammar (Hanson and Kegl 1987). However,

for the purpose of learning regular string grammars it is more natural to use recur­

rent networks (which are essentially trainable deterministic finite automata). Various

architectures have been used: simple first­order recurrent networks (Elman 1990, Jor­

dan 1988); more complex first­order networks (Williams and Zipser 1989, Fahlman

1991); and second­order recurrent networks (Giles et al. 1992). Elman (1992) has

also applied recurrent networks to context­free grammars and found that they can

represent up to about three levels of recursive embedding; other authors (Kwasny and

Faisal 1990, Das et al. 1993, Zeng et al. 1994) deal with context­free grammars by
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using a neural network in conjunction with a stack, or by using a simple recurrent

network to generate representation vectors for a recursive auto­associative memory

(RAAM) (Reilly 1991).

The question arises of how to relate the internal representations of a recurrent

network to conventional representations of the grammar in terms of production rules

or finite automata. Giles and Omlin (1992) and Das et al. (1993) have shown how

to insert rules into the network before learning begins, while Castaño et al. (1995)

describe several methods for converting the network’s learned internal representation

system into a finite automaton.

Some neural networks learn to parse sentences, without attempting to learn the

grammar (Ho and Chan 1997, 1999). The parse tree may be encoded using a RAAM, or

it may be converted into a sequential form by pre­order traversal and encoded using a

sequential RAAM or simple recurrent network. The sentence to be parsed is encoded

using a sequential RAAM or simple recurrent network. The parsing problem is then

a matter of transforming one connectionist encoding to another; alternatively, the

learning of the two encodings may be coupled to make them identical, thus dispensing

with the transformation stage. Ho and Chan (1999) test the error­resilience of these

methods using a regular string grammar; the sentences used appear to be quite short

and have little or no recursion. Ho and Chan are pessimistic about the chances of

scaling the method up to larger sentences and grammars.

Other connectionist parsing algorithms use specially­structured networks with

the grammar pre­programmed into them (Fanty 1985, Waltz and Pollack 1985, Selman

1985, Cottrell 1989, Charniak and Santos 1991). For example, Charniak and Santos’

network is a rectangular grid with the input sentence passing from right to left across

the bottom row and the parse tree being built up above it; each column of the grid

holds a branch of the parse tree. A few other networks are able to learn the grammar

by adapting their structure (Lucas and Damper 1990, Fletcher 1991, 1992, Roques

1994), but this is only possible so far for very simple classes of grammar without

recursion.

The objective of this paper is to extend my previous work to recursive graph

grammars. The class of grammars used will be the regular stochastic graph gram­

mars, defined in section 3; they will be represented, parsed and learned in a wholly

connectionist way.

3. Networks, homomorphisms and languages

This section sets up the theoretical framework for representing regular graph gram­

mars as networks and stating the parsing and learning problems; subsequent sections

will solve these problems.

3.1 Parsing without traversal

Let’s start with a regular string grammar, as represented by a transition diagram

(figure 1). To parse a given sentence, abbbcd, one traverses the sentence from left
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to right, simultaneously traversing the transition diagram and matching the symbols

encountered in the sentence, a, b, b, . . ., against the symbols encountered in the tran­

sition diagram. The dashed lines in figure 1 show which symbol in the sentence is

matched against which symbol in the transition diagram; the states of the sentence

(the circles) are also matched against the states of the transition diagram. The sen­

tence is accepted as grammatical if and only if the traversals of the sentence and the

transition diagram finish simultaneously.

b cba b d

sentence

transition
diagram

b da

a

cb

Figure 1. Parsing a sentence abbbcd using a transition diagram. The dashed

arrows show the correspondence between the sentence’s nodes and edges and

the transition diagram’s nodes and edges (not all arrows are shown).

Now, both the sentence and the transition diagram may be regarded as networks,

since they both consist of nodes connected by directed edges. However, from a con­

nectionist point of view, what is incongruous about the parsing process just described

is the notion of traversal, which imposes an unnecessary sequential ordering on the

process. Parsing can be rephrased without reference to traversal: the task is simply

to find a mapping from the nodes and edges of the sentence to the nodes and edges

of the transition diagram such that:

• nodes map to nodes and edges map to edges;

• the direction and symbol label (a, b, c or d) of the edges are preserved under the

mapping;

• the end­points (initial and final nodes) of the sentence map to the end­points of

the transition diagram;

• the mapping preserves incidence: if an edge is incident to a node in the sentence

then they remain incident when the mapping is applied to both.

Let us call such a mapping a homomorphism (this is defined formally below). Then the

parsing problem is simply to find a homomorphism from the sentence to the transition

diagram.

This reformulation of the problem has several advantages. First, by removing the

sequential notion of traversal we have made it possible to parse the whole sentence
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in parallel; for very long sentences this may be quicker than sequential parsing.

Secondly, such parallel parsing may be more error­tolerant than sequential parsing.

If a sequential parser encounters a grammatical error (think of a compiler scanning

a source program, for example) it is liable to misunderstand the rest of the sentence

and generate spurious error messages; whereas a parallel parser would parse on both

sides of the error and thereby, perhaps, would be better able to locate and correct it.

(However, the parsing algorithm in this paper does not attempt any error correction.)

The third, and most important, advantage of parallel parsing is that it is easily

extended from string grammars to graph grammars. Let us redraw figure 1 in a

slightly different way. Suppose each node (except for the end­points) has two hooks,

labelled ‘in’ and ‘out’, and that all incoming edges are connected to the ‘in’ hook and

all outgoing edges to the ‘out’ hook. We may now rub out the arrows on the edges,

as they are redundant. (See figure 2.)

b cba b d

transition
diagram

b

a

cb

in in

in

out

out

out

outout in out in out in out in

out

d

in

in

a

sentence

Figure 2. A re­drawing of figure 1, without using traversal. The dashed

arrows indicate (part of) the homomorphism. The hooks are indicated by

small filled circles.

Note that now a homomorphism maps nodes to nodes, hooks to hooks, and edges

to edges. Now, to generalise this to graph grammars we simply rub out the labels

‘in’ and ‘out’ (since these are the last remnants of the obsolete notion of traversal)

and permit any number of hooks at each node. Figure 3 shows a sentence (which I

shall call a pattern from now on), the generalised transition diagram (which I shall

call a regular graph grammar, or just a grammar), and the homomorphism between

them. The edge labels H and V indicate horizontal and vertical edges. Note that

this sort of pattern is very awkward to handle using string grammars (as done in

the ‘chain code’ approach of Brandenburg and Chytel (1991), for example), as it is a

non­Eulerian graph and would have to be traversed in several sweeps, which would

obscure its geometric structure.

There is a possible problem here. By removing the notion of traversal there is a

danger that patterns may be parsed back­to­front: thus, in figure 2, the initial state

of the pattern may be mapped to the final state of the grammar, and vice versa; the

12



V

pattern

H HHH H H H H H

H H H H

V

H

H

V

V

V

V

V

V

grammar

(only some
homomorphism

lines shown)

V

V

Figure 3. Parsing using a graph grammar.

same problem arises in a more severe form with graph grammars, since a pattern

node with k hooks can be mapped to a node in the grammar with the same number

of hooks in k! ways. This is called the direction ambiguity problem. To help deal

with this problem we give each edge in the pattern and the grammar an arbitrary

orientation; that is, we designate one of the edge’s ends as ‘first’ and the other as

‘second’. In diagrams it is convenient to represent this by drawing an arrow from the

‘first’ end to the ‘second’ end. Note that this is not a re­introduction of the concept

of traversal; it is just a diagrammatic convention for distinguishing one end of an

edge from the other. The direction ambiguity problem will be solved by the parsing

algorithm in section 4.

This convention is illustrated in figure 4, which shows the image grid on which

the pattern resides. A pattern, such as the one in figure 3, is drawn by activating a

subset of the nodes, hooks and edges of the image grid. The horizontal and vertical

13



connections in the image grid represent the geometric structure of the image space;

as mentioned in section 1, these should really be learned from example patterns, but

in this paper I am assuming this learning has already been done. The image grid

should be thought of as unbounded, though in simulations a grid of finite width and

height is used. See figures 11–15 in section 9 for some further examples of grammars,

patterns and parses.

HH

HH H

H

HHHH

V V V V V
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V V

H

V

H H

V V

H

H

V

H

H

VVV V
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V

V

V

H

H

V V

V

Figure 4. The image grid, showing nodes, each with four hooks, connected by

horizontal and vertical edges. The edges are oriented (arbitrarily) rightwards

and upwards.

3.2 Formal definition of networks and homomorphisms

In order to define the foregoing notions formally we shall need the following standard

notation for logic, sets and functions.

NOTATION.

∧, ∨, ⇒, ∀ and ∃ mean ‘and’, ‘or’, ‘implies’, ‘for all’ and ‘there exists’.

A×B is the Cartesian product of the sets A and B: A×B = { (x, y) | x∈A ∧ y∈B }.
⊎

i∈I Si is the disjoint union of the sets Si:
⊎

i∈I Si = { (i, x) | i ∈ I ∧ x ∈ Si }.

|A| is the number of elements in the set A.

f :A→ B means that f is a function mapping the set A into the set B.

f (S) is the image of the set S under f : f (S) = { f (x) | x ∈ S }.

f−1(S) is the pre­image of the set S under f : f−1(S) = { x | f (x) ∈ S }.

f |S is the function obtained by restricting the domain of f to S.

f ◦ g is the composition of the functions f and g: (f ◦ g)(x) = f (g(x)).

DEFINITION. A network is an octuple (N,H,E,L,A,F,S,M), where N, H, E and L are

disjoint sets, A:H → N, F:E→ H, S:E→ H and M:E→ L, such that F(E)∪S(E) = H.

The elements of N, H, E and L are called nodes, hooks, edges and labels, respectively.

If A(h) = nwe say that the hook h is attached to, or incident to, the node n (for example,

in figure 3 all the nodes have one, two or four hooks attached to them). If F(e) = h1 and

14



S(e) = h2 we say that the edge e is connected to, or incident to, h1 and h2; we also say

e is incident to the nodes A(h1) and A(h2); h1 is called the first hook and h2 the second

hook of e. We call M(e) the label of the edge e. The image grid, the patterns and

the grammar are all networks. Formally, a pattern is a network (N,H,E,L,A,F,S,M)

such that for each h ∈ H there is a unique e ∈ F−1({h}) ∪ S−1({h}). The pattern

is said to be drawn in the image grid, (NG,HG,EG,LG,AG,FG,SG,MG), iff N ⊆ NG,

H ⊆ HG, E ⊆ EG, L ⊆ LG, A = AG|H, F = FG|E, S = SG|E and M = MG|E. The

pattern population is the set of patterns drawn in the grid that are presented by the

environment.

In what follows, N1 = (N1,H1,E1,L1,A1,F1,S1,M1) and N2 = (N2,H2,E2,L2,A2,

F2,S2,M2) are networks.

DEFINITION. A homomorphism f :N1 → N2 is a function from N1 ∪H1 ∪ E1 ∪ L1 into

N2 ∪H2 ∪ E2 ∪ L2 such that

f |N1
:N1 → N2,

∀n∈N1 f |A1
−1({n}):A1

−1({n})→ A2
−1({f (n)}) is a bijection,

f |E1
:E1 → E2, F2 ◦ f = f ◦ F1, S2 ◦ f = f ◦ S1,

f |L1
:L1 → L2, M2 ◦ f = f ◦M1.

PROPOSITION 1. If f :N1 → N2 is a homomorphism then

f |H1
:H1 → H2, A2 ◦ f = f ◦ A1, f (H1) = A2

−1(f (N1)).

DEFINITION. An isomorphism is a homomorphism f :N1 → N2 that is a bijection from

N1 ∪H1 ∪ E1 ∪ L1 to N2 ∪H2 ∪ E2 ∪ L2.

PROPOSITION 2. If f :N1 → N2 is an isomorphism then so is the inverse function

f−1:N2 → N1.

DEFINITION. A network N1 is a subnetwork of a network N2 iff

N1 ⊆ N2, H1 = A2
−1(N1), E1 ⊆ E2, L1 ⊆ L2,

A1 = A2|H1
, F1 = F2|E1

, S1 = S2|E1
, M1 = M2|E1

.

PROPOSITION 3.

(a) If N1 is a subnetwork of N2 then the inclusion function i:N1 ∪ H1 ∪ E1 ∪ L1 →

N2 ∪H2 ∪ E2 ∪ L2, defined by ∀x i(x) = x, is a homomorphism from N1 to N2.

(b) If f :N1 → N2 is a homomorphism then the image network f (N1) = (f (N1), f (H1),

f (E1), f (L1),A2|f (H1),F2|f (E1),S2|f (E1),M2|f (E1)) is a subnetwork of N2, and there is a

unique homomorphism f ′:N1 → f (N1) such that f = i ◦ f ′, where i: f (N1) → N2 is

the inclusion homomorphism.

The formal definition of homomorphism is consistent with the informal description

given earlier, but is slightly more general in that it allows N1 (representing the

pattern) to have a different set of labels from N2 (representing the grammar). This is

useful in a wider context of geometric concept learning (see Fletcher 1993, especially

figure 4), but for the purposes of this paper we shall only deal with homomorphisms

for which L1 = L2 and the label mapping f |L1
is the identity.
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3.3 Languages generated by networks

The language L(N ) generated by a network N is defined as the set of finite connected

patterns P for which there exists a homomorphism p:P → N ; p is called a parse of P.

The grid language GL(N ) generated by N is the set of patterns drawn in the image

grid that are also in L(N ).

The grammar network N will also contain stochastic information about the prob­

ability distribution of patterns. The network contains a real number ne for each edge

e and a real number nv for each node v. A probability distribution prob over L(N ) is

said to be consistent with these numbers iff

∀e∈E ne = ExpP |p
−1({e})|

∀v∈N nv = ExpP |p
−1({v})|

(1)

where N = (N,H,E,L,A,F,S,M), ExpP is the expectation operator over all patterns,

defined by

ExpP X =
∑

P

prob(P)X,

and p:P → N is the parse of P (assumed unique). The numbers |p−1({e})| and

|p−1({v})| are called the multiplicities of e and v in the pattern P, and the numbers ne

and nv are called mean multiplicities of e and v. The stochastic language generated by

N is L(N ) with the maximum­entropy probability distribution over L(N ) consistent

with the mean multiplicities; the stochastic grid language generated by N is defined

analogously. The stochastic aspect of the grammar will be important in sections 5–6,

but I shall disregard it for the rest of this section.

A network N is said to be unambiguous iff for every pattern P there is at most

one homomorphism from P to N . It is said to be simple iff ∀e, e′∈E (F(e) = F(e′) ∧

S(e) = S(e′) ∧ M(e) = M(e′) ⇒ e = e′) and ∀e ∈ E F(e) 6= S(e). We shall largely be

concerned with grammars that are both simple and unambiguous.

The approach taken here, in which grammars are represented as networks, is dif­

ferent from the conventional notion of a graph grammar (Rozenberg 1997), in which

patterns are derived from a start symbol by a sequential application of production

rules. The relation between the two approaches can be seen by analysing the parsing

homomorphism p into simpler homomorphisms, as follows. A simple type of homo­

morphism is illustrated in figure 5. In this construction we start with an arbitrary

network N and split one node n into two nodes, n+ and n−, to give a network N ′.

N ′ has one hook for every hook of N , except in the case of the hooks attached to n,

for each of which there are two hooks in N ′; for example, corresponding to hook h in

N are two hooks, h+ and h−, in N ′. Edges are a little more complicated. For each

of the edges u, v, x, y, z in N there are two edges u+,u−, v+, v−, x+, x−, y+, y−, z+, z− in

N ′; this is because these edges are connected at one end to a hook of n, which has

split into two. If an edge were connected to hooks of n at both ends then it would
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Figure 5. A node split and the associated homomorphism, r. (The letters

a, b, c,d, . . . are used to identify the edges uniquely: they are not edge labels.)

need to split into four in N ′, since the hooks at each end would have split into two;

such an edge is called a re­entrant edge.

However, notice from figure 5 that the edges a, b, c,d, e connected to h have been

treated differently: for each of these there is only one corresponding edge in N ′,

connected to either h+ or h−. Hook h is called the governing hook, and its edges

a, b, c,d, e are called indicator edges, with a, b, c being positive and d, e negative. The

operation that takes us from N to N ′ is called a node split, and can be specified

formally by the homomorphism r:N ′ → N that maps each node, hook, edge and label

of N ′ back to the one it came from in N (for example, r(n±) = n, r(u±) = u). (I shall

not give the formal construction of node splitting in general here, as it is a special

case of the splitting operation defined in §6.2 below.)

The reason for the special treatment of the governing hook h and the indicator

edges is revealed by the following proposition.

PROPOSITION 4. Let r:N ′ → N be a homomorphism representing a node split. For any

pattern P and parse p:P → N there is a unique parse p′:P → N ′ such that p = r◦p′.

Proof. Given P and p, we can construct p′ in only one way, which I shall illustrate

with the example in figure 5. Each node n0 in P such that p(n0) = n must have a

hook h0 such that p(h0) = h, and h0 must have a unique incident edge e0, which must

map under p to one of the edges a, b, c,d, e. If p(e0) is a, b or c then we define p′(e0)

as a+, b+ or c+, respectively, and hence p′(h0) = h+, p′(n0) = n+ and so on for all

other hooks and edges incident to n0. Whereas if p(e0) is d or e instead then we define

p′(e0) as d− or e−, and hence p′(h0) = h−, p
′(n0) = n− and so on for all other hooks
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and edges incident to n0. The key point is that it is the edge e0 incident to hook h0

that determines whether n0 maps to n+ or n− under p′. We then extend p′ to the

whole of P by defining p′(x) = p(x) for all other nodes, hooks, edges and labels, x.

PROPOSITION 5. Let r:N ′ → N be a homomorphism representing a node split.

(a) L(N ′) = L(N ) and GL(N ′) = GL(N ).

(b) N ′ is unambiguous if N is.

(c) N ′ is simple if N is.

Proof. (a) If a pattern P has a parse p:P → N then, by the previous proposition, it

has a parse p′:P → N ′; conversely, if it has a parse p′:P → N ′ then it has a parse

r ◦ p′:P → N . This establishes that L(N ′) = L(N ) and hence GL(N ′) = GL(N ).

(b) For any parse of a pattern, p′:P → N ′, we can produce a parse p = r◦p′:P → N .

But p is unique if N is unambiguous, so by proposition 4 p′ is unique.

(c) is straightforward.

A second simple type of homomorphism corresponds to pruning unwanted parts of

the network. Given any network N we can remove nodes, hooks, edges (and possibly

labels) in such a way as to give a subnetwork N ′. The pruning operation may be

represented formally by the inclusion homomorphism i:N ′ → N . These two simple

types of homomorphism are sufficient to generate all parses.

PROPOSITION 6. Any parse p:P → N can be expressed (up to isomorphism) as a

composition of homomorphisms representing node splits and prunings.

Proof. Start with the network N , prune any edges and nodes (and their hooks)

that have multiplicity 0 under the parse p, giving a subnetwork p(P), an inclusion

homomorphism i: p(P)→ N , and a parse p′:P → p(P) (by proposition 3). Next, choose

a node n in p(P) of multiplicity greater than 1 (if there is one) and split n into two

nodes, n+ and n−, giving a new network N ′, a homomorphism r:N ′ → p(P), and a

parse p′′:P → N ′ (by proposition 4). Then we have

r ◦ p′′
= p′, i ◦ p′

= p, and hence i ◦ r ◦ p′′
= p.

Some of the newly created edges in N ′ may have multiplicity 0, so continue the

sequence of alternate prunings and node splits until one obtains a network N ∗ in

which all nodes and edges have multiplicity 1 (this must happen eventually since the

multiplicities are reducing at each step). Hence N ∗ is isomorphic to P. Thus p has

been analysed as a composition of node splitting and pruning homomorphisms.

The process described in proposition 6 may be regarded as a grammatical derivation

of the pattern P. The start symbol is N ; figure 5 depicts a production rule, with n and

its incident hooks and edges as left­hand side, and n+, n− and their incident hooks
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and edges as right­hand side; application of a production rule consists of carrying out

a node split or a pruning. This gives us a kind of node­replacement graph grammar.

In general, networks and homomorphisms form a mathematical system called

a category, since every network has an identity homomorphism and composition of

homomorphisms is associative (see Goldblatt (1984) for an introduction to category

theory). This category is the search space for the learning problem; it is essen­

tially a generalisation of Dupont et al.’s (1994) representation of the search space

for string grammatical inference as a lattice of automata. The category has products

and pullbacks but not equalisers or a terminal object. The pullback construction is

particularly useful as it provides a Church­Rosser property for these grammars (cf

Rozenberg 1997: 173).

PROPOSITION 7. Given networks N0,N1,N2 and homomorphisms r1:N1 → N0 and

r2:N2 → N0, there exist a network N and homomorphisms π1:N → N1 and π2:N → N2

such that the following hold.

(a) If N1 and N2 are simple then so is N .

(b) r1 ◦ π1 = r2 ◦ π2.

(c) For any network N ∗ and homomorphisms π∗
1:N

∗ → N1 and π∗
2:N

∗ → N2 such

that r1 ◦ π∗
1 = r2 ◦ π∗

2, there is a unique homomorphism k:N ∗ → N such that

π1 ◦ k = π∗
1 and π2 ◦ k = π∗

2.

(d) If N0 is unambiguous then L(N ) = L(N1) ∩ L(N2) and hence GL(N ) = GL(N1) ∩

GL(N2).

(e) If N1 and N2 are unambiguous then so is N .

(f) If r1 and r2 represent node splits or prunings then π1 and π2 represent node splits

or prunings, or the compositions of two node splits or prunings.

Proof. Let N0 = (N0,H0,E0,L0,A0,F0,S0,M0), let N1 = (N1,H1,E1,L1,A1,F1,S1,M1),

and let N2 = (N2,H2,E2,L2,A2,F2,S2,M2).

Define N = { (n1,n2)∈N1 ×N2 | r1(n1) = r2(n2) }.

Define H = { (h1,h2)∈H1 ×H2 | r1(h1) = r2(h2) }.

Define E = { (e1, e2)∈E1 × E2 | r1(e1) = r2(e2) }.

Define L = { (l1, l2)∈L1 × L2 | r1(l1) = r2(l2) }.

Define A:H → N by ∀(h1,h2)∈H A(h1,h2) = (A1(h1),A2(h2)).

Define F:E→ H by ∀(e1, e2)∈E F(e1, e2) = (F1(e1),F2(e2)).

Define S:E→ H by ∀(e1, e2)∈E S(e1, e2) = (S1(e1),S2(e2)).

Define M:E→ L by ∀(e1, e2)∈E M(e1, e2) = (M1(e1),M2(e2)).

The obvious way to define the network N would be as (N,H,E,L,A,F,S,M).

However, this would be unsatisfactory, as H may contain hooks that have no incident

edges. Such hooks need to be removed from H; moreover, when a hook is removed its

node must also be removed, as must all the node’s hooks and edges; this may deprive

some other hooks of all their edges, so that they need to be removed, and so on. This

removal procedure is formally specified as follows.
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Let N′, H′ and E′ be the maximal subsets of N, H and E (respectively) such that

F(E′) ∪ S(E′) = H′
= A−1(N′).

(These sets can be constructed by considering all triples (N′,H′,E′) satisfying the

above equations and then taking the union of all the N′ sets, the union of all the H′

sets, and the union of all the E′ sets.) Then the pullback network N is defined as

(N′,H′,E′,L,A|H′ ,F|E′ ,S|E′ ,M|E′). The homomorphisms π1:N → N1 and π2:N → N2

are defined by
∀(n1,n2)∈N

′ π1(n1,n2) = n1 π2(n1,n2) = n2

∀(h1,h2)∈H
′ π1(h1,h2) = h1 π2(h1,h2) = h2

∀(e1, e2)∈E
′ π1(e1, e2) = e1 π2(e1, e2) = e2

∀(l1, l2)∈L π1(l1, l2) = l1 π2(l1, l2) = l2.

It is routine to verify that this construction satisfies the proposition.

Hence, by part (f), if the homomorphisms r1 and r2 each represent application of a

production rule then π1 and π2 each represent the application of one or two production

rules. In fact, π1 simply represents application of the analogous production rule(s) on

N1 to that of r2 on N0; and similarly for π2. The composite homomorphism r1 ◦ π1

may be regarded as representing a parallel application of the two production rules

represented by r1 and r2 (cf Rozenberg 1997: 175). Proposition 7 shows the context­

free nature of this class of graph grammar.

The operations of node splitting and pruning, together with propositions 3–7,

which I have introduced in the context of interpreting networks as graph grammars,

will be useful in a quite different way in section 5 in the theory of learning.

The outcome of this section is a statement of the parsing and learning problems:

the parsing problem is to find a homomorphism from a given pattern to a given

grammar; the learning problem is to find a grammar that generates a grid language

(or stochastic grid language) equal to a given pattern population.

4. Parsing

This section describes how patterns are parsed using a given graph grammar. Both

the pattern and the grammar are networks, as defined in section 3, and the task of

parsing is to find a homomorphism from the pattern to the grammar. I shall introduce

the algorithm informally with an example before stating it formally.

4.1 Informal account of parsing

The idea is to build up a parse of the pattern by piecing together parse­fragments. A

parse­fragment is a copy of a part of the pattern together with a homomorphic mapping

to the grammar. We begin with parse­fragments consisting of single edges (plus the
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hooks, and possibly the node, at either end). Then consecutive parse­fragments are

combined in all consistent ways, until eventually we have a parse of the whole pattern

(or all possible parses, if the grammar is ambiguous).

Figure 6 shows the grammar and pattern to be used in our example. The edge

labels are a, b, c,d, but for ease of reference the edges in the grammar have also been

given numeric subscripts and the nodes have been indexed with Greek or capital

Roman letters.

HG

α β

A
b

b

b

a b

1 γ

b
E

δd

F
dc b

ICB

a1

c

2a2

a

pattern

grammar

D

Figure 6. Parsing example: the grammar and pattern.

Step 1: copy edges.

We begin by constructing all possible parse­fragments involving one edge. There will

be one such parse­fragment for every pair consisting of an edge in the pattern and an

edge with the same label in the grammar. There is a function f mapping each of these

parse­fragments to the corresponding edge in the grammar, and a function g mapping

each parse­fragment to the corresponding edge in the pattern. In figure 7 each parse­

fragment is marked with the same label and subscript as the corresponding edge

in the grammar, while its horizontal position indicates which edge in the pattern it

corresponds to.

Step 2: copy hooks.

Next we attach hooks to each end of the parse­fragments (see figure 7). The functions

f and g are extended to map each of these hooks to the corresponding hooks in the

grammar and the pattern.

Step 3: copy nodes.

Next we attach nodes to some of the parse­fragments. For each pattern node we

choose one of its hooks at random and attach a node to the corresponding hooks in

the parse­fragments. The functions f and g are extended to map these nodes to the

corresponding nodes in the grammar and pattern; in figure 7 each node has been

marked with the name of the grammar node it maps to under f .
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Step 5: prune
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Figure 7. The parse­fragments produced while parsing the example in fig­

ure 6. At each stage of step 4, the dashed boxes indicate the nodes, hooks

and edges that have changed.

Step 4: join.

Next we combine the parse­fragments into larger fragments. In stage (i) of this

step (see the figure) we have chosen (arbitrarily) to begin by joining at the points

corresponding to nodes C and F of the pattern (see the dashed boxes marked C and

F in the figure). At the position corresponding to node C there are (after step 3)

two nodes, marked γ and β, and two dangling hooks to join to them, giving four

possible combinations. However, not all of these combinations are consistent with the
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grammar: the grammar allows β to be followed by either b1 or b2, but does not allow

γ followed by either b1 or b2. So only two of the four combinations are grammatical;

we create a new node for each of the two consistent combinations (with hooks and

edges attached as appropriate), replacing the two nodes previously at that position

and their hooks and edges. This is shown in figure 7, stage (i): the newly created

nodes, hooks and edges are shown enclosed in the dashed box marked C. Note that the

node marked β has been duplicated, along with its hook and incident edge marked b2;

the node marked γ has been removed, along with its hook and incident edge marked

b1.

Simultaneously, a join occurs at the position corresponding to node F. Here, there

is one hook to be joined to two nodes, but the grammar only allows the hook to connect

to one of the nodes (since c can follow γ, not α). So there is one new node, replacing

the two nodes previously at that position. The new node is given appropriate hooks

and edges; the new node, hooks and edges are shown enclosed in the dashed box

marked F in the figure.

Next suppose we join at the positions corresponding to nodes D and G in the

pattern, producing stage (ii) in the figure in a similar way. Again, the nodes at those

positions, together with their hooks and incident edges, are removed and replaced by

new ones; the new nodes, hooks and edges are shown enclosed in the dashed boxes

marked D and G.

Next we join at the remaining positions, corresponding to nodes B, E and H,

giving stage (iii) in the figure. All the parse­fragments have now been combined.

Step 5: prune.

At this stage the parse­fragments may contain dangling edges and nodes, which

ought to be removed, as shown in the figure. Also, the parse­fragments may provide

more than one complete parse, due to the direction ambiguity problem mentioned in

section 3. This is certain to be the case for the very first pattern, since every node in

the pattern with k hooks can map to a node with the same number of hooks in the

grammar in k! ways; we need to select a particular parse by breaking the symmetry.

We can deal with both problems simultaneously as follows. For each pattern edge e2

we must select one edge in g−1({e2}) and for each pattern node n2 we must select

one node in g−1({n2}). We assign each edge e1 in the parse­fragments a real number

ρ(e1), constrained to lie between 0 and 1, the interpretation being that ρ(e1) = 1 if e1

is selected to be part of the parse, ρ(e1) = 0 if it is not selected, and 0 < ρ(e1) < 1 if it

is not yet decided whether it is selected; the nodes n1 are also assigned real numbers

ρ(n1) between 0 and 1. Each ρ(e1) and ρ(n1) is given an initial value between 0 and

1 (with random perturbations to break the symmetry), and then we perform gradient

ascent on the objective function

∑

e0

(

ne0 +
∑

e1∈f−1({e0})

ρ(e1)
)

ln
(

ne0 +
∑

e1∈f−1({e0})

ρ(e1)
)

(summing over all edges e0 in the grammar), subject to the following constraints:
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• for every edge e2 in the pattern,
∑

e1∈g−1({e2})
ρ(e1) = 1 (cf step 5.2 below);

• for every hook h1 in a parse­fragment,
∑

e1
ρ(e1) = ρ(n1), where e1 ranges over all

incident edges of h1 and n1 is the node to which h1 is attached (cf steps 5.3–5.5

below).

While this is going on, edges e1 in the parse­fragments with ρ(e1) = 0 are removed, as

are nodes that have a hook with no incident edges (see step 5.6 below). Eventually the

function g becomes injective and the pruning process is finished. The objective function

used above is consistent with that used for splitting and merging (equation (6) in

section 6.1 below), taking ne0+
∑

e1∈f−1({e0})
ρ(e1) as an estimate of the mean multiplicity

of e0 based on past and present values of multiplicity.

Step 6: result.

We should now have a single parse­fragment, with g an isomorphism from the parse­

fragment to the pattern and f a homomorphism from the parse­fragment to the

grammar. Then f ◦ g−1 is the parse of the pattern. The alternative possibility that all

the parse­fragments have been pruned at step 5, in which case there is no parse.

4.2 Formal statement of the parsing algorithm

The algorithm uses the following notation for assignment statements.

NOTATION.

x := E means assign the value of the expression E to the variable x;

f (X) := Y means make the function f map the argument X to the value Y;

f (X) := ⊥ means make the function f undefined for argument X.

The parsing problem is specified as follows. Given a grammar, represented as a

network N0 = (N0,H0,E0,L0,A0,F0,S0,M0), and a pattern, represented as a network

P = (N2,H2,E2,L2,A2,F2,S2,M2), the task is to find a homomorphism p:P → N0.

The procedure is to construct an intermediate network N1 = (N1,H1,E1,L1,A1,

F1,S1,M1), built up out of parse­fragments, and homomorphisms f :N1 → N0, and

g:N1 → P as in the example above. There is one real parameter, η, used in the

gradient ascent in step 5, for which I adopt the value 0.01.

Step 1: copy edges.

We need to create one parse­fragment for each edge e0 ∈ E0 and each edge e2 ∈ E2 with

the same label. Each parse­fragment will consist of a single edge; it is mathematically

convenient to represent this edge by the pair (e0, e2). (We may restrict attention to

pairs (e0, e2) where the nodes incident to e0 have the same number of hooks as the

nodes incident to e2, since only such parse­fragments can be extended to a parse of

the whole pattern.) The set of all such edges is E1. Formally, this is done as follows.

E1 := { (e0, e2)∈E0 × E2 | M0(e0) = M2(e2) ∧

|A0
−1({A0(F0(e0))})| = |A2

−1({A2(F2(e2))})| ∧

|A0
−1({A0(S0(e0))})| = |A2

−1({A2(S2(e2))})| }
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L1 := L2

∀(e0, e2)∈E1 f (e0, e2) := e0 g(e0, e2) := e2 M1(e0, e2) := M2(e2)

∀l1∈L1 g(l1) := l1 f (l1) := l1

Step 2: copy hooks.

Next we create hooks for each end of every edge e1 in E1. It is mathematically

convenient to represent each such hook as a pair (h0,h2), where h0 and h2 are the

corresponding hooks in the grammar and the pattern, respectively; that is, h0 is

F0(f (e1)) or S0(f (e1)), and h2 is F2(g(e1)) or S2(g(e1)). The set of all such hooks makes

up H1. Formally,

H1 := { (F0(f (e1)),F2(g(e1))) | e1 ∈ E1 } ∪ { (S0(f (e1)),S2(g(e1))) | e1 ∈ E1 }

∀e1∈E1 F1(e1) := (F0(f (e1)),F2(g(e1))) S1(e1) := (S0(f (e1)),S2(g(e1)))

∀(h0,h2)∈H1 f (h0,h2) := h0 g(h0,h2) := h2.

Step 3: copy nodes.

Now we create some nodes to attach to the parse­fragments; these will be represented

mathematically as pairs (h1,n2), where h1 ∈ H1 and n2 ∈ N2, and will be collected

together in the set N1. First, set N1 := ∅. Then, for each n2 ∈ N2, choose one

h2∈A
−1
2 ({n2}) and carry out the following assignments:

N1 := N1 ∪ (g−1({h2})× {n2})

∀h1∈g
−1({h2}) A1(h1) := (h1,n2) f (h1,n2) := A0(f (h1)) g(h1,n2) := n2.

Step 4: join. (See figure 8 and accompanying text below.)

Carry out the following sequence of steps repeatedly as many times as possible.

(4.1) Choose h2∈H2 such that g−1({h2})∩dom(A1) = ∅ (if there is no such h2 then

step 4 is finished).

(4.2) Define

nodes = g−1({A2(h2)}) hooks = g−1({h2})

newnodes = { (n,h)∈nodes× hooks | f (n) = A0(f (h)) },

∀(n,h)∈newnodes Y(n,h) = A1
−1({n}) ∪ {h}

oldhooks = A1
−1(nodes) ∪ hooks newhooks =

⊎

x∈newnodesYx

oldedges = F1
−1(oldhooks) ∪ S1

−1(oldhooks)

newedges =
⊎

x∈newnodes F1
−1(Yx) ∪ S1

−1(Yx)

and carry out the following assignments

N1 := (N1 \ nodes) ∪ newnodes

H1 := (H1 \ oldhooks) ∪ newhooks

E1 := (E1 \ oldedges) ∪ newedges.

(4.3) Update the incidence functions and homomorphisms accordingly:

∀(n,h)∈newnodes f (n,h) := f (n) g(n,h) := g(n)

∀n∈nodes f (n) := ⊥ g(n) := ⊥

∀(x,h)∈newhooks A1(x,h) := x f (x,h) := f (h) g(x,h) := g(h)
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∀h∈oldhooks A1(h) := ⊥ f (h) := ⊥ g(h) := ⊥

∀(x, e)∈newedges F1(x, e) := (x,F1(e)) S1(x, e) := (x,S1(e))

M1(x, e) := M1(e) f (x, e) := f (e) g(x, e) := g(e)

∀e∈ oldedges F1(e) := ⊥ S1(e) := ⊥ M1(e) := ⊥ f (e) := ⊥ g(e) :=

⊥.

Step 5: prune.

Assign initial values as follows:

∀e1∈E1 ρ(e1) := random(0.99, 1.01)/|g−1({g(e1)})|

∀e0∈E0 ρ(e0) := random(0.7, 1.4)× (ne0 +
∑

e1∈f−1({e0})
ρ(e1))

where random(a, b) is a random number chosen from a uniform probability distri­

bution on the interval [a, b]. Then repeat the following sequence of steps until g is

injective.

(5.1) ∀e1∈E1 ρ(e1) := ρ(e1)+ η(ln ρ(f (e1))+ 1).

(5.2) ∀e2∈E2 ∀e1∈g
−1({e2}) ρ(e1) := max(ρ(e1)− δ, 0)

where δ = max

( ∑

e′
1
∈g−1({e2})

ρ(e′1)− 1

|{ e′1 ∈ g−1({e2}) | ρ(e′1) > 0 }|
, max
e′
1
∈g−1({e2})

ρ(e′1)− 1

)

.

(5.3) ∀h1∈H1 ρ(h1) :=
∑

e1∈F1
−1({h1})∪S1

−1({h1})
ρ(e1)

(5.4) ∀n1∈N1 ρ(n1) :=
(
∑

h1∈A1
−1({n1})

ρ(h1)
)

/|A1
−1({n1})|

(5.5) ∀n1∈N1 ∀h1∈A1
−1({n1}) ∀e1∈F1

−1({h1}) ∪ S1
−1({h1})

ρ(e1) := max(ρ(e1)− δh1
, 0)

where δh1
=

{

(ρ(h1)− ρ(n1))/
∣

∣F1
−1({h1}) ∪ S1

−1({h1})
∣

∣ if ρ(h1) ≤ ρ(n1)

(ρ(h1)− ρ(n1))/
∣

∣{ e1∈F1
−1({h1}) ∪ S1

−1({h1}) | ρ(e1) > 0 }
∣

∣ if ρ(h1) > ρ(n1)

(5.6) Choose an n1∈N1 such that ∃h1∈A1
−1({n1}) F1

−1({h1})∪S1
−1({h1}) = ∅ and

carry out the following assignments:

N1 := N1 \ {n1}

H1 := H1 \ A
−1
1 ({n1})

E1 := E1 \ (F
−1
1 (A−1

1 ({n1})) ∪ S−1
1 (A−1

1 ({n1})))

f (n1) := ⊥ g(n1) := ⊥

∀h1∈A1
−1({n1}) A1(h1) := ⊥ f (h1) := ⊥ g(h1) := ⊥

∀e1∈F1
−1(A1

−1({n1})) ∪ S1
−1(A1

−1({n1}))

F1(e1) := ⊥ S1(e1) := ⊥ M1(e1) := ⊥ f (e1) := ⊥ g(e1) := ⊥.

Alternatively, if there is no such n1, then choose an e1∈E1 such that ρ(e1) = 0

(if there is one) and carry out the following assignments:

E1 := E1 \ {e1}

F1(e1) := ⊥ S1(e1) := ⊥ M1(e1) := ⊥ f (e1) := ⊥ g(e1) := ⊥.

(5.7) ∀e0∈E0 ρ(e0) := ne0 +
∑

e1∈f−1({e0})
ρ(e1).
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Step 6: result.

If the homomorphism g is a bijection, let p = f ◦ g−1:P → N0: this is the parse of the

pattern. If g is not a bijection then the parse has failed.

This completes the algorithm. See figure 8 for assistance in understanding step 4.

The aim is to combine the parse­fragments on the left of the diagram with all the

parse­fragments on the right; this means attaching all the hooks in the set hooks to

all the nodes in the set nodes in all ways consistent with the grammar, taking copies

where necessary. The set of all such consistent combinations is newnodes, and this

set is inserted in N1, replacing nodes. To each new node x∈ newnodes we need to

attach copies of the relevant hooks (in Yx) and all their incident edges.

{hooks
fragments:
parse

the pattern:

g g

nodes

h2

newnodes

{
}

Figure 8. Step 4 of the parsing algorithm: we combine all the parse­fragments

terminating in nodes with all the parse­fragments terminating in hooks in

all ways consistent with the grammar; newnodes is the resulting set of com­

binations.

4.3 Comments on the computational complexity of parsing

Most of the work in the parsing algorithm is in step 4; the time complexity of this

step can be reduced by carrying out as many as possible of the ‘join’ operations in

parallel. To be precise, if two hooks h2 and h′
2 in the pattern belong to nodes that are

not neighbours (i.e. have no common incident edge), then the ‘join’ operations on h2

and h′
2 can be executed in parallel. We can partition the nodes of the image grid into

two classes such that no two nodes in the same class are neighbours; then we can

apply ‘join’ operations simultaneously to one hook from every node in one class. Thus

all the ‘join’ operations can be completed in at most six parallel steps, regardless of

the size of the image grid, the pattern, and the grammar.
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Since the parsing algorithm works by exhaustively exploring all parse­fragments,

it may appear that a very large number of parse­fragments is generated at the ‘copy

edges’ step and the number is multiplied at every ‘join’ operation. However, in reality

the proliferation of parse­fragments is limited tightly by grammatical constraints.

Moreover, there is scope for improving the efficiency of the algorithm by reducing the

number of edges generated at the ‘copy edges’ step. Before generating an edge (e0, e2),

we can check whether, for every edge e′2 incident to the same node as e2, there is an

edge e′0 incident to the same node as e0 (on the same side) with the same label and

direction as e′2: if the answer is no then there is no need to generate the edge (e0, e2),

since it cannot be extended to a larger parse­fragment. I shall refer to this as the

parsimonious version of the algorithm.

The total size of the parse­fragments at any stage of parsing can be measured

by the number of edges in E1. In practice this number declines monotonically during

step 4, for unambiguous grammars. Table 1 shows the number of E1 edges after step 1

and after step 4, for both the original algorithm and the parsimonious version, using

the ‘carpet’ patterns in section 9.5; m and n are the numbers of zigzags horizontally

and vertically. For purposes of comparison, the table also shows the number of edges in

the pattern of each size. Observe that the numbers of E1 edges increase in proportion

to the number of pattern edges.

pattern original version parsimonious version

m n edges after step 1 after step 4 after step 1 after step 4

5 5 200 2402 304 519 242

20 20 740 9242 1219 1989 902

40 40 1460 18362 2439 3949 1782

60 60 2180 27482 3659 5909 2662

80 80 2900 36602 4879 7869 3542

100 100 3620 45722 6099 9829 4422

Table 1. The numbers of edges in the parse­fragments, after step 1 and after

step 4, for two versions of the algorithm, when parsing carpet patterns.

5. Learning by splitting: informal account

We have seen in section 3 that homomorphisms are useful for specifying the parsing

problem without artificial sequentiality. They are also essential to describing the way

the grammar is learned. This section describes the principles of the learning method

informally; the formal algorithm is derived in the next section. Consider the example

in figure 9.
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Figure 9. An example of how a grammar is learned, through a sequence of

steps N1,N2,N3,N4. The homomorphisms p1, p2, p3, p4 are parses of a typical

pattern, P; the homomorphisms r1, r2, r3 describe the refinement steps.

The patterns are isosceles right­angled ‘triangles’ consisting of a vertical segment,

a horizontal segment, and a ‘diagonal’ segment made of alternate horizontals and

verticals. These patterns are presented one at a time in the image grid and may

occur at any position and be of any size. The task is to learn a grammar to represent

them. We begin with an initial grammar N1, which is consistent with any pattern

that is a simple closed curve and hence embodies little or no grammatical knowledge.

We proceed to refine the grammar through a sequence of steps, producing N2, N3, N4,

the last of which describes the pattern population precisely. Each network Ni+1 is

obtained from Ni by node splitting followed by pruning of unwanted edges (see section

3.3).

The parses are represented by homomorphisms p1, p2, p3, p4 from the pattern

network P to the grammar networks N1,N2,N3,N4 respectively. There are also ho­

momorphisms ri:Ni+1 → Ni representing the refinement operations, for i = 1, 2, 3.

The diagram commutes: that is, p1 = r1 ◦ p2, p2 = r2 ◦ p3, and p3 = r3 ◦ p4. A network

N ′ is said to be a refinement of a network N iff there is a homomorphism r:N ′ → N ;

if N ′ is a refinement of N then L(N ′) ⊆ L(N ) and GL(N ′) ⊆ GL(N ), since for every
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parse p′:P → N ′ there is a parse r ◦ p′:P → N .

Now we can restate the learning problem as follows: given an initial network N1,

find a sequence of refinements N1
r1←− N2

r2←− N3
r3←− · · ·

rn−1
←− Nn such that GL(Nn)

equals the pattern population. The initial network N1 is defined as follows. If the

patterns being considered have nodes with allowed numbers of hooks k1, k2, . . .km

then N1 will consist of m nodes, with k1, k2, . . .km hooks respectively, and with an

edge of every possible label and direction connecting every hook to every other hook.

Proposition 7 of section 3.3 may be used to shed light on the tractability of the

learning problem. Suppose that at some stage of learning we have a grammar network

N and that we ought to refine it, in one or more steps, to a grammar network N ′ that

represents the pattern population better, but due to a mistake in the learning process

we actually refine N in one or more steps to another network, N ′′. The question

is, can we recover from our mistake by refining N ′′ to N ′ or to some equally good

network? Or is N ′′ a dead end, from which we cannot escape by further refinements?

Proposition 7 provides us with a canonical way of recovering, namely by refining

N ′′ to the pullback network N ′′′, which is also a refinement of N ′. In the learning

process we shall restrict ourselves to simple unambiguous grammar networks whose

generated languages are a superset of the given pattern population. The pullback

grammar N ′′′ will also be simple and unambiguous, and will represent the pattern

population at least as well as N ′ and N ′′ (by part (d) of the proposition).

This shows that, in principle, learning can proceed directly to a solution by a

sequence of refinements, without need for backtracking in case of error.

In the algorithm to be used in this paper, the refinement steps will all consist of

splitting of a node, or of a larger portion of the network, combined with pruning of

redundant edges produced by the split. The main question is how, given a network

N at some stage of learning, to choose the next refinement step to N ′. I have pointed

out that, in general, N ′ will generate a smaller language than N and hence embody

more grammatical knowledge. However, this is not the full story. Consider again

the example node­splitting refinement shown in figure 5 in section 3.3. Recall from

section 3.3 that the grammars are stochastic, containing mean multiplicities ne and

nv for each edge e and node v, satisfying equations (1). The mean multiplicities are

related by equations such as

nn = nu + nv = nx + ny + nz = na + nb + nc + nd + ne

nn+
= nu+

+ nv+ = nx+ + ny+ + nz+ = na+
+ nb+ + nc+ .

(2)

These equations hold because any pattern node mapping to n must have an incident

edge mapping to either u or v, another edge mapping to one of x, y, z, and a third edge

mapping to one of a, b, c,d, e; and similarly for n+. The mean multiplicities of N are

related to those of N ′ by equations such as

nu+
+ nu−

= nu, nv+ + nv− = nv, nn+
+ nn−

= nn, na+
= na. (3)
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The mean multiplicities for N are derivable from those of N ′, but those of N ′ contain

extra information. This extra information is new grammatical knowledge represented

in N ′ but not in N .

These considerations can be used to choose the next refinement step. Suppose we

have the grammar N , and we wish to choose a node to split, the governing hook, and

the positive and negative indicator edges. We want to choose the split to maximise

the ‘extra information’ produced; this extra information can be understood in terms

of correlations between mapping of edges, as follows.

We have seen that any pattern node mapping to n must have three incident

edges, one of which has a choice between mapping to a, b, c, d or e, while another

has to choose between mapping to u or v. The mean multiplicities na,nb, . . . record

the frequencies with which each of these choices is made, but they do not record the

correlations between the choices. In the absence of information about correlations

let us assume, by default, that the choices are uncorrelated. On this assumption we

would estimate that, if n is split as in figure 5, we would have

nu+
=

nn+
nu

nn

, nu−
=

nn−
nu

nn

, nv+ =
nn+

nv

nn

, nv− =
nn−

nv

nn

,

nx+ =
nn+

nx

nn

, nx− =
nn−

nx

nn

, ny+ =
nn+

ny

nn

, ny− =
nn−

ny

nn

,

nz+ =
nn+

nz

nn

, nz− =
nn−

nz

nn

.

(4)

since nu+
, for example, is the frequency with which a node has an incident edge

mapping to a, b or c and an edge mapping to u, under p. Now, the refined network

N ′ is able to record the actual values for nu±
, . . .nz± . If the actual values agree

with the estimated values, that is, if there really is no correlation, then there is no

point in splitting in this way, since refining N to N ′ produces no extra grammatical

knowledge. If the actual values differ markedly from the estimated values then there

is some benefit in the split, as it brings to light statistical grammatical regularities

not observable in N . The size of the correlation gives a measure of the fissility of n,

i.e. its suitability for splitting. We want to find the way of splitting N that maximises

the fissility measure.

Exactly how to define the measure of correlation is not immediately clear. We

want to measure the extent to which the equations (4) are violated, and we need a

measure that makes a fair comparison between different candidate splits on different

nodes involving different numbers of hooks, different numbers of incident edges, and

different magnitudes of mean multiplicities.

A principled and consistent way to do this is to define a numerical objective

function Obj on networks, such that our aim is to maximise Obj(N ) while minimising

the complexity of N , as measured by a cost function Cost(N ). Then we can define the

fissility of a possible split by

fissility =
Obj(N ′)−Obj(N )

Cost(N ′)− Cost(N )
. (5)
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Fissility should always be non­negative and should be zero when and only when the

equations (4) hold. Defining fissility in this way gives coherence to the whole learning

process, since it means the algorithm is pursing the same goal at each learning step,

namely to maximise the ratio (Obj(N ) − Obj(N1))/(Cost(N ) − Cost(N1)), where N1 is

the initial network. The Obj and Cost functions will be defined at the start of the

next section.

So far we have considered the simplest possible type of refinement, in which one

node is split into two. It is sometimes desirable to split a larger portion of the network

than a single node. An example of this is given in figure 10, which shows part of a

grammar network N and a corresponding part of a pattern P. When P is parsed

using N , P must have an edge mapping to a or b, followed by zero or more edges

mapping to c, then an edge mapping to d or e; this can be written using regular

expression notation as (a|b)c∗(d|e). Now suppose that the choice between a and b is

highly correlated with the choice between d and e: that is, the combinations ac∗d and

bc∗e are much more common than the combinations ac∗e and bc∗d. Then, to represent

this correlation, we should split the grammar to N ′ as shown in figure 10. The portion

of N consisting of node n and edge c has been duplicated as a unit (instead of just

duplicating a single node, as we did in the previous example); h is the governing hook,

a is a positive indicator edge and b a negative indicator edge; the edges d and e are

not part of the portion but they have been duplicated as a consequence of the split.

(If the correlation is perfect then we can prune the new edges d− and e+, as nd−
and

ne+ will be zero.)

portion

a

b

d

e

c

split

to be split

a

c

-

+

edges c

n

n
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e
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h
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Figure 10. Splitting a portion (n and c) of the grammar N to give N ′. The

homomorphisms p and p′ are parses of the pattern P using N and N ′.

How does the network N determine the fissility of such a split? One way would be

to calculate Obj(N ) and Cost(N ), carry out the split to N ′, and then calculate Obj(N ′)
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and Cost(N ′) and apply equation (5). However, it would be computationally expensive

to do this for every possible way of splitting N ; we want to evaluate many possible

splits of N in parallel. So we need a way whereby N can estimate Obj(N ′)−Obj(N ) and

Cost(N ′)−Cost(N ) without actually performing the split to N ′. Consider the example

in figure 10 again. A pattern arrives and is parsed using N , with α,A, β,B, γ,C, δ,D, ε
mapping to b,n, c,n, c,n, c,n, e respectively. N has to imagine what the parse would

be if it were split into N ′; would γ map to c+ or c−, for example? Now, there is only

one possibility for α: it must map to b−. Hence A must map to n−, hence β must

map to c−, hence B must map to n−, γ must map to c−, C must map to n−, δ must

map to c−, D must map to n−, and finally ε must map to e−. We can record these

conclusions by putting ‘−1’ in the relevant nodes A,B,C,D of the pattern, to indicate

that this part of the pattern maps to the negative copy of the portion in N ′. If α had

mapped to a instead of b in N then A, β,B, γ,C, δ,D, ε would have had to map to the

positive copy of the portion in N ′, so we would have put ‘+1’ in the nodes A,B,C,D.

The numbers ‘−1’ and ‘+1’ express the additional information necessary to turn

a parse using N into a parse using N ′. It is helpful to think of these numbers as

two ‘colours’ and to think of the assignment of the ±1 numbers as a graph­colouring

problem. The colour at A is determined directly by whether α maps to a or b; then

the colour is propagated along β, γ, δ to B,C,D. Call the edges β, γ, δ transparent

because colour can propagate along them from node to node: in general an edge is

called transparent if and only if it is in the portion to be split or is mapped under p

to an edge in the portion (thus, c, β, γ, δ are transparent, a, b,d, e,α, ε are not). Colour

always propagates in a consistent direction: away from the indicator edges. Thus

for example the colour of B arrives through β rather than γ. This is specified by

designating one of the hooks of each node in the portion as a governing hook (h in

this case), and the hooks in the pattern that map to a governing hook are also called

governing hooks. Thus, the colour of a pattern node is always obtained through its

governing hook.

By this graph­colouring process N is able to simulate parsing using N ′. Each

node and edge in N keeps a record of the mean colour over all nodes or edges mapping

to it, over all patterns. From these mean colours, together with its mean multiplicities

na,nb,nc,nd, . . . it can calculate the mean multiplicities na+
,nb− ,nc± ,nd±

, . . . for N ′

and thereby calculate Obj(N ′)−Obj(N ) and Cost(N ′)− Cost(N ).

The full details of this algorithm are derived formally in the next section. I should

like to stress three aspects of this process here:

• it enables the fissility of the split from N to N ′ to be calculated without actually

carrying out the split;

• it only requires a modest amount of extra computation (the propagation of colours

in the pattern, the updating of mean colours in N ) in addition to the parsing that

N has to do anyway;

• fissility values for many possible splits can be calculated in parallel and hence

the best N ′ can be found with a minimum of searching.
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6. Derivation of the splitting algorithm

In this section the informal discussion of splitting in the previous section is turned into

a precise algorithm, called Choose­Split, by which a grammar network N determines

the best way of splitting. A summary of the Choose­Split algorithm is given at the

end of this section. It has to determine the portion of the grammar to be split, the

positive and negative indicator edges, and the governing hooks for all nodes in the

portion.

6.1 Global objective and cost functions

The learning process is guided by an objective function and a cost function. For any

grammar network N = (N,H,E,L,A,F,S,M), we define

Obj(N ) =
∑

e∈E

ne lnne −
∑

n∈N

(kn − 1)nn lnnn

Cost(N ) = −
∑

n∈N

(kn − 1)nn lnnn.
(6)

where ne and nn are the mean multiplicities defined in equations (1) of section 3.3,

and kn is |A−1({n})|, the number of hooks of n. We adopt the usual convention that

0 ln 0 = 0. Values of the objective and cost functions are usually negative, but this is

of no significance since only differences in their values matter. The learning process

seeks to refine the initial network N1 into a network N that maximises the ratio

Obj(N )−Obj(N1)

Cost(N )− Cost(N1)
.

This is done by maximising the fissility ratio (see equation (5) in the previous section)

at each refinement step. The justification for these definitions is that they lead to

splitting criteria that conform to the qualitative arguments in the previous section.

(As a matter of interest, it can be shown that, in the case of string or tree patterns,

−Obj(N ) is the entropy of the stochastic language generated by N .)

The values ne and nn can be stored in the grammar network at the edge e and the

node n, respectively, and calculated by a fading average of the observed multiplicities,

|p−1({e})| and |p−1({n})|; that is to say, whenever a pattern arrives and has been

parsed, ne and nn are updated by the following rule

∀e∈E ne := ne + ε(|p−1({e})| − ne)

∀n∈N nn := nn + ε(|p−1({n})| − nn)
(7)

where ε is a small positive constant. This is done in step 2.6 of the Choose­Split

algorithm (see the end of this section).
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6.2 Formal definition of splitting

To define the splitting operation we need to introduce a little more notation. It is

natural to speak of an edge as having two ‘ends’ and to consider an edge­end as an

object in its own right. For example, in section 5 I spoke of ‘indicator edges’, but it

would be more accurate to speak of ‘indicator edge­ends’. Mathematically, an edge­

end is represented as a pair (e,h), where e is the edge and h is the hook to which the

end is attached. Formally, an edge­end is a member of the set

EE = { (e,h) ∈ E×H | h = F(e) ∨ h = S(e) } = { (e,F(e)) | e ∈ E } ∪ { (e,S(e)) | e ∈ E }.

Define a projection function π:EE → H by ∀(e,h) ∈ EE π(e,h) = h. Given a homo­

morphism f :N1 → N2 between two networks, we can consider it also to include

a mapping f :EE1 → EE2 between their respective sets of edge­ends, defined by

∀(e,h) ∈ EE1 f (e,h) = (f (e), f (h)).

The portion of the network that is to be split is identified by specifying the

nodes to be split, the governing hooks, the transparent edges, and the positive

and negative indicator edge­ends. Formally, define a portion P of N as a quintu­

ple (NP,HP,EP, I
+1
P , I−1

P ), where NP ⊆ N, HP ⊆ H, EP ⊆ E, I+1
P ⊆ EE, I−1

P ⊆ EE, such

that

• for all e∈EP, A(F(e)) ∈ NP, A(S(e)) ∈ NP, and either F(e) ∈ HP or S(e) ∈ HP;

• A|HP
is a bijection from HP to NP;

• (NP,EP), considered as a graph, is connected;

• I+1
P ∩ I−1

P = ∅, and I+1
P ∪ I−1

P = IP, where IP = { (e,h) ∈ EE | e /∈ EP ∧ h ∈ HP }.

Observe that every node in NP must have a unique governing hook and every trans­

parent edge must have a governing hook at one end; IP is the set of all indicator

edge­ends.

Now, the task is to define what it means to refine N by splitting the portion

(NP,HP,EP, I
+1
P , I−1

P ). I shall define a split network N ′ = (N′,H′,E′,L′,A′,F′,S′,M′),

which is an isomorphic copy of N except where nodes, hooks and edges have been

split, and a homomorphism r:N ′ → N specifying the refinement relation between N ′

and N . Let

N′ = NP × {−1,+1} ∪ (N \NP)× {0}

H′ = A−1(NP)× {−1,+1} ∪ (H \ A−1(NP))× {0}

E′ = { (e, c, c) | e ∈ EP ∧ c ∈ {−1,+1} } ∪

{ (e, c,d) | e ∈ E \ EP ∧ c ∈ K(e,F(e)) ∧ d ∈ K(e,S(e)) }

where ∀(e,h)∈EE K(e,h) =







{c} if (e,h) ∈ IcP, for c = ±1
{−1,+1} if (e,h) /∈ IP and A(h) ∈ NP

{0} if A(h) /∈ NP

L′ = L

∀(n, c)∈N′ r(n, c) = n

∀(h, c)∈H′ A′(h, c) = (A(h), c) r(h, c) = h

35



∀(e, c,d)∈E′ F′(e, c,d) = (F(e), c) S′(e, c,d) = (S(e),d)

∀(e, c,d)∈E′ M′(e, c,d) = M(e) r(e, c,d) = e

∀l∈L′ r(l) = l.

Thus each node n in the portion is split into two nodes, (n,−1) and (n,+1), and each

of its hooks is similarly split. For every other node n in N there is only one node (n, 0)

in N ′. For every edge e in N , going from hook h1 to hook h2, the corresponding edges

in N ′ are of the form (e, c,d), going from the hook (h1, c) to the hook (h2,d), where

the numbers c,d are colours ±1, or 0 if the hook is not split. There may be one, two

or four edges (e, c,d), depending on whether e is in the portion, whether e’s incident

nodes are in the portion, and whether either end of e is an indicator edge­end.

If N is simple then so is N ′. If N is unambiguous then N ′ will usually be as well.

In what follows I shall assume that N and N ′ are simple and unambiguous (I shall

comment on the exceptional case where splitting introduces ambiguity in section 6.8

below).

The mean multiplicities of N ′ are defined analogously to those of N :

∀e′∈E′ ne′ = ExpP |p
′−1({e′})|,

∀n′∈N′ nn′ = ExpP |p
′−1({n′})|,

where p′ is the unique parse p′:P → N ′. Note that, for all n∈N and e∈E,

ne =
∑

e′∈r−1({e})

ne′ , nn =
∑

n′∈r−1({n})

nn′ , (8)

which is a generalisation of equations (3) in section 5.

6.3 The effect of a split on the objective and cost functions

Splitting N as specified above produces a change in the objective function, (6), of

∆Obj = Obj(N ′)−Obj(N )

=
∑

e∈EP

c∈{−1,+1}

n(e,c,c) ln
n(e,c,c)

ne

+
∑

e∈E\EP

c∈K(e,F(e))
d∈K(e,S(e))

n(e,c,d) ln
n(e,c,d)

ne

−
∑

n∈NP

c∈{−1,+1}

(kn − 1)n(n,c) ln
n(n,c)

nn

.

Call the summations on the right­hand side Term 1, Term 2 and Term 3; I shall take

these terms in reverse order and consider how they can be computed from information

available in N .

Term 3. At each node n∈N we can define a mean colour mn by

mn =
1

nn

∑

c such that (n,c)∈N′

c n(n,c) =

{

(n(n,+1) − n(n,−1))/nn if n ∈ NP,

0 if n /∈ NP.
(9)
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Note that, for any n ∈ NP, n(n,±1) = nn
1±mn

2
. Now, if in Term 3 we hold n fixed and

evaluate the sum over c, we obtain

∑

c∈{−1,+1}

(kn − 1)n(n,c) ln
n(n,c)

nn

= (kn − 1)nnΛ(mn),

where the function Λ: [−1, 1] → R is defined by ∀x ∈ [−1, 1] Λ(x) = 1+x
2

ln 1+x
2

+

1−x
2

ln 1−x
2

.

Term 2 can be decomposed into three pieces, which I shall call Term 2.1, Term 2.2

and Term 2.3:

∑

e∈E\EP

c∈K(e,F(e))
d∈K(e,S(e))

n(e,c,d) ln
n(e,c,d)

ne

=
∑

e∈E\EP

c∈K(e,F(e))

n(e,c,•) ln
n(e,c,•)

ne

+
∑

e∈E\EP

d∈K(e,S(e))

n(e,•,d) ln
n(e,•,d)

ne

+
∑

e∈E\EP

Re

where, for any e ∈ E, any c ∈ K(e,F(e)), and any d ∈ K(e,S(e)),

n(e,c,•) =
∑

d such that (e,c,d)∈E′

n(e,c,d), n(e,•,d) =
∑

c such that (e,c,d)∈E′

n(e,c,d),

Re =
∑

c,d such that (e,c,d)∈E′

n(e,c,d) ln
n(e,c,d)ne

n(e,c,•)n(e,•,d)
.

Note that
∑

c∈K(e,F(e)) n(e,c,•) = ne =
∑

d∈K(e,S(e)) n(e,•,d).

Term 2.1. Define a mean colour mi for each edge­end i = (e,h) by

mi =

{

1
ne

∑

c∈K(e,F(e)) c n(e,c,•) if i = (e,F(e)),
1
ne

∑

d∈K(e,S(e)) dn(e,•,d) if i = (e,S(e));
(10)

for convenience I shall also use the notation ni,

ni = ne where i = (e,h).

Note that, for any node n and hook h with A(h) = n,

nn =
∑

i∈π−1({h})

ni, nnmn =
∑

i∈π−1({h})

nimi, (11)

which conveys the same information as equations (2) in the example in section 5.

Now, for an edge­end i = (e,F(e)), with e ∈ E \ EP, we can evaluate the partial

sum over c in Term 2.1, holding e fixed, by

∑

c∈K(e,F(e))

n(e,c,•) ln
n(e,c,•)

ne

=

{

niΛ(mi) if A(F(e)) ∈ NP,

0 if A(F(e)) /∈ NP.
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Term 2.2. Similarly, for an edge­end i = (e,S(e)), with e ∈ E \EP, we can evaluate the

partial sum over d in Term 2.2, holding e fixed, by

∑

d∈K(e,S(e))

n(e,•,d) ln
n(e,•,d)

ne

=

{

niΛ(mi) if A(S(e)) ∈ NP,

0 if A(S(e)) /∈ NP.

Term 2.3. The term Re is always non­negative on account of the following standard

property of the ln function.

PROPOSITION 8. If ∀α∈{1, . . .N} pα, qα > 0 and
∑N

α=1 pα =
∑N

α=1 qα then

N
∑

α=1

pα ln
pα

qα
≥ 0,

with equality iff ∀α pα = qα.

The term Re measures the correlation between the two colours c,d in n(e,c,d): it

vanishes when and only when n(e,c,d) = n(e,c,•)n(e,•,d)/ne for all c,d. The term Re can be

non­zero only for an edge e that is split into four edges (e, c,d), where c,d ∈ {−1,+1};

this implies that the edge has both its incident nodes, A(F(e)) and A(S(e)), in the

portion but is itself outside the portion. Such an edge is called a re­entrant edge, and

Re is called the re­entrant correction.

Term 1. For an edge e ∈ EP we have the same mi value for both its ends (that is,

m(e,F(e)) = m(e,S(e))). Thus we can evaluate the partial sum over c in Term 1, holding e

fixed, by
∑

c∈{−1,+1}

n(e,c,c) ln
n(e,c,c)

ne

= niΛ(mi)

where i is either end of e.

We can combine Terms 2.1, 2.2 and 1 into a single expression,

∑

j∈JP

njΛ(mj)

where

JP = { (e,h) ∈ EE | h ∈ A−1(NP) \HP }.

We need to check that this expression counts the correct niΛ(mi) values. For an edge

e in EP, niΛ(mi) is counted for one of the ends of e, as required, since one end of e

will be attached to a governing hook and the other will not be. For any other edge,

the ends will be counted iff they are attached to nodes in NP, as required – with the

exception of indicator edge­ends i; these are omitted from the sum, but this makes no

difference since, for such an i, K(i) is {−1} or {+1} and hence mi = ±1 and Λ(mi) = 0.

Gathering together these simplifications, the total change in the objective function

Obj due to the split is

∆Obj =
∑

j∈JP

njΛ(mj)−
∑

n∈NP

(kn − 1)nnΛ(mn)+
∑

e∈E\EP

Re.
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The mj and mn values are based on information locally available at j and n, so the

network is able to calculate the first two terms in this expression. It is not able to

calculate the re­entrant corrections Re, so it takes them as zero. Thus the network

estimates ∆Obj by computing

U(P) =
∑

j∈JP

njΛ(mj)−
∑

n∈NP

(kn − 1)nnΛ(mn)

=
∑

n∈NP

∑

h∈A−1({n})\HP

∑

j∈π−1({h})

nj(Λ(mj)−Λ(mn)).
(12)

In general, U(P) ≤ ∆Obj, with equality iff all the re­entrant corrections are 0. Thus

U(P) measures the increase in the objective function Obj guaranteed by local infor­

mation, neglecting any further increase due to correlations between the colours at

opposite ends of the re­entrant edges.

PROPOSITION 9. U(P) ≥ 0, with equality iff ∀j∈JP mj = mA(π(j)).

Proof. For any n ∈ NP and any h ∈ A−1({n}) \HP we have, using (11),

∑

j∈π−1({h})

nj
1±mj

2
= nn

1±mn

2
=

∑

j∈π−1({h})

nj
1±mn

2
.

Therefore,

∑

j∈π−1({h})

nj(Λ(mj)− Λ(mn))

=
∑

j∈π−1({h})

nj

( 1+mj

2
ln

1+mj

2
− 1+mn

2
ln 1+mn

2
+

1−mj

2
ln

1−mj

2
− 1−mn

2
ln 1−mn

2

)

=
∑

j∈π−1({h})

nj

( 1+mj

2
ln

1+mj

1+mn
+

1−mj

2
ln

1−mj

1−mn

)

which is non­negative by proposition 8, and is zero iff ∀j∈ π−1({h}) mj = mn. Hence

the proposition follows from (12).

The change in the cost function, (6), can be calculated exactly from the mn values:

∆Cost = Cost(N ′)− Cost(N ) = −
∑

n∈NP

c∈{−1,1}

(kn − 1)n(n,c) ln
n(n,c)

nn

= V(P)

where

V(P) = −
∑

n∈NP

(kn − 1)nnΛ(mn) ≥ 0 (13)

as in Term 3 above.

We shall take U(P)/V(P) as our estimate of fissility. Proposition 9 shows that

this satisfies the requirements stipulated in section 5: it is always non­negative, and

is zero when and only ∀j ∈ JP mj = mA(π(j)), which is analogous to equations (4) in

section 5.
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6.4 Estimating fissility for several splits in parallel

So far we have just estimated the fissility due to a single split of a portion P. In

reality the network needs to consider many possible portions in parallel and choose

the one with the highest value for U(P)/V(P). Now, the value of U(P)/V(P) depends

only on the mean colours at the nodes of NP and adjacent edge­ends; therefore it

is possible to compute fissilities for two portions in parallel provided they have no

nodes in common. In fact, to make the most of the parallelism the network will

partition itself into portions P1, . . .Pk, with each node in one portion, and evaluate

U(P1)/V(P1), . . .U(Pk)/V(Pk) simultaneously.

These portions are represented in the network by storing real numbers te, gh, ai

at each e ∈ E, h ∈ H and i ∈
⋃k

r=1 IPr
, such that

te =

{

1 if e ∈
⋃k

r=1 EPr

0 otherwise
gh =

{

1 if h ∈
⋃k

r=1 HPr

0 otherwise
ai

{

> 0 if i ∈
⋃k

r=1 I
+1
Pr

< 0 if i ∈
⋃k

r=1 I
−1
Pr

Thus, te = 1 iff e is a transparent edge of one of the portions, gh = 1 iff h is a governing

hook, and sgn(ai) gives the sign of each indicator edge­end i (where sgn is the usual

signum function: sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, sgn(0) = 0). These numbers

between them determine all the portions P1, . . .Pk. Let

I =

k
⋃

r=1

IPr
= { (e,h) ∈ EE | te = 0 ∧ gh = 1 }, J =

k
⋃

r=1

JPr
= { (e,h) ∈ EE | gh = 0 }.

6.5 Propagation of colour

Let P = (N∗,H∗,E∗,L∗,A∗,F∗,S∗,M∗) be a pattern, let EE∗ be its set of edge­ends

and π∗:EE∗ → H∗ be the projection function with ∀(e∗,h∗)∈EE∗ π∗(e∗,h∗) = h∗. Let

p:P → N be the unique parse of P using the grammar N , and let p′:P → N ′ be the

parse of P using the refined grammar N ′. Recall from section 5 that N simulates

N ′ by assigning colours to the nodes of P. If a node n∗ ∈ N∗ maps to p(n∗) ∈ N

and is assigned a colour c then this means that, if P were parsed according to N ′

rather than N , then n∗ would map to p′(n∗) = (p(n∗), c) instead of p(n∗). Similarly, a

hook h∗ ∈ H∗, presently mapping to p(h∗), would map to p′(h∗) = (p(h∗), c), where c is

the colour of the node A∗(h∗); and an edge e∗ ∈ E∗ would map to p′(e∗) = (p(e∗), c,d),

where c and d are the colours of the nodes A∗(F∗(e∗)) and A∗(S∗(e∗)) respectively.

Hence we have

∀(n, c)∈N′ n(n,c) = ExpP |p
′−1({(n, c)})| = ExpP

∣

∣{n∗ ∈ N∗ | p(n∗) = n ∧ cn∗ = c }
∣

∣

∀(e, c,d)∈E′ n(e,c,d) = ExpP

∣

∣{ e∗ ∈ E∗ | p(e∗) = e ∧ cA∗(F∗(e∗)) = c ∧ cA∗(S∗(e∗)) = d }
∣

∣

∀e∈E ∀c∈K(e,F(e)) n(e,c,•) = ExpP

∣

∣{ e∗ ∈ E∗ | p(e∗) = e ∧ cA∗(F∗(e∗)) = c }
∣

∣

∀e∈E ∀d∈K(e,S(e)) n(e,•,d) = ExpP

∣

∣{ e∗ ∈ E∗ | p(e∗) = e ∧ cA∗(S∗(e∗)) = d }
∣

∣
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where cn∗ is the colour assigned to node n∗ ∈ N∗. Hence, by (10),

∀e∈E m(e,F(e)) =
1

ne

∑

c∈K(e,F(e))

c n(e,c,•) =
1

ne

ExpP

(

∑

e∗∈p−1({e})

cA∗(F∗(e∗))

)

∀e∈E m(e,S(e)) =
1

ne

∑

d∈K(e,S(e))

dn(e,•,d) =
1

ne

ExpP

(

∑

e∗∈p−1({e})

cA∗(S∗(e∗))

)

which can be rewritten as

∀j∈EE mj =
1

nj

ExpP

(

∑

j∗∈p−1({j})

cA∗(π∗(j∗))

)

. (14)

Similarly, by (9),

∀n∈N mn =
1

nn

ExpP

(

∑

n∗∈p−1({n})

cn∗

)

. (15)

This confirms the interpretation of mj and mn as mean colours, taken over all pattern

nodes mapping to j or n and over all patterns.

The colours cn∗ of the nodes n∗ ∈ N∗ are calculated by a process of propagation

through the pattern, starting at the indicator edge­ends and proceeding through the

transparent edges and governing hooks. This process can be defined formally as

follows. Define the set

E = { (n∗
1,h

∗
1, e

∗,h∗
2,n

∗
2) | e

∗ ∈ E∗ ∧ {F∗(e∗),S∗(e∗)} = {h∗
1,h

∗
2}

∧ A∗(h∗
1) = n∗

1 ∧ A∗(h∗
2) = n∗

2 ∧ gp(h∗
2
) = 1 }.

For any nodes n∗
1,n

∗
2 in P, let Γn∗

1
, n∗

2
= 1 if there is a path through P by which colour

can propagate from n∗
1 to n∗

2, and Γn∗
1
, n∗

2
= 0 otherwise. Formally, Γn∗

1
, n∗

2
is defined

recursively by

Γn∗
1
, n∗

2
=

{

1 if n∗
1 = n∗

2,

tp(e∗)Γn∗
1
, n∗ if n∗

1 6= n∗
2 and (n∗,h∗, e∗,h∗

2,n
∗
2) ∈ E ,

(16)

or, equivalently,

Γn∗
1
, n∗

2
=

{

1 if n∗
1 = n∗

2,
∑

(n∗
1
, h∗

1
, e∗, h∗, n∗)∈E tp(e∗)Γn∗, n∗

2
if n∗

1 6= n∗
2,

(17)

where the summation is taken over all quintuples (n∗
1,h

∗
1, e

∗,h∗,n∗) in E whose first

component equals the given node n∗
1.

Then colour can be defined by

cn∗ =
∑

i∈I

∑

i∗∈p−1({i})

ΓA∗(π∗(i∗)), n∗ sgn(ai). (18)

Colour is calculated, from (16), by iterating the following operation for every (n∗
1,h

∗
1,

e∗,h∗
2,n

∗
2)∈E :

cn∗
2
:=

{

sgn(a(p(e∗), p(h∗
2
))) if tp(e∗) = 0,

cn∗
1

if tp(e∗) = 1.
(19)
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(This is done in step 2.11 of the Choose­Split algorithm: see the end of this section.)

Next, for any i ∈ I and j ∈ J, define

nij = ExpP

(

∑

i∗∈p−1({i})

∑

j∗∈p−1({j})

ΓA∗(π∗(i∗)),A∗(π∗(j∗))

)

. (20)

Then, from (14), (18) and (20),

∀j∈J mj =
1

nj

ExpP

(

∑

j∗∈p−1({j})

cA∗(π∗(j∗))

)

=
1

nj

∑

i∈I

nij sgn(ai). (21)

6.6 Choosing the ai values

Suppose that values of te and gh have been chosen (which amounts to choosing NP,

EP and HP for each portion); then the set of indicator edge­ends IP is determined for

each portion, but the ai values (specifying which indicator edge­ends are positive and

which are negative) have not yet been chosen.

We are seeking values for ai for each edge­end i ∈ I to maximise U(Pr)/V(Pr) for

each portion Pr. It is simpler, and in practice sufficient, to maximise U(Pr) for each

portion. This is equivalent to maximising the total U,

Utotal =

k
∑

r=1

U(Pr) =
∑

j∈J

njΛ(mj)−
∑

n∈N

(kn − 1)nnΛ(mn), (22)

using (12). Consider an alternative formulation of this problem: consider the problem

of maximising

U′
=
∑

j∈J

nj

(1+mj

2
ln

1+mj

1+mA(π(j))
+

1−mj

2
ln

1−mj

1−mA(π(j))

)

(23)

using new parameters mj,mn, which are free to vary in the interval [−1, 1], subject to

the constraint nnmn =
∑

j∈π−1({h}) njmj for each hook h with gh = 0 and A(h) = n. This

optimisation problem can be solved by applying the following two steps alternately:

(i) keeping the ai parameters fixed, find the values for mj and mn that maximise U′;

(ii) keeping the mj,mn parameters fixed, find the values for ai that maximise U′.

Step (i) is easily performed. By (11), we have

∑

j∈π−1({h})

nj

1±mj

1±mn

= nn =
∑

j∈π−1({h})

nj

1±mj

1±mn

for any hook h with gh = 0 and A(h) = n, so we can apply proposition 8, which shows

that
∑

j∈π−1({h})

nj

1±mj

2
ln

1±mj

1±mn
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is maximised by taking (1±mj)/(1±mn) = (1±mj)/(1±mn), i.e. mj = mj and mn = mn.

Therefore U′ is maximised by taking mj = mj for all j ∈ J, and mn = mn for all n ∈ N.

The maximum so obtained is

U′
=
∑

j∈J

nj

(1+mj

2
ln

1+mj

1+mA(π(j))
+

1−mj

2
ln

1−mj

1−mA(π(j))

)

= Utotal.

This shows that the problem of maximising U′ (with parameters mj,mn free to vary)

is equivalent to the problem of maximising Utotal (with mj and mn eliminated), so this

formulation of the problem is equivalent to the previous one.

Step (ii) is performed as follows. Consider the effect of changing a single value

of ai from negative to positive. The difference this makes to mj, ∆imj (defined as the

value of mj with ai positive minus the value of mj with ai negative), is 2nij/nj, by

(21). Hence, from (23), the difference this makes to U′ is

∆iU
′
=
∑

j∈J

nj

∆imj

2

(

ln
1+mj

1+mA(π(j))
− ln

1−mj

1−mA(π(j))

)

=
∑

j∈J

nj(∆imj)(tanh
−1

(mj)− tanh
−1

(mA(π(j))))

=
∑

j∈J

2nij(tanh
−1

(mj)− tanh
−1

(mA(π(j))))

= ExpP

{

2
∑

j∈J

∑

i∗∈p−1({i})

∑

j∗∈p−1({j})

ΓA∗(π∗(i∗)),A∗(π∗(j∗))(tanh
−1

(mj)− tanh
−1

(mA(π(j))))
}

= ExpP

{

2
∑

i∗∈p−1({i})

δA∗(π∗(i∗))
}

where, for any node n∗ ∈ N∗,

δn∗ =
∑

j∈J

∑

j∗∈p−1({j})

Γn∗,A∗(π∗(j∗))(tanh
−1

(mj)− tanh
−1

(mA(π(j)))). (24)

The δn∗ values can be computed, from (17), using the following recurrence relation

∀n∗
1∈N

∗ δn∗
1
=

∑

h∗
1
∈A∗−1({n∗

1
})

(1− gh∗
1
)
∑

j∗
1
∈π∗−1({h∗

1
})

(tanh
−1

(mp(j∗
1
))− tanh

−1
(mp(n∗

1
)))

+
∑

(n∗
1
, h∗

1
, e∗, h∗

2
, n∗

2
)∈E

tp(e∗)δn∗
2

(25)

where the second summation is taken over every quintuple in E whose first component

equals the given node n∗
1. This recurrence relation shows that the δ values can be

calculated by a spreading­activation process flowing backwards (i.e. in the opposite

direction to colour) from nodes in A∗(π∗(p−1(J))) to nodes in A∗(π∗(p−1(I))). (This is

done in step 2.8 of the algorithm below.)

Now, if we set ai =
1
2
∆iU

′ (where the purpose of the factor of 1
2
is merely to get

rid of the factor of 2 in the formula for ∆iU
′) then the ai will be positive or negative
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as required to maximise U′. This procedure can be carried out simultaneously for

each i ∈ I, the result being a set of values for ai that maximises U′, as required.

In summary, this procedure requires the network to store values of ai for every

i ∈ I, mj for every j ∈ J, and mn for every node n. These values are updated for every

pattern so as to maintain the conditions

ai = ExpP

{

∑

i∗∈p−1({i})

δA∗(π∗(i∗))
}

mj = mj =
1

nj

ExpP

{

∑

j∗∈p−1({j})

cA∗(π∗(j∗))

}

mn = mn =
1

nn

ExpP

{

∑

n∗∈p−1({n})

cn∗

}

.

(26)

These updates may be carried out in parallel (rather than alternately, as I said above),

since they only involve incremental changes for each pattern. From now on I shall

simply write ‘mj ’ as ‘mj ’ and ‘mn ’ as ‘mn ’. The precise update rules are shown at

steps 2.9 and 2.12 in the algorithm below.

One problem that occurs in practice with this process is that, after the first few

patterns, all the ai values in a portion can become positive, or all negative, in which

case all the mj values will go to +1, or all to −1, and the network is then stuck in

this state. A good way of preventing this is to enforce the normalisation condition
∑

i∈IP

ai = 0 (27)

for each portion P. This condition ought to hold approximately anyway, since from

(26) we have
∑

i∈IP

ai = ExpP

{

∑

i∗∈p−1(IP)

δA∗(π∗(i∗))

}

= ExpP

{

∑

j∗∈p−1(JP)

(tanh
−1

(mp(j∗))− tanh
−1

(mp(A∗(π∗(j∗)))))
}

=
∑

j∈JP

nj(tanh
−1

(mj)− tanh
−1

(mA(π(j))))

which vanishes, by (11), if we approximate tanh
−1

x by x.

The normalisation condition (27) is enforced as follows. For each node n ∈ N

calculate
Un :=

∑

i∈I∩ π−1(A−1({n}))

ai =
∑

h∈A−1({n})

gh
∑

i∈π−1({h})

(1− te)ai

Vn :=
∑

i∈I∩ π−1(A−1({n}))

ni =
∑

h∈A−1({n})

gh
∑

i∈π−1({h})

(1− te)ni

(28)

(thus giving
∑

n∈NP
Un =

∑

i∈IP
ai and

∑

n∈NP
Vn =

∑

i∈IP
ni). Next, spread the Un and

Vn values evenly throughout the nodes of the portion. Then all nodes n in a single

portion P will have common values Un = (
∑

i∈IP
ai)/|NP| and Vn = (

∑

i∈IP
ni)/|NP|,

so we subtract niUn/Vn from each ai, thus making (27) true. See step 2.10 of the

Choose­Split algorithm for the precise details.
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6.7 Choosing the te and gh values

I have described how ai values are found, assuming te and gh values have already been

determined. The problem of choosing the te and gh values is much harder. There are

hardly any systematic relationships between the fissilities for different assignments

of te and gh values; there is no way to find out whether a particular assignment

produces a high fissility except by trying it. Hence the algorithm proceeds as follows.

First, a random assignment of te and gh values is chosen (see steps 2.1 and 2.2 of

the Choose­Split algorithm). This must be done in a way consistent with the definition

of a portion: each node must have one governing hook, and each transparent edge

must have a governing hook at one end. Step 2.3 of the algorithm enforces these

conditions.

Next, the algorithm chooses ai values, as in section 6.6 above, and calculates the

resulting mean colours and fissilities of the portions. A good estimate of fissility can

be obtained quickly from as few as 10 patterns.

Next, all portions with low fissility are recycled: that is, their te and gh values

are reset in a random but consistent way, producing a new partitioning of the network

into portions. Then the process is repeated. Most choices of te and gh produce very

low fissilities and are quickly changed, so the algorithm can examine a large number

of possibilities quickly. If portion has a high fissility then it is allowed to persist for

a certain number, MaxAge, of patterns, to produce an accurate measure of fissility,

before being recycled.

We are primarily interested in small portions, involving no more than three or

four nodes and edges, so this process of randomly varying te and gh is a feasible search

strategy (see the examples in section 9).

During this process, the following records are kept.

At each node n ∈ N, agen records the age of the current portion containing n,

i.e. the number of patterns that have been dealt with since this portion was formed.

These values are set to 0 in step 1 of the Choose­Split algorithm and incremented at

step 2.7 every time a pattern is processed. Also, every time we decide to recycle a

portion, the agen values are reset to 0 throughout the portion (steps 2.16–2.18); the

actual recycling is then carried out in steps 2.1–2.3.

At each node n, fissilityn records the estimated fissility of the current portion,

P, containing n. It is calculated, from (12) and (13), by a similar process to the

normalisation of the ai parameters in section 6.6: first we calculate

Un :=
∑

h∈A−1({n})

(1− gh)
∑

j∈π−1({h})

nj(Λ(mj)−Λ(mn))

Vn := −(kn − 1)nnΛ(mn)

(29)

at each n, giving
∑

n∈NP
Un = U(P) and

∑

n∈NP
Vn = V(P); then we spread the Un and

Vn values evenly throughout the portion; then, at each n, Un/Vn = U(P)/V(P), the

estimated fissility of the portion (see step 2.14).
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Also, at each node n, bestn records the highest fissility seen so far in any portion

containing n. Every time a portion survives to the maximum age, MaxAge, its fissility

is compared with bestn, and bestn is updated if necessary (step 2.16.1).

At each edge e∈ E, bestte records the best value of te found so far, i.e. the one

used in the most fissile portion containing the nodes at either end of e. Likewise, at

each hook h∈H, bestgh records the best value of gh found so far, i.e. the one used in

the most fissile portion containing the node of h. At each edge­end i, bestai records

the best ai so far. The bestte, bestgh and bestai values are updated at the same time

as the bestn values (step 2.16.1).

When this process has been continued over a sufficiently large number of patterns,

the best set of portions can be read off from the bestte, bestgh and bestai values. From

these, the best portion is selected as the one where the bestn values are highest. (See

step 3.)

There is one final way in which the efficiency of this search process can be

improved. Many portions considered are unnecessarily large: that is, they contain

edges that could be removed without any reduction in fissility. To state this as a

precise criterion: a value of te = 1 should always be changed to 0 if this can be done

without reducing Utotal =
∑k

r=1 U(Pr). We can estimate the effect that changing te

has on Utotal by calculating ∂Utotal/∂te. For this, we have to think of te temporarily

as a parameter that can vary continuously between 0 and 1, and rewrite the rule for

colour propagation, (19), as

cn∗
2
:= (1− tp(e∗)) sgn(a(p(e∗), p(h∗

2
)))+ tp(e∗) cn∗

1
(30)

for every (n∗
1,h

∗
1, e

∗,h∗
2,n

∗
2)∈E . Now, let e be an edge in E with te = 1, and let j = (e,h1)

and i = (e,h2) be its edge­ends, with gh1
= 0 and gh2

= 1. Then, from (22), (14) and

(15),

∂Utotal

∂te
=
∑

j∈J

nj tanh
−1

(mj)
∂mj

∂te
−
∑

n∈N

(kn − 1)nn tanh
−1

(mn)
∂mn

∂te

=
∑

j∈J

tanh
−1

(mj) ExpP

{

∑

j∗∈p−1({j})

∂cA∗(π∗(j∗))

∂te

}

−
∑

n∈N

(kn − 1) tanh
−1

(mn) ExpP

{

∑

n∗∈p−1({n})

∂cn∗

∂te

}

= ExpP

{

∑

j∈J

tanh
−1

(mj)
∑

j∗∈p−1({j})

∂cA∗(π∗(j∗))

∂te

−
∑

n∈N

(kn − 1) tanh
−1

(mn)
∑

n∗∈p−1({n})

∂cn∗

∂te

}

= ExpP

{

∑

j∈J

(

tanh
−1

(mj)− tanh
−1

(mA(π(j)))
)

∑

j∗∈p−1({j})

∂cA∗(π∗(j∗))

∂te

}
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Now, we can evaluate ∂cn∗/∂te, for any node n∗ ∈ N∗, by the following argument.

Changing te will change the colour that flows through each edge e∗ ∈ p−1({e}). In

fact, for each (n∗
1,h

∗
1, e

∗,h∗
2,n

∗
2) ∈ E such that p(e∗) = e, the colour arriving at n∗

2 is

changed, with a multiplying factor of cn∗
1
− sgn(ai), by (30). Each of these changes will

have an effect on cn∗ iff there is a path from n∗
2 to n∗. Hence

∂cn∗

∂te
=

∑

(n∗
1 , h

∗
1 , e

∗, h∗
2 , n

∗
2 )∈E

such that p(e∗)=e

(cn∗
1
− sgn(ai))Γn∗

2
, n∗ .

This allows us to complete our calculation:

∂Utotal

∂te
= ExpP

{

∑

j∈J

(

tanh
−1

(mj)− tanh
−1

(mA(π(j)))
)

×
∑

j∗∈p−1({j})

∑

(n∗
1 , h

∗
1 , e

∗, h∗
2 , n

∗
2 )∈E

such that p(e∗)=e

(cn∗
1
− sgn(ai))Γn∗

2
,A∗(π∗(j∗))

}

= ExpP

{

∑

(n∗
1 , h

∗
1 , e

∗, h∗
2 , n

∗
2 )∈E

such that p(e∗)=e

(cn∗
1
− sgn(ai)) δn∗

2

}

(31)

using (24). In this expression, i is the edge­end that would become an indicator if we

changed te from 1 to 0. We assume its sign, sgn(ai), would be the same as that of the

mean colour presently flowing through the edges e∗ ∈ p−1({e}), which is mj. Hence

we take sgn(ai) to be equal to sgn(mj).

The value of this partial derivative, ∂Utotal/∂te, is calculated and stored as θe (see

step 2.13 of the Choose­Split algorithm below). If an edge e with te = 1 has a low

value of θe then te is set to 0 in step 2.19, thus simplifying the portion.

6.8 Checking for ambiguity

The splitting process normally produces unambiguous grammar networks. If the

grammar N is unambiguous and we choose a portion in which definite colours ±1

can be assigned to all pattern nodes, then when we split the portion the grammar

will remain unambiguous. However, it is possible that for some portions and some

patterns, some nodes n∗ receive no colour because there is no edge­end i∗ ∈ p−1(I)

with ΓA∗(π∗(i∗)), n∗ = 1 (see equation (18)). In this case if we were to split the portion

the grammar network would become ambiguous. Portions of this sort are rare and

can be detected by the presence of a zero colour. Step 2.15 carries out this check:

whenever a pattern node has a colour of 0 the corresponding portion of N is given an

age of 0, which causes it to be recycled next time we reach step 2.1.

6.9 Summary of the Choose­Split algorithm

The argument above describes how to determine the best way to split the network.

This procedure is carried out by the Choose­Split algorithm, as follows.
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In the grammar network, N , the following real numbers are stored: nn,mn, agen,

bestn,Un,Vn,fissilityn at each node n; gh, bestgh at each hook h; ne, te, bestte, θe at each

edge e; and mi, ai, bestai at each edge­end i. For each pattern the real numbers cn∗ ,

δn∗ are stored at each node n∗ of the pattern. There are five global parameters, for

which I use the following values: ε = 0.001,Θ = 0.1,NumPatterns = 1000,MaxAge =

150,CheckInterval = 10. The algorithm is as follows.

(1) Set the initial values of the parameters:

∀e∈E bestte := 0

∀i∈EE bestai := 0

∀h∈H bestgh := 0

∀n∈N bestn := 0, agen := 0.

(2) Repeat the following sequence of steps NumPatterns times.

(2.1) For each e∈E, if ageA(F(e)) = 0 and ageA(S(e)) = 0 then

set te := 0 or 1, randomly, with equal probability; and set θe := 0.

(2.2) For each node n, if agen = 0 then

choose one hook h in A−1({n}) randomly (with equal probability) and set

gh := 1; set gh := 0 for the other hooks h ∈ A−1({n});

∀h∈A−1({n}) ∀i∈π−1({h}) ai := 0, mi := random(−0.1, 0.1);

∀h∈A−1({n}) ∀i∈π−1({h}) mi := mi −
1
nn

∑

i∈π−1({h}) nimi;

mn := 0;

where random(a, b) is a random number chosen from a uniform proba­

bility distribution over the interval [a, b].

(2.3) Reconcile the te values with the gh values by repeating the following two

operations, in a random order, as many times as possible.

(2.3.1) Select randomly an edge e with te = 1 and gF(e) = 0 = gS(e), choose

h := F(e) or S(e) randomly, set gh := 1, and set gh′ := 0 for all hooks h′

other than h in A−1({A(h)}).

(2.3.2) Select randomly an edge e with te = 1 and gF(e) = 1 = gS(e), choose

h := F(e) or S(e) randomly, set gh := 0, and set gh′ := 1 for one randomly

chosen hook h′ other than h in A−1({A(h)}).

(2.4) Receive a pattern P = (N∗,H∗,E∗,L∗,A∗,F∗,S∗,M∗) from the environment.

(2.5) Parse the pattern, using the parsing algorithm in section 4, giving the homo­

morphism p:P → N .

(2.6) Update the n values:

∀e∈E ne := ne + ε(|p−1({e})| − ne)

∀n∈N nn := nn + ε(|p−1({n})| − nn)
cf (7)

(2.7) Update the age values: ∀n∈N agen := agen + 1.

(2.8) Propagate the δ values through the pattern, as follows.
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(2.8.1) For each n∗∈N∗, δn∗ := 0.

(2.8.2) Repeat the following operation at each n∗
1∈N

∗ until convergence

δn∗
1
:=

∑

h∗
1
∈A∗−1({n∗

1
})

(1−gh∗
1
)
∑

j∗
1
∈π∗−1({h∗

1
})

(tanh
−1

(mp(j∗
1
))−tanh

−1
(mp(n∗

1
))) +

∑

(n∗
1
, h∗

1
, e∗, h∗

2
, n∗

2
)∈E

tp(e∗)δn∗
2

where the second summation is over all quintuples in E whose first

element equals the given node n∗
1 (cf (25)).

(2.9) For every i ∈ I,

ai := ai +
1

ageA(π(i))

(

∑

i∗∈p−1({i})

δA∗(π∗(i∗)) − ai

)

cf (26)

(2.10) Normalise the ai values (i.e. enforce equation (27)), as follows.

(2.10.1) For every node n ∈ N,

Un :=
∑

h∈A−1({n})

gh
∑

i∈π−1({h})

(1− te)ai

Vn :=
∑

h∈A−1({n})

gh
∑

i∈π−1({h})

(1− te)ni

cf (28)

(2.10.2) Repeat the following at every edge e ∈ E with te = 1 until convergence:

Un1
,Un2

:=
1

2
(Un1

+Un2
) Vn1

,Vn2
:=

1

2
(Vn1

+ Vn2
)

where n1 = A(F(e)) and n2 = A(S(e)).

(2.10.3) For every i ∈ I, ai := ai − niUA(π(i))/VA(π(i)).

(2.11) Propagate colour through the pattern, as follows.

(2.11.1) For each n∗∈N∗, cn∗ := 0.

(2.11.2) Repeat the following operation until convergence:

∀(n∗
1,h

∗
1, e

∗,h∗
2,n

∗
2)∈E cn∗

2
:=

{

sgn(a(p(e∗), p(h∗
2
))) if tp(e∗) = 0,

cn∗
1

if tp(e∗) = 1.
cf (19)

(2.12) Update the mean colours:

∀j∈J mj :=
nj(ageA(π(j)) − 1)mj +

∑

j∗∈p−1({j}) cA∗(π∗(j∗))

nj(ageA(π(j)) − 1)+ |p−1({j})|

∀n∈N mn :=
nn(agen − 1)mn +

∑

n∗∈p−1({n}) cn∗

nn(agen − 1)+ |p−1({n})|

cf (26)

where each mj and mn is limited to the range [−1, 1].

(2.13) For every e ∈ E such that te = 1,

θe := θe +
1

ageA(F(e))

∑

(n∗
1 , h

∗
1 , e

∗, h∗
2 , n

∗
2 )∈E

such that p(e∗)=e

(

(cn∗
1
− sgn(mj)) δn∗

2
− θe

)

cf (31)
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where j = (e,h1) is the end of e with gh1
= 0.

(2.14) Calculate fissilities, as follows.

(2.14.1) For every node n ∈ N,

Un :=
∑

h∈A−1({n})

(1− gh)
∑

j∈π−1({h})

nj(Λ(mj)− Λ(mn))

Vn := −(|A−1({n})| − 1)nnΛ(mn).

cf (29)

(2.14.2) Repeat the following at every edge e ∈ E such that te = 1, until conver­

gence:

Un1
,Un2

:=
1

2
(Un1

+Un2
) Vn1

,Vn2
:=

1

2
(Vn1

+ Vn2
)

where n1 = A(F(e)) and n2 = A(S(e)).

(2.14.3) For every n ∈ N, fissilityn := Un/Vn.

(2.15) Check for ambiguity: for every n∈N, if, for some n∗∈p−1({n}), cn∗ = 0, then

set agen := 0.

(2.16) For each node n∈N, if agen = MaxAge then do the following.

(2.16.1) If bestn < fissilityn then

for every h ∈ A−1({n}), do:

bestgh := gh;

for each i = (e,h) ∈ π−1({h}),

if i ∈ I then bestai := ai;

if bestn′ < fissilityn then bestte := te,

(where {n,n′} = {A(F(e)),A(S(e))});

and set bestn:= fissilityn

(2.16.2) agen := 0

(2.17) For each node n∈N, if agen is a multiple of CheckInterval and if fissilityn <

max(0.05, bestn ×min(0.95, 2× agen/MaxAge)) then agen := 0.

(2.18) Spread age values throughout each portion, by executing the following oper­

ation repeatedly at each edge e∈E such that te = 1, until convergence:

agen1
, agen2

:= min(agen1
, agen2

)

where n1 = A(F(e)) and n2 = A(S(e)).

(2.19) For each edge e ∈ E,

if te = 1, ageA(F(e)) is a multiple of CheckInterval, and θe < Θ then set

te := 0 and ai := mj, where j = (e,h1) and i = (e,h2) are the edge­ends of

e, with gh2
= 1.

(3) Identify the best portion as follows. Consider the graph whose nodes are N and

whose edges are those of E with bestte = 1, and select the connected component
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of this graph with the greatest value of bestn. Let NP and EP be the nodes and

edges of this connected component. Let

HP := {h∈A−1(NP) | bestgh = 1 }

I+1
P := { i = (e,h)∈EE | e /∈ EP ∧ h ∈ HP ∧ bestai > 0 }

I−1
P := { i = (e,h)∈EE | e /∈ EP ∧ h ∈ HP ∧ bestai ≤ 0 }.

Then the best portion is (NP,HP,EP, I
+1
P , I−1

P ).

7. Merging

Merging is the inverse operation to splitting; a merger is desirable when it simplifies

the grammar N , reducing Cost(N ) without reducing Obj(N ) appreciably. In section 5

I showed that errors in splitting can be corrected by further splitting (which pro­

duces a refinement of the desired grammar) followed by merging (which simplifies the

grammar to the desired one). In this paper I shall only consider the simplest kind of

merger, in which two nodes are merged into one.

The first task is to define this merging operation formally. Let N = (N,H,E,L,

A,F,S,M) be the grammar, and assume that it is unambiguous and simple (these

terms were defined in section 3). Let n1 and n2 be the nodes in N that are to be

merged, and let b:A−1({n1}) → A−1({n2}) be a bijection specifying how the hooks of

n1 are to be merged with the hooks of n2. The merger produces a network N ′ with a

homomorphism m:N → N ′ such that

∀n,n′∈N (m(n) = m(n′)⇐⇒ (n = n′ ∨ {n,n′} = {n1,n2})),

∀h1∈A
−1({n1}) ∀h2∈A

−1({n2}) (m(h1) = m(h2)⇐⇒ b(h1) = h2).

We can construct N ′ and m satisfying these conditions as follows.

N′ = N \ {n1}

∀n∈N m(n) =
{

n2 if n = n1

n otherwise

H′ = H \ A−1({n1})

∀h∈H′ A′(h) = A(h)

∀h∈H m(h) =
{

b(h) if A(h) = n1

h otherwise

E′ = { (m(F(e)),m(S(e)),M(e)) | e ∈ E }

∀(h∗,h†, l)∈E′ F′(h∗,h†, l) = h∗ S′(h∗,h†, l) = h† M′(h∗,h†, l) = l

∀e∈E m(e) = (m(F(e)),m(S(e)),M(e))

L′ = L ∀l∈L m(l) = l.

Finally let N ′ = (N′,H′,E′,L′,A′,F′,S′,M′). The network N ′ is simple, provided that,

for all h in A−1({n1}), there is no edge between h and b(h).

The second task is to identify the changes to the objective and cost functions

produced by a merger. Merging uses the same criterion function as splitting, namely

Obj(N )−Obj(N ′)

Cost(N )− Cost(N ′)
. cf (5)
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The denominator of this ratio is always non­negative (see below). A good merger

will be one where the ratio is close to zero or negative. This ratio is called the

immiscibility (reluctance to merge) of the two nodes, n1 and n2, given the bijection

b:A−1({n1}) → A−1({n2}) between their hooks. As with the calculation of fissility

in the splitting algorithm, we should like a way of calculating immiscibility without

actually carrying out the merger; this would allow us to consider all possible mergers

and pick the best one. Hence we need a formula for immiscibility expressed in terms

of N ; this can be obtained as follows. From (6),

Cost(N )− Cost(N ′) = −(k− 1)nn1
lnnn1

− (k− 1)nn2
lnnn2

+ (k− 1)(nn1
+ nn2

) ln(nn1
+ nn2

)

= (k− 1)C (32)

where k = |A−1({n1})| = |A
−1({n2})| and

C = (nn1
+ nn2

) ln(nn1
+ nn2

)− nn1
lnnn1

− nn2
lnnn2

≥ 0.

Also,

Obj(N )−Obj(N ′) =
∑

e∈E

ne lnne −
∑

e′∈E′

ne′ lnne′ + (k− 1)C.

Now, any edge e ∈ E can be identified uniquely by specifying its hooks, F(e) and S(e),

and the edge m(e) it corresponds to in E′; so, for any hooks h∗,h† ∈ H and edge e′ ∈ E′,

let us introduce the temporary notation n[e′h∗h†], defined by n[e′h∗h†] = ne, where e is

the unique edge such that m(e) = e′, F(e) = h∗ and S(e) = h†, or n[e′h∗h†] = 0 if there

is no such edge e. This notation allows us to write

Obj(N )−Obj(N ′) =
∑

e′∈E′

h∗,h†∈H

n[e′h∗h†] lnn[e′h∗h†] −
∑

e′∈E′

ne′ lnne′ + (k− 1)C

=
∑

e′∈E′

h∗,h†∈H

n[e′h∗h†] ln
n[e′h∗h†]

ne′
+ (k− 1)C (33)

since
∑

h∗,h†∈H n[e′h∗h†] = ne′ . If we also introduce the notation n[e′•h†] =
∑

h∗∈H n[e′h∗h†]

and n[e′h∗•] =
∑

h†∈H n[e′h∗h†], we can express (33) as

Obj(N )−Obj(N ′) =
∑

e′∈E′

h∗,h†∈H

n[e′h∗h†] ln
n[e′h∗h†]

n[e′•h†]

+
∑

e′∈E′

h∗,h†∈H

n[e′h∗h†] ln
n[e′h∗h†]

n[e′h∗•]

−
∑

e′∈E′

h∗,h†∈H

n[e′h∗h†] ln
n[e′h∗h†]ne′

n[e′•h†]n[e′h∗•]
+ (k− 1)C

≤
∑

e′∈E′

h∗,h†∈H

n[e′h∗h†] ln
n[e′h∗h†]

n[e′•h†]

+
∑

e′∈E′

h∗,h†∈H

n[e′h∗h†] ln
n[e′h∗h†]

n[e′h∗•]
+ (k− 1)C (34)
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using proposition 8 from section 6.3. These two sums over e′,h∗,h† can be combined

into a simpler expression if we express them in terms of edge­ends. Define two

equivalence relations, ∼ and ≡, on edge­ends of N by

(e1,h1) ∼ (e2,h2) ⇐⇒ M(e1) = M(e2) ∧
(

[F(e1) = h1 ∧ F(e2) = h2 ∧ S(e1) = S(e2)] ∨

[S(e1) = h1 ∧ S(e2) = h2 ∧ F(e1) = F(e2)]
)

(e1,h1) ≡ (e2,h2) ⇐⇒ m(h1) = m(h2) ∧ (e1,h1) ∼ (e2,h2).

(Note that (e1,h1) ∼ (e2,h2) is a sufficient condition for (e1,h1) and (e2,h2) to be merged

by any merger that merges h1 and h2; (e1,h1) ≡ (e2,h2) is sufficient for (e1,h1) and

(e2,h2) to be merged by m.) Then, for any edge­end i = (e,h∗), where F(e) = h∗,

S(e) = h† and m(e) = e′, the term n[e′h∗h†] is simply ni and n[e′•h†] is the sum of nj

over all edge­ends j such that j ≡ i. Similarly if i = (e,h†), where F(e) = h∗, S(e) = h†

and m(e) = e′, then n[e′h∗h†] is ni and n[e′h∗•] is the sum of nj over all j such that j ≡ i.

Hence (34) simplifies to

Obj(N )−Obj(N ′) ≤
∑

i∈EE

ni ln
ni

∑

j≡i nj

+ (k− 1)C.

The summation here is over EE, the set of all edge­ends of N . However, the summand

is non­zero only when i is incident to n1 or n2, so we may restrict the summation to

these i, giving

Obj(N )−Obj(N ′) ≤
∑

h1∈A−1({n1})

∑

(i1,i2)∈Rh1,b(h1)

(ni1 ln
ni1

ni1 + ni2

+ ni2 ln
ni2

ni1 + ni2

)+ (k− 1)C

= (k− 1)C−
∑

h1∈A−1({n1})

∑

(i1,i2)∈Rh1,b(h1)

Ii1,i2 (35)

where
∀h1,h2∈H Rh1,h2

= { (i1, i2) | π(i1) = h1 ∧ π(i2) = h2 ∧ i1 ∼ i2 }

∀i1, i2∈EE Ii1,i2 = −ni1 ln
ni1

ni1 + ni2

− ni2 ln
ni2

ni1 + ni2

.

From this we can obtain an estimate (in fact, an upper bound) on the immiscibility

of n1 and n2. By (35) and (32),

immiscibility =
Obj(N )−Obj(N ′)

Cost(N )− Cost(N ′)
≤ In1,n2,b

where

In1,n2,b =

(k− 1)C−
∑

h1∈A−1({n1})

∑

(i1,i2)∈Rh1,b(h1)
Ii1,i2

(k− 1)C

=
1

k− 1

[

∑

h1∈A−1({n1})

(

1−

∑

(i1,i2)∈Rh1,b(h1)
Ii1,i2

C

)

− 1
]

=
1

k− 1

[

∑

h1∈A−1({n1})

Ih1,b(h1) − 1
]
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where the non­negative quantity Ih1,h2
is defined as 1− 1

C

∑

(i1,i2)∈Rh1,h2

Ii1,i2 .

We now have a firm theoretical basis for searching for the least­immiscible way of

merging two nodes. We have a cautious estimate In1,n2,b of the harm done in merging

n1 and n2 using the bijection b: it is an upper bound on the true immiscibility, so if

In1,n2,b is low we can be sure that the true immiscibility is low. We have also analysed

In1,n2,b into contributions from each pair of merged hooks, Ih1,h2
, where h2 = b(h1),

and even into contributions from pairs of merged edge­ends, Ii1,i2 , so we can seek the

lowest possible In1,n2,b by trying to make the contributions Ih1,h2
as small as possible.

The algorithm for doing this is called Choose­Merge, and is as follows.

(1) For each node n1 ∈ N, do the following step.

(1.1) Identify the nodes n2 ∈ N that are potentially mergeable with n1: these are

the ones for which |A−1({n1})| = |A
−1({n2})| and there exist an edge­end i1

incident to n1 and an edge­end i2 incident to n2 such that i1 ∼ i2. For each

such node n2, do the following steps.

(1.1.1) Construct a bijection b:A−1({n1})→ A−1({n2}) by taking each hook h1 ∈

A−1({n1}) in turn and doing the following step.

(1.1.1.1) For each hook h2 ∈ A−1({n2}), if h2 /∈ b(A−1({n1})) and there is no

edge between h1 and h2, then do the following steps.

(1.1.1.1.1) Compute

Ih1,h2
= 1−

∑

(i1,i2)∈Rh1,h2

Ii1,i2

C

where

Ii1,i2 = −ni1 ln
ni1

ni1 + ni2

− ni2 ln
ni2

ni1 + ni2

C = (nn1
+ nn2

) ln(nn1
+ nn2

)− nn1
lnnn1

− nn2
lnnn2

(1.1.1.1.2) If this value of Ih1,h2
is the lowest one found so far (for the present

h1), record it at h1 (call it Ih1
), and modify the function b so that

it maps h1 to h2.

(1.1.2) Calculate

In1,n2,b =
1

|A−1({n1})| − 1

[

∑

h1∈A−1({n1})

Ih1
− 1

]

using the Ih1
values recorded at each hook h1.

(1.1.3) If this value of In1,n2,b is the lowest one found so far (for the present n1)

record it at n1 (call it In1
), and also record the current n2 and b.

(2) Select the node n1 ∈ N with the lowest recorded value of In1
. The output

of the algorithm is n1, the corresponding node n2, the constructed bijection

b:A−1({n1})→ A−1({n2}), and the immiscibility In1
= In1,n2,b.
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8. The entire learning algorithm

This section puts together the pieces from previous sections to give the complete

learning algorithm. The whole algorithm is implemented in the connectionist pro­

gramming language defined in Fletcher (2000), although I am presenting it here in a

higher­level and less formal way, for ease of understanding.

At the outset we have:

• the image grid;

• a population of patterns, arriving one at a time on the image grid from the

environment;

• an initial grammar.

All these are described in sections 3 and 5. There are two positive real parameters,

for which I use values µ0 = 0.05, σ0 = 0.07. The learning algorithm is as follows.

(1) Let N be the initial grammar. For every node n and edge e in N , set nn:= 0 and

ne:= 0.

(2) Repeat the following sequence of steps until no further splits or merges take

place.

(2.1) Apply the Choose­Split algorithm (section 6).

(2.2) Apply the Choose­Merge algorithm (section 7).

(2.3) Remove any edge e with ne = 0 and any node n with nn = 0.

(2.4) If the minimum immiscibility found by Choose­Merge is below µ0 then

merge the nodes n1 and n2, using the bijection b, as given by Choose­

Merge

else

if the maximum fissility found by Choose­Split exceeds σ0 then split the

portion identified by Choose­Split.

9. Examples

In this section I shall illustrate the behaviour of the learning algorithm using five

pattern populations. The aim of the algorithm is to find a grammar network N that

generates a grid language GL(N ) equal to the pattern population. The image grid

is as described in section 3 (see figure 4) and is 20 nodes in height and 40 nodes in

width (except in the last example where a slightly larger grid is used); a pattern is

drawn in the grid by activating a subset of the nodes, hooks and edges of the grid.

At the end of the section I shall provide a table of the size of the search space,

as an indication of the computational difficulty of the task.
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9.1 Staircases

The first example uses only nodes with two hooks. The patterns are staircases,

consisting of n stairs, a horizontal base, and a vertical strut; n ranges between 1 and

19 (19 being the maximum size that can fit on the grid), with all the values of n equally

probable. A typical pattern, with n = 3, is shown on the right­hand side of figure 11.

The staircase can occur at any position on the grid. The initial grammar is shown at

step 1 in figure 11: it consists of a single node with two hooks, and edges connecting

the hooks in all possible ways. By a sequence of four splits, each involving only one

node, the initial grammar is refined into a grammar N that represents the pattern

population. No further splits occur. Figure 11 shows the grammar networks at each

stage, following the split and removal of unused edges: i.e. it shows the network as

it is after step 2.3 of the learning algorithm (section 8). Because the algorithm goes

directly to a solution, no merges are necessary. The right­hand side of the figure

shows how a typical pattern is parsed at each stage: each grammar node is marked

with a unique letter and each pattern node is marked with the letter of the grammar

node it maps to. Edge labels and arrows in the pattern are omitted from the figure,

for the sake of clarity, but they are in accordance with figure 4: i.e. horizontal edges

have arrows pointing rightwards and vertical edges have arrows pointing upwards.

(The same display conventions will be used for all the examples.) It can be seen from

figure 11 how the learning process works by making successively finer grammatical

distinctions. The language generated by the final grammar, L(N ), is c∗a∗(dbe)∗ (using

regular expression notation, traversing the pattern anti­clockwise), which is a superset

of the pattern population; but the requirement that the pattern be drawable in the

grid restricts the language to GL(N ) = { c2n+1an−1(dbe)n | 1 ≤ n ≤ 19 }, which is

exactly the pattern population. It would be impossible for L(N ) to equal the pattern

population as this would require a context­sensitive grammar.

Notice that if, after learning had finished, the image grid were enlarged, then

the grid language would change to { c2n+1an−1(dbe)n | 1 ≤ n ≤ N } for some N; thus

the algorithm has been trained exclusively on staircases of up to 19 steps, but it is

capable of recognising staircases of any size. A similar comment applies to all the

pattern populations that follow.

a

a

a aa a a a

a

aaa

aaa

a

a

a

a

V
H

Step 1: the initial grammar.

H
V

56



H

a

a

b

a aa a a a

a

bbb

bbb

b

a

b

V V

V

V

b

H

Step 2: split a into b and a.
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Step 4: split b into b and d.
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c

e b d

a

b

c cc c c c c
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dbe

dbe

de

H

Step 5: split b into e and b.

Figure 11. The ‘staircase’ pattern population. On the left are shown the

grammar networks at each step of learning, and on the right is shown how

a typical pattern is parsed.
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9.2 Trellis patterns

The second example involves patterns that are less string­like. A trellis pattern

consists of a sequence of n squares connected together at their top­right and bottom­

left corners, where n is distributed as min(1+Exp(9), 19). (Exp(m) denotes a discrete

exponential probability distribution with mean m.) Figure 12 shows a typical pattern,

with n = 4. The pattern may occur at any position on the grid. The algorithm proceeds

directly in three single­node splits to a solution (step 4 in the figure) in which GL(N )

equals the pattern population. However, in this case it does not stop there but splits

a portion consisting of nodes a, b and c and the edges between them, to give the

network shown in step 5. This last split does not alter GL(N ), but it does reduce

L(N ) to bring it closer to the pattern population. Further splits of the same kind

follow, reducing L(N ) further without changing GL(N ). These splits following step 4

involve learning grammatical constraints that are already enforced by the structure

of the image grid, and hence these splits may be considered unnecessary. If the aim

is merely to make GL(N ) equal the pattern population then it would be best to stop

the learning at step 4; whereas if the aim is to make L(N ) approximate the pattern

population as closely as possible then the learning should be continued forever. As

in the staircase example, L(N ) will never equal the pattern population exactly, since

this would require a context­sensitive grammar.
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a a

a b a

a

b

b a

a

a

Step 1.

bVH
V H

V

V

H

H

H

V

H

a

a

c

a c

a b c
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Step 2: split a into a and c.
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Step 5: split a, b, c.

Figure 12. The ‘trellis’ pattern population. As in figure 11, the grammar

network at each stage is shown on the left and a typical pattern is shown on

the right.

9.3 Stalagmites

The third example involves non­Eulerian graphs and nested iteration. A pattern con­

sists of a sequence of n vertical rectangles (‘stalagmites’) on a horizontal base, where

n is distributed as min(1 + Exp(9), 20); the pattern may occur at any position on the

grid. The stalagmites have variable height, distributed as min(1+Exp(4),headroom),

where headroom is the space between the base and the top of the grid. Figure 13

shows an example pattern with four stalagmites. The algorithm proceeds directly in

four single­node splits to the network shown in the figure, for which GL(N ) equals

the pattern population. As in the previous case, further splits follow, which reduce

L(N ) without affecting GL(N ).
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Figure 13. A ‘stalagmites’ pattern and the associated grammar network.

9.4 Tessellations

The next example involves an iteration in two dimensions and requires a much larger

grammar. A pattern is a tessellation of squares and crosses, with a rectangular border.

The number of squares in each row, m, is distributed as min(1 + Exp(4), 6) and the

number of squares in each column, n, is distributed as min(1 + Exp(3), 6); figure 14

shows an example with m = 3 and n = 2. The tessellation may occur at any position

in the grid.

This time the learning process is less straightforward. Figure 14 shows the

grammar network after 6 single­node splits, 2 two­node splits, 5 three­node splits,

and 6 mergers. A couple of the single­node splits involve a poor choice of ai values,

which are corrected by later splits and merges (in accordance with the theoretical

argument in section 5). The resulting network is shown in the figure; GL(N ) equals

the pattern population. If the learning process is continued then further splits occur,

which do not alter GL(N ), just as in the previous two examples.

9.5 Carpets

The final example requires an even larger grammar than the previous one; the size of

the image grid has also been increased to 25 × 40. A ‘carpet’ pattern is a rect­

angle with zigzags around the border. There are m zigzags horizontally and n

vertically, where m is distributed as min(2 + Exp(12), 17) and n is distributed as

min(2+Exp(8), 10); figure 15 shows the case where m = 5 and n = 3. Note that there

are also small squares at the corners. The pattern may occur at any position in the

grid.

The top half of figure 15 shows the 76­node grammar learned after 34 single­

node splits, 17 two­node splits, 4 three­node splits, 1 four­node split, and 11 mergers.
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Figure 14. A ‘tessellation’ pattern and the associated grammar network.
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For this grammar, GL(N ) equals the pattern population. However, note that there

is some redundancy in the top and bottom rows: nodes d,n, o, z, y could be merged

with f , p, q,B,A and also with g, r, s,D,C; also, nodes 5, 4,α, β, π could be merged with

7, 6, γ, δ, σ. The merging procedure overlooks these mergers because it only considers

merging nodes two at a time.

As in the previous examples, further splits occur if the learning process is con­

tinued, introducing further redundancies without altering GL(N ).

9.6 The size of the search space

The computational difficulty of the learning task can be gauged roughly from the

size of the search space, i.e. the number of possible (non­isomorphic) simple grammar

networks with a given number of nodes. This number depends on the numbers of

hooks that the nodes are permitted to have: table 2 shows the case where the nodes are

allowed to have two or three hooks, as in the stalagmites and tessellation examples,

and the case where the nodes are allowed to have two or four hooks, as in the trellis

example. The table assumes that there are two edge labels, as in all the examples.

The exact values for n = 1 are obtained by direct enumeration; the upper and lower

bounds for n > 1 are calculated by an elementary counting argument.

nodes with 2 or 3 hooks

n no. of networks with n nodes

1 730

2 1.6×1016–1.2×1018

3 1.7×1040–2.2×1043

4 9.5×1074–3.0×1079

5 2.9×10120–2.7×10126

nodes with 2 or 4 hooks

n no. of networks with n nodes

1 703,770

2 4.5×1030–5.2×1033

3 3.6×1074–3.0×1079

4 3.9×10137–3.1×10144

5 6.3×10219–6.1×10228

Table 2. The number of non­isomorphic simple networks with up to five nodes.

10. Conclusions

The algorithm presented in this paper enables a connectionist network to configure

itself to represent a regular graph grammar. It learns from positive examples only,

and it is able to deal with non­Eulerian graphs without reducing them to a string­like

form. This enables it to cope with a variety of iterative structures in two dimensions.

As far as I am aware, this is the only learning algorithm known that can deal with

graph languages of this type. Moreover, the parallel approach to parsing described

in section 3.1 seems to have the potential to locate and correct errors better than
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Figure 15. A ‘carpet’ pattern and the associated grammar network.
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sequential parsing methods, though the present version of the algorithm makes no

attempt to do so; this is work for the future.

Some technical limitations should be noted. In the first place, the main learning

step consists of splitting a portion of the network into two; there are occasions when

a three­fold split is desirable, which could in principle be accomplished by two two­

fold splits, but the algorithm will not necessarily realise this. Secondly, the merging

procedure is limited at present to merging of pairs of nodes. This means there are

some desirable simplifications of the grammar that it will not be able to make (see

section 9.5). Thirdly, the algorithm lacks a proper halting condition. If the aim is to

make the grid language GL(N ) generated by the grammar equal to the pattern set

then the algorithm should halt as soon as this is achieved. It fails to do so because it

is really driven by differences between the language L(N ) generated by the grammar

and the pattern set (see the examples in section 9). This could be rectified by using

‘waking’ and ‘dreaming’ phases, as in Fletcher (1991); at present, the algorithm only

has a waking phase.

Hence the algorithm in its present form cannot be regarded as a complete solution

to the problem of inferring regular graph grammars. However, to dwell on these

limitations would be to lose sight of the main purpose of the exercise, which was

to open up new possibilities in connectionist symbol processing. Symbol processing

has traditionally been implemented on sequential computers, and this has in some

respects had a distorting effect on the associated theory. For example, formal language

theory has been heavily influenced by automaton theory and hence parsing has been

seen as a process of traversal or scanning (Ginsborg 1966: Ch. 2); I have argued in

section 3.1 that traversal is inessential to parsing and obscures its real nature as the

construction of a homomorphism between the pattern and the grammar. Moreover,

the traditional artificial­intelligence approach to problem solving is to see it as a

search through a space of possibilities, guided by heuristics and back­tracking. My

algorithm works in a different, distinctively connectionist way: the global task is

divided into local tasks for the individual nodes and edges, and provided the nodes

and edges perform their local tasks correctly the network as a whole proceeds more­

or­less directly to the solution. Admittedly, there is an element of (parallel) search

in the way in which the te and gh values are set in the Choose­Split procedure (see

section 6); however, the method by which the ai values are determined (step 2.9

of Choose­Split) uses continuous interpolation between many possible configurations

instead of enumeration of configurations. The important point, though, is that the

algorithm does no back­tracking: if it makes a mistake in splitting then it corrects it

by further splitting and merging. Viewing the search space as a category of networks

and homomorphisms (see sections 3.3 and 5) allows the algorithm to find its way to

a solution with a minimum of searching, despite the very large size of the space (see

section 9.6).

A third way in which connectionism provides a new perspective on symbol process­

ing is by imposing computational requirements that other algorithms do not attempt

64



to meet. To appreciate this point it is helpful to classify the non­connectionist gram­

matical inference algorithms cited in section 2 into piecemeal and batch methods.

Piecemeal methods receive one pattern at a time and adjust the grammar in response

to it. Consequently they may be thrown off course by a single noisy or ‘stray’ pattern

possessing idiosyncratic grammatical features; they are also vulnerable to effects of

pattern presentation order. Batch methods learn from the whole pattern set, and

consequently require the pattern set, or a summarised form of it such as a prefix­tree

acceptor, to be stored. Both approaches are undesirable from a connectionist perspec­

tive, which stresses robustness and limited storage capacity. My algorithm avoids

both drawbacks: it requires only the current pattern to be stored and it adjusts the

grammar only in response to observed statistical regularities in the pattern set, not

to individual patterns.

The algorithm has aspects that are normally considered characteristic of ‘sym­

bolic computation’ and aspects normally considered characteristic of ‘subsymbolic

computation’. The ‘symbolic’ aspects are as follows.

• The algorithm can handle nested iterative structure.

• It has a clear global semantics: that is, the grammatical knowledge embodied

in the network, and the gain in knowledge achieved by a refinement step, can

be stated explicitly in terms of the theory of networks and homomorphisms in

section 3 and the objective and cost functions in section 6.

• It has a clear local semantics: every item of information stored in the network

has a meaning.

• The local semantics is provably related to the global semantics, via the theory of

fissility in section 6 and the theory of immiscibility in section 7.

The ‘subsymbolic’ aspects are as follows.

• Numerical parameters (the te, gh and ai values), distributed across a portion

of the network, are used as fine­grained constituents of tentative grammatical

hypotheses (see section 6).

• Locally­visible correlations are used to drive the learning process (see equation

(4) and the surrounding discussion in section 5). Local correlations are also the

basis of Hebb’s rule, and hence are often seen as characteristic of subsymbolic

learning.

Nevertheless, the algorithm was not designed as a deliberate hybrid of symbolic and

subsymbolic processing but simply as the most appropriate one for the job. Perhaps

I can best sum up the message of this paper as follows: artificial­intelligence prob­

lems involving the learning of structured concepts can benefit from a connectionist

perspective; and connectionism can benefit from ignoring the symbolic/subsymbolic

dichotomy.
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