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A concise chemical synthesis of a series of structurally-

defined heparin-like oligosaccharides is described. This work 

provides an efficient entry to octa-, deca-, and 10 

dodecasaccharides, including the first synthesis of (GlcNS6S-

IdoA2S)5 and (GlcNS6S-IdoA2S)6. Evaluation of the in vitro 

activity of these species against FGF2- and VEGF165-

dependent endothelial cell proliferation and migration 

establishes that octa- and decasaccharides are more potent in 15 

targeting FGF2-induced effects, where cell migration is 

affected more significantly than proliferation. These 

structure-activity relationships exemplify the significance of 

6-O-sulfation in regulating the activity of angiogenic growth 

factors. 20 

 

 Heparin and heparan sulphate (H/HS) are highly-charged, 

ubiquitous, naturally-occurring glycosaminoglycans (GAGs) 

which are involved in regulating a wide range of biologically 

important cellular signalling events that control a variety of 25 

biological functions, including angiogenesis.1 Amongst these, 

angiogenic signalling pathways that control angiogenesis are 

regulated by pro-angiogenic and anti-angiogenic cytokines, many 

of which depend on H/HS for their biological activity.  

 Fibroblast Growth Factor 2 (FGF2) and Vascular Endothelial 30 

Growth Factor 165 (VEGF165) are potent pro-angiogenic 

cytokines which require HS to bind and activate their respective 

receptors.2a,b We have previously demonstrated the relevance of 

the H/HS-cytokine axis to human cancer,2c-h through investigation 

of size fractionated heparin-like oligosaccharides as putative 35 

competitive inhibitors of H/HS function in vitro2a,i and in vivo,2j 

demonstrating the potency of octa- and deca-saccharides. 

 There is considerable interest in developing synthetic, 

structurally-defined H/HS sequences as tools to further probe 

these angiogenic signalling pathways and for other structural 40 

interaction studies. Efficient synthetic routes, as well as access to 

a diversity of functionality, are essential to provide such agents to 

interrogate a range of biological targets and also with relation to 

potentially developing new anti-angiogenic therapies.3  

 A number of reports concerning the construction of various 45 

H/HS architectures are known and address variation of sequence 

length and sulfation pattern.4 The majority of these target the 

(IS)n repeating sequence,5 with disaccharide-based strategies 

typically introducing the S-I anomeric linkage or employing 

iditol-based rather than iduronate donors. Noteworthy also are 50 

recent approaches utilising chemoenzymatic methodologies6 and 

efforts towards sequences containing mixed (GS/IS) oligomers.7 

Herein we report the first example of the total synthesis of 

structurally defined (SI)5 deca- and (SI)6 dodecasaccharides 27 

and 28 (Figure 1) and in vitro evaluation of their ability to 55 

modulate FGF2- and VEGF165-dependent endothelial cell 

functions.  

Figure 1. Synthetic heparin-like [GlcNS6S-IdoA2S]n oligosaccharides 

26-28. 
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 The synthesis of these novel deca- and dodecassaccharides 

compliments the synthesis of the alternative dodecasaccharide 

sequence (IS)6 reported by the Bonnaffé group1d and an (SI)4 

octasaccharide, similar to 26, reported by Martin-Lomas’ group.4d  

Furthermore, our optimized approach provides rapid iterative 65 

access to multi-hundred mg quantities of octasaccharide 15, 

scalability which is pivotal to further elongations up to and 

including novel dodecasaccharide 19. The work was underpinned 

by developing a reliable 2+(2)n disaccharide iteration strategy for 

oligosaccharide chain elongation using stable thioglycoside 70 

iduronate donors, illustrated generically in Figure 2. 
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Figure 2. Iterative homologation from disaccharide level through to 8-, 

10- and 12-mers, followed by deprotections/sulfations to access heparin-85 

like oligosaccharides. 
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 This efficient synthesis utilizes only two disaccharide building 

blocks, 9 and 10, proceeding with very effective control over 

introduction of the pivotal α-1,4, I-S linking stereochemistry with 

yields reliably averaging 75% for each successive round of (2-

step) homologation. 5 

 To provide the requisite reducing-end cap monosaccharide 6 

required to prepare the key initial disaccharide 9, we further 

exploited our diastereomerically pure cyanohydrin derivative 1.8 

We have previously shown the conversion of 1 into thioglycoside 

iduronates of type 2 (Scheme 1) and their use as effective 10 

glycosyl acceptors to access H/HS disaccharide building blocks 

(including donor 10). Whilst that elaboration relied on an initial 

conversion of 1 via intermediary L-iduronamide derivatives, here 

we report that alternative Pinner type conditions convert 1 

directly into methyl glycosides of the iduronate methyl ester in 15 

77% yield. Whilst this afforded the expected mixture of 

pyranoside and furanoside diols, subsequent acetylation furnished 

3 and 4 in high yield (93%) and allowed ready separation of these 

pyranoside and furanoside isomers, thus facilitating provision of 

5 through deacetylation of 3 in 89% yield (Scheme 1). 20 
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Scheme 1. L-iduronate methyl ester acceptors. (a) AcCl, MeOH, 77% 

(b) Ac2O, Pyridine, DCM, 53% for 3, 40% for 4 (c) NaOMe, MeOH, 89% 

(d) nBu2SnO, MeOH then BzCl, dioxane, 70% (44% for α-6, 26% for β-30 

6). 

 Following regioselective C-2 acylation of 5 using stannane-

acetal chemistry,4g chromatographic separation afforded α-6 and 

β-6 in 70% overall yield. This route provides a new and scalable 

entry (13.1 g of 5 prepared) into iduronate acceptors of this type,9 35 

utilizing simple hydrolysis and acylation processes and is 

available in only four steps from cyanohydrin 1 (which we have 

shown to be available on Kg scale) and only eight steps (34% 

overall yield) from commercially available diacetone-D-glucose. 

  Glycosylation of α-6 was then effected using glucosamine-40 

derived trichloroacetimidate donor 78a,c under standard 

conditions, giving novel disaccharide 8 in 78% yield (Scheme 2). 

The α-selectivity of this glycosylation was confirmed as >95% by 
1H NMR analysis (GlcN J1,2 = 3.7 Hz for 8). 
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Scheme 2. Disaccharide acceptor synthesis (a) TMSOTf, DCM, 78% 

(b) MeOH, Pyridine, 95%, TCA = C(O)CCl3. 
 

    Facile removal of the 4-O-TCA group from 8 using mildly 55 

basic conditions provided acceptor 9 in 95% yield. This novel 

disaccharide then served as the pivotal reducing terminal for 

iteration towards longer oligosaccharide sequences. 

 With effective access to 9, our iterative 2+(2)n process 

constituted removal of the glucosamine-4-O-TCA from each new 60 

intermediate oligosaccharide followed by coupling with 

disaccharide donor unit 10 in each iterative cycle so that the 

synthesis only needed to address the introduction of I-S linkages. 

 Hence, coupling of 9 with 10 furnished tetrasaccharide 11 in 

66% yield (Scheme 3) and removal of the 4-O-TCA protecting 65 

group from 11 then gave 12 in excellent yield (91%), ready for 

further elongation. Continuation of this iterative glycosylation 

sequence was then successfully applied through two further 

cycles, homologating tetrasaccharide 12 into octasaccharide 15 

(Scheme 3) with good yields and selectivity for each 70 

glycosylation step and consistently over 85% yield for 4-O-TCA 

deprotection. Our multi-gram access to the disaccharide building 

blocks, combined with this efficient homologation sequence, 

meant this methodology was effective for batch synthesis of 

>800mg quantities of octasaccharide 15. This provides an 75 

impressive 5 step route from disaccharide 9 to protected 

octasaccharide 15 in 19% overall yield and compares well to 

previous work delivering the closest related octasaccharide in 

12% yield (7 steps).4d   
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Scheme 3. Iteration to protected heparin-like octasaccharide. (a) NIS, 

AgOTf, DCM; 11 (66%), 13 (57%), 15 (64%) (b) MeOH, Pyridine; 12 

(91%), 14 (86%). 
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 Octasaccharide 15 was then further elaborated to afford novel 

deca and dodecasaccharides 17 and 19 using the same iteration 

process (Scheme 4), with acceptor octasaccharide 16 elaborated 

into the novel dodecasaccharide 19 in 40% overall yield.  

 105 
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Scheme 4. Iteration to longer heparin-like-oligosaccharides. (a) 115 

MeOH, Pyridine; 16 (89%), 18 (91%) (b) NIS, AgOTf, DCM; 17 (57%), 

19 (79%). 
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 This oligosaccharide iteration proved extremely reliable and 

each round of glycosylation/deprotection could be completed in 

under 24 h. This demonstrates an efficient capability to more 

readily access a range of heparin-like oligosaccharides on a scale 5 

not accessible by other means and with the potential for 

incorporation of disaccharides with specific sulphation patterns. 

 The fully protected octa-, deca- and dodecasaccharides 15, 17 

and 19 were then elaborated into the target species via a four-step 

deprotection and N/O-sulfation sequence (Scheme 5).  10 
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Scheme 5. Deprotection and sulfation of octa-, deca- and 25 

dodecasaccharides. (a) LiOH, THF/MeOH/H2O; 20 (89%), 21 (90%), 22 

(68%). (b) Py.SO3 complex, pyridine or SO3.NMe3, DMF, μW then H2, 

Pd(OH)2/C, MeOH/THF/H2O; 23 (75%, 2 steps), 24 (87%, 2 steps), 25 

(71%, 2 steps). (c) Py.SO3 complex, NaHCO3, H2O; 26 (78%), 27 (73%), 

28 (82%). 30 

 

 Firstly, ester saponification released the free carboxylic acids 

20-22 and subsequent exhaustive O-sulfation was then effected 

using either Py.SO3 complex in pyridine at 50oC (for 20) or by 

using Me3N.SO3 under microwave conditions10 (for 21 and 22). 35 

Utilisation of microwave irradiation for this step saw a significant 

reduction in reaction time (1.5 h vs 18h) and better overall yields. 

O-sulfation was followed by hydrogenation to remove the benzyl 

protecting groups and reduce the azides to furnish 23-25 in good 

yields over the two steps. A final step N-sulfation of the 40 

glucosamine NH2 residues was effected using Py.SO3 complex in 

H2O to provide 8-, 10- and 12-mer heparin-like oligosaccharides 

26-28. 

Figure 3. MALDI MS of dodecasaccharide 19 (MNa+ shown). 
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 Protected and partially/fully-deprotected oligosaccharides of 

this nature present analytical challenges. In this series, high field 

NMR (800MHz) of the fully protected octa-, deca- and 

dodecasaccharides (15, 17, and 19), provided assignment of the 

diagnostic anomeric signals and constituent disaccharide 50 

repeating units, whilst MS analysis using MALDI techniques, 

proved very reliable (see Figure 3 for analysis of dodecamer 19). 

 Optimum analysis of oligosaccharides 23-28 required negative 

mode ESI-MS on samples that had undergone a carboxylic and 

sulfonic acid counter-ion salt switch (from Na+ to NH4
+) prior to 55 

analysis. This produced significantly less complicated spectra 

compared to those seen with the common Na+ counterion.11 

 Characterization of final oligosaccharide length and 

homogeneity was supported by 800MHz NMR analyses and 

PAGE analysis for synthetic compounds 26-28 (Figure 4), 60 

compared to heparin digest oligosaccharides of known length 

(Iduron). Thus, PAGE runs comparing octa-, deca- and 

dodecasaccharides from biological digests with synthetic 26-28 

and showed good correlations. 
 

65 

8-mer  10-mer   12-mer  26 27 28 

             heparin digests  synthetic oligosaccharides 

Figure 4. Azure A stained PAGE analysis of 26 (8-mer), 27 (10-mer) and 

28 (12-mer) vs heparin digest 8-, 10- and 12-mer comparisons (4 μg 

loading).
†
 70 

 We previously reported that FGF2- and VEGF165-mediated 

signalling pathways and endothelial cell functions are inhibited 

by a series of lower-sulphated synthetic (S0I2)n (n≤6) HS 

oligosaccharides.2a The most potent inhibition was achieved with 

longer oligosaccharide sequences and N-sulfation of glucosamine 75 

residues was essential for activity. 

 We thus used FGF2- and VEGF165-dependent endothelial cell 

proliferation and migration in vitro assays to evaluate whether 

introducing per-6-O-sulfation into (SI)n sequences altered the 

potential to inhibit FGF2- and VEGF165-dependent endothelial 80 

cell functions. (Fig. 5 and 6). 

  The proliferation results show that oligosaccharides 26 and 27 

inhibit FGF2, whilst dodecasaccharide 28 supports the activity of 

FGF2 (Fig. 5); findings that are in keeping with our previous in 

vivo study of size-fractionated 6-O-sulfated heparin 85 

oligosaccharides.2j Moreover, this contrasts dramatically with the 

effect of our previously-reported synthetic [GlcNS-IdoA2S]6-

OMe dodecasaccharide, where FGF2-mediated cell proliferation 

was inhibited by 85%. Access to the new synthetic 6-O-sulfated 

dodecasaccharide 28 thus enables proof of a key structure-90 

function switch in which 28 supports FGF-mediated proliferation, 

whilst its direct 6-O-desulfated synthetic analogue is very 

substantively inhibitory. 
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Figure 5. In vitro endothelial cell proliferation data for 26-28. 

Oligosaccharides 26-28 affect FGF2- and VEGF165-induced human 

umbilical vein endothelial cell (HUVEC) proliferation. HUVECs were 

maintained in endothelial cell growth media without supplements 5 

containing 1% fetal bovine serum (FBS) for six hours before adding 

FGF2 and VEGF165 at 5 ng/ml and 2.5 ng/ml concentration, respectively. 

HUVECs were cultured with the growth factors in the presence or 

absence of oligosaccharides (50 μg/ml) for 96 hours. Cell proliferation 

was evaluated using sulforhodamine B assay. FGF2- and VEGF165-10 

induced HUVEC proliferation in the absence of oligosaccharides is 

expressed as 100%. Results are shown as mean ± SEM.  

 

 All three oligosaccharides 26-28 inhibited FGF2-mediated 

endothelial cell migration by 45-70 % (Figure  6). However, our 15 

previously-reported synthetic [GlcNS-IdoA2S]6-OMe 

dodecasaccharide completely inhibited FGF2-mediated cell 

migration. This also provides another significant advancement in 

proof of the very different effects of sulfation within such 

synthetic oligosaccharides. 20 

 In VEGF165-mediated cell proliferation and migration assays 

(Figures 5 and 6) the activities of the 8-mer (26) and 12-mer (28) 

were almost identical whereas the 10-mer (27), whilst having 

little effect on proliferation (Fig 2a), was significantly more 

effective, inhibiting cell migration by 70%. Notably, this is 25 

comparable in effect to the inhibition of VEGF-mediated 

migration by our synthetic 6-O-desulfated [GlcNS-IdoA2S]6-

OMe dodecasaccharide.2a This provides an interesting contrast 

between the relationship of oligosaccharide length and sulfation 

levels in inhibiting VEGF-mediated processes. 30 

 Overall, these results, when compared with our prior 

biological inhibition data for the lesser-sulphated synthetic 

analogue series, indicate that the number and specific positions of 

sulphate residues in HS-related oligosaccharides have a 

significant role in affecting different FGF2- and VEGF165-35 

mediated processes. The lower inhibitory activity of the fully-6-

O-sulphated synthetic series 26-28 (compared with the de-6-O-

sulphated series) against FGF2- and VEGF165-mediated 

endothelial cell functions, particularly exemplified by the very 

different effects of the dodecasaccharides on FGF2-mediated 40 

proliferation and migration, could be due to the closer structural 

analogy to native HS S-domains, where such sequences are 

involved in the activation of growth factors and growth factor 

receptors on endothelial cells and are detected in tumour 

endothelium.2f-h,12  45 

 

 
Figure 6. Inhibition of FGF2- and VEGF165-induced HUVEC migration. 

HUVECs were seeded to form confluent monolayers that were 

maintained in endothelial cell growth media without supplements 50 

containing 2% FBS for 24 hours. Following serum-starvation monolayers 

were wounded and FGF2 or VEGF165 with or without oligosaccharides 

(50 μg/ml) were added at 5 ng/ml and 2.5 ng/ml concentration, 

respectively, for 24 hours. The images of unpopulated areas were 

analysed using MetaMorph image analysis software by measuring 55 

unpopulated area at 0 and 24 hours. Cell advancement area was derived 

for each treatment. The control treatment with FGF2 or VEGF165 alone is 

presented as 100%. Results are expressed as mean ± SEM 

 

Conclusions 60 

 In summary we have demonstrated an efficient 2+(2)n 

iduronate donor-disaccharide-based synthesis of heparin-like 

oligosaccharides, delivering the first examples of deca- and 

dodecasaccharides with the (SI) repeat unit. The protected 

octasaccharide precursor can be prepared on up to multi-hundred-65 

mg scales and demonstrates a robust entry to access essential, 

structurally-defined [GlcNS6S-IdoA2S]n oligosaccharides. 

Evaluation of these compounds in in vitro endothelial cell-based 

assays has enabled us to highlight the critical role that the 

glucosamine-6-O-sulphate residue plays in the regulation of 70 

cytokine activity by HS and provides important structure-activity 

information, which will prove insightful in the future design and 

development of new anti-angiogenic synthetic HS agents.  
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