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Recent studies have shown that ocular dominance plasticity in layer 2/3 of the
visual cortex exhibits a form of homeostatic synaptic plasticity that is related to
synaptic scaling and depends on TNFa. In this study, we tested whether a
similar form of plasticity was present in layer 2/3 of the barrel cortex and,
therefore, whether the mechanism was likely to be a general property of corti-
cal neurons. We found that whisker deprivation could induce homeostatic
plasticity in layer 2/3 of barrel cortex, but not in a mouse strain lacking synap-
tic scaling. The time-course of homeostatic plasticity in layer 2/3 was similar to
that of L5RS neurons, but slower than that of L5IB neurons. In layer 5, the
strength of evoked whisker responses and ex vivo mEPSCs Q1amplitudes
showed an identical time-course for homeostatic plasticity, implying that
plasticity at excitatory synapses contacting layer 5 neurons is sufficient to
explain the changes in evoked responses. Spontaneous firing rate also
showed homeostatic behaviour for L5IB cells, but was absent for L5RS cells
over the time-course studied. Spontaneous firing rate homeostasis was
found to be independent of evoked response homeostasis suggesting that
the two depend on different mechanisms.

This article is part of the themed issue ‘Integrating Hebbian and homeo-
static plasticity’.

1. Introduction
Changes in sensory experience can drive both potentiation and depression of
sensory responses in the cerebral cortex. To date, studies aimed at understand-
ing the synaptic plasticity mechanisms underlying experience-dependent
potentiation (EDP) and depression in the cerebral cortex have largely examined
the possibility that LTP and LTD fulfil this role [1,2]. Studies have shown that
LTP and LTD mechanisms certainly do exist in the cortex. For example, in
the barrel cortex the layer 4 to layer 2/3 pathway is capable of undergoing
both LTP [3–5] and LTD [5,6] as are connections between layer 5 neurons [7].
Furthermore, the relationship between the two types of plasticity is extremely
close; EDP and LTP depend on the same critical factors as one another, such
as CaMKII [8,9], GluA1 and nitric oxide synthase [4,10]. In developing animals,
LTD and experience-dependent depression (EDD) depend on cannabinoid sig-
nalling [11,12]. Further evidence comes from studies that show that experience-
dependent plasticity interacts with synaptic plasticity in a way that might be
predicted if one depended on the other, for example, in the barrel cortex
EDD occludes LTD and enhances LTP [5,13,14].

While evidence has been found supporting a role for LTP and LTD mechan-
isms in experience-dependent plasticity, studies in cell culture have revealed
that a third type of synaptic plasticity mechanism exists, known as synaptic
scaling [15]. Synaptic scaling tends to change the synaptic weights such as to

& 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

ARTICLE IN PRESS

RSTB20160150—2/12/16—21:21–Copy Edited by: Not Mentioned



restore the cells initial level of excitability and, therefore, ful-
fils a homeostatic function (Turrigiano [16]). In addition to
the general homeostatic nature of synaptic scaling, a subclass
of mechanisms known as multiplicative synaptic scaling has
the further property of maintaining the relative synaptic
weights for each cell while restoring overall excitability,
which has the additional benefit of not disrupting coding of
information during homeostasis [17].

Studies in visual cortex suggest that synaptic scaling mech-
anisms may exist in vivo too. The dependence of synaptic
upscaling on TNFa [18] and the discovery of a sub-strain
of mice lacking synaptic upscaling (C57BL/6OlaHsd) [19] have
allowed the role of scaling in in vivo EDP to be evaluated.
In the visual cortex, TNFa knockout mice were found to lack
open eye potentiation even though LTP was intact in slices pre-
pared from knockouts [20]. This suggests that not only is
synaptic scaling required for ocular dominance plasticity in
the critical period, but also that LTP is not. Separate studies
on ocular dominance plasticity in a Harlan sub-strain of mice
(C57BL/6OlaHsd) showed that these mice lack synaptic scaling
and open eye potentiation during the critical period [19]. How-
ever, synaptic scaling was not required for ocular dominance
plasticity in the adult, but CaMKII autophosphorylation was
[19], suggesting that synaptic scaling is particularly important
during plasticity that occurs in early development. This notion
is consistent with the idea that NMDA-dependent plasticity
may dominate in adult visual cortex [21].

In this study, we wanted to know how generalizable
these homeostatic mechanisms were to somatosensory cortex.
In particular, we wanted to investigate plasticity in layer 2/3
neurons, a layer where TNFa and synaptic scaling-dependent
plasticity had been identified in the visual cortex. While a great
deal of evidence implicates LTP and LTD mechanisms in layer
2/3 of the barrel cortex, it is unclear whether this is (i) because
the critical period for plasticity is so much earlier in barrel
cortex than visual cortex [22,23] and, therefore, synaptic scaling
has waned at the ages investigated (one to two months of age),
(ii) because somatosensory and visual cortex are intrinsically
different from one another or (iii) because Hebbian and homeo-
static forms of plasticity coexist in barrel cortex and have yet to
be identified. To test for homeostatic plasticity, we used a form
of deprivation designed to induce EDD without creating
synaptic competition and thereby avoided the complications
of Hebbian forms of potentiation taking place at the same
time. We, therefore, deprived all the whiskers by trimming
them unilaterally and maintained the deprivation for several
days to see if the responses recovered back towards baseline
after the initial depression. Depriving all the whiskers is
known to cause synaptic scaling in layer 5 of the barrel cortex
[24]. We studied this form of plasticity in normal mice and in
Harlan mice that lack synaptic scaling [19]. Finally, in
the second part of the study, we compared the results
obtained for layer 2/3 cells with data obtained from homeo-
static plasticity experiments in layer 5 cells to understand
commonalities and differences between pyramidal cell types.

2. Material and methods
(a) Animals
Extracellular recordings were made from neurons of layer 2/3 in
nine undeprived (122 neurons) and 17 deprived (246 neurons)
C57BL6/J strain, and five undeprived (57 neurons) and 18

deprived (191 neurons) C57BL/6OlaHsd strain of mice aged four
weeks at the time of vibrissae deprivation. Only neurons located
in barrel columns were included in the analysis. Additionally, a
smaller number of layer IV neurons were recorded across control
and deprivation groups of the same animals (83 neurons from
C57BL6/J and 80 from C57BL/6OlaHsd). In vivo intracellular
recordings were made from layer 5 neurons in seven undeprived
(27 cells) and 26 deprived C57BL/6 J mice (82 cells) aged 4–10
weeks. In vitro intracellular recordings were made from three
underpived (20 cells) and nine deprived C57BL/6 J animals (60
cells) aged four to six weeks.

(b) Whisker deprivation
To evoke homeostatic plasticity for extracellular recording exper-
iments, all vibrissae were trimmed unilaterally to the length of
1–2 mm for 1, 3, 7 or 14 days, re-trimmed every second day to
the same length as necessary and re-attached to the stubs on
the recording day with use of cynoacrylate glue (Henkel Ltd.,
Winsford, UK). For intracellular recording experiments, the
D-row whiskers were trimmed as far back as possible while leav-
ing a small stump for easy reattachment prior to the recording
session. Before recordings, trimmed whiskers were replaced for
recording by the corresponding whiskers from the contralateral
side, attached with cyanoacrylate glue.

(c) Layer 2/3 in vivo extracellular recordings
(i) Anaesthesia and surgery
For all extracellular recording experiments anaesthesia was induced
with isoflurane and maintained with urethane (1.5 g per kg of body
weight, Sigma) with trace amount of acepromazine (approx.
1 mg kg21 or less) injected IP. The depth of anaesthesia was moni-
tored during experiment and kept at III-3 stage of anaesthetic level,
characterized by a sluggish hindlimb pinch reflex and delta waves
in the 1–2 Hz range with occasional spindles. Small supplementary
injections were made if necessary with 10% of the original dose.
Body temperature was monitored throughout the experiment and
maintained at 378C using a rectal thermometer connected to heat-
ing blanket (Harvard Apparatus, Holliston, USA). For recording,
the skull was thinned over the barrel cortex with the dental drill.
A small hole was made in the thinned skull before each electrode
penetration just large enough for the electrode to enter using
gauge 30 hypodermic needle.

(ii) Electrodes and recording
Custom-made glass-insulated carbon fibre microelectrodes were
used to record from the cortex [25]. Action potentials were recorded
using Neurolog system (Digitimer, Welwyn garden City, UK) and
filtered between 0.7 and 7 KHz with a 50 Hz notch filter. The
signals were amplified 2000 times and digitized. During recording,
neurons were sampled at roughly 50 mm depth intervals. Spon-
taneous firing and also vibrissa deflection-driven firing were used
to isolate a given cell with use of window discriminator.

The stimulus consisted of a vertical deflection of a single con-
tralateral whisker lasting 10 ms. For every neuron 50 stimuli
were delivered at 1 Hz using a fast piezoelectric bimorph wafer
attached to a lightweight glass capillary driven from a voltage
source (DS-2, Digitimer, Welwyn Garden City, UK) under control
of Spike2 software (CED, Cambridge, UK). The single whisker
stimulator was moved sequentially between whiskers within the
receptive field. Evoked spikes were counted from 3 to 53 ms
post-stimulus and the spontaneous activity rate subtracted.

(iii) Histological identification
For the extracellular recording experiments, at the end of each elec-
trode penetration a small lesion was made in layer IV (1 mA, DC,
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10 s, tip negative). This served to mark the location of each
penetration. After each experiment, the animal was deeply anaes-
thetized, perfused through the heart initially with 0.1 M
phosphate-buffered saline, which was followed by 4.0% buffered
solution of formaldehyde. The brain was removed, the cortex flat-
tened as described before [26] and left overnight in 30% sucrose
in buffered solution of formaldehyde. Sections were cut at 40 mm
tangentially to the surface of flattened cortex using freezing micro-
tome and the tissue was reacted for cytochrome oxidase [27].
Stained sections were later analysed under the microscope
with use of the camera lucida to identify the location of lesions
relative to the barrel map and to correct the recording depths
where necessary.

(d) Layer 5 in vivo intracellular recordings
(i) Anaesthesia and surgery
Anaesthesia was induced with isoflurane and maintained with
urethane (1.0 g kg21, with a trace amount of acepromazine of
approx. 1 mg kg21 or less, IP injection). Throughout the exper-
iment a consistent depth of anaesthesia was maintained via
breathing rate monitoring and observation of hind-paw reflexes.
If necessary supplementary doses of urethane (0.1 g kg21) were
administered during the recording session. The D-row was located
prior to surgery with intrinsic signal imaging using 700 nm light,
an Optical Imaging 3001 ISI system and custom MATLAB code. A
single whisker was deflected at 5 Hz every 8 s using a piezoelectric
wafer. The D1, D2 and D3 barrels were identified and located rela-
tive to the surface blood vessel pattern.

After functional imaging a small craniotomy was performed
over the likely location of the D2 barrel. The final layer of bone
and the dura mater were removed with a small-bore hypodermic
needle. To place the carbon fibre ground electrode, a similar
craniotomy was made in the posterior parietal cranium.

(ii) Intracellular electrodes and recordings
Borosilicate glass sharp pipettes (50–120 MV) were passed through
the resected dura into the D2 barrel, the craniotomy was then cov-
ered with agar for stability. Recordings were performed in bridge
mode with an Axoclamp 2B (Molecular Devices, CA, USA), using
manual bridge balance and capacitance compensation. Data were
acquired and experiments controlled through a CED Micro-1401
digitizer (CED) and Spike2 software (CED). After penetration,
layer 5 cells were identified as RS or IB based on their pattern of
spiking in response to injected depolarizing current.

Whiskers were stimulated using a custom-made 3 ! 3 piezoelec-
tric actuator matrix [28] controlled by a CED3901 stimulator unit.
Receptive fields were mapped with sparse noise delivered at 5 Hz
in blocks of 10 (one deflection of each whisker plus a background
rate recording per block) interleaving stimuli for each whisker in a
pseudo-random sequence. Background firing was calculated by
taking a 50 ms sample from each blank stimulus field throughout
the recording (3–53 ms), the same time period as would be analysed
for spikes after a normal stimulus event. Data were analysed and
extracted using custom CED Spike2 and R scripts.

(e) In vitro mEPSC measurements
Mice were killed by cervical dislocation, decapitated, and
their brains rapidly removed and cooled in ice-cold choline dissec-
tion buffer (in mM: 108 choline-Cl, 3 KCl, 26 NaHCO3, 1.25
NaH2PO4, 25 D-glucose, 3 Na-pyruvate, 1 CaCl2, 6 MgSO4, 285
mOsm, bubbled with 95% O2 5% CO2). Tangential slices
(350 mm) angled across the barrel rows of the S1 region at 508 to
the midline [29] and contralateral to the deprived whiskers were
cut on a Microm HM650 V vibrating microtome, before being
transferred to a custom-built holding chamber filled with normal
ACSF (in mM: 119 NaCl, 3.5 KCl, 1 NaH2PO4, 10 D-glucose, 2

CaCl2, 1 MgSO4, 300 mOsm bubbled with 95% O2 5% CO2).
Slices were incubated after cutting for 45 min at 328C then returned
to room temperature for 30 min before recording. Barrels were
located under brightfield illumination and cells located using
DIC on an Olympus BX50WI microscope. The D-row barrel was
identified by counting across the five barrel rows (E medial A
most lateral). RS and IB cells were recorded at random throughout
layers Va and Vb using borosilicate glass patch electrodes
(4–8 MV) containing a potassium-gluconate internal solution (in
mM: 110 K-gluconate, 10 KCl, 2 MgCl2, 2 Na2ATP, 0.03 Na2GTP,
10 HEPES, 0.5% Biocytin, pH 7.3, 270 mOsm). 1 mM tetrodotoxin,
10 mM picrotoxin and 50 mM AP-V were added to the perfusate
after identification of cell type through spiking response. Record-
ings were made with an Axon Multiclamp 700B amplifier,
acquired and controlled with a CED Micro1401 and CED Signal
software, and mEPSCs analysed using Axograph software.

( f ) Statistics
For the layer 2/3 in vivo recordings, one- or two-way ANOVA
statistics were run followed by post hoc t-tests where effects
were evident. Responses of neurons to whisker stimulation
were averaged within each animal and animal averages com-
pared across treatment groups. The number of layer 4 neurons
was too few per animal to consider averaging within animals
and were averaged across age cohorts.

For the layer 5 in vitro mEPSC recordings, data were acquired
with CED Signal software and analysed with Axograph software.
A random sample of 100 contiguous events were taken from each
cell and combined to make one average dataset for each cohort.
Cumulative probability distribution functions were generated
and Kolmogorov–Smirnov (KS) tests performed using GraphPad
Prism 6. Scaling was assessed by comparing the ratio of cohort
means, multiplying one dataset by this ratio and comparing fits
with the target cumulative distribution function using a KS test.

For the layer 5 in vivo intracellular recordings, spike data
were extracted using custom CED Spike2 scripts and analysed
with GraphPad Prism 6. Data were analysed across each time
cohort with one- and two-way ANOVA and Tukey’s post hoc
tests as required.

3. Results
(a) Homeostatic plasticity in cortical layer 2/3 neurons
We deprived all the whiskers unilaterally by trimming them
for a period of 1, 3, 7 or 14 days (figure 1a) and then measured
the response to a standard whisker stimulus having reattached
intact whiskers to the stubs of the trimmed whiskers (figure 1b,
see Material and methods). Neurons were sampled evenly
every 50 mm throughout the depth of layer 2/3 and 4. We
recorded responses in both septal columns and barrel columns,
which were identified from the location of micro-lesions made
in layer 4 at the end of each recording penetration in post-
mortem histology. The principal whisker is defined as the
whisker that corresponds topologically to the barrel in which
the recording is made. This determination was often ambigu-
ous for septal locations and so we only consider penetrations
made in barrel columns for the purposes of the analysis in
this study.

For the control C57BL/6 J (Jackson strain) mice, we found
that principal whisker responses depressed rapidly after just 1
day (24 h) of deprivation to 48% of baseline values (figure 1c).
However, after 3 days, some recovery was found. On average,
principal whisker responses recovered to 80% of control
values after 3 days deprivation. We noted greater variability
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from animal to animal at 3 days compared with the other
time-points and one animal had recovered completely (to
130% of the control mean) and another not at all (48% of control
mean). This could indicate that the exact rate of recovery varies
slightly from animal to animal. Later than 3 days, recovery

was more uniform and, on average, layer 2/3 neuronal
responses appeared to overshoot the control value at 127% by
7 days and 135% at 14 days. The depression seen after 1 day
of deprivation was highly statistically significant as was the
overshoot in recovery at 7 and 14 days (figure 1c).

To test whether a similar homeostatic recovery was evident
in animals lacking synaptic scaling, we performed the same
time series of deprivations in C57BL/6OlaHsd (Harlan strain)
mice. These mice have been shown to lack synaptic scaling in
the visual cortex [19]. The principal whisker responses of
layer 2/3 neurons showed depression after 24 h to 62% of con-
trol values and a slight, but insignificant, recovery at 3 days
(74%). Furthermore, later than 3 days the responses decreased
without any sign of a homeostatic recovery either at 7 days
(61%) or beyond (57%) (figure 1c).

Neurons recorded in layer 4 appeared to show parallel
changes in principal whisker response over the same depri-
vation period (figure 1d ). However, none of the apparent
changes seen in layer 4 neurons were statistically significantly
different from baseline either for C57Bl/6 J or C57BL/6OlaHsd

mice (a ¼ 0.05). Nevertheless, the correlation between layer
2/3 and layer 4 principal whisker responses was signifi-
cant within each animal for the C57Bl/6 J mice (R2 ¼ 0.38,
p , 0.005, t-test). To analyse the possible effect of layer 4
responses on layer 2/3, we calculated the ratio of average
principal whisker responses between layer 2/3 and layer 4
neurons. This value is relatively constant between animals
and is even relatively stable with changes in anaesthesia
[30]. The baseline ratio was 0.70 for C57BL/6 J mice and
0.78 for C57BL/6OlaHsd

.

For C57Bl/6 J mice, when compensation for layer 4
changes is applied, the layer 2/3 component of depression
demonstrates a slightly slower time-course than the uncom-
pensated rate of depression (figure 2). The layer 2/3
component of the principal whisker response was still
depressed at 3 days (ratio ¼ 0.40) and returned to baseline
by 7 days (0.70) and beyond (0.68). This shows that the
rapid component of recovery seen in the overall response
was largely due to the dynamics of the layer 4 homeostatic
response (figure 2). It also suggests that the overshoot
seen in the layer 2/3 response is due to an increase in layer
4 transmission rather than a gain change in the layer 4 to
layer 2/3 pathway. By contrast, the layer 2/3 component of
the depression in C57Bl/6OlaHsd mice showed a delayed
onset and first became depressed at 3 days (ratio ¼ 0.6) and
did not recover thereafter, eventually dropping to 0.49 at 14
days (figure 2c). These results, therefore, provide evidence
that synaptic scaling plays a role in homeostatic recovery
from depression in layer 2/3 neurons in barrel cortex.

(b) Homeostatic plasticity in cortical layer 5 neurons
Studies on homeostatic plasticity in layer 5 have shown that
regular spiking (RS) and intrinsic bursting (IB) pyramidal
cells undergo TNFa-dependent homeostatic plasticity [24].
These output layer cells of the cortex have a number of influ-
ences on their responses as they are deeply embedded in the
columnar circuit, receiving inputs from all the other layers
and the thalamus. As a first step towards disentangling the cir-
cuit and synaptic gain components of the homeostatic response
of layer 5 neurons and in order to compare our findings with
those in layer 2/3 (vide supra), we extended our previous
study of scaling in excitatory mEPSCs ex vivo with further
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Figure 1. Evidence for homeostatic plasticity in layers 2/3 of barrel cortex.
(a) All the whiskers on one side were deprived by trimming for a period
of 1, 3, 7 or 14 days before recording from neurons in barrel cortex. (b)
Examples of neuronal responses to principal whisker stimulation in raster
(top) and PSTH (bottom) format, generated from extracellular recordings
from layer 2/3 (i) and layer 4 (ii) (1 ms bin width, 50 stimuli). (c) In
C57BL/6 J mice (grey line and symbols), whisker trimming caused depression
of the average layer 2/3 neuronal responses to principal whisker stimulation
after 1 day (ANOVA followed by post hoc t-test, t13 ¼ 7.29, p , 0.001, n ¼
15 mice). After 3 days some recovery occurred (not different from baseline,
t12 ¼ 1.63, p ¼ 0.13, n ¼ 14 mice) and by 7 days the responses was above
baseline (t11 ¼ 2.67 p , 0.05, n ¼ 13 mice) and maintained at 14 days
(t10 ¼ 3.51, p , 0.01, n ¼ 12 mice). In C57BL/6OlaHsd mice, depression
also occurred after 1 day (t12 ¼ 2.53, p , 0.05, n ¼ 14 mice) but this
was not followed by recovery towards baseline at any time-point (t23 ¼
2.06, p , 0.05, n ¼ 25 mice). (d ) In layer 4, neurons showed similar ten-
dencies as in layer 2/3, however, none of the changes reached statistical
significance (k¼0.05Q5 ). Data points depict means and standard errors. Dashed
lines represent baseline values before deprivation. (For differences between
each time-point and baseline, ***p , 0.001, **p , 0.01, *p , 0.05).
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deprivation time-points to see to what extent mEPSC ampli-
tude correlated in time with the changes in principal whisker
response in vivo.

We studied homeostasis in a row-deprivation paradigm in
this case (figure 3a) to isolate the layer 5 changes from possible
circuit effects. With the row-deprivation method, layer 4 shows
a slight potentiation after 3 days and layer 2/3 does not show
any change at 3 days [31]. This contrasts with layer 5 neurons,
which show depression after 12 h in the case of IB neurons and
3 days in the case of RS neurons [24]. Therefore, unlike layer
2/3 cells, where a component of the apparent depression is a
passive reflection of the input from layer 4 (vide supra), none
of the major sources of cortical input to layer 5 are depressed
during row-deprivation [31] even though layer 5 cells show
depression at this time-point.

In RS cells, we found that mEPSCs (figure 3b) were
depressed after 12 h of deprivation (mean EPSC amplitudes ¼
5.1 pA control, 3.8 pA 12 h, 25% depression) and continued to
depress further by 3 days (3.15 pA, 17% depression, 1000
events from 10 cells per group, figure 3d). After 10 days of con-
tinued deprivation, mEPSCs did show some recovery and
recovered to within 10% of baseline values. Several of the

transitions in mEPSC amplitude between time-points exhibited
multiplicative scaling. Both downscaling periods between 0
and 12 h and between 12 h and 3 days were multiplicative
(0–12 h ¼ 0.74, 12 h–3 d ¼ 0.83). However, the upscaling
period between 3 and 10 days was not multiplicative
(figure 3d).

For IB cells, the mEPSCs were depressed after 12 h (79%
of baseline) but recovered to baseline far more rapidly than
was the case for the RS cells (figure 3c,e). After 3 days of
deprivation, responses were indistinguishable from control
values (103% of baseline). Beyond the homeostatic response,
mEPSC amplitudes continued to potentiate, reaching 131%
of baseline after 10 days (figure 3e). In contrast with the RS
cells, the IB cells did not show multiplicative down-scaling
between 0 and 12 h. However, the recovery between 12 h
and 3 days was multiplicative (12 h to 3 d ¼ 1.31). The poten-
tiation period between 3 and 10 days (figure 3d ) was not
multiplicative however, suggesting that a different process
operates during homeostatic recovery compared with poten-
tiation away from the initial set point.

The time-course of the changes in average mEPSC ampli-
tude mimic the changes in principal whisker response seen in
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Figure 2. The layer 2/3 component of homeostatic plasticity. (a) The time-course of the change in mean principal whisker response is plotted for layer 2/3
neurons versus layer 4 neurons recorded in the same animals for C57Bl/6 J mice. The depression is almost identical in both layers after one day and the recovery
in layer 2/3 is slower than in layer 4. (b) The depression in layers 2/3 and 4 at 1 days is almost identical (note dashed line), but beyond that time-point there is
little recovery or change in the layer 2/3 response amplitude. (c) The ratio between the layer 2/3 and the layer 4 response are plotted for both sub-strains of mice.
The C57BL/6 J mice (grey line and symbols) show a recovery to the original baseline value whereas the CH57BL/6OlaHsd mice (blue line and symbols) gradually
drift to lower values. Dashed lines depict original ratio of layer 2/3 : 4 before deprivation. Data points in A and B show means and standard errors. (Online version
in colour Q6.)
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the in vivo experiments [24] very closely both for RS and IB
cells, especially when reanalysing the firing rates by category
of input (figure 3f– i), suggesting that cell specific changes in

synaptic weights are sufficient to explain the changes in sen-
sory response without the need to invoke the participation of
other neuronal circuit elements.

8 9

7

5

3

RS mEPSCs

RS mEPSCs

IB mEPSCs

RS spikes: PW, T1–2 IB spikes: PW, T1–2

RS spikes: S1–3 IB spikes: S1–3

IB mEPSCs

6

4

3

0.20 0.6
0.5
0.4
0.3
0.2
0.1

0

0.6
0.5
0.4
0.3
0.2
0.1

0

0.15

0.10

0.05

0

0.20

0.15

0.10

0.05

0

0 3 7 0 3 7 1010

0 3 7 0 3 7 1010

0 3
duration of deprivation (days) duration of deprivation (days)

7 10 0 3 7 10

m
E

PS
C

 m
ea

n
am

pl
itu

de
 (p

A
)

re
sp

on
se

 m
ag

ni
tu

de
(s

pi
ke

s 
pe

r s
tim

ul
us

)
re

sp
on

se
 m

ag
ni

tu
de

(s
pi

ke
s 

pe
r s

tim
ul

us
)

(e)

( f )

(b)

(a)

(c)

(d )

(g)

(h) (i)

Figure 3. Origins of homeostatic plasticity in layer 5: correlation between the time-course of mEPSCs and whisker responses. (a) A single row of whiskers is deprived
and recordings made in the barrels corresponding to the deprived row. (b). Example miniature EPSCs recorded from a L5RS cell from an undeprived mouse (top) and
a 3 day deprived mouse (bottom). (c) mEPSCs recorded from an undeprived (top) and a 10 day deprived mouse (bottom). Scale bars 10 pA and 500 ms. (d ) L5RS
neurons’ average mEPSC amplitudes decrease after 12 h of deprivation and then slowly recover towards baseline by 10 days of deprivation (Control 5.2+ 0.11 pA,
12 h 3.8+ 0.06 pA, 10 days 4.6+ 3.1 pA. Control versus 12 h D ¼ 0.51, p , 0.01, KS test, 1000 events from 10 cells per group). (e) IB neurons show a faster
recovery towards baseline by 3 days. At 10 days mEPSC amplitudes are above baseline values (Control 5.7+ 0.11 pA, 10 days 7.5+ 0.16 pA, D ¼ 0.21, p , 0.01,
KS test, 1000 events from 10 cells per group). ( f ) The average response of the deprived row whiskers (Principal whisker and adjacent within-row whiskers) recorded
from RS cells in vivo show a very similar time-course to the mEPSCs (b), only recovering after 10 days (Control 0.12+ 0.05 spikes/stim (s/s), n ¼ 13 cells, 3 days
0.03+ 0.002 s/s, n ¼ 9 10 days 0.11+ 0.03 s/s, n ¼ 9). (g) The recovery of deprived row whiskers is faster in IB cells (Control 0.27+ 0.11 s/s, n ¼ 14 cells,
12 h 0.06+ 0.01 s/s, n ¼ 14, 3 days 0.24+ 0.14 s/s, n ¼ 10) similar to the mEPSC time plot (d ). (h) The spared surround whiskers with the largest responses
are averaged and plotted for each time-point. The changes in response amplitude are very similar to the deprived whiskers. (i) The surround spared whiskers in the
IB cells show a faster homeostatic recovery and potentiate beyond baseline by 10 days similar to the mEPSCs (c) (Control 0.23+ 0.08 s/s, n ¼ 14 cells, 10 days
0.48+ 0.04 s/s, n ¼ 9 cells, q137 ¼ 4.55, p , 0.01, ANOVA with Tukey’s post). Red symbols and lines show deprived whisker responses and blue spare whisker
responses. Data points depict means and standard errors. Data at 0, 3 and 10 days mEPSC time-points and in vivo data were taken from [24].
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(c) Plasticity of spontaneous firing rate in cortical
layer 5 neurons

Spontaneous firing rate plasticity may or may not reflect
the aggregate consequences changes in firing rates to those
circuit elements projecting to the neuron in question, together
with the neuron’s synaptic weights for those inputs and their
intrinsic properties. Assuming for the moment that the same
inputs are involved in driving spontaneous activity as are
involved in producing sensory responses, then the synaptic
weights determining evoked responses will be proportional
to those determining spontaneous activity. If this was the
case, we would expect the time-course of firing rate changes
following whisker deprivation to mirror those of sensory
activity. We, therefore, measured spontaneous activity
(figure 4a,b) by taking the aggregate background activity
from ‘blank’ periods of non-stimulus randomly interleaved
between periods of stimulation.

We found that the assumption of spontaneous firing
tracking evoked activity was approximately correct for IB
cells, which showed an initial depression of spontaneous
activity after 12 h followed by a jump back towards baseline
values at 24 h, less recovery at 3 days and full recovery after
10 days (figure 4d ). However, RS cells showed a depression
in spontaneous activity that showed no recovery at any
time-point out to 10 days (figure 4c). This could imply that
a mechanism other than synaptic scaling of excitatory
inputs produces a low level of spontaneous activity in RS
cells possibly by altering excitation coupling through intrinsic
firing mechanisms [32] or by altering local somatic inhibition
[33]. Alternatively, it may be that different circuit elements
drive spontaneous and evoked activity in RS cells in contrast
with IB cells.

4. Discussion
(a) Cortical circuit versus cell-autonomous effects
Layer 2/3 and layer 5 neurons are embedded within a cortical
microcircuit; any changes observed in their sensory responses
might, therefore, originate from changes in other neurons
within the circuit, from changes in synaptic gain on the
cells in question, or a mixture of the two. In this study, we
have used different methods to distinguish between these
possibilities for layer 2/3 and layer 5 cells. For layer 2/3
cells we have normalized the layer 2/3 responses to the
layer 4 responses to compensate for the layer 2/3 cells
being strongly dominated by their columnar layer 4 input.
For layer 5 cells, we have measured mEPSCs amplitudes,
which report the synaptic weight of the connections on the
cells in question in the absence of circuit effects (which are
eliminated by TTX). Using these very different methods, we
have uncovered a striking similarity in the time-course of
the homeostatic rebound in layer 2/3 and in L5RS neurons
(cf. figures 2c and 3f,h). In both cases, whisker deprivation
causes a decrease in the response, reaching a minimum after
approximately 3 days of deprivation followed by a homeostatic
rebound back towards baseline values. By contrast, layer 5IB
cells showed a faster homeostatic change than layer 2/3 or
L5RS cells, and furthermore, they show input-dependent
potentiation suggesting that different mechanisms operate in
IB cells.

In layer 5, we found that changes in mEPSC amplitudes
were strikingly similar to changes in whisker responses for
both RS and IB cells. There were two main similarities: (i)
both mEPSC amplitudes and sensory-evoked responses
showed faster recovery in IB than RS cells and (ii) mEPSC
amplitudes and sensory-evoked responses showed potentiation
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Figure 4. Firing rate homeostasis in IB but not RS cells. (a) An example of spontaneous activity recorded intracellularly in vivo from an RS cell in an undeprived
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decreases following row-deprivation and does not recover by 10 days of deprivation even though the sensory responses have (figure 3). (d ) The spontaneous
firing rate does recover to control values in IB cells, however (Control 5.46+ 1.2 Hz, n ¼ 14 cells, 10 days 6.27+ 3.1 Hz, n ¼ 9 cells, n.s., q95 ¼ 0.63,
p . 0.05, ANOVA with Tukey’s post). Points depict means and standard errors. (Online version in colour.)
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beyond baseline only in IB cells, whereas RS cells tend towards
the original baseline values and no higher (figure 3). The close
relationship between mEPSC amplitudes and sensory
responses implies that, of the three most plausible candidate
mechanisms for homeostatic plasticity [34], i.e. changes in inhi-
bition [33], changes in intrinsic membrane properties [32,35]
and changes in excitatory synaptic weights [15], that changes
in excitatory synaptic weights are sufficient to explain the
changes in depression and recovery of sensory-evoked
responses the two classes of layer 5 pyramidal cell.

The different time-course of the homeostatic response in
L5RS and L5IB cells suggests that different synaptic mechan-
isms operate in the two cell types. While the mEPSC data
suggest that only excitatory mechanisms need be considered,
a number of different factors could explain the findings.
Anatomical and electrophysiological studies suggest the excit-
atory connections originate from different sub-circuits in the
cortex [36], and RS and IB cells receive different levels of thal-
amic input [37]. In addition, it has been found that intrinsic
plasticity mechanisms differ between RS and IB cells. While
both cell types show some aspect of TNFa-dependence in
their homeostatic response, only L5IB cells show a CaMKII
autophosphorylation sensitive component of plasticity [24].
One possibility is that the faster recovery rate in the IB cells is
due to the dual action of a Hebbian LTP-like synaptic plasticity
mechanism operating in combination with TNFa-dependent
synaptic scaling. No such mechanism operates during homeo-
stasis in the RS cells which could explain the slower kinetics of
their recovery [24]. One further possibility is that the very prop-
erty that characterizes the IB cells, namely their ability to fire a
high frequency burst of action potentials, may facilitate the
transmission of retrograde action potentials [38] and thereby
trigger spike timing-dependent plasticity more frequently in
IB than RS cells [39]. The three mechanisms mentioned here,
namely divergent synaptic inputs, synaptic plasticity mechan-
ism and intrinsic firing properties, are not mutually exclusive
and may all contribute to the schism we observe between the
plasticity in RS and IB cells.

(b) Generalization of results between cortical areas
Our findings on layer 2/3 and L5RS cells generalize findings in
visual cortex [19,20] and, therefore, suggest a common cortical
mechanism for homeostatic plasticity. Three aspects of homeo-
static plasticity are similar between the two cortical areas. First,
the time-course of the layer 2/3 and L5RS cells’ depression and
homeostatic rebound resembles the time-course of depression
and recovery observed in the visual cortex in response to mon-
ocular deprivation [20]. Second, in the case of layer 2/3 cells,
synaptic scaling is likely to be a common factor between
visual and somatosensory cortex. Harlan (C57BL/6OlaHsd)
mice lack synaptic scaling and homeostatic response to mon-
ocular deprivation in the visual cortex [19] and lack a
homeostatic response to complete whisker deprivation in the
barrel cortex (figure 1). Third, synaptic scaling also requires
TNFa [18] and is known to be a common factor, as no rebound
from depression occurs in TNFa knockouts in layer 2/3 of
visual [20] or layer 5 of somatosensory cortex [24].

It could be argued from a theoretical view point that the
homeostasis seen following deprivation could be due to a
sliding threshold for LTP/LTD along the lines suggested by
the BCM theory [40]. However, it has been shown that the
L5RS homeostatic response cannot be due to classical

Hebbian mechanisms, because a homeostatic rebound still
occurs in the CaMKII-t286a point mutants [24], which lacks
LTP in hippocampus [41] and cortex [3] and lacks poten-
tiation of spared whisker responses [9].

One difference between experience-dependent plasticity
in the visual and somatosensory cortex concerns the timing
of critical periods. While the visual cortex is susceptible
to ocular dominance plasticity especially in the final stages
of development across cortical layers [23,42], in the barrel
cortex the layer 4 critical period for single whisker experience
ends after the first postnatal week; no critical period is seen
in layer 2/3 for whisker-evoked potentiation [22], with
depression in layer 2/3 present at two but not six months
of life [9]. In the visual cortex, the critical period for synaptic
scaling appears later in layer 2/3 than in layer 4 [43] and the
critical period for ocular dominance plasticity is later in layer
2/3 and 5 than 4 [44]. However, the exact timings are shifted
considerably for the two cortical areas partly because excit-
atory transmission between layer 4 and layer 2/3 develops
at least two weeks later in the visual cortex of mice than in
the somatosensory cortex [45]. The homeostatic plasticity
seen in mouse visual cortex at P23-33 is, therefore, observed
at a far earlier stage of development than the homeostatic
plasticity in the somatosensory cortex observed in this
study at one to two months of age (P28–P42). Despite this
difference in developmental timings, it would appear similar
homeostatic mechanisms operate in the two areas.

In addition to the presence of homeostatic upscaling in both
visual and somatosensory cortex, there is evidence that an LTD
type process is also present in both areas at the ages studied.
This is perhaps not entirely surprising because without a
rapid depression mechanism there would be no deviation
from baseline, which might be the trigger for homeostatic
potentiation. In the barrel cortex, LTD has a critical period in
layer 2/3 ending around P50 in the mouse [46] and the animals
described in this study were deprived of whiskers and under-
went depression of whisker responses within this period. In the
visual cortex, LTD shows developmental downregulation [47]
and heightened sensitivity during the critical period for ocular
dominance plasticity, which is thought to be due to a peak in
mGluR5 expression, as this receptor mechanism potentiates
NMDA-dependent LTD [48].

Evidence that EDD in the barrel cortex is mechanistically
similar to LTD comes from studies showing that both depend
on the GluR1 subunit of the AMPA receptor in the somato-
sensory cortex [30] and the fact that LTD can be occluded
by whisker deprivation patterns that cause EDD [5,6]. Cru-
cially, EDD requires cortical activity [49], consistent with an
anti-correlation mechanism of depression in barrel cortex
[50]. Evidence that an LTD like process operates during
visual cortical depression of the closed eye response comes
from studies showing that blocking AMPA receptor internal-
ization prevents LTD and ocular dominance plasticity [51]
and that LTD can be occluded by monocular deprivation [52].

In conclusion, both depression and homeostatic upscaling
mechanisms appear to be similar between visual and somato-
sensory cortex and it remains to be determined whether this
is also the case for non-sensory cortical association areas.

(c) Sufficiency of the timescale of homeostasis
Modelling studies have emphasized the importance of
homeostatic mechanisms for preventing the runaway effects
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of Hebbian synaptic processes [53–55]. The response time of
homeostasis is particularly important in this regard and it
has been suggested that homeostatic mechanisms need to be
as fast as Hebbian mechanisms (seconds or minutes) in order
to control runaway strengthening of synapses [56] that could
lead to saturation of the circuit and possibly excitotoxic or epi-
leptic effects. In this study we looked at upscaling homeostasis,
which appears to be far slower than the proposed timescale of
minutes. One resolution of this apparent paradox may be that
we are studying upscaling and not downscaling. Downscaling
is the appropriate mechanism that would be necessary to
prevent runaway potentiation. A candidate for controlling
potentiation, at least in the short term, may be inhibition. If
feedback inhibition scales with the increased excitation pro-
duced by Hebbian potentiation, it could control the response
of the cell over the short term, while a slower downscaling pro-
cess mediates the longer term homeostatic response. Regarding
the relatively slow kinetics of upscaling seen in this study, slow
upscaling may be a safer system than a fast upscaling process
for the very same reasons as a control of Hebbian runaway
potentiation has been proposed; a fast upscaling process
might need to be controlled so as not to saturate or cause exci-
totoxic effects. Even the fastest homeostatic response we
observed in the layer 5IB cells takes days to return the response
to baseline.

(d) Firing rate homeostasis
A further difference between L5RS and L5IB cells was found in
their firing rate homeostasis. While IB cells showed a homeo-
static restoration of their basal firing rates the RS cells
showed an uncompensated loss of firing rate despite a rebound
homeostasis of their evoked responses (figures 3 and 4). This
result implies that spontaneous firing rate homeostasis does
not necessarily depend on the synaptic weights of the excit-
atory inputs. Other possible mechanisms that could account
for changes in firing rate include changes in inhibition [57]
and changes in spike threshold or intrinsic membrane proper-
ties, for which there is some evidence in layer 5 cells [58,59].
One further possibility is that the spontaneous activity of the
layer 5 neurons may be under the influence of a subset of
synapses that do change synaptic weight, but cannot be
detected (using mEPSC analysis) within the greater pool of
synapses related to the sensory responses, which change in a
different direction. Spontaneous activity of layer 5 cells is domi-
nated by up and down states in anaesthetized animals and

leads to a burst pause firing of action potentials [60]. There is
evidence that the spontaneous activity of layer 5 cells depends
on the intralaminar nucleus of thalamus acting via NMDA
receptors [61] and this input is independent of the sensory thal-
amic input from the ventrobasal thalamus. It is not clear at
present why such a mechanism would differ between L5RS
cells compared with L5IB cells. However, it does give RS
cells an adaptive advantage because the signal to noise ratio
increases for L5RS cells [62] through a homeostatic response
to sensory inputs and a lack of firing rate homeostasis. In this
way, the L5RS cells achieve a similar result to the L5IB cells
that do show firing rate homeostasis, but IB cells require a
CaMKII-dependent mechanism to potentiate their spared
whisker input beyond baseline [24] to achieve an increase in
signal to noise ratio [62].

(e) Conclusion
We have described three different cortical homeostatic mechan-
isms in this study. The first is a synaptic scaling mechanism that
shows a similar time-course for evoked responses in layer 2/3
and L5RS cells in the barrel cortex, and generalizes well to
what is observed in layer 2/3 of the visual cortex. In layer 2/3
of the visual cortex and L5RS cells of the somatosensory
cortex this mechanism is known to be TNFa dependent. The
second is a TNFa and CaMKII phosphorylation-dependent
homeostatic mechanism that shows faster kinetics for evoked
responses and is present in in L5IB cells. The third is a firing
rate homeostasis for spontaneous activity, which is present in
L5IB cells but not L5RS cells. We have not so far identified a
mechanism for this form of plasticity, but observe that it can
vary independent of the homeostasis of the evoked sensory
responses. In the case of L5RS cells, the lack of spontaneous
firing rate homeostasis is an advantage in that it increases the
signal to noise ratio of the sensory response.
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