
TNNLS-2016-P-6183

1



Abstract— Approximation of high-dimensional functions is a

challenge for neural networks due to the curse of dimensionality.

Often the data for which the approximated function is defined

resides on a low dimensional manifold and in principle the

approximation of the function over this manifold should improve

the approximation performance. Projecting the data manifold

into a lower dimensional space, followed by the neural network

approximation of the function over the projection space have

been shown to be more precise than the approximation of the

function with neural networks in the original data space.

However, if the data volume is very large, the projection into the

low-dimensional space has to be based on a limited sample of the

data. Here we investigate the nature of the approximation error

of neural networks trained over the projection space. We show

that such neural networks should have better approximation

performance than neural networks trained on high-dimensional

data even if the projection is based on a relatively sparse sample

of the data manifold. We also find that it is preferable to use a

uniformly distributed sparse sample of the data for the purpose

of the generation of the low-dimensional projection. We illustrate

these results considering the practical neural network

approximation of a set of functions defined on high dimensional

data including real world data as well.

Index Terms—big data, function approximation, high-

dimensional data, manifold mapping, neural networks.

I. INTRODUCTION

FTEN problems in engineering and science require the

approximation of functions defined over high-

dimensional data (e.g. data with more than 10 dimensions, and

possibly with 100s or more dimensions) [1-3]. For example,

consider the estimation of the likelihood of faults in complex

engines equipped with a wide range of sensors, or the

association of the likelihood of brain scale dysfunction with

high resolution EEG or neuro-imaging data (e.g. fMRI data

with millions of voxels). Neural networks are a commonly

used tool to perform such approximation tasks [3-5].

However, the high-dimensionality of the data on which the

approximated function is defined means that the sampling

density of the data is usually low even in the case of large

Paper re-submitted to review on 17th September 2016

P. Andras is with the School of Computing and Mathematics, Keele

University, Keele, Staffordshire, ST5 5BG, UK (e-mail:
p.andras@keele.ac.uk).

volumes of data and that the expected error of the

approximation is also large, or in other words the curse of

dimensionality applies [3, 6-9].

In many cases the high-dimensional data resides around a

low-dimensional manifold [4, 9-11]. The usual reason for this

is that the system which is characterized by the data has a state

trajectory in a much lower dimensional space than the number

of measurements or indicators that are used to record the

behavior of the system. Thus there are many constraining

relationships between the components of data vectors

restraining the data vectors to low-dimensional manifolds,

although these constraints are generally not known.

A key idea to deal with the curse of dimensionality in the

context of neural network approximation of functions defined

over such high-dimensional data residing on a low-

dimensional manifold, is to approximate the function over the

manifold and not over the whole high-dimensional space [9,

12]. In practice this can be realized by projecting first the data

manifold onto a low-dimensional space [11, 13] and then

approximating the function with a neural network over this

low-dimensional projection space [9]. The reason for the

projection step is that in general the formal equations defining

the data manifold are not known and consequently there is no

obvious way to define the function directly in a restricted

manner over the data manifold only.

The above noted approach in principle works by projecting

the whole data set onto the low-dimensional space and

considering a sample of the approximated function as the set

of function values associated with projected data points [9].

However, in the case of big data, when the volume of the data

may be beyond the limits of storage of the data analysis

system, e.g. very large volumes of astronomy data, high-

frequency data from very many sensors, this approach would

not work in this way. Thus, it is important to consider how to

overcome the potential limitation of data storage for neural

network approximation of functions defined over high-

dimensional data residing on low-dimensional manifolds.

In this paper we investigate the nature of the approximation

error in the case of neural networks function approximation

using high-dimensional data projected onto a low-dimensional

space. We show that the behavior of the approximation error is

such that even if the projection space is defined using a

relatively small sample of the data manifold, the

approximation performance of the neural network defined

High-Dimensional Function Approximation

with Neural Networks for Large Volumes of

Data

Peter Andras, Senior Member, IEEE

O

TNNLS-2016-P-6183

2

over the projection space is still better than the approximation

performance of a neural network trained with the original

high-dimensional data. This shows that in the case of big data

scenarios a small sample of the data is sufficient to define the

low-dimensional projection of the data manifold such that the

neural network approximation of the function will be

sufficiently good. Thus there is no need to retain all the data

for the purpose of the definition of the low-dimensional

projection of the data manifold.

The rest of the paper is structured as follows. First we

briefly review the relevant related works. Next we describe

briefly the projection based neural network function

approximation and present the analysis of the approximation

error of such neural networks. This is followed by the

presentation of a set of application examples using selected

functions defined over high-dimensional data and including a

real world data set as well. The paper is closed by the

conclusion section.

II. RELATED WORKS

Neural networks have the universal approximation property

with respect to continuous functions, i.e. the ability to

approximate arbitrarily correctly any continuous function,

given that they have sufficiently many hidden neurons with

activation functions belonging to an appropriate class of

functions (e.g. sigmoidal or Gaussian functions) [4, 14, 15].

While this results holds in principle, in practice the required

number of neurons may be excessively large and the

existential results about the universal approximation property

do not provide advice on how to find the appropriate

parameters for the hidden neurons.

In general, neural network approximation of functions

suffers from the curse of dimensionality, in the sense that the

approximation error grows exponentially with the

dimensionality of the data [7, 8, 16]. The approximation error

of neural networks with a single hidden layer of neurons with

nonlinear activation functions is inversely proportional with

the square-root of the number of neurons and proportional

with a factor which grows exponentially with the

dimensionality of the data space, i.e. the error is proportional

with nbd / , where n is the number of neurons, d is the

dimensionality of the data and 1b is a constant depending

on the class of the activation functions [8, 16]. We note that in

particular cases, the approximation error bounds are smaller

and do not grow exponentially with the dimensionality of the

data [17], however these special cases do not apply very often.

The high-dimensional data, over which the approximated

function is defined, often resides on a low-dimensional

manifold [4, 9-11]. There are several methods for mapping of

data manifolds onto low-dimensional spaces. One such

method is the local-linear embedding (LLE) [11]. This method

first finds a linear approximation of each data point by its

closest neighbouring data points, then using the coefficients of

these linear approximations maps the data points onto a low

dimensional space such that the projections of the data points

in this space are forced to satisfy the linear approximation

relationships applied to the projection data points. In terms of

equations, for each data point mkk ,...,1, x , the r closest

neighbouring data points are riikj ,...,1,),(x , then we find

the best approximation of k
x in the form of





r

i

ikj

ika
1

),(

, x
(1)

Following this we map the data points k
x onto k

y in the

low-dimensional projection space, such that we minimize the

expression

 
 


m

k

r

i

ikj

ik

k aE
1 1

),(

, yy
(2)

subject also to the following constraints 0
1




m

k

k
y and

  '

1

1 d
m

k

kTk I
m




yy where 'dI is the '' dd  identity matrix

and 'd is the dimensionality of the projection space.

Alternative dimension reduction projections of data manifolds

include the self-organising maps, ISOMAP, and other methods

[13, 18].

Recently the combination of low-dimensional mapping and

neural network approximation has been suggested for the

approximation of functions defined over high-dimensional

data [9]. It has been shown that the approximation

performance of neural networks built using data projected

with self-organising maps onto the low-dimensional space, is

much better than the approximation performance of neural

networks trained with the original high-dimensional data [9].

It has been shown that the local linear approximation of

data points by other data points in the high-dimensional space

in the manner described above for the LLE can be used to

build a linear approximation of the function defined over the

high-dimensional data [12]. The error bounds provided for

such linear approximations of the function in the high-

dimensional space indicate that such linear approximation can

be sufficiently precise [12].

III. ERROR BOUNDS FOR NEURAL NETWORK APPROXIMATION

FOLLOWING LOW-DIMENSIONAL PROJECTION OF THE DATA

We assume that the data points mkdk ,...,1, Rx ,

reside on a data manifold of dimension dd ' . This implies

that there is a mapping '* : dd
RR  that maps high-

dimensional data points into the low-dimensional projection

space that corresponds to the low-dimensional data manifold.

We assume that we can estimate 'd with an appropriate

dimension determination method, for example by using a ball

counting estimation of the data manifold‟s dimensionality

[18]. (For this approach of dimension estimation non-

overlapping balls of decreasing radius are used to cover the

part of the space where the data points reside. The number of

balls is considered as a power function of the radius, i.e.

TNNLS-2016-P-6183

3

HrrN )(. The calculated power value (H) is an estimation

of the Hausdorff dimension of the data manifold. The integer

part of this is the estimated dimensionality of the data

manifold][' Hd  .)

We use LLE to project the high-dimensional data points

into a low-dimensional space of dimension 'd , we denote this

mapping of data as  . Using equations (1) and (2) we

calculate the low-dimensional projections of the data points.

Following the optimisation of the approximation of k
x by the

expression in equation (1) we get the following linear

coefficients





 








r

h

r

j

jhk

r

j

jik

ik

c

c

a

1 1

1

,,

1

1

,,

,

(3)

where

),(),(

,, , hkjklkjk

hlkc xxxx (4)

We assume that the LLE mapping of the data manifold onto

the low-dimensional space, i.e. kk
yx )( , is calculated

using a sample of the data manifold, i.e. mkdk ,...,1, Rx

. For other data points x not included into the sample used to

calculate the low-dimensional mapping, we calculate their low

dimensional mapping by first determining their closest r

neighbors riikj ,...,1,),(x , among mkdk ,...,1, Rx .

Then calculate their linear approximation coefficients using

equation (3) and having

)()(

, , hjlj

hlc xxxx (5)

Finally we calculate their low dimensional projection as

0
1

)(


r

i

ij

ia yy
(6)

where)()()(ijij
xy  .

We use neural networks to approximate the target function

f defined on the high dimensional data set. The neural

networks are either trained using the high-dimensional data

points or the low dimensional projections of the data points.

We consider neural networks with one hidden layer, having

neurons with Gaussian activation function, i.e.

2

2

)(

qx

x




 eg with q and  being parameters of the

neuron. It is assumed that for the training of the neural

networks all training data points are used, not only the ones

that are included in the calculation of the low-dimensional

mapping of the data manifold. This means that the training

data can be much larger than the data sample used for the

mapping calculation. We aim to show that the approximation

performance of neural networks trained low-dimensional

projected data is better than the approximation performance of

neural networks trained with the high-dimensional original

data.

In general, in the context of very large data sets,

characteristic of big data problems, it is expected that the data

that can be used for the calculation of the low dimensional

mapping of the data manifold is a relatively small sample of

the full data set. We aim to show that even in such conditions

the neural networks trained with low-dimensional projection

data approximate better the target function than neural

networks trained with high-dimensional data. We also aim to

show that the best approximation performance by neural

networks trained with low-dimensional projection data is

achieved if the LLE mapping of the high-dimensional data is

generated using a uniformly distributed sample of data.

Let us briefly explain the meaning of fundamental

assumptions required for the validity of our results. We

assume that the data manifold is compact and smooth. These

mean that the 'd dimensional data manifold is such that the

size of any -size covering of the manifold is bounded by
'dc  , where c is a constant depending on the data manifold

and that its derivative at any point is defined and bounded. We

also assume that the true mapping function *

is (,)-

Lipschitz smooth with respect to the Euclidean norm, which

means that

')'()(**
xxxx  

(7)

and

2*** ')'()()'()(xxxxxxx   T

(8)

for some 0,  . We further assume that the target function

f is smooth, meaning that it has well defined and bounded

derivatives everywhere.

THEOREM 1. Let us consider  as the function representing

the LLE mapping of high dimensional data onto the low

dimensional data manifold. Let us assume the high-

dimensional data manifold is compact and smooth. Let us

further assume that the true low-dimensional mapping

function of the high-dimensional data *

is (,)-Lipschitz

smooth with respect to the Euclidean norm. Then there exist

constants
D, and C such that

2* ')()(DCd   xx (9)

for any x on the high-dimensional data manifold.

Proof: Following from the results of Yu et al. [12] and

considering the assumptions about the manifold and

considering the mapping functions  and *

for each

coordinate of the low-dimensional space separately, i.e.,
j

and *

j for ',...,1 dj  , we have that for any on the data

manifold we have that
2*)()(Djj C   xx

(10)

where
D is a constant depending on the distances between

pairs of points within the set of data points in the sample

chosen for defining the mapping of the data manifold onto the

low-dimensional space and C is a constant that depends on

TNNLS-2016-P-6183

4

the data manifold itself or equivalently on the true mapping of

the data manifold onto the low dimensional space * .

This implies that

 2* ')()(DCd  xx (11)

for any x on the high dimensional data manifold. Q.e.d.

THEOREM 2. Let us denote as)(xf the target function

defined on the high-dimensional data and let us assume that

this is a smooth function. Let us denote as  and *

the LLE

mapping and the unknown true mapping of the high-

dimensional data onto the low-dimensional manifold and

assume that the assumptions of Theorem 1 are satisfied. Let us

define the functions)(#
yf and)(*

yf over the low-

dimensional projection space as)())(()(##
xxy fff  

and)())(()(***
xxy fff   . Let us denote as)(xg and

)(#
yg the functions representing the single hidden layer

neural network approximations of)(xf and)(#
yf . Then

)()()()(#*
xxyy gfgf 

(12)

for any x on the high-dimensional data manifold and

)(*
xy  , if the constant

D defined in Theorem 1 is

sufficiently small.

Proof: First we note that  is an approximation of * .

Ideally we would like to approximate the mapped target

function)())(()(***
xxy fff   in the low-dimensional

projection space, but not knowing *

we can only

approximate)())(()(##
xxy fff   in this space.

The error bounds for neural network approximation of the

target function in high- and low-dimensional spaces are

nbd / and nbd /' , respectively, where n is the number

of neurons in both cases, and 1b is a constant depending on

the class of the activation functions [8, 16]. Thus we have that

n

b
gf

d

)()(xx (13)

and

n

b
gf

d '
))(())(( xx 

(14)

From the last two inequalities and Theorem 1 we can derive

the bound for the approximation of the unknown *f , which is

)()(max

)()()()()()(

**

||

'

###*#*

δyy

yyyyyy

δ





ff

n

b

gfffgf

d

(15)

Considering the assumptions about the target function f

we can write further that

MCdf

fff

D
A









2*'

*'

||

**

||

')(max

)(max||)()(max

y

δyδδyy

y

δδ

(16)

where A is the bounded part of the low-dimensional space

into which the data points are mapped and M is the maximal

value of)(*'
yf over A .

Thus we have that

MCd
n

b
gf D

d

 2
'

#* ')()(yy
(17)

where n is the number of hidden neurons in the neural

networks, 'd is the dimensionality of the low-dimensional

projected data, b depends on the nature of the activation

functions of the hidden neurons of the neural network, M

depends on the approximated target function, C and
D are

according to Theorem 1: C depends on the true mapping of

the data manifold onto the low dimensional space * , and
D

depends on the distances between the data points selected for

the definition of the LLE mapping of the data manifold onto

the low-dimensional space.

Comparing the approximation errors for the neural networks

defined and trained on the high- and low-dimensional data

having the same number of neurons in their single hidden

layer we find that the neural networks with low-dimensional

data have better approximation performance if

n

b
MCd

n

b d

D

d

 2
'

' 
(18)

This inequality is satisfied if

2

1

2

1

4

1

4

1

'2

'

')1(


  MCdnbb dd

d

D

(19)

Given that 1b the last inequality is satisfied even for

relatively large
D values. This is especially true if d is

sufficiently large. Q.e.d.

Theorem 2 implies that even for relatively sparse samples of

the data points that cover the whole data manifold the

approximation performance of neural networks trained with

the projected low-dimensional data will be better than the

approximation performance of neural networks trained with

the original high-dimensional data.

This result means that in the context of big data, when using

the whole data set to find the low dimensional mapping of the

data might be unfeasible due to the size of the data, a

relatively small sample of the data should be sufficient to

calculate the low-dimensional LLE mapping of data in order

to train a neural network approximation of the target function

using the projected data. This may be considerably important

in the context of very high volume astronomy or medical

imaging or industrial sensor network data.

THEOREM 3. The assumptions of Theorem 1 and Theorem

2 are satisfied and pll ,...,1, z are a sample of data points

from the high dimensional data space that is used to generate

the low-dimensional LLE mapping of the original high-

TNNLS-2016-P-6183

5

dimensional data. Let us consider)(xg the function

representing the neural network approximation of the target

function following training with low-dimensional projected

data. The average approximation error of)(xg has the

tightest bound if the data points pll ,...,1, z are uniformly

distributed.

Proof: The error bound in equation (16) can be improved

by using a lower estimate instead of)(max *'

||
δy

δ



f by

considering the distribution of the sample data points that is

used for the generation of the low-dimensional mapping. Let

us define)(y as the local bound on)()(*
xx   around

y in the part of projection space defined by the projection of

the projection generating sample data point that is closest to y

and the projections of the neighbouring projection generating

sample data points – note that )(y . Now we can replace

the)(max *'

||
δy

δ



f term by the term

)(max)(*'

)(||
δyy

yδ



f where)(y depends on y .

We note that if ', yy share their closest projection

generating data point then)'()(yy  and if z is this

closest projection of a projection generating data point then

)()'()(zyy  .

Let us consider a set of low-dimensional projections of data

points pll ,...,1, y and the corresponding closest projections

of projection generating high-dimensional data points

pll ,...,1, z . The average error Err of the approximation

of f over pll ,...,1, y
is bounded as follows




 









p

l

ll

d

f
n

b

p
Err

l1

*'

)(

'

)(max)(
1

δyz
zδ

(20)

Denoting)(max *'

)(
δy

zδ



lf

l

 as)(lM y we get that





p

l

ll

d

M
pn

b
Err

1

'

)()(
1

yz
(21)

Further we have that


























 



p

l

l

p

l

l

p

l

ll MM
1

2

1

2

2

1

)()()()(yzyz
(22)

and

2

11

2)(
1

)(







 



p

l

l

p

l

l
p

zz
(23)

We note that 



p

l

l

1

)(z is effectively a weighted sum of

the distances between the projections of the sample data points

used to generate the low dimensional projection of the data

manifold. The value of 



p

l

l

1

)(z is approximately constant

for any set of p data points pll ,...,1, y and it is a multiple

of the approximate volume of the part of the data manifold

spanned by the data points and the multiplier is proportional to

the number of data points for which the approximation error is

calculated. Let us denote this value as
0 , then we have that

2

0

1

2 1
)(

 p

p

l

lz
(24)

and the minimum value of the sum on the left-hand side is

achieved for the case when)(lz are equal. This is achieved

approximately if the data sample used to generate the low-

dimensional projection of the data manifold is uniformly

distributed over the manifold ()(lz are equal if the sample

projection is perfectly uniform in the sense of being equally

spaced).

Thus the error bound for the approximation is the tightest if

projection of the data manifold is based on a uniform sample

of the data points over the high-dimensional data manifold. In

this case the error is bounded as follows




 















p

l

l

d

M
ppn

b
Err

1

2

0

'

)(
1

y
(25)

where
 is a small number and 0 in the case of

equally spaced projected data. Q.e.d.

This suggests that low-dimensional manifold projections

based on uniform samples of the data manifold allow the best

approximation performance by neural networks approximating

the target function f over projections of the data points into

the low-dimensional space.

The value of
0 depends on the approximation of the

volume of the data manifold by the polyhedra determined by

the data point sample used to generate the low-dimensional

mapping of the manifold and the boundary of the data set

within the manifold. For larger projection generation samples

this volume approximation gets better and the polyhedral

components of approximation get smaller. Consequently, the

difference between the two sides of the inequality (24) gets

smaller. Thus, we expect that the effect of the sampling

distribution is more significant if the projection generating

sample of data points is a coarse sample of the data set.

We note that if the measurement of function values is noisy

that affects both the high and low dimensional approximation

of the function and the impact is higher on the high

dimensional approximation (see equations (13) and (14)).

Thus, noisy measurement of the function values does not

change the above derived theoretical conclusions about the

comparison of the approximation performance of neural

networks that use the high dimensional data and those that use

low dimensional projected data to learn the approximated

function.

IV. APPLICATION EXAMPLES

To test the applicability of the theoretical results we

considered high-dimensional data arranged on a 5-dimensional

TNNLS-2016-P-6183

6

data manifold embedded within a 60-dimensional space. The

data manifold is defined as multi-dimensional multiple Swiss

roll according to the equations below. The 60-dimensional x

vectors are defined component-wise using 5-dimensional y

vectors as follows

)sin(

)cos(

)sin(

)cos(

6)1(6)10()1(3

5)1(6)10()1(3

4)1(6)10()1(3

3)1(6)10()1(3

2)1(6)10()1(3

1)1(6)10()1(3

kkjkjj

jjkjj

kkjkjj

jjjkjj

kjkjj

jjjkjj

yyx

yx

yyx

yyx

yx

yyx





































(26)

where 5,...,1,  jkj and 5,...,1 jk , and























1

1

2

5

1
2

yy e


(27)

In fact the equations (26) and (27) above define the

function xy )(1* . Note that the values of

pjkjj )1(6)10()1(3 go from 1 to 60 as j

goes from 1 to 5, k goes from 1j to 5 and p goes from 1

to 6.

We considered the approximation of ten functions defined

on the high-dimensional data (adapted from [9]). The

considered functions are defined below using)(*
xy  .

1) Squared modulus:

2

1)(yx f (28)

2) Second degree polynomial:





4

1

1

2

2
500

1
)(

j

jjf yyx
(29)

3) Exponential square sum:







5

1

50

1

3

2

500

1
)(

j

j

ef
y

x
(30)

4) Exponential-sinusoid sum:

)sin()sin(
500

1
)(1

50

14

1

1
50

1

4

2
5

2

yyx
yy










 eef
j

j

j
(31)

5) Polynomial-sinusoid sum:





5

1

2

5)cos(
50000

1
)(

j

jj jf yyx
(32)

6) Inverse exponential square sum:







5

1

25

16
2

10
)(

j

j

e

f
y

x
 (33)

7) Sigmoidal:










5

1
5

17

1

10
)(

j

j

e

f
y

x
 (34)

8) Gaussian:


 


5

1

2

100

1

8 10)(j

j

ef
y

x

(35)

9) Linear:

 


5

1
9)(

j
jjf yx (36)

10) Constant:

1)(10 xf (37)

In all cases, both for 60- and 5-dimensional data we

constructed neural networks with 20 hidden units having

Gaussian activation functions with fixed and randomly set

parameters (the number of hidden units was chosen to be

sufficiently large, but not too large, assuming that we

approximate a moderately complicated function). For each

approximated function we trained 20 neural networks using 20

different data sets (i.e. the sampling of the data was repeated

20 times resulting in 20 independent samples of the data).

Each data set consisted of 5000 uniformly randomly chosen

60-dimensional data points for training of the neural networks

(note that the samples were chosen from an infinite size

complete data set, i.e. the full data set is the complete

manifold defined by equations (26) and (27)). In addition to

these for each data set we considered 400 additional test data

TABLE I

COMPARISON OF THE APPROXIMATION PERFORMANCES OF NEURAL NETWORKS

TRAINED WITH LOW- AND HIGH-DIMENSIONAL DATA – AVERAGE VALUES AND

STANDARD DEVIATIONS IN BRACKETS. THE LEVEL OF STATISTICAL SIGNIFICANCE

OF THE DIFFERENCES BETWEEN AVERAGE VALUES IS INDICATES AS

* - SIGNIFICANT AT P=0.01 LEVEL, ** - SIGNIFICANT AT P=0.001 LEVEL.

Target

Function

High-dim

data

Low-dim
data, LLE

with 3000

samples

Low-dim
data, LLE

with 1000

samples

Low-dim
data, LLE

with 300

samples

Squared
modulus

22,905.28
(2,441.403)

6,665.98
(1,178.058)

**

6,117.09
(689.5801)

**

9,357.61
(1,443.37)

**

Polynomial 107.7742
(19.02001)

8.8760
(0.919657)

**

8.4338
(0.654946)

**

7.3792
(0.263297)

**

Exponential
square sum

0.008188
(0.001503)

7.07E-5
(7.06E-6)

**

7.33E-5
(7.21E-6)

**

0.000185
(3.65E-5)

**

Exponential-
sinusoid sum

0.009063
(0.002145)

0.000107
(9.23E-6)

**

0.000138
(2.46E-5)

**

8.66E-5
(4.22E-6)

**

Polynomial-
sinusoid sum

0.010596
(0.001471)

3.3E-6
(5.62E-7)

**

4.5E-6
(6.63E-7)

**

2.7E-6
(1.93E-7)

**

Inverse
exponential

square sum

0.375867
(0.04593)

0.129347
(0.016776)

**

0.135788
(0.030936)

**

0.122131
(0.008952)

**

Sigmoidal 200.9935

(37.4462)

16.5594

(1.449868)

**

12.09924

(0.84997)

**

15.63517

(1.735107)

**
Gaussian 9.311568

(1.77583)

2.902362

(0.28782)

**

3.33429

(0.727295)

*

3.264746

(0.253456)

*
Linear

50,244.24

(6,624.208)

2,139.939

(250.5473)

**

1,608.612

(112.818)

**

1,570.015

(112.0867)

**
Constant 0.319902

(0.030275)

0.001936

(0.001386)
**

0.0033

(0.002557)
**

0.225078

(0.061538)

TNNLS-2016-P-6183

7

points that were randomly picked with uniform distribution

over the data manifold. For each data set we selected three

samples of the training data set for the calculation of the LLE

mapping of the data manifold into the 5-dimensional space.

The samples had 3000, 1000 and 300 randomly selected points

in them. For each data set and for each calculated LLE

mapping we trained and tested one neural network for all 10

considered target functions, i.e. we used the same training and

testing data and LLE mapping for all target functions for each

data set. For the data points not included into the sample used

for the calculation of the LLE mapping we used the equations

(5) and (6) to calculate the corresponding projected data.

According to our theoretical results it is expected that the

neural networks trained with the low-dimensional projected

data perform better than neural networks trained with high-

dimensional data even if the sample used to calculate the low-

dimensional mapping is small. To compare the performances

of neural networks we calculated their average performance

for each target function over the 20 data sets and also the

standard deviations of their performance values. The

performance of each network was assessed as their average

squared error over the appropriate test data set. To test the

statistical significance of the difference between the average

performances we used the t-test. The results are presented in

Table I.

The results show that the neural networks trained with the

low-dimensional data are statistically significantly better than

the neural networks trained with high-dimensional data in

terms of their approximation performance in all considered

cases with the exception of the approximation of the constant

function following the calculation of the LLE projection based

on 300 data points. The results do not show in general a

systematic difference between the approximation

performances of the neural networks trained with low-

dimensional data as a function of the size of the data sample

used to calculate the LLE projection of the data manifold.

These together confirm our expectation that even small sample

based LLE projections of the data manifold allow much better

neural network approximation of the target function using the

projected data than the direct neural network approximation of

this target function in the original high-dimensional data

space.

To assess the role of the distribution of the data points used

to generate the low-dimensional mapping of the data manifold

we considered normally distributed data over the 60-

dimensional manifold defined by equations (26) and (27). We

selected from this data first a normally distributed sample and

then a uniformly distributed sample to generate the 5-

dimensional mapping of the manifold. We repeated this 20

times and we used the same 10 functions that we used

previously (equations (28) to (37)). In all cases we used 5000

data points for training, from which we selected the projection

generation data point sample, and we used 400 independently

generated data points for the test set.

To generate the normally distributed data we used the Box-

Müller transform of uniformly distributed data and we set the

component-wise standard deviation to be 0.5 in order to

generate a relatively peaked normal distribution for the data

points. To create the normally distributed sample from the

normally distributed training data set, we picked a random

selection of the data points. To create the uniformly

distributed sample of the data points first we created a set of

uniformly distributed points on the data manifold

independently from the training data set and then selected the

data points from the training data set that were the closest to

these uniformly distributed points on the data manifold. For

both cases for each training data set we selected a coarse

sample of 100 data points for the generation of the low-

dimensional projection of the data manifold.

The results are presented in Table II – note that

approximation error performances (mean squared error over

the test set) are different from the result reported in Table I as

both the training and test sample are from a relatively narrow

normal distribution over the data manifold. The results show

that in all cases, for all approximated functions, the low-

dimensional neural network approximation based on the

manifold projection using the uniformly distributed selection

of the data points performs statistically significantly better

than the low-dimensional neural network approximation based

on the manifold projection generated using the normally

TABLE II

COMPARISON OF THE APPROXIMATION PERFORMANCES OF NEURAL NETWORKS

TRAINED WITH LOW-DIMENSIONAL DATA GENERATED WITH MANIFOLD

PROJECTIONS BASED ON NORMAL AND UNIFORMLY DISTRIBUTED DATA SAMPLES

(100 DATA POINTS IN BOTH CASES) – 1000 TIMES AVERAGE VALUES AND

STANDARD DEVIATIONS IN BRACKETS. THE LEVEL OF STATISTICAL SIGNIFICANCE

OF THE DIFFERENCES BETWEEN AVERAGE VALUES IS INDICATES AS * -

SIGNIFICANT AT P=0.01 LEVEL, ** - SIGNIFICANT AT P=0.001 LEVEL.

Target
Function

Low-dim

data, LLE
normal

sample

Low-dim

data, LLE
uniform

sample

Squared

modulus

 5,340.236

(469.2243)
**

 722.8871

(137.7073)
**

Polynomial 0.404295

(0.055482)
**

 0.011856

(0.00202)
**

Exponential

square sum

 0.45004

(0.092735)
**

 0.002446

(0.000397)
**

Exponential-

sinusoid sum

 0.430052

(0.046063)
**

 0.005054

(0.000554)
**

Polynomial-

sinusoid sum

 0.411339

(0.078397)
**

 0.00267

(0.000683)
**

Inverse
exponential

square sum

 5.695947
(1.298511)

**

 0.312307
(0.071051)

**

Sigmoidal 1,428.417

(91.00933)

**

 201.0943

(19.76358)

**
Gaussian 132.0175

(26.31923)

**

 71.25482

(56.58054)

**
Linear

 68,235.93

(7,675.206)

**

 11,037.84

(1,152.381)

**
Constant 3.359855

(1.582305)

**

 0.031211

(0.012912)

**

TNNLS-2016-P-6183

8

distributed selection of data points. This confirms our

expectation that for the purpose of low-dimensional neural

network approximation of the target function it is preferred to

use manifold projections based on uniformly distributed

sample of the training data.

We also considered the addition of noise to the sampled

values of the target functions. We added low and high level of

noise to the function values (i.e. the noise was set to be 10%

and 30% of the function values, respectively). In all cases we

used LLE projections calculated with 1,000 data points. The

results are presented in Table III. The results show that the

neural networks trained with low-dimensional projected data

statistically significantly outperform the neural networks

trained with high dimensional data in all cases in the presence

of noise, with the exception of the approximation of the

Gaussian function in the presence of high noise.

Finally, to show the application of our results to real world

data we considered the MNIST hand-written digits data set. In

this case the function is defined on a 784-dimensional space

and the sample data points from this data space are images

with 784 pixels, each pixel having an integer value between 0

and 255. The function values are defined as the value of the

digit corresponding to each image divided by 10 (i.e. the

function values are 0, 0.1,..., 0.9). If the approximated function

values are completely random the expected squared error of

the approximation is 0.165.

We calculated low-dimensional LLE mappings of the data

manifold for a range of dimension values: 4 – 8, 10, 12, 15,

20, 30, 50, 70 and 90. We found that the higher dimension

values for the low-dimensional mappings (i.e. above 20) did

not lead to the improved approximation performance. In

general, we found that some low-dimensional projections of

the data manifold lead consistently to high approximation

error. After analysing the approximation results for neural

networks working with low dimensional projected data we

concluded to eliminate all cases of projections where a

validation step with unseen data leads to an excessively high

error (i.e. above 0.25 for dimensions above 4 and 0.35 for

projection dimension 4 – the values were determined by

analysing the distribution of the validation errors – see Figure

1). We note that the approximation error of the neural

networks working with high dimensional data was below 0.22

with the exception of a single case.

We considered for approximation performance evaluation

neural networks working with low dimensional data that use

low dimensional projections that passed the validation phase

(i.e. validation error is below 0.25 or 0.35 in the case of 4-

dimensional projections). We found that these neural networks

have better approximation performance in general than neural

networks working with high dimensional MNIST data.

However, the results show that difference in performance is

statistically significant only in the case of neural networks

working with 5-, 7- and 12-dimensional projection data and it

Fig. 1. The distribution of paired values of corresponding training and
validation errors for neural networks trained to approximate the

function based on the MNIST data using low-dimensional projected

data. The dimensionality of the projected data is shown in the figure
panels A) – J).

TABLE III

COMPARISON OF THE APPROXIMATION PERFORMANCES OF NEURAL NETWORKS

TRAINED WITH LOW- AND HIGH-DIMENSIONAL DATA WITH NOISE – AVERAGE

VALUES AND STANDARD DEVIATIONS IN BRACKETS. THE LEVEL OF STATISTICAL

SIGNIFICANCE OF THE DIFFERENCES BETWEEN AVERAGE VALUES IS INDICATES AS *

- SIGNIFICANT AT P=0.05 LEVEL, ** - SIGNIFICANT AT P=0.01 LEVEL.

Target

Function

High-dim
data with

low noise

Low dim
data with

low noise

High-dim
data with

high noise

Low dim
data with

high noise

Squared

modulus

14,556.92

(2,556.108)

6,993.992

(645.6014)
**

16,685.87

(3083.226)

8289.357

(710.392)
*

Polynomial 75.74326

(22.91223)

9.124691

(1.196528)
**

90.25484

(24.16676)

9.301827

(1.095887)
**

Exponential

square sum

0.009796

(0.002308)

9.05E-5

(1.28E-5)
**

0.004792

(0.001901)

0.000109

(1.41E-5)
*

Exponential-

sinusoid sum

0.008187

(0.00195)

0.000132

(3.59E-5)
**

0.012149

(0.002561)

0.000128

(2.88E-5)
**

Polynomial-

sinusoid sum

0.01445

(0.003686)

4.6E-6

(6.3E-7)
**

0.009811

0.003173

4.15E-6

(3.5E-7)
**

Inverse

exponential
square sum

0.681158

(0.139765)

0.169217

(0.036676)
**

0.4979

(0.136227)

0.156298

(0.022124)
*

Sigmoidal 377.2754
(105.752)

10.77917
(1.015859)

**

370.0072
(95.63658)

12.92726
(1.570246)

**

Gaussian 9.62391
(2.411471)

3.88002
(0.59562)

*

7.173484
(1.860447)

4.06306
(0.647155)

Linear

42,620.46
(13,968.38)

1,470.214
(107.9499)

**

36888.25
(10,584.89)

1,502.074
(116.2073)

**

Constant 0.253313
(0.05263)

0.02914
(0.021538)

**

0.305002
(0.053929)

0.061983
(0.022482)

**

TNNLS-2016-P-6183

9

is most significantly different for 5-dimensional data. The

results of the comparison of neural network approximations of

the real data function defined using the MNIST data are

shown in Table IV. We note that the approximation error of

neural networks using low-dimensional data with increasing

dimensionality got lowered, while their validation and test

error did not improve in general (an exception is the 12-

dimensional projection). This suggests that increasing the

dimensionality of the projected data leads to capturing more

noise through the learning process of the neural networks.

V. CONCLUSIONS

We analysed in this paper the approximation error of neural

networks built to approximate target functions defined on

high-dimensional data, but using low-dimensional projected

data derived by projecting the high-dimensional data manifold

onto a low-dimensional space. Our analysis shows that the

approximation error is dominated by the term that depends

exponentially on the dimensionality of the data. This implies

that even small samples of the data are sufficient to construct a

sufficiently good low-dimensional LLE mapping of the data

manifold in order to get much better neural network

approximation performance using the projected data than the

performance of neural networks trained to approximate the

target function using the original high-dimensional data.

This result is important in the context large volumes of

high-dimensional data that characterise „big data‟ problems. In

such cases a sufficiently good low-dimensional mapping

should be obtainable using a relatively sparse sample of the

full data set in order to get good low-dimensional neural

network approximations of functions defined over the original

high-dimensional data. The application examples presented in

the paper provide strong support for this expectation.

Our work also shows that it is important to have as much as

possible a uniformly distributed sample of the data manifold

for the generation of the low-dimensional mapping of the

manifold. This is especially true in the case when coarse

samples of the data manifold are used. Using of coarse

samples for the manifold mapping is very likely in the case of

„big data‟ data sets for which the storage of the data set in

itself may represent a technical problem due to the volume of

the data. The examples presented in the paper in this respect

support strongly this claim.

Further work is planned to analyse the extent of

preservation of properties of the target function by its neural

network approximation built using the projected low-

dimensional data. For example, the extent to which local

maxima and minima are preserved and the accuracy of

preservation of these and also the extent of approximation of

derivatives and integrals of the target function by the low-

dimensional neural network approximation of the target

function.

Future work is also planned to compare a range of

dimension reduction techniques in the context of

approximation of functions on low dimensional projections of

the original high dimensional data.

REFERENCES

[1] A.-M. Zhou, K.D. Kumar, Z.-G. Hou and X. Liu “Finite-time altitude

tracking control for spacecraft using terminal sliding mode and

Chebyshev neural network”, IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol.41, pp.950-963, 2011.
[2] A.Y. Chervonenkis, Problems of machine learning. LNCS 6744, pp.21-

23. Springer, 2011.

[3] J.H. Friedman, “An overview of predictive learning and function
approximation”, NATO ASI Series F Computer and System Science

vol.136, 1994.

[4] S. Haykin, Neural Networks and Learning Machines. Prentice Hall,
2008.

[5] G.-B. Huang, P. Saratchandran and N. Sundararajan “A generalized
growing and pruning RBF (GGAP-RBF) neural network for function

approximation”, IEEE Transactions on Neural Networks, vol.16, pp.57-

67, 2005.
[6] I.M. Johnstone and D.M. Titterington, “Statistical challenges of high-

dimensional data”, Philosophical Transactions of The Royal Society A,

vol.367, pp.4237-4253, 2009.

[7] J.H. Friedman, “On bias, variance, 0/1 – loss and the curse-of-

dimensionality”, Data Mining and Knowledge Discovery, vol.1, pp.55-

77, 1997.
[8] P. Niyogi and F. Girosi, “Generalization bounds for function

approximation from scattered noisy data”, Advances in Computational

Mathematics, vol.10, pp.51-80, 1999.
[9] P. Andras, “Function approximation using combined unsupervised and

supervised learning”, IEEE Transactions on Neural Networks and

Learning Systems, vol.25,pp.495-505, 2014.
[10] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer, 2009.

[11] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally
linear embedding”, Science, vol.290, pp.2323-2326, 2000.

[12] K. Yu, T. Zhang and Y. Gong, “Nonlinear learning using local

coordinate coding”, Advances in Neural Information Processing Systems
– NIPS 22, pp.2223-2231.

[13] H. Yin, “On multidimensional scaling and the embedding of the self-

organising maps”, Neural Networks, vol.21, pp.160-169, 2008.
[14] K. Hornik, “Multilayer feedforward networks are universal

approximators”, Neural Networks, vol.2, pp.183-192, 1989.

TABLE IV

APPROXIMATION PERFORMANCE OF NEURAL NETWORKS TRAINED WITH

HIGH- AND LOW-DIMENSIONAL DATA TO APPROXIMATE THE FUNCTION

DEFINED USING THE MNIST DATA SET – AVERAGE VALUES AND STANDARD

DEVIATIONS IN BRACKETS. THE LEVEL OF STATISTICAL SIGNIFICANCE OF THE

DIFFERENCES BETWEEN AVERAGE VALUES IS INDICATES AS * - SIGNIFICANT

AT P=0.05 LEVEL, ** - SIGNIFICANT AT P=0.01 LEVEL.

Projection

dimension
Squared test error p-value

d = 784 (no
projection)

0.143939 (0.0027007) NA

d = 4

0.161158 (0.116984) 0.397788

d = 5

0.103136 (0.04615) 0.000135**

d = 6

0.131836 (0.063457) 0.148549

d = 7

0.113415 (0.072498) 0.018475*

d = 8

0.131477 (0.063865) 0.246844

d = 10

0.140792 (0.053852) 0.422166

d = 12

0.106413 (0.046649) 0.001647**

d = 15

0.130754 (0.072505) 0.980903

d = 20 0.14672 (0.054586) 0.321735

TNNLS-2016-P-6183

10

[15] M.B. Stinchcombe, “Neural networks approximation of continuous

functional and continuous functions on compactifications”, Neural
Networks, vol.12, pp.467-477, 1999.

[16] A.R. Barron, “Universal approximation bounds for superpositions of a

sigmoidal function”, IEEE Transactions on Information Theory,vol. 39,
pp.930-945, 1993.

[17] G. Gnecco, V. Kurkova, and M. Sanguineti, “Some comparisons of

complexity in dictionary-based and linear computational models”,
Neural Networks, vol.24, pp.171-182, 2011.

[18] F. Camastra, “Data dimensionality estimation methods: a survey”,

Pattern Recognition, vol.36, pp.2945-2954, 2003.

Peter Andras (M‟95–SM‟10) has a BSc

in computer science (1995), an MSc in

artificial intelligence (1996) and a PhD in mathematical

analysis of neural networks (2000), all from the Babes-Bolyai

University, Cluj, Romania.

He is a Professor in the School of Computing and

Mathematics, Keele University, UK. He has published 2 books

and over 100 papers. He works in the areas of complex

systems, computational intelligence and computational

neuroscience.

Dr. Andras is member of the International Neural Network

Society, of the Society for Artificial Intelligence and

Simulation of Behaviour, and fellow of the Royal Society of

Biology.

