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Abstract— Approximation of high-dimensional functions is a 

challenge for neural networks due to the curse of dimensionality. 

Often the data for which the approximated function is defined 

resides on a low dimensional manifold and in principle the 

approximation of the function over this manifold should improve 

the approximation performance. Projecting the data manifold 

into a lower dimensional space, followed by the neural network 

approximation of the function over the projection space have 

been shown to be more precise than the approximation of the 

function with neural networks in the original data space. 

However, if the data volume is very large, the projection into the 

low-dimensional space has to be based on a limited sample of the 

data. Here we investigate the nature of the approximation error 

of neural networks trained over the projection space. We show 

that such neural networks should have better approximation 

performance than neural networks trained on high-dimensional 

data even if the projection is based on a relatively sparse sample 

of the data manifold. We also find that it is preferable to use a 

uniformly distributed sparse sample of the data for the purpose 

of the generation of the low-dimensional projection. We illustrate 

these results considering the practical neural network 

approximation of a set of functions defined on high dimensional 

data including real world data as well.  

 
Index Terms—big data, function approximation, high-

dimensional data, manifold mapping, neural networks.  

 

I. INTRODUCTION 

FTEN problems in engineering and science require the 

approximation of functions defined over high-

dimensional data (e.g. data with more than 10 dimensions, and 

possibly with 100s or more dimensions) [1-3]. For example, 

consider the estimation of the likelihood of faults in complex 

engines equipped with a wide range of sensors, or the 

association of the likelihood of brain scale dysfunction with 

high resolution EEG or neuro-imaging data (e.g. fMRI data 

with millions of voxels). Neural networks are a commonly 

used tool to perform such approximation tasks [3-5]. 

However, the high-dimensionality of the data on which the 

approximated function is defined means that the sampling 

density of the data is usually low even in the case of large 
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volumes of data and that the expected error of the 

approximation is also large, or in other words the curse of 

dimensionality applies [3, 6-9].  

In many cases the high-dimensional data resides around a 

low-dimensional manifold [4, 9-11]. The usual reason for this 

is that the system which is characterized by the data has a state 

trajectory in a much lower dimensional space than the number 

of measurements or indicators that are used to record the 

behavior of the system. Thus there are many constraining 

relationships between the components of data vectors 

restraining the data vectors to low-dimensional manifolds, 

although these constraints are generally not known.  

A key idea to deal with the curse of dimensionality in the 

context of neural network approximation of functions defined 

over such high-dimensional data residing on a low-

dimensional manifold, is to approximate the function over the 

manifold and not over the whole high-dimensional space [9, 

12]. In practice this can be realized by projecting first the data 

manifold onto a low-dimensional space [11, 13] and then 

approximating the function with a neural network over this 

low-dimensional projection space [9]. The reason for the 

projection step is that in general the formal equations defining 

the data manifold are not known and consequently there is no 

obvious way to define the function directly in a restricted 

manner over the data manifold only. 

The above noted approach in principle works by projecting 

the whole data set onto the low-dimensional space and 

considering a sample of the approximated function as the set 

of function values associated with projected data points [9]. 

However, in the case of big data, when the volume of the data 

may be beyond the limits of storage of the data analysis 

system, e.g. very large volumes of astronomy data, high-

frequency data from very many sensors, this approach would 

not work in this way. Thus, it is important to consider how to 

overcome the potential limitation of data storage for neural 

network approximation of functions defined over high-

dimensional data residing on low-dimensional manifolds. 

In this paper we investigate the nature of the approximation 

error in the case of neural networks function approximation 

using high-dimensional data projected onto a low-dimensional 

space. We show that the behavior of the approximation error is 

such that even if the projection space is defined using a 

relatively small sample of the data manifold, the 

approximation performance of the neural network defined 

High-Dimensional Function Approximation 

with Neural Networks for Large Volumes of 

Data 

Peter Andras, Senior Member, IEEE 

O 



TNNLS-2016-P-6183 

 

2 

over the projection space is still better than the approximation 

performance of a neural network trained with the original 

high-dimensional data. This shows that in the case of big data 

scenarios a small sample of the data is sufficient to define the 

low-dimensional projection of the data manifold such that the 

neural network approximation of the function will be 

sufficiently good. Thus there is no need to retain all the data 

for the purpose of the definition of the low-dimensional 

projection of the data manifold. 

The rest of the paper is structured as follows. First we 

briefly review the relevant related works. Next we describe 

briefly the projection based neural network function 

approximation and present the analysis of the approximation 

error of such neural networks. This is followed by the 

presentation of a set of application examples using selected 

functions defined over high-dimensional data and including a 

real world data set as well. The paper is closed by the 

conclusion section. 

II. RELATED WORKS  

Neural networks have the universal approximation property 

with respect to continuous functions, i.e. the ability to 

approximate arbitrarily correctly any continuous function, 

given that they have sufficiently many hidden neurons with 

activation functions belonging to an appropriate class of 

functions (e.g. sigmoidal or Gaussian functions) [4, 14, 15]. 

While this results holds in principle, in practice the required 

number of neurons may be excessively large and the 

existential results about the universal approximation property 

do not provide advice on how to find the appropriate 

parameters for the hidden neurons. 

In general, neural network approximation of functions 

suffers from the curse of dimensionality, in the sense that the 

approximation error grows exponentially with the 

dimensionality of the data [7, 8, 16]. The approximation error 

of neural networks with a single hidden layer of neurons with 

nonlinear activation functions is inversely proportional with 

the square-root of the number of neurons and proportional 

with a factor which grows exponentially with the 

dimensionality of the data space, i.e. the error is proportional 

with nbd / , where n  is the number of neurons, d  is the 

dimensionality of the data and 1b  is a constant depending 

on the class of the activation functions [8, 16]. We note that in 

particular cases, the approximation error bounds are smaller 

and do not grow exponentially with the dimensionality of the 

data [17], however these special cases do not apply very often. 

The high-dimensional data, over which the approximated 

function is defined, often resides on a low-dimensional 

manifold [4, 9-11]. There are several methods for mapping of 

data manifolds onto low-dimensional spaces. One such 

method is the local-linear embedding (LLE) [11]. This method 

first finds a linear approximation of each data point by its 

closest neighbouring data points, then using the coefficients of 

these linear approximations maps the data points onto a low 

dimensional space such that the projections of the data points 

in this space are forced to satisfy the linear approximation 

relationships applied to the projection data points. In terms of 

equations, for each data point mkk ,...,1, x , the r  closest 

neighbouring data points are riikj ,...,1,),( x , then we find 

the best approximation of k
x  in the form of 
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Following this we map the data points k
x  onto k

y  in the 

low-dimensional projection space, such that we minimize the 

expression 
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yy  where 'dI  is the '' dd   identity matrix 

and 'd  is the dimensionality of the projection space. 

Alternative dimension reduction projections of data manifolds 

include the self-organising maps, ISOMAP, and other methods 

[13, 18]. 

Recently the combination of low-dimensional mapping and 

neural network approximation has been suggested for the 

approximation of functions defined over high-dimensional 

data [9]. It has been shown that the approximation 

performance of neural networks built using data projected 

with self-organising maps onto the low-dimensional space, is 

much better than the approximation performance of neural 

networks trained with the original high-dimensional data [9]. 

It has been shown that the local linear approximation of 

data points by other data points in the high-dimensional space 

in the manner described above for the LLE can be used to 

build a linear approximation of the function defined over the 

high-dimensional data [12]. The error bounds provided for 

such linear approximations of the function in the high-

dimensional space indicate that such linear approximation can 

be sufficiently precise [12]. 

III. ERROR BOUNDS FOR NEURAL NETWORK APPROXIMATION 

FOLLOWING LOW-DIMENSIONAL PROJECTION OF THE DATA 

We assume that the data points mkdk ,...,1, Rx , 

reside on a data manifold of dimension dd ' . This implies 

that there is a mapping '* : dd
RR   that maps high-

dimensional data points into the low-dimensional projection 

space that corresponds to the low-dimensional data manifold. 

We assume that we can estimate 'd  with an appropriate 

dimension determination method, for example by using a ball 

counting estimation of the data manifold‟s dimensionality 

[18]. (For this approach of dimension estimation non-

overlapping balls of decreasing radius are used to cover the 

part of the space where the data points reside. The number of 

balls is considered as a power function of the radius, i.e. 
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HrrN )(  . The calculated power value (H) is an estimation 

of the Hausdorff dimension of the data manifold. The integer 

part of this is the estimated dimensionality of the data 

manifold ][' Hd  .) 

We use LLE to project the high-dimensional data points 

into a low-dimensional space of dimension 'd , we denote this 

mapping of data as  . Using equations (1) and (2) we 

calculate the low-dimensional projections of the data points. 

Following the optimisation of the approximation of k
x  by the 

expression in equation (1) we get the following linear 

coefficients 
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where 

 ),(),(

,, , hkjklkjk

hlkc xxxx  (4) 

We assume that the LLE mapping of the data manifold onto 

the low-dimensional space, i.e. kk
yx )( , is calculated 

using a sample of the data manifold, i.e. mkdk ,...,1, Rx

. For other data points x  not included into the sample used to 

calculate the low-dimensional mapping, we calculate their low 

dimensional mapping by first determining their closest r  

neighbors riikj ,...,1,),( x , among mkdk ,...,1, Rx . 

Then calculate their linear approximation coefficients    using 

equation (3) and having 

 )()(

, , hjlj

hlc xxxx  (5) 

Finally we calculate their low dimensional projection as 

0
1
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where )( )()( ijij
xy  . 

We use neural networks to approximate the target function 

f  defined on the high dimensional data set. The neural 

networks are either trained using the high-dimensional data 

points or the low dimensional projections of the data points. 

We consider neural networks with one hidden layer, having 

neurons with Gaussian activation function, i.e. 

2

2

)( 

qx
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 eg  with q  and   being parameters of the 

neuron. It is assumed that for the training of the neural 

networks all training data points are used, not only the ones 

that are included in the calculation of the low-dimensional 

mapping of the data manifold. This means that the training 

data can be much larger than the data sample used for the 

mapping calculation. We aim to show that the approximation 

performance of neural networks trained low-dimensional 

projected data is better than the approximation performance of 

neural networks trained with the high-dimensional original 

data. 

In general, in the context of very large data sets, 

characteristic of big data problems, it is expected that the data 

that can be used for the calculation of the low dimensional 

mapping of the data manifold is a relatively small sample of 

the full data set. We aim to show that even in such conditions 

the neural networks trained with low-dimensional projection 

data approximate better the target function than neural 

networks trained with high-dimensional data. We also aim to 

show that the best approximation performance by neural 

networks trained with low-dimensional projection data is 

achieved if the LLE mapping of the high-dimensional data is 

generated using a uniformly distributed sample of data. 

Let us briefly explain the meaning of fundamental 

assumptions required for the validity of our results. We 

assume that the data manifold is compact and smooth. These 

mean that the 'd  dimensional data manifold is such that the 

size of any -size covering of the manifold is bounded by 
'dc  , where c  is a constant depending on the data manifold 

and that its derivative at any point is defined and bounded. We 

also assume that the true mapping function *

 

is (,)-

Lipschitz smooth with respect to the Euclidean norm, which 

means that 

')'()( **
xxxx    

(7) 

and 
 

2*** ')'()()'()( xxxxxxx   T

 

(8) 

for some 0,  . We further assume that the target function 

f  is smooth, meaning that it has well defined and bounded 

derivatives everywhere. 

 

THEOREM 1. Let us consider   as the function representing 

the LLE mapping of high dimensional data onto the low 

dimensional data manifold. Let us assume the high-

dimensional data manifold is compact and smooth. Let us 

further assume that the true low-dimensional mapping 

function of the high-dimensional data *

 

is (,)-Lipschitz 

smooth with respect to the Euclidean norm. Then there exist 

constants 
D,  and C  such that 

2* ')()( DCd   xx  (9) 

for any x  on the high-dimensional data manifold. 

 

Proof: Following from the results of Yu et al. [12] and 

considering the assumptions about the manifold and 

considering the mapping functions   and *

 

for each 

coordinate of the low-dimensional space separately, i.e., 
j  

and *

j  for ',...,1 dj  , we have that for any   on the data 

manifold we have that  
2* )()( Djj C   xx  

(10) 

where 
D  is a constant depending on the distances between 

pairs of points within the set of data points in the sample 

chosen for defining the mapping of the data manifold onto the 

low-dimensional space and C  is a constant that depends on 



TNNLS-2016-P-6183 

 

4 

the data manifold itself or equivalently on the true mapping of 

the data manifold onto the low dimensional space * . 

This implies that 

 2* ')()( DCd  xx  (11) 

for any x  on the high dimensional data manifold. Q.e.d. 

 

THEOREM 2. Let us denote as )(xf  the target function 

defined on the high-dimensional data and let us assume that 

this is a smooth function. Let us denote as   and *

 

the LLE 

mapping and the unknown true mapping of the high-

dimensional data onto the low-dimensional manifold and 

assume that the assumptions of Theorem 1 are satisfied. Let us 

define the functions )(#
yf  and )(*

yf  over the low-

dimensional projection space as )())(()( ##
xxy fff    

and )())(()( ***
xxy fff   . Let us denote as )(xg  and 

)(#
yg  the functions representing the single hidden layer 

neural network approximations of )(xf  and )(#
yf . Then   

)()()()( #*
xxyy gfgf   

(12) 

for any x  on the high-dimensional data manifold and 

)(*
xy  , if the constant 

D  defined in Theorem 1 is 

sufficiently small. 

 

Proof: First we note that   is an approximation of * . 

Ideally we would like to approximate the mapped target 

function )())(()( ***
xxy fff   in the low-dimensional 

projection space, but not knowing *

 

we can only 

approximate )())(()( ##
xxy fff   in this space. 

The error bounds for neural network approximation of the 

target function in high- and low-dimensional spaces are  

nbd /  and nbd /' , respectively, where n  is the number 

of neurons in both cases, and 1b  is a constant depending on 

the class of the activation functions [8, 16]. Thus we have that 

n

b
gf

d

 )()( xx  (13) 

and 

n

b
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d '
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From the last two inequalities and Theorem 1 we can derive 

the bound for the approximation of the unknown *f , which is 
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Considering the assumptions about the target function f  

we can write further that 

MCdf
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where A  is the bounded part of the low-dimensional space 

into which the data points are mapped and M  is the maximal 

value of )(*'
yf  over A .  

Thus we have that 

MCd
n

b
gf D

d

 2
'

#* ')()( yy  
(17) 

where n  is the number of hidden neurons in the neural 

networks, 'd  is the dimensionality of the low-dimensional 

projected data, b  depends on the nature of the activation 

functions of the hidden neurons of the neural network, M  

depends on the approximated target function, C  and 
D  are 

according to Theorem 1: C  depends on the true mapping of 

the data manifold onto the low dimensional space * , and 
D  

depends on the distances between the data points selected for 

the definition of the LLE mapping of the data manifold onto 

the low-dimensional space. 

Comparing the approximation errors for the neural networks 

defined and trained on the high- and low-dimensional data 

having the same number of neurons in their single hidden 

layer we find that the neural networks with low-dimensional 

data have better approximation performance if 

n

b
MCd

n

b d

D

d
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This inequality is satisfied if 
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Given that 1b  the last inequality is satisfied even for 

relatively large 
D  values. This is especially true if d  is 

sufficiently large. Q.e.d. 

Theorem 2 implies that even for relatively sparse samples of 

the data points that cover the whole data manifold the 

approximation performance of neural networks trained with 

the projected low-dimensional data will be better than the 

approximation performance of neural networks trained with 

the original high-dimensional data. 

This result means that in the context of big data, when using 

the whole data set to find the low dimensional mapping of the 

data might be unfeasible due to the size of the data, a 

relatively small sample of the data should be sufficient to 

calculate the low-dimensional LLE mapping of data in order 

to train a neural network approximation of the target function 

using the projected data. This may be considerably important 

in the context of very high volume astronomy or medical 

imaging or industrial sensor network data. 

 

THEOREM 3. The assumptions of Theorem 1 and Theorem 

2 are satisfied and pll ,...,1, z  are a sample of data points 

from the high dimensional data space that is used to generate 

the low-dimensional LLE mapping of the original high-
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dimensional data. Let us consider )(xg  the function 

representing the neural network approximation of the target 

function following training with low-dimensional projected 

data. The average approximation error of )(xg  has the 

tightest bound if the data points pll ,...,1, z  are uniformly 

distributed. 

 

Proof: The error bound in equation (16) can be improved 

by using a lower estimate instead of )(max *'

||
δy

δ



f  by 

considering the distribution of the sample data points that is 

used for the generation of the low-dimensional mapping. Let 

us define )(y  as the local bound on )()(*
xx    around 

y  in the part of projection space defined by the projection of 

the projection generating sample data point that is closest to y  

and the projections of the neighbouring projection generating 

sample data points – note that  )(y . Now we can replace 

the )(max *'

||
δy

δ



f  term by the term  

)(max)( *'

)(||
δyy

yδ



f  where )(y   depends on y .  

We note that if ', yy share their closest projection 

generating data point then )'()( yy   and if z  is this 

closest projection of a projection generating data point then 

)()'()( zyy  . 

Let us consider a set of low-dimensional projections of data 

points pll ,...,1, y and the corresponding closest projections 

of projection generating high-dimensional data points 

pll ,...,1, z . The average error Err  of the approximation 

of f  over pll ,...,1, y  
is bounded as follows  
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Denoting )(max *'
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Further we have that 
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We note that 



p

l

l

1

)(z  is effectively a weighted sum of 

the distances between the projections of the sample data points 

used to generate the low dimensional projection of the data 

manifold. The value of 



p

l

l

1

)(z  is approximately constant 

for any set of p  data points pll ,...,1, y and it is a multiple 

of the approximate volume of the part of the data manifold 

spanned by the data points and the multiplier is proportional to 

the number of data points for which the approximation error is 

calculated. Let us denote this value as 
0 , then we have that 

2

0

1

2 1
)( 

 p

p

l

lz  
(24) 

and the minimum value of the sum on the left-hand side is 

achieved for the case when )( lz are equal. This is achieved 

approximately if the data sample used to generate the low-

dimensional projection of the data manifold is uniformly 

distributed over the manifold ( )( lz are equal if the sample 

projection is perfectly uniform in the sense of being equally 

spaced). 

Thus the error bound for the approximation is the tightest if 

projection of the data manifold is based on a uniform sample 

of the data points over the high-dimensional data manifold. In 

this case the error is bounded as follows 
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where 
  is a small number and 0  in the case of 

equally spaced projected data. Q.e.d. 

This suggests that low-dimensional manifold projections 

based on uniform samples of the data manifold allow the best 

approximation performance by neural networks approximating 

the target function f  over projections of the data points into 

the low-dimensional space.  

The value of 
0  depends on the approximation of the 

volume of the data manifold by the polyhedra determined by 

the data point sample used to generate the low-dimensional 

mapping of the manifold and the boundary of the data set 

within the manifold. For larger projection generation samples 

this volume approximation gets better and the polyhedral 

components of approximation get smaller. Consequently, the 

difference between the two sides of the inequality (24) gets 

smaller. Thus, we expect that the effect of the sampling 

distribution is more significant if the projection generating 

sample of data points is a coarse sample of the data set. 

We note that if the measurement of function values is noisy 

that affects both the high and low dimensional approximation 

of the function and the impact is higher on the high 

dimensional approximation (see equations (13) and (14)). 

Thus, noisy measurement of the function values does not 

change the above derived theoretical conclusions about the 

comparison of the approximation performance of neural 

networks that use the high dimensional data and those that use 

low dimensional projected data to learn the approximated 

function. 

IV. APPLICATION EXAMPLES  

To test the applicability of the theoretical results we 

considered high-dimensional data arranged on a 5-dimensional 
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data manifold embedded within a 60-dimensional space. The 

data manifold is defined as multi-dimensional multiple Swiss 

roll according to the equations below. The 60-dimensional x  

vectors are defined component-wise using 5-dimensional y  

vectors as follows 
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where 5,...,1,  jkj  and 5,...,1 jk , and 
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In fact the equations (26) and (27) above define the 

function xy  )(1* . Note that the values of 

pjkjj  )1(6)10()1(3  go from 1 to 60 as j  

goes from 1 to 5, k  goes from 1j to 5 and p  goes from 1 

to 6. 

We considered the approximation of ten functions defined 

on the high-dimensional data (adapted from [9]). The 

considered functions are defined below using )(*
xy  . 

1) Squared modulus: 

2

1 )( yx f  (28) 

2) Second degree polynomial: 
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3) Exponential square sum: 
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4) Exponential-sinusoid sum: 
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5) Polynomial-sinusoid sum: 
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6) Inverse exponential square sum: 
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7) Sigmoidal: 
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8) Gaussian: 
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9) Linear: 
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j
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10) Constant: 

1)(10 xf  (37) 

In all cases, both for 60- and 5-dimensional data we 

constructed neural networks with 20 hidden units having 

Gaussian activation functions with fixed and randomly set 

parameters (the number of hidden units was chosen to be 

sufficiently large, but not too large, assuming that we 

approximate a moderately complicated function). For each 

approximated function we trained 20 neural networks using 20 

different data sets (i.e. the sampling of the data was repeated 

20 times resulting in 20 independent samples of the data). 

Each data set consisted of 5000 uniformly randomly chosen 

60-dimensional data points for training of the neural networks 

(note that the samples were chosen from an infinite size 

complete data set, i.e. the full data set is the complete 

manifold defined by equations (26) and (27)). In addition to 

these for each data set we considered 400 additional test data 

TABLE I 

COMPARISON OF THE APPROXIMATION PERFORMANCES OF NEURAL NETWORKS 

TRAINED WITH LOW- AND HIGH-DIMENSIONAL DATA – AVERAGE VALUES AND 

STANDARD DEVIATIONS IN BRACKETS. THE LEVEL OF STATISTICAL SIGNIFICANCE 

OF THE DIFFERENCES BETWEEN AVERAGE VALUES IS INDICATES AS                               

* - SIGNIFICANT AT P=0.01 LEVEL, ** - SIGNIFICANT AT P=0.001 LEVEL. 

Target 

Function 

High-dim 

data 

Low-dim 
data, LLE 

with 3000 

samples 

Low-dim 
data, LLE 

with 1000 

samples 

Low-dim 
data, LLE 

with 300 

samples 

Squared 
modulus 

22,905.28 
(2,441.403) 

6,665.98 
(1,178.058)

** 

6,117.09 
(689.5801)  

** 

9,357.61 
(1,443.37) 

** 

Polynomial 107.7742 
(19.02001) 

8.8760 
(0.919657) 

** 

8.4338  
(0.654946)  

** 

7.3792 
(0.263297) 

** 

Exponential 
square sum 

0.008188 
(0.001503) 

7.07E-5 
(7.06E-6) 

** 

7.33E-5  
(7.21E-6)    

** 

0.000185 
(3.65E-5) 

** 

Exponential-
sinusoid sum 

0.009063 
(0.002145) 

0.000107 
(9.23E-6) 

** 

0.000138 
(2.46E-5)    

** 

8.66E-5 
(4.22E-6) 

** 

Polynomial-
sinusoid sum 

0.010596 
(0.001471) 

3.3E-6  
(5.62E-7) 

** 

4.5E-6   
(6.63E-7)    

** 

2.7E-6  
(1.93E-7) 

** 

Inverse 
exponential 

square sum 

 

0.375867 
(0.04593) 

0.129347 
(0.016776) 

** 

0.135788 
(0.030936)  

** 

0.122131 
(0.008952) 

** 

Sigmoidal 200.9935 

(37.4462) 

16.5594 

(1.449868) 

** 

12.09924 

(0.84997)    

** 

15.63517 

(1.735107) 

** 
Gaussian 9.311568 

(1.77583) 

2.902362 

(0.28782) 

** 

3.33429 

(0.727295)    

* 

3.264746 

(0.253456) 

* 
Linear 

 

 

50,244.24 

(6,624.208) 

2,139.939 

(250.5473) 

** 

1,608.612 

(112.818)    

** 

1,570.015 

(112.0867) 

** 
Constant 0.319902 

(0.030275) 

0.001936 

(0.001386) 
** 

0.0033  

(0.002557)   
** 

0.225078 

(0.061538) 
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points that were randomly picked with uniform distribution 

over the data manifold. For each data set we selected three 

samples of the training data set for the calculation of the LLE 

mapping of the data manifold into the 5-dimensional space. 

The samples had 3000, 1000 and 300 randomly selected points 

in them. For each data set and for each calculated LLE 

mapping we trained and tested one neural network for all 10 

considered target functions, i.e. we used the same training and 

testing data and LLE mapping for all target functions for each 

data set. For the data points not included into the sample used 

for the calculation of the LLE mapping we used the equations 

(5) and (6) to calculate the corresponding projected data. 

According to our theoretical results it is expected that the 

neural networks trained with the low-dimensional projected 

data perform better than neural networks trained with high-

dimensional data even if the sample used to calculate the low-

dimensional mapping is small. To compare the performances 

of neural networks we calculated their average performance 

for each target function over the 20 data sets and also the 

standard deviations of their performance values. The 

performance of each network was assessed as their average 

squared error over the appropriate test data set. To test the 

statistical significance of the difference between the average 

performances we used the t-test. The results are presented in 

Table I. 

The results show that the neural networks trained with the 

low-dimensional data are statistically significantly better than 

the neural networks trained with high-dimensional data in 

terms of their approximation performance in all considered 

cases with the exception of the approximation of the constant 

function following the calculation of the LLE projection based 

on 300 data points. The results do not show in general a 

systematic difference between the approximation 

performances of the neural networks trained with low-

dimensional data as a function of the size of the data sample 

used to calculate the LLE projection of the data manifold. 

These together confirm our expectation that even small sample 

based LLE projections of the data manifold allow much better 

neural network approximation of the target function using the 

projected data than the direct neural network approximation of 

this target function in the original high-dimensional data 

space. 

To assess the role of the distribution of the data points used 

to generate the low-dimensional mapping of the data manifold 

we considered normally distributed data over the 60-

dimensional manifold defined by equations (26) and (27). We 

selected from this data first a normally distributed sample and 

then a uniformly distributed sample to generate the 5-

dimensional mapping of the manifold. We repeated this 20 

times and we used the same 10 functions that we used 

previously (equations (28) to (37)). In all cases we used 5000 

data points for training, from which we selected the projection 

generation data point sample, and we used 400 independently 

generated data points for the test set. 

To generate the normally distributed data we used the Box-

Müller transform of uniformly distributed data and we set the 

component-wise standard deviation to be 0.5 in order to 

generate a relatively peaked normal distribution for the data 

points. To create the normally distributed sample from the 

normally distributed training data set, we picked a random 

selection of the data points. To create the uniformly 

distributed sample of the data points first we created a set of 

uniformly distributed points on the data manifold 

independently from the training data set and then selected the 

data points from the training data set that were the closest to 

these uniformly distributed points on the data manifold. For 

both cases for each training data set we selected a coarse 

sample of 100 data points for the generation of the low-

dimensional projection of the data manifold. 

The results are presented in Table II – note that 

approximation error performances (mean squared error over 

the test set) are different from the result reported in Table I as 

both the training and test sample are from a relatively narrow 

normal distribution over the data manifold. The results show 

that in all cases, for all approximated functions, the low-

dimensional neural network approximation based on the 

manifold projection using the uniformly distributed selection 

of the data points performs statistically significantly better 

than the low-dimensional neural network approximation based 

on the manifold projection generated using the normally 

TABLE II 

COMPARISON OF THE APPROXIMATION PERFORMANCES OF NEURAL NETWORKS 

TRAINED WITH LOW-DIMENSIONAL DATA GENERATED WITH MANIFOLD 

PROJECTIONS BASED ON NORMAL AND UNIFORMLY DISTRIBUTED DATA SAMPLES 

(100 DATA POINTS IN BOTH CASES) – 1000 TIMES AVERAGE VALUES AND 

STANDARD DEVIATIONS IN BRACKETS. THE LEVEL OF STATISTICAL SIGNIFICANCE 

OF THE DIFFERENCES BETWEEN AVERAGE VALUES IS INDICATES AS * - 

SIGNIFICANT AT P=0.01 LEVEL, ** - SIGNIFICANT AT P=0.001 LEVEL. 

Target 
Function 

 

Low-dim 

data, LLE 
normal 

sample 

 

Low-dim 

data, LLE 
uniform 

sample 

Squared 

modulus 

 5,340.236 

(469.2243)
** 

 722.8871 

(137.7073) 
** 

Polynomial  0.404295 

(0.055482) 
** 

 0.011856 

(0.00202) 
** 

Exponential 

square sum 

 0.45004 

(0.092735) 
** 

 0.002446 

(0.000397) 
** 

Exponential-

sinusoid sum 

 0.430052 

(0.046063) 
** 

 0.005054 

(0.000554) 
** 

Polynomial-

sinusoid sum 

 0.411339  

(0.078397) 
** 

 0.00267  

(0.000683) 
** 

Inverse 
exponential 

square sum 

 

 5.695947 
(1.298511) 

** 

 0.312307 
(0.071051) 

** 

Sigmoidal  1,428.417 

(91.00933) 

** 

 201.0943 

(19.76358) 

** 
Gaussian  132.0175 

(26.31923) 

** 

 71.25482 

(56.58054) 

** 
Linear 

 

 

 68,235.93 

(7,675.206) 

** 

 11,037.84 

(1,152.381) 

** 
Constant  3.359855 

(1.582305) 

** 

 0.031211 

(0.012912) 

** 
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distributed selection of data points. This confirms our 

expectation that for the purpose of low-dimensional neural 

network approximation of the target function it is preferred to 

use manifold projections based on uniformly distributed 

sample of the training data. 

We also considered the addition of noise to the sampled 

values of the target functions. We added low and high level of 

noise to the function values (i.e. the noise was set to be 10% 

and 30% of the function values, respectively). In all cases we 

used LLE projections calculated with 1,000 data points. The 

results are presented in Table III. The results show that the 

neural networks trained with low-dimensional projected data 

statistically significantly outperform the neural networks 

trained with high dimensional data in all cases in the presence 

of noise, with the exception of the approximation of the 

Gaussian function in the presence of high noise. 

Finally, to show the application of our results to real world 

data we considered the MNIST hand-written digits data set. In 

this case the function is defined on a 784-dimensional space 

and the sample data points from this data space are images 

with 784 pixels, each pixel having an integer value between 0 

and 255. The function values are defined as the value of the 

digit corresponding to each image divided by 10 (i.e. the 

function values are 0, 0.1,..., 0.9). If the approximated function 

values are completely random the expected squared error of 

the approximation is 0.165. 

We calculated low-dimensional LLE mappings of the data 

manifold for a range of dimension values: 4 – 8, 10, 12, 15, 

20, 30, 50, 70 and 90. We found that the higher dimension 

values for the low-dimensional mappings (i.e. above 20) did 

not lead to the improved approximation performance. In 

general, we found that some low-dimensional projections of 

the data manifold lead consistently to high approximation 

error. After analysing the approximation results for neural 

networks working with low dimensional projected data we 

concluded to eliminate all cases of projections where a 

validation step with unseen data leads to an excessively high 

error (i.e. above 0.25 for dimensions above 4 and 0.35 for 

projection dimension 4 – the values were determined by 

analysing the distribution of the validation errors – see Figure 

1). We note that the approximation error of the neural 

networks working with high dimensional data was below 0.22 

with the exception of a single case. 

We considered for approximation performance evaluation  

neural networks working with low dimensional data that use 

low dimensional projections that passed the validation phase 

(i.e. validation error is below 0.25 or 0.35 in the case of 4-

dimensional projections). We found that these neural networks 

have better approximation performance in general than neural 

networks working with high dimensional MNIST data. 

However, the results show that difference in performance is 

statistically significant only in the case of neural networks 

working with 5-, 7- and 12-dimensional projection data and it 

 
Fig. 1.  The distribution of paired values of corresponding training and 
validation errors for neural networks trained to approximate the 

function based on the MNIST data using low-dimensional projected 

data. The dimensionality of the projected data is shown in the figure 
panels A) – J). 

 

TABLE III 

COMPARISON OF THE APPROXIMATION PERFORMANCES OF NEURAL NETWORKS 

TRAINED WITH LOW- AND HIGH-DIMENSIONAL DATA WITH NOISE – AVERAGE 

VALUES AND STANDARD DEVIATIONS IN BRACKETS. THE LEVEL OF STATISTICAL 

SIGNIFICANCE OF THE DIFFERENCES BETWEEN AVERAGE VALUES IS INDICATES AS * 

- SIGNIFICANT AT P=0.05 LEVEL, ** - SIGNIFICANT AT P=0.01 LEVEL. 

Target 

Function 

High-dim 
data with 

low noise 

Low dim 
data with 

low noise  

High-dim 
data with  

high noise 

Low dim 
data with 

high noise  

Squared 

modulus 

14,556.92 

(2,556.108) 
 

6,993.992 

(645.6014) 
** 

16,685.87 

(3083.226) 

8289.357 

(710.392) 
* 

Polynomial 75.74326 

(22.91223) 
 

9.124691 

(1.196528) 
** 

90.25484 

(24.16676) 

9.301827 

(1.095887) 
** 

Exponential 

square sum 

0.009796 

(0.002308) 

9.05E-5 

(1.28E-5) 
** 

0.004792 

(0.001901) 

0.000109 

(1.41E-5) 
* 

Exponential-

sinusoid sum 

0.008187 

(0.00195) 

0.000132 

(3.59E-5) 
** 

0.012149 

(0.002561) 

0.000128 

(2.88E-5) 
** 

Polynomial-

sinusoid sum 

0.01445 

(0.003686) 

4.6E-6 

(6.3E-7) 
** 

0.009811 

0.003173 

4.15E-6 

(3.5E-7) 
** 

Inverse 

exponential 
square sum 

 

0.681158 

(0.139765) 

0.169217 

(0.036676) 
** 

0.4979 

(0.136227) 

0.156298 

(0.022124) 
* 

Sigmoidal 377.2754 
(105.752) 

10.77917 
(1.015859) 

** 

370.0072 
(95.63658) 

12.92726 
(1.570246) 

** 

Gaussian 9.62391 
(2.411471) 

3.88002 
(0.59562) 

* 

7.173484 
(1.860447) 

4.06306 
(0.647155) 

Linear 
 

 

42,620.46 
(13,968.38) 

1,470.214 
(107.9499) 

** 

36888.25 
(10,584.89) 

1,502.074 
(116.2073) 

** 

Constant 0.253313 
(0.05263) 

 

0.02914 
(0.021538) 

** 

0.305002 
(0.053929) 

0.061983 
(0.022482) 

** 
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is most significantly different for 5-dimensional data. The 

results of the comparison of neural network approximations of 

the real data function defined using the MNIST data are 

shown in Table IV. We note that the approximation error of 

neural networks using low-dimensional data with increasing 

dimensionality got lowered, while their validation and test 

error did not improve in general (an exception is the 12-

dimensional projection). This suggests that increasing the 

dimensionality of the projected data leads to capturing more 

noise through the learning process of the neural networks. 

V. CONCLUSIONS 

We analysed in this paper the approximation error of neural 

networks built to approximate target functions defined on 

high-dimensional data, but using low-dimensional projected 

data derived by projecting the high-dimensional data manifold 

onto a low-dimensional space. Our analysis shows that the 

approximation error is dominated by the term that depends 

exponentially on the dimensionality of the data. This implies 

that even small samples of the data are sufficient to construct a 

sufficiently good low-dimensional LLE mapping of the data 

manifold in order to get much better neural network 

approximation performance using the projected data than the 

performance of neural networks trained to approximate the 

target function using the original high-dimensional data. 

This result is important in the context large volumes of 

high-dimensional data that characterise „big data‟ problems. In 

such cases a sufficiently good low-dimensional mapping 

should be obtainable using a relatively sparse sample of the 

full data set in order to get good low-dimensional neural 

network approximations of functions defined over the original 

high-dimensional data. The application examples presented in 

the paper provide strong support for this expectation. 

Our work also shows that it is important to have as much as 

possible a uniformly distributed sample of the data manifold 

for the generation of the low-dimensional mapping of the 

manifold. This is especially true in the case when coarse 

samples of the data manifold are used. Using of coarse 

samples for the manifold mapping is very likely in the case of 

„big data‟ data sets for which the storage of the data set in 

itself may represent a technical problem due to the volume of 

the data. The examples presented in the paper in this respect 

support strongly this claim. 

Further work is planned to analyse the extent of 

preservation of properties of the target function by its neural 

network approximation built using the projected low-

dimensional data. For example, the extent to which local 

maxima and minima are preserved and the accuracy of 

preservation of these and also the extent of approximation of 

derivatives and integrals of the target function by the low-

dimensional neural network approximation of the target 

function. 

Future work is also planned to compare a range of 

dimension reduction techniques in the context of 

approximation of functions on low dimensional projections of 

the original high dimensional data. 
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