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ABSTRACT
We develop models of two-component spherical galaxies to establish scaling relations linking
the properties of spheroids at z = 0 (total stellar masses, effective radii Re and velocity
dispersions within Re) to the properties of their dark-matter haloes at both z = 0 and higher
redshifts. Our main motivation is the widely accepted idea that the accretion-driven growth of
supermassive black holes (SMBHs) in protogalaxies is limited by quasar-mode feedback and
gas blow-out. The SMBH masses, MBH, should then be connected to the dark-matter potential
wells at the redshift zqso of the blow-out. We specifically consider the example of a power-law
dependence on the maximum circular speed in a protogalactic dark-matter halo: MBH ∝ V 4

d,pk,
as could be expected if quasar-mode feedback were momentum-driven. For haloes with a given
Vd,pk at a given zqso ≥ 0, our model scaling relations give a typical stellar velocity dispersion
σ ap(Re) at z = 0. Thus, they transform a theoretical MBH–Vd,pk relation into a prediction for
an observable MBH–σ ap(Re) relation. We find the latter to be distinctly non-linear in log–log
space. Its shape depends on the generic redshift evolution of haloes in a � cold dark matter
cosmology and the systematic variation of stellar-to-dark matter mass fraction at z = 0, in
addition to any assumptions about the physics underlying the MBH–Vd,pk relation. Despite
some clear limitations of the form we use for MBH versus Vd,pk, and even though we do not
include any SMBH growth through dry mergers at low redshift, our results for MBH–σ ap(Re)
compare well to data for local early types if we take zqso ∼ 2–4.

Key words: galaxies: bulges – galaxies: elliptical and lenticular, cD – galaxies: fundamental
parameters – galaxies: haloes – quasars: supermassive black holes.

1 IN T RO D U C T I O N

The masses MBH of supermassive black holes (SMBHs) at the cen-
tres of normal early-type galaxies and bulges correlate with various
global properties of the stellar spheroids – see Kormendy & Ho
(2013) for a comprehensive review. The strongest relationships in-
clude one between MBH and the bulge mass Mbulge (either stellar
or dynamical, depending on the author; e.g. Magorrian et al. 1998;
Marconi & Hunt 2003; Häring & Rix 2004; McConnell & Ma 2013);
a scaling of MBH with the (aperture) stellar velocity dispersion σ ap

averaged inside some fraction of the effective radius Re of the bulge
(MBH ∼ σ 4–5

ap if fitted with a single power law; Ferrarese & Merritt
2000; Gebhardt et al. 2000; Ferrarese & Ford 2005; McConnell
& Ma 2013); and a fundamental-plane dependence of MBH on a
combination of either Mbulge and σ ap or σ ap and Re (Hopkins et al.
2007b,c). Whether any one correlation is more fundamental than
the others is something of an open question (see e.g. Shankar et al.
2016, who suggest σ is more fundamental), but collectively they
are interpreted as evidence for co-evolution between SMBHs and
their host galaxies.
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This co-evolution likely involved self-regulated feedback in gen-
eral. Most of the SMBH mass in large galaxies is grown in a quasar
phase of Eddington-rate accretion (Yu & Tremaine 2002), driven
by a rapid succession of gas-rich mergers at high redshift. Such
accretion deposits significant momentum and energy back into the
protogalactic gas supply, which can lead to a blow-out that stops
further accretion on to the SMBH. In this context, the empirical
correlation between MBH and σ ap takes on particular importance, as
the stellar velocity dispersion should reflect the depth of the poten-
tial well from which SMBH feedback had to expel the protogalactic
gas. Cosmological simulations of galaxy formation now routinely
include prescriptions for the quenching of Eddington-rate accretion
by ‘quasar-mode’ feedback, with free parameters that are tuned to
give good fits to the SMBH M–σ relation at z = 0.

However, it is not clear in detail how the stellar velocity disper-
sions in normal galaxies at z = 0 relate to the protogalactic potential
wells when any putative blow-out occurred and the main phase of
accretion-driven SMBH growth came to an end. For most systems,
this was presumably around z ∼ 2–3, when quasar activity in the
Universe was at its peak (Richards et al. 2006; Hopkins, Richards
& Hernquist 2007a). The potential wells in question were domi-
nated by dark matter, and a general method is lacking to connect
the stellar σ ap in spheroids to the properties of their dark-matter
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haloes, not only at z = 0 but at higher redshift as well. Moreover, it
is not necessarily obvious what specific property (or properties) of
dark-matter haloes provides the key measure of potential-well depth
in the context of a condition for accretion-driven blow-out. Differ-
ent simulations of galaxy and SMBH co-evolution with different
recipes for quasar-mode feedback appear equally able (with appro-
priate tuning of their free parameters) to reproduce the observed
M–σ relation.

Our main goal in this paper is to address the first part of this
problem. We develop ‘mean-trend’ scaling relations between the
average stellar properties (total masses, effective radii and aperture
velocity dispersions) and the dark-matter haloes (virial masses and
radii, density profiles and circular-speed curves) of two-component
spherical galaxies. These scalings are constrained by some data
for a representative sample of local early-type galaxies, and by the
properties of dark-matter haloes at z = 0 in cosmological simula-
tions. We then include an analytical approximation to the mass and
potential-well growth histories of simulated dark-matter haloes, in
order to connect the stellar properties at z = 0 to halo properties at
z > 0. We ultimately use these results to illustrate how one partic-
ularly simple analytical expression, which gives a critical SMBH
mass for protogalactic blow-out directly in terms of the dark-matter
potential well at quasar redshifts, translates to a relation between
SMBH mass and stellar velocity dispersion at z = 0.

1.1 SMBH masses and halo circular speeds

Under the assumption (which we discuss just below) that accre-
tion feedback is momentum-conserving and takes the form of a
spherical shell driven outwards by an SMBH wind with momentum
flux dpwind/dt = LEdd/c, McQuillin & McLaughlin (2012) derive
a minimum SMBH mass sufficient to expel an initially static and
virialized gaseous medium from any protogalaxy consisting of dark
matter and gas only. This critical mass is approximately

MBH � f0κ

πG2

V 4
d,pk

4

� 1.14 × 108 M�
(

f0

0.2

) (
Vd,pk

200 km s−1

)4

, (1)

where κ is the Thomson-scattering opacity and f0 is the (spatially
constant) gas-to-dark matter mass fraction in the protogalaxy. The
velocity scale Vd,pk refers to the peak value of the circular speed
V 2

d (r) ≡ GMd(r)/r in a dark-matter halo with mass profile Md(r).
Equation (1) holds for any form of the mass profile, just so long as
the associated circular-speed curve has a single, global maximum
– as all realistic descriptions of the haloes formed in cosmological
N-body simulations do. Defining a characteristic (dark-matter) ve-
locity dispersion as σ0 ≡ Vd,pk/

√
2 turns equation (1) into a critical

MBH–σ 0 relation, which is formally the same as that obtained by
King (2003, 2005), and similar to the earlier result of Fabian (1999),
for momentum-driven blow-out from a singular isothermal sphere.

This critical mass is based on the simplified description given
by King & Pounds (2003) of a Compton-thick wind resulting from
accretion at or above the Eddington rate on to an SMBH. In par-
ticular, their analysis provides the assumption that the momentum
flux in the SMBH wind is simply LEdd/c (with no pre-factor).1 The
wind from an SMBH with mass greater than that in equation (1)

1 Having dpwind/dt = LEdd/c, rather than ∝LEdd/c but much less, implies
high wind speeds of up to ∼0.1 c (King 2010). Such ultrafast outflows
are observed in many local active galactic nuclei and low-redshift quasars

will then supply an outward force (i.e. LEdd/c = 4πGMBH/κ) on a
thin, radiative shell of swept-up ambient gas that exceeds the grav-
itational attraction of dark matter behind the shell (maximum force
f0V

4
d,pk/G if the gas was initially virialized), everywhere in the halo.

It is a condition for the clearing of all gas to beyond the virial radius
of any non-isothermal halo.

Equation (1) has limitations. Most notably, the protogalactic out-
flows driven by SMBH winds are in fact expected to become energy-
driven (non-radiative) after an initial radiative phase (Zubovas &
King 2012; McQuillin & McLaughlin 2013). This may (Silk &
Rees 1998; McQuillin & McLaughlin 2013) or may not (Zubovas
& Nayakshin 2014) change the functional dependence of a critical
MBH for blow-out on the dark-matter Vd,pk or any other character-
istic halo velocity scale. Beyond this, the equation also assumes a
wind moving into an initially static ambient medium, ignoring the
cosmological infall of gas and an additional, confining ram pressure
that comes with hierarchical (proto-)galaxy formation (Costa, Si-
jacki & Haehnelt 2014). It also neglects the presence of any stars in
protogalaxies, which could contribute both to the feedback driving
gaseous outflows (e.g. Murray, Quataert & Thompson 2005; Power
et al. 2011) and to the gravity containing them. [The assumptions
of spherical symmetry and a smooth ambient medium are not fatal
flaws; see Zubovas & Nayakshin (2014).]

However, it is not our intention here to improve equation (1).
Rather, we aim primarily to establish a method by which halo prop-
erties at z > 0 in relations such as equation (1) can be related to
the average properties of stellar spheroids at z = 0. By doing this,
we hope to understand better how expected relationships between
SMBH masses and protogalactic dark-matter haloes are reflected in
the observed M–σ relation particularly. Equation (1) is a good test
case because it is simple and transparent but still contains enough
relevant feedback physics to be interesting, even with the caveats
mentioned above. It is also the only such relation we know of,
which does not assume that dark-matter haloes are singular isother-
mal spheres.

1.2 Halo circular speeds and stellar velocity dispersions

As a point of reference, Fig. 1 shows SMBH mass against the stellar
velocity dispersion σ ap(Re) within an aperture equal to the stellar
effective radius, for galaxies and bulges in the compilation of Mc-
Connell & Ma (2013). The dashed line shows equation (1) evaluated
with a gas-to-dark matter mass ratio of f0 = 0.18 (the cosmic av-
erage; Planck Collaboration XVI 2014) for all protogalaxies at the
time of blow-out, and with the naive substitution Vd,pk ≡ √

2 σap(Re)
for all spheroids at z = 0. The proximity of this line to the data –first
emphasized by King (2003, 2005), who assumed isothermal haloes
– encourages taking seriously the basic physical ideas behind equa-
tion (1), even though (as discussed above) some details must be
incorrect at some level.

However, setting Vd,pk = √
2 σap(Re) is problematic. A

√
2-

proportionality between circular speed and velocity dispersion is
appropriate only for isothermal spheres, which real dark-matter
haloes are not. A dark-matter velocity dispersion can be equated
to a stellar velocity dispersion only if the dark matter and the stars
have the same spatial distribution, which is not true of real galaxies.
And Vd,pk in equation (1) refers to a protogalactic halo, which will
have grown significantly since the quasar epoch at z ∼ 2–3.

accreting at or near their Eddington rates (e.g. Pounds et al. 2003; Reeves,
O’Brien & Ward 2003; Tombesi et al. 2010, 2011).
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Figure 1. SMBH mass versus stellar velocity dispersion averaged over an
effective radius. Data are from the compilation of McConnell & Ma (2013)
for 53 E or S0 galaxies (filled circles) and 19 bulges in late Hubble types
(open circles). The dashed line is equation (1) with a protogalactic gas-
to-dark matter fraction f0 = 0.18 and Vd,pk ≡ √

2 σap(Re) for all galaxies.
Improving upon this poorly justified association between the characteristic
stellar and dark-matter velocities in early-type galaxies is one of the goals
of this paper.

In Section 2, we gather results from the literature that we need
in order to address these issues. In Section 3, we combine them
to constrain simple models of spherical, two-component galaxies,
focusing on scaling relations between the stellar and dark-matter
properties at z = 0. This is done without any reference to black
holes, and the scalings should be of use beyond applications to
SMBH correlations. In Section 4, we make a new, more rigorous
comparison of equation (1) to the SMBH M–σ data (compare Fig. 6
below to Fig. 1). Our work could in principle be used to explore the
consequences of SMBH–halo relations like equation (1) for other
SMBH–bulge correlations as well, but we do not pursue these here.
In Section 5, we summarize the paper.

2 MO D E L I N G R E D I E N T S

Equation (1) incorporates an assumption that gas traced the dark
matter in protogalaxies before being blown out by quasar-mode
accretion feedback at high redshift. However, it does not make any
assumptions about the detailed structure of dark-matter haloes at
any epoch, and it neither requires nor implies that mass follows
light in galaxies at z = 0.

In this section, we collect together analytical expressions from
the literature for the (different) stellar and dark-matter mass profiles
in galaxies, and for some key structural parameters of dark-matter
haloes and their evolution in � cold dark matter (�CDM) simula-
tions of structure formation. We use these to obtain our new results
in Sections 3 and 4. Some of these expressions from the literature,
and all of the scaling relations we ultimately derive, represent av-
erage trends that can have significant scatter around them. We do
not attempt in this paper to analyse such scatter or to predict the net
scatter around any scaling that comes from combining others.

This section and Section 3 do not rely on any ideas about black
hole accretion feedback or SMBH–bulge correlations. We focus
repeatedly on the peak circular speed Vd,pk in dark-matter haloes,
because that is what appears in equation (1) for MBH; but we do not
actually use the equation until Section 4.

2.1 Stellar distribution

We use the spherical density profile of Hernquist (1990) to describe
the stars in early-type galaxies at z = 0. The density in this model
can be written in terms of the total stellar mass, M∗,tot, and the
effective radius, Re:

ρ∗(r)

M∗,tot/R3
e

= R2

2π

(
r

Re

)−1 [
1 + R

(
r

Re

)]−3

, (2)

where the constant R � 1.815 27 (see Hernquist 1990). The mass

profile, M∗(r) =
∫ r

0
4πu2ρ∗(u) du, is then

M∗(r)

M∗,tot
=

[
r/Re

r/Re + 1/R

]2

. (3)

Integrating the Hernquist ρ∗(r) along the line of sight gives a
surface density profile that closely approximates the classic R1/4

law. Thus, it adequately represents the typical light distributions in
spheroids of mass M∗,tot ∼ 1010–1012 M�, which more generally
follow Sérsic (1968) profiles – I(R) ∼ exp [−(R/Re)1/n] – with
indices n ≈ 3–7 (e.g. see Graham & Colless 1997). These stellar
masses correspond to velocity dispersions σ ap(Re) ∼ 80–350 km s−1

(see Fig. 4), which is the range spanned by the local galaxies that
define the black hole M–σ relation in Fig. 1.

The fine details of the assumed stellar density or mass profile mat-
ter most in our calculations of dimensionless stellar velocity disper-
sions σap(Re)/

√
GM∗,tot/Re using the Jeans equation with model

dark-matter haloes included (see Section 3.5 below). Secondarily,
the exact shape of ρ∗(r) affects the mass ratio M∗(rvir)/M∗(Re),
which we discuss in Section 3.4. We examine closely in
Section 3 the consequences of using Hernquist profiles for all galax-
ies in our calculations. In general, it exposes us to possible errors at
the ∼10 per cent level or less.

2.2 Dark-matter distributions

Since the dark-matter circular speed Vd,pk enters equation (1)
through a high power, it is important that we have a good idea
of how sensitive our results may be to the details of the dark-matter
density profile that we assume. We therefore consider four different
models for spherical haloes. Each of these is a two-parameter model
defined by a mass scale and a radial scale. To treat them uniformly,
it is most convenient to normalize all radii to the point r−2 where
the logarithmic slope of the dark-matter density is d ln ρd/d ln r
= −2. Masses are then normalized to the mass enclosed within
r < r−2.

First, the usual NFW profile (Navarro, Frenk & White 1996,
1997) has density

ρd(r) ∝
(

r

r−2

)−1 (
1 + r

r−2

)−2

, (4)

which yields the mass profile

Md(r)

Md(r−2)
= ln (1 + r/r−2) − (r/r−2)(1 + r/r−2)−1

ln(2) − 1/2
. (5)
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The circular-speed curve of the halo alone, i.e. V 2
d (r) = GMd(r)/r ,

is then given by

V 2
d (r)

V 2
d (r−2)

= ln (1 + r/r−2) − (r/r−2)(1 + r/r−2)−1

(r/r−2) [ln(2) − 1/2]
, (6)

which peaks at the radius

rpk

r−2
� 2.16258. (7)

The second model is that of Hernquist (1990), which was first fit-
ted to simulated dark-matter haloes by Dubinski & Carlberg (1991).
This has the same central density cusp (ρd → r−1) as an NFW halo,
but a steeper large-radius slope (ρd → r−4 rather than r−3) and
hence a finite, rather than divergent, total mass. When written in
terms of r−2 and M(r−2) rather than the effective radius and total
mass, the model is

ρd(r) ∝
(

r

r−2

)−1 (
1 + 1

2

r

r−2

)−3

(8)

and

Md(r)

Md(r−2)
= 9

(
r/r−2

2 + r/r−2

)2

, (9)

giving a circular-speed curve,

V 2
d (r)

V 2
d (r−2)

= 9 r/r−2

(2 + r/r−2)2 , (10)

with a peak at radius

rpk

r−2
= 2. (11)

The third model is one from the family developed by Dehnen
& McLaughlin (2005), which reproduces the universal power-law
behaviour of ‘pseudo’ phase-space density profiles, ρd(r)/σ 3

d (r), in
simulated dark-matter haloes. This model fits the resolved parts of
the density profiles alone better than either the NFW or Hernquist
profiles, and about as well as the Einasto (1965) density profiles
with ρd(r) ∼ exp (−rα), first advocated in this context by Graham
et al. (2006). The Dehnen & McLaughlin density is

ρd(r) ∝
(

r

r−2

)−7/9
[

1 + 11

13

(
r

r−2

)4/9
]−6

. (12)

This has a slightly shallower central cusp than the NFW or Hernquist
profiles and a large-radius fall-off, ρd → r−31/9, which is steeper
than NFW (resulting in a finite total halo mass) but shallower than
Hernquist. The mass profile is then

Md(r)

Md(r−2)
=

[
24 (r/r−2)4/9

13 + 11 (r/r−2)4/9

]5

(13)

and the circular-speed curve is

V 2
d (r)

V 2
d (r−2)

=
[

24 (r/r−2)11/45

13 + 11 (r/r−2)4/9

]5

, (14)

which reaches its peak value at

rpk

r−2
=

(
13

9

)9/4

� 2.28732. (15)

Finally, the halo model of Burkert (1995) has a constant-density
core that appears more suited to the dynamics of some low-mass
galaxies (e.g. Burkert & Silk 1997), and a large-radius fall-off that

is the same as NFW. Here, the density is

ρd(r) ∝
(

1 + R
r

r−2

)−1 (
1 + R2 r2

r2
−2

)−1

, (16)

with R � 1.521 38. The corresponding mass profile is

Md(r)

Md(r−2)

= ln[(1 + Rr/r−2)
√

1 + R2 (r/r−2)2 ] − tan−1 (Rr/r−2)

ln[(1 + R)
√

1 + R2 ] − tan−1(R)
,

(17)

which gives a circular-speed curve,

V 2
d (r)

V 2
d (r−2)

= ln[(1 + Rr/r−2)
√

1 + R2 (r/r−2)2 ] − tan−1 (Rr/r−2)

(r/r−2)
{

ln[(1 + R)
√

1 + R2 ] − tan−1(R)
} ,

(18)

that peaks at

rpk

r−2
� 2.13433. (19)

Fig. 2 shows the circular-speed curves of these haloes, from
equations (6), (10), (14) and (18). Relative to the NFW profile,
the Hernquist curve has a narrower width overall because of its
steeper decline beyond the peak, which follows from its steeper
density profile and convergent mass as r → ∞. The Burkert V 2

d (r)
profile is much narrower because of its steeper rise from small r,

Figure 2. Normalized circular-speed curves, V 2
d (r) = GMd(r)

/
r , for the

four dark-matter halo models we consider. The radius r−2 is that where the
local density slope is d ln ρd/d ln r = −2. The peaks in Vd(r) occur at radii
near rpk/r−2 ≈ 2 in all cases (see the text). Broken vertical lines show the
concentrations rvir/r−2 of haloes with virial masses Md(rvir) = 1015 and
1011 M� at z = 0 (see Section 2.5). The different widths of the circular-
speed curves for the different haloes lead to different values for the baryon
fraction inside a stellar effective radius (which is typically in the range
Re/r−2 ∼ 0.02–0.1; see Section 3), as well as different ratios Vd,pk/σ ap(Re).
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which is a result of its having a constant-density core rather than a
central density cusp. The Dehnen & McLaughlin (2005) halo has
the broadest circular-speed curve overall, largely because of how
slowly its density profile (which depends on r4/9 rather than just r)
rolls over from its central cusp with ρd(r) ∼ r−7/9 to its power-law
behaviour ρd(r) ∼ r−31/9 at large radii. In the analysis of Section 3,
these features ultimately affect not only the ratio Vd,pk/σ ap(Re), but
also the self-consistent value of M∗(Re)/Md(Re), the stellar mass
fraction inside the effective radius.

2.3 Stellar-to-dark matter mass ratios

The global ratio of stellar to dark-matter mass in galaxies is a strong
and non-monotonic function of halo mass that changes with redshift.
Behroozi, Wechsler & Conroy (2013) compare several derivations
of this function at z ≈ 0 by different groups using different methods.
In this paper, we adopt a parametrization from Moster et al. (2010).

Moster et al. assign one central galaxy to each virialized halo
(which might be a subhalo within a larger structure having its own
central galaxy) in �CDM simulations of structure formation with
�m, 0 = 0.26, ��,0 = 0.74 and H0 = 72 km s−1 Mpc−1. The stellar
mass of any central galaxy is determined by the virial mass of its
parent halo according to a prescription that is required ultimately
to give agreement between the simulations and the observed galaxy
luminosity function. They fit their results, for the central-galaxy
mass fraction M∗/Md within the virial radius rvir at z = 0, with a
double power-law function:

M∗(rvir)

Md(rvir)
= 0.0564

{[
Md(rvir)

7.66 × 1011 M�

]−1.06

+
[

Md(rvir)

7.66 × 1011 M�

]+0.556
}−1

(20)

(see their equation 2 and their table 6). We discuss the virial radii
themselves in the next subsection. Stellar mass fractions inside
any other radius follow self-consistently from specifications of the
stellar and dark-matter density profiles, as Section 3 will detail.

Equation (20) represents an average trend; scatter around it can
be expected, for example, as a result of differences in the merger
histories of haloes with the same mass at z = 0. Moster et al. (2010)
and Behroozi et al. (2013) show that the relation is in good overall
agreement with other theoretical work and/or with data, for halo
virial masses 1011 M� � Md(rvir) � 1015 M�. This corresponds
to stellar masses 5 × 108 M� � M∗(rvir) � 1012 M� for the central
galaxies. The brightest galaxies used to define the observed M–σ

relation are at the upper end of this range.
Equation (20) does not attempt to account for the total baryonic

mass within the virial radius of any halo; it is only for stellar mass,
and only that concentrated at the centre. There will be significantly
more baryonic mass in large (cluster-sized) haloes especially, in the
form of intracluster light and X-ray gas, and in the stars of galaxies
inside virialized subhaloes. We discuss this further in Section 3 and
conclude that the complication of additional baryons can safely be
ignored for our purposes.

2.4 Virial radii and cosmological parameters

We use the fitting formula of Bryan & Norman (1998, see their
equation 6) to calculate the overdensity, relative to the critical den-
sity, of a virialized sphere at redshift z in a flat universe with a

cosmological constant (�m + �� = 1):

	vir(z) ≡ 2 GM(rvir)

H 2(z) r3
vir

� 18π2 − 82
1 − �m,0

[H (z)/H0]2
− 39

(
1 − �m,0

)2

[H (z)/H0]4
, (21)

with[
H (z)

H0

]2

= 1 + �m,0[(1 + z)3 − 1]. (22)

Rearranging the definition of 	vir yields a convenient relationship
between virial radius and virial mass at arbitrary redshift:[

M(rvir)

M�

] [
rvir

kpc

]−3

= 1166.1 h2
0 	vir(z)

[
H (z)

H0

]2

, (23)

where h0 ≡ H0/(100 km s−1 Mpc−1) as usual. This form is also
useful for calculating M/r3 of spheres with other overdensities 	

besides the virial value [e.g. 	(z) ≡ 200].
Whenever we use any of equations (21)–(23), we take cosmolog-

ical parameters from the Planck 2013 results (Planck Collaboration
XVI 2014): h0 = 0.67 with �m,0 = 0.32 (which includes a baryon
density of �b,0 = 0.049) and ��,0 = 0.68.

2.5 Halo concentrations

By the concentration of a dark-matter halo, we specifically mean the
ratio of rvir [within which, the mean overdensity is given by equation
(21)] to r−2 (where the slope of the density profile is d ln ρd/d ln r
= −2). It is also common in the literature to define concentration
as the ratio of r200 (within which, the mean overdensity is 	 =
200) to r−2. Either way, N-body simulations of CDM structure
formation consistently show that, at least for low redshifts, more
massive haloes have lower concentrations on average. We need to
take account of this in order to infer the location and the value of
the maximum circular speed in any dark-matter halo with a given
virial radius and mass.

Dutton & Macciò (2014) give a fitting formula for the con-
centrations rvir/r−2 of simulated haloes with masses 1011 M� �
Md(rvir) � 1015 M� at redshifts 0 ≤ z ≤ 5 in a Planck cosmology.
Namely,

log

[
rvir

r−2

]
� a − b log

[
Md(rvir)

1012 h−1
0 M�

]
(24)

with

a = 0.537 + 0.488 exp(−0.718 z1.08)

b = 0.097 − 0.024 z.

Again, we set h0 = 0.67 whenever we use this equation. Simulated
haloes scatter around the average trend at the level of a few tens
of per cent in rvir/r−2 for a fixed virial mass and redshift (Bullock
et al. 2001; Dutton & Macciò 2014).

Dutton & Macciò obtain equation (24) by fitting NFW density
profiles to their simulated haloes in order to measure the radius
r−2. They also investigate the use of Einasto (1965) profiles in-
stead [which are more like the Dehnen & McLaughlin (2005)
haloes that we explore] to fit for r−2 in estimating the alterna-
tive concentration r200/r−2. Their results suggest that concentra-
tion values depend on the choice of model for the dark-matter
density profile, but only at the �10 per cent level for haloes
with Md(rvir) � 1012 M� at z = 0. We apply equation (24) in
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our models regardless of what model we assume for ρd(r) and
simply accept that there is a modest uncertainty associated with
doing so.

The two vertical lines in Fig. 2 show the concentrations accord-
ing to equation (24) for haloes with virial masses at z = 0 of
Md(rvir) = 1011 M� (having rvir/r−2 = 13.8) and 1015 M� (hav-
ing rvir/r−2 = 5.64). Equation (20) gives the corresponding stellar
masses of the central galaxies as M∗(rvir) = 6.3 × 108 and 1.0 ×
1012 M�. This emphasizes the degree to which Vd,pk – the key pre-
dictor of self-limited SMBH masses in the simple feedback model
behind equation (1) – reflects conditions far outside the stellar dis-
tributions of normal galaxies (generally, Re/r−2 ∼ 0.02–0.1; see
Section 3).

Equation (24) has been derived from simulations of strictly
baryon-free haloes. This is not an issue for our modelling, pre-
cisely because the equation describes haloes on large scales r >

r−2 � Re, well away from any regions that might have been altered
significantly by the presence of stars.

2.6 Halo progenitors

If the central black hole in a protogalaxy ended its main, quasar
phase of accretion growth at a redshift z > 0, with a mass MBH

determined by the circular speed Vd,pk in the dark-matter halo at
that time, then we need to relate that earlier Vd,pk to the value at
z = 0 (in order ultimately to link it and MBH to a stellar velocity
dispersion at z = 0).

From N-body simulations and merger trees of �CDM haloes
with virial masses at z = 0 in the range 1011 M� � Md,vir(0) �
1015 M�, van den Bosch et al. (2014) extract for each halo the
redshift z1/2 at which its most massive progenitor had a virial
mass Md,vir(z1/2) = 0.5 Md,vir(0). Given the bottom-up nature of
structure formation in CDM cosmologies, z1/2 is a decreasing
function of Md,vir(0) in general. We have fitted the median de-
pendence shown in fig. 4 of van den Bosch et al. with the
function

z1/2 = 2.05

[
Md,vir(0)

1012 h−1
0 M�

]−0.055

− 1, (25)

again taking h0 = 0.67 from the Planck cosmology. Once again,
there is intrinsic scatter around this overall trend.

Given z1/2, we then approximate the virial mass of the most
massive progenitor of a halo at any other redshift by the exponential
function (see also, e.g., Zhao et al. 2009),

Md,vir(z)

Md,vir(0)
= exp

[
− ln(2)

z1/2
z

]
. (26)

Equations (25) and (26) together give curves of Md,vir(z)/Md,vir(0)
versus Md,vir(0) that, for redshifts z � 5, compare well to the curves
plotted by van den Bosch et al. (2014) directly from the simulations
they analyse (e.g. see their fig. 2).

To obtain the evolution of the peak circular speed in the most
massive progenitor of a halo, we first write (for any z)

V 2
d,pk

V 2
d,vir

≡ V 2
d (rpk)

V 2
d (rvir)

= g(rpk/r−2)

g(rvir/r−2)
, (27)

where g(r/r−2) is one of the normalized circular-speed curves shown
in Fig. 2 and written on the right-hand sides of equations (6), (10),
(14) and (18) above. Then, since the ratio rpk/r−2 is independent
of redshift (it is fixed by assuming a basic form for the dark-matter

density profile), we have

V 2
d,pk(z)

V 2
d,pk(0)

= g[(rvir/r−2)z=0]

g[(rvir/r−2)z]
× V 2

d,vir(z)

V 2
d,vir(0)

= g[(rvir/r−2)z=0]

g[(rvir/r−2)z]

×
[

Md,vir(z)

Md,vir(0)

]2/3 [
	vir(z)

	vir(0)

]1/3 [
H (z)

H0

]2/3

, (28)

where the last line uses the fact that V 2
d (r) ∝ Md(r)/r and brings

in equation (23). For any choice of dark-matter halo model, and
thus of the function g(r/r−2), the right-hand side of equation (28) is
known in terms of z and Md,vir(0), via equations (25) and (26) plus
equations (21), (22) and (24).

The upper panel of Fig. 3 shows the virial masses at z = 1, 3
and 5, relative to the z = 0 virial masses, for the most massive
progenitors of haloes spanning the range of Md,vir(0) investigated
by van den Bosch et al. (2014). The middle panel shows the masses
of the largest progenitors at z = 1, 3 and 5 directly as functions of
the halo mass at z = 0. The curves in these plots are the same for any
model of the halo density profile. The lower panel of Fig. 3 shows
the ratio of progenitor to present Vd,pk at z = 1, 3 and 5 against
the z = 0 virial mass, calculated using equation (28). These curves
depend on the halo density profile. For clarity, we only show results
assuming either a Dehnen & McLaughlin (2005) or a Hernquist
(1990) density profile, so g(r/r−2) is given either by equation (14)
or by equation (10).

It is worth noting here the gradual flattening towards higher
masses of the curves for Md,vir(z) versus Md,vir(0) in the middle
panel of Fig. 3, and how the flattening sets in at more modest halo
masses for larger z. This is a generic feature of structure formation
by hierarchical merging. Haloes in any given mass range at z = 0
have progenitors drawn from increasingly narrow mass ranges, on
average, at increasingly high redshift, and this narrowing is more
pronounced as a function of z for higher mass haloes, because more
of their growth has occurred more recently.

Precise numbers – such as the possible value of a maximum mass
for the largest progenitors suggested by the z = 5 curve in Fig. 3 – are
specific to the dependence of z1/2 on Md,vir(0) in our equation (25).
That and equation (26) only give an approximation to the numerical
results of van den Bosch et al. (2014) for the median most massive
progenitors of haloes with 1011 M� � Md,vir(0) � 1015 M�. Fine
details following from them are not definitive, especially at the
highest end of the z = 0 mass range. However, the flattening of
Md,vir(z) as a function of Md,vir(0) is qualitatively robust. It ultimately
has some implications for the shape of the black hole M–σ relation
at high σ -values, which we discuss further in Section 4.

In the bottom panel of Fig. 3, at any fixed redshift the differ-
ent halo models give greater differences in Vd,pk(z)/Vd,pk(0) for
lower virial masses. This is because lower mass haloes generally
have higher concentrations rvir/r−2, and therefore higher ratios of
rvir/rpk (see equation 24). Thus, the ratio Vd,pk/Vd,vir is more sensi-
tive in lower mass haloes to the model-dependent steepness of the
circular-speed curve at radii r > rpk. But V 2

d,vir ∝ Md,vir(z)/rvir(z) is
independent of the halo density profile, and so only Vd,pk is actu-
ally model-dependent. Since NFW and Burkert (1995) haloes have
circular-speed curves that are intermediate in steepness to Dehnen
& McLaughlin and Hernquist models beyond rpk (see Fig. 2), the
curves for Vd,pk(z)/Vd,pk(0) versus Md,vir(0) in these other models
lie between the two shown in Fig. 3.
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Figure 3. Top panel: relative virial masses Md,vir(z)/Mdvir(0) for the most
massive progenitors of haloes with masses Md,vir(0) at z = 0, as given
by equations (25) and (26). From top to bottom, the curves are for the
progenitors at fixed redshifts z = 1, 3 and 5. Middle panel: virial masses
of the most massive progenitor haloes at z = 1, 3 and 5 (for the curves
from top to bottom) plotted directly against the z = 0 halo mass. Bottom
panel: peak circular speeds Vd,pk(z) in the most massive progenitors at z =
1, 3 and 5, relative to the peak speeds Vd,pk(0) in the final haloes at z = 0,
from equation (28). The solid (blue) lines are for haloes with a Dehnen &
McLaughlin (2005) density profile and the dashed (red) lines are for haloes
with a Hernquist (1990) profile. These bracket the corresponding curves for
NFW and Burkert (1995) haloes at the same redshifts.

3 G A L A X Y A N D H A L O S C A L I N G S AT z = 0

A two-component model for a spherical galaxy is formally defined
by four parameters: Re and M∗,tot for the stars, which we assume here
to follow Hernquist (1990) density profiles (summarized in Section
2.1), plus r−2 and Md(r−2) for a dark-matter profile (described in
Section 2.2). However, there are interdependences between these
parameters: Re and M∗,tot are correlated (discussed just below),
while the radii and masses of dark-matter haloes are connected to
each other and to M∗,tot by cosmological simulations (the stellar
mass fractions in Section 2.3 and the concentrations in Section 2.5).
These dependences allow the models to be put in terms of a single
independent parameter, which we choose to be M∗,tot.

Fig. 4 shows the average trends for various galaxy properties
versus M∗,tot at z = 0, together in some cases with data from the

literature. In this section, we detail the procedures leading to these
plots. In Section 4, we fold in the redshift evolution of Vd,pk (from
Section 2.6) to apply equation (1) for predicted black hole masses
and consider the empirical correlation between MBH and the stellar
σ ap(Re).

Our goal here is to establish representative trend-line relation-
ships between various stellar and halo properties. Scatter around
the trends is inevitable, and it can contain physical information, but
in this paper we set aside the task of characterizing or explaining
any scatter in detail.

3.1 Stellar masses and effective radii

Panel (a) of Fig. 4 plots effective radius against total stellar mass
for local early-type galaxies in two data sets: 258 systems from the
ATLAS3D survey (squares; Cappellari et al. 2011, 2013a,b) and 100
from the ACS Virgo Cluster Survey (ACSVCS, triangles; Côté et al.
2004; Chen et al. 2010).

In each case, the effective radii are tabulated by the original
authors, either in kpc directly or as angular sizes along with the
distances to individual galaxies. To estimate the stellar masses,
we have taken integrated luminosities provided by the authors and
calculated mass-to-light ratios using the single-burst population-
synthesis models of Maraston (1998, 2005) assuming stellar ages
of 9 Gyr and a Kroupa (2001) stellar initial mass function (IMF).
The masses in these M/L ratios include both luminous stars and dark
remnants. We have also used Bruzual & Charlot (2003) models to
confirm that extended star formation lasting as long as 6 Gyr gives
the same M/L values, to within � 5 per cent, when the mean stellar
age is 9 Gyr.

Cappellari et al. (2011) give K-band absolute magnitudes for
galaxies in the ATLAS3D survey. At an age of 9 Gyr and for
metallicities −1.7 ≤ [Z/H] ≤ +0.3, the mass-to-light ratios tab-
ulated by Maraston (2005) are 0.93 � M∗/LK � 0.82 M� L−1� .

We therefore adopt a constant M∗/LK ≡ 0.88 M� L−1� for all

of the ATLAS3D galaxies. This value changes by approximately
±15 per cent if the mean age of the stars is changed by ±2 Gyr.

Chen et al. (2010) give g-band apparent magnitudes and (g − z)
colours for the ACSVCS galaxies. Combining these with surface-
brightness fluctuation distances from Blakeslee et al. (2009) allows
us to calculate absolute z-band magnitudes. Then, for metallici-
ties −1.7 ≤ [Z/H] ≤ +0.3, a Kroupa IMF and an age of 9 Gyr,
the Maraston models give 1.40 � M∗/Lz � 2.0 M� L−1� . We have

used a single M∗/Lz � 1.7 M� L−1� for all of the ACSVCS galax-
ies to plot the points in panel (a) of Fig. 4. Again, this changes by
±15 per cent–20 per cent if the assumed age is changed by ±2 Gyr.

The line going through the Re versus M∗,tot data in Fig. 4 is a
parametrization of the average correlation,

Re

kpc
= 1.5

(
M∗,tot

2 × 1010 M�

)0.1
[

1 +
(

M∗,tot

2 × 1010 M�

)5
]0.1

, (29)

which we decided by eye. Roughly equal numbers of
ATLAS3D + ACSVCS data points lie above and below this line.
A ±20 per cent change in adopted mass-to-light ratios (whether due
to a different assumed mean age or a different star formation history)
results in a ±20 per cent change to the mass scale in equation (29).

The ATLAS3D sample covers the full range of stellar masses,
1010 M� � M∗,tot � 1012 M�, of the local galaxies that define
the black hole M–σ relation. As mentioned in Section 2.1, the
light profiles in this mass range can generally be fitted by Sérsic
(1968) models with indices n ≈ 3–7, all of which can be
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(a) (b)

(d)

(f)

(h)

(c)

(e)

(g)

Figure 4. Model scaling relations for stellar and dark-matter halo properties versus total stellar mass, M∗,tot, in spherical galaxies at z = 0. With the exception
of the curve in panel (a), the low-mass extensions of these models to M∗,tot � 5 × 109 M� (stellar velocity dispersions σap(Re) � 60 km s−1) should be
viewed with some caution, as discussed in Section 3.6. Panel (a): stellar effective radius, Re. Data points represent galaxies in the ATLAS3D survey (Cappellari
et al. 2011, green squares) and the ACS Virgo Cluster Survey (Chen et al. 2010, magenta triangles). See Section 3.1 for details. Panel (b): ratio f∗,vir of stellar
to dark-matter mass within the virial radius; see Sections 2.3 and 3.2. Panel (c): virial radius, rvir; see Section 3.2. Panel (d): mass of dark matter within the
virial radius, Md,vir; see Section 3.2. Panel (e): radius rpk where the dark-matter circular-speed curve peaks. The different coloured curves are for four different
models of the dark-matter density profile. See Sections 2.2 and 3.3 for details. Panel (f): peak value of the dark-matter circular speed, Vd,pk, assuming each of
the four different dark-matter halo models; see Section 3.3. Panel (g): ratio f∗(Re) of stellar mass to dark-matter mass within a sphere of radius r < Re, for
each of the four different halo models; see Section 3.4. Data points are from dynamical modelling by the ATLAS3D survey (Cappellari et al. 2013a,b); arrows
at the top of the panel represent galaxies consistent in their analysis with having no dark matter inside Re. Panel (h): stellar velocity dispersion σ ap(Re) within
an aperture of radius Re. Data points are taken from the ATLAS3D survey. See Section 3.5 for details.

approximated adequately, for our purposes, by a Hernquist (1990)
profile in projection. The ACSVCS galaxies include many with
M∗,tot < 1010 M�, where surface-brightness profiles are increas-
ingly better fitted by lower index Sérsic functions tending towards
exponentials. We have included these systems mainly to ensure that

our analysis incorporates the change in slope that they show in
the Re–M∗,tot correlation. In all of what follows, we address with
some care the extent to which our results might (or may not) be
put in error by assuming Hernquist stellar-density profiles for all
systems.
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3.2 Virial radii and halo virial masses

For any value of M∗,tot, equation (29) gives a typical value for Re.
Assuming a Hernquist density profile for the stars, we can then
write, for the ratio of stellar to dark-matter mass within the virial
radius of a galaxy,

f∗,vir ≡ M∗(rvir)

Md(rvir)
= M∗,tot

Md,vir

[
rvir/Re

rvir/Re + 1/R

]2

(30)

with R � 1.815 27 (see equation 3). Understanding the dark-matter
mass to be that of the main halo centred on the stars in the galaxy,
f∗,vir is additionally constrained by cosmological simulations, as
discussed in Section 2.3 and represented by equation (20) above
from Moster et al. (2010). Repeating this for convenience, at z = 0
we have

f∗,vir = 0.0564

{[
Md,vir

7.66 × 1011 M�

]−1.06

+
[

Md,vir

7.66 × 1011 M�

]+0.556
}−1

. (31)

Finally, if the total mass within rvir is simply the sum of the dark
matter plus the stars in the central galaxy, i.e. M(rvir) = Md,vir(1 +
f∗,virt), then the definition of rvir in equation (23) gives (at z = 0 for
the 2013 Planck cosmological parameters)

f∗,vir = 0.0544

[
rvir

100kpc

]3 [
Md,vir

1012 M�

]−1

− 1. (32)

Solving equations (30)–(32) for all of f∗,vir, rvir and Md,vir as func-
tions of M∗,tot gives the curves shown in panels (b), (c) and (d) of
Fig. 4. These are independent of any assumptions about the internal
density profiles of the haloes.

The peak in f∗,vir in panel (b), at a value of � 0.03 for M∗,tot �
3.4 × 1010 M� or Md,vir � 1.1 × 1012 M�, comes directly from
the form of equation (31) taken from Moster et al. (2010). It is
intriguing that the mass scale of this peak is close to the mass
where the empirical Re–M∗,tot correlation changes slope (equation
29), but we do not pursue this issue here. The immediate point
is that f∗,vir decreases rapidly towards higher masses, such that the
haloes around central galaxies with M∗,tot � 1011 M� have Md,vir �
1013 M� and rvir � 500 kpc. They encompass entire groups and
clusters.

For the massive systems in particular, there may be baryons that
reside in the halos but are not associated directly with the stars
of the central galaxy – intracluster light and gas, and the stars in
any off-centre satellite galaxies. Equation (32) for the virial radius
takes no account of any such ‘extra’ baryons. To do so properly
would require additionally constraining the global baryon fraction
in galaxy clusters, which is itself a mass-dependent quantity (see,
e.g., Giodini et al. 2009; McGaugh et al. 2010; Zhang et al. 2011).
However, in no case would the total virial mass be increased by more
than � 15 per cent (this being the cosmic average baryon fraction,
�b, 0/�m, 0), and hence the virial radius would not increase by more
than � 5 per cent. We therefore ignore the complication as far as rvir

is concerned.
Then, over the range of galaxy masses shown in Fig. 4, we find

that 110 � rvir/Re � 170. As a result, the stellar mass inside the
virial radius is M∗(rvir) � 0.99 M∗,tot in all cases, and equation (30)
says that f∗,vir � M∗,tot/Md,vir with only a very weak dependence on
rvir/Re. The mass of dark matter alone within rvir is then determined
[through equation (31)] by M∗,tot almost independently of rvir. Thus,

our values for Md,vir would not be changed discernibly by having
additional baryons distributed in the haloes outside of the central
galaxies.

These conclusions still hold if the stars in the central galaxies are
described by Sérsic models that depart significantly from Hernquist
profiles in projection, so long as M∗(r) still essentially converges
within r � 100 Re. Hence, the curves for f∗,vir, rvir and Md,vir versus
M∗,tot in Fig. 4 are insensitive to the choice of stellar density profile.

3.3 Peak halo circular speeds

With virial radii and dark-matter virial masses known as functions
of M∗,tot, the scale r−2 follows from equation (24) in Section 2.5 for
the concentration rvir/r−2 versus Md,vir (Dutton & Macciò 2014),
evaluated at z = 0. The location of the peak of the dark-matter
circular-speed curve then comes from the ratio rpk/r−2 specific to
a choice of ρd(r) for the dark matter [one of equations (7), (11),
(15) or (19) in Section 2.2]. Panel (e) of Fig. 4 shows the final
curves of rpk versus M∗,tot for all four of the halo profiles we are
considering. There is little difference between the curves because
we have assumed the same (rvir/r−2) versus Md,vir relation for all
halo models, and because rpk/r−2 = 2–2.3 for all of them. They are
also essentially independent of the form of the stellar density profile,
because the underlying curves of rvir and Md,vir versus M∗,tot are.
Ultimately, we have approximately 15 � rpk/Re � 70 and 0.14 �
rpk/rvir � 0.40 for stellar masses in the range 108 M� � M∗,tot �
1012 M�.

The peak value of the dark-matter circular speed is obtained as

V 2
d,pk = V 2

d (rpk)/V 2
d (r−2)

V 2
d (rvir)/V 2

d (r−2)

G Md,vir

rvir
. (33)

The normalized circular-speed profiles V 2
d (r)/V 2

d (r−2) for different
halo models are shown in Fig. 2 and given in equations (6), (10),
(14) and (18) of Section 2.2. Evaluating the appropriate one of these
at rpk/r−2 and rvir/r−2 after choosing a density profile ρd(r), and
then folding in the dependences of Md,vir and rvir on M∗,tot, yields
Vd,pk at any given total stellar mass. The results are shown in panel
(f) of Fig. 4.

The curves for Vd,pk versus M∗,tot are again insensitive to the use
of a Hernquist profile for the stellar distributions. The differences
between them come from the (small) differences in the values of
rpk/r−2 in the different halo models, and the (larger) differences
in the widths of the normalized circular-speed curves between rpk

and rvir, as seen in Fig. 2. The differences are greater for systems
with smaller M∗,tot because those haloes are less massive and have
higher concentrations on average, with larger ratios rvir/rpk and
hence ratios Vd(rpk)/Vd(rvir) that are more sensitive to the shape of
the circular-speed curve at large radii in a halo.

It is clear that the circular speeds Vd,pk for the most massive
model galaxies, which represent those defining the upper end of
the observed black hole M–σ relation, will far exceed the stellar
velocity dispersions measured within Re in the real systems. This
is because the dark-matter haloes centred on such massive galaxies
correspond to entire clusters. It is also why the naive substitution
Vd,pk = √

2 σap(Re), inspired by the singular isothermal sphere, can-
not suffice for a proper comparison of a prediction like equation (1)
to the M–σ data (cf. Fig. 1). At the same time, the most massive
haloes are the ones that will have grown the most at low redshifts,
after the epoch of peak quasar activity that may have mainly deter-
mined self-regulated black hole masses. Hence, it is essential that
Vd,pk be calculated in the progenitors of haloes if equation (1) is to
be assessed self-consistently.
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3.4 Stellar mass fractions inside Re

The ratio of stellar mass to dark-matter mass contained within radius
r in a galaxy with a specified total stellar mass can be written as

f∗(r) ≡ M∗(r)

Md(r)
= f∗,vir

M∗(r)/M∗(rvir)

Md(r)/Md(rvir)
. (34)

Here, f∗,vir is known from above as a function of M∗,tot. The normal-
ized stellar mass profile M∗(r)/M∗(rvir) comes from equation (3)
for a Hernquist density profile and is determined by M∗,tot because
Re and rvir are. Once a dark-matter halo model has been chosen, the
mass profile Md(r)/Md(rvir) follows from one of equations (5), (9),
(13) or (17) and is also determined by M∗,tot because that fixes the
concentration rvir/r−2.

The function f∗(r) enters into the Jeans equation for calculations
of the stellar velocity dispersion in Section 3.5. First, however, we
evaluate it specifically at the radius r = Re for galaxies with a
range of stellar masses, in order to compare our results with some
additional data.

Cappellari et al. (2013a,b) have used dynamical (Jeans) mod-
elling to estimate the ratio of dark to total mass within a sphere
of radius r = Re for each of the ATLAS3D galaxies. This frac-
tion, which they denote fdm, is related to our stellar-to-dark mass
ratio within r < Re by f∗(Re) = f −1

dm − 1. Although the Cappel-
lari et al. modelling assumes that dark-matter haloes have NFW
density profiles, their results are not sensitive to this detail, since
usually Md(Re) < M∗(Re) by factors of several in their galaxies –
see Cappellari et al. (2013a) for further details.

Panel (g) of Fig. 4 shows the f∗(Re) data for 258 ATLAS3D

galaxies (arrows at the top of the panel indicate galaxies for which
the modelling by Cappellari et al. is consistent with no dark matter
inside r < Re). The curves show the typical f∗(Re) expected at a
given M∗,tot on the basis of our equation (34), for each of the four
different dark-matter halo profiles.

These curves depend on the stellar density profile as f∗(Re) ∝
M∗(Re)/M∗(rvir) � M∗(Re)/M∗,tot. In the mass range M∗,tot �
1010 M�, describing the stars by Sérsic models with 3 � n � 7
rather than by Hernquist models alters M∗(Re)/M∗,tot, and hence
f∗(Re), by less than 5 per cent. Much lower mass galaxies, which
have no f∗(Re) data in Fig. 4 and are not represented in the empiri-
cal M–σ relation, will have closer to exponential surface-brightness
profiles. For these, M∗(Re)/M∗,tot and f∗(Re) are lower than the
Hernquist model values, but by no more than � 20 per cent.

The curves are rather more sensitive to the choice of dark-matter
halo profile, in particular to how steeply the enclosed mass Md(r)
decreases inwards to r → 0. This is reflected in the shapes of
the circular-speed curves in Fig. 2. For a given value of M∗,tot,
and hence Md(rvir), NFW and Hernquist haloes have similar values
for Md(Re)/Md(rvir), and thus for f∗(Re), because of their identical
central structures. Dehnen & McLaughlin (2005) haloes have higher
Md(Re)/Md(rvir) and lower f∗(Re) for the same stellar mass, because
they have significantly shallower mass profiles than either NFW or
Hernquist haloes. The much steeper Md(r) or V 2

d (r) profiles in the
constant-density cores of Burkert (1995) models put substantially
more dark matter at large radii in these haloes, giving lower values
of Md(Re)/Md(rvir) and higher f∗(Re) for a fixed M∗,tot.

The three dark-matter haloes with central density cusps all imply
f∗(Re) values that are broadly consistent with the data in Fig. 4(g)
for systems with M∗,tot � 1010 M�. However, the cored halo of
Burkert (1995) is incompatible with these data. This is a valuable
check on our calculations, and an argument for not considering
Burkert haloes further in the context of the black hole M–σ relation

for intermediate- and high-mass galaxies. But it is not surprising,
since the Burkert model was originally proposed only in connection
with dwarf spheroidal galaxies, not regular ellipticals.

3.5 Stellar velocity dispersions

To calculate stellar velocity dispersions, we solve the isotropic Jeans
equation including contributions to the gravitational potential from
the dark matter, the stars and the accumulated ejecta from stellar
winds and supernovae over the lifetime of a galaxy. Assuming that
these ejecta are confined to the central regions of the overall potential
well in relatively large galaxies, we approximate their mass profile
as Mej(r) ≈ FejM∗(r) with Fej a constant. The value of Fej comes
from the same single-burst population-synthesis models that we
used in Section 3.1 to calculate stellar mass-to-light ratios. Namely,
for a Kroupa (2001) stellar IMF and stellar ages greater than several
Gyr, Maraston (2005) gives the ratio of current to initial mass in
stars (and remnants) as � 0.58. Thus, in our notation, (1 + Fej) �
1/0.58. The value of Fej is robust to any changes in the star formation
history, with a <2 per cent increase for extended star formation.

With dimensionless radii, stellar densities and one-dimensional
velocity dispersions defined as

r̃ ≡ r

Re
; ρ̃∗ ≡ ρ∗

M∗,tot/R3
e

; σ̃ 2
∗ ≡ σ 2

∗
GM∗,tot/Re

,

the isotropic and spherical Jeans equation is

d

dr̃
[ρ̃∗( r̃)σ̃ 2

∗ ( r̃)] = − ρ̃∗( r̃)

r̃2

M∗( r̃)

M∗,tot

[(
1 + Fej

) + 1

f∗( r̃)

]
. (35)

The profiles ρ̃∗( r̃) and M∗( r̃)/M∗,tot are given by equations (2) and
(3) in Section 2.1 for a Hernquist model, while (1 + Fej) = 1/0.58
as just mentioned. The function f∗( r̃) ≡ M∗( r̃)/Md( r̃) is known
in full for any specific value of M∗,tot (and choice of dark-matter
density profile) as discussed in Section 3.4. Subject to the boundary
condition that ρ̃∗ σ̃ 2

∗ → 0 as r̃ → ∞, equation (35) can therefore
be solved for the dimensionless σ 2

∗ /
(
GM∗,tot/Re

)
as a function of

r/Re in a galaxy with any given total stellar mass.
The aperture velocity dispersion over a circular disc on the plane

of the sky comes from projecting σ 2
∗ (r) along the line of sight and

then taking a luminosity-weighted average. Defining the dimension-
less projected radius R̃ ≡ R/Re, the stellar surface density profile
is first obtained as


̃∗( R̃) ≡ 
∗(R)

M∗,tot/R2
e

= 2
∫ ∞

R̃

ρ̃∗( r̃)
r̃dr̃

( r̃2 − R̃2)1/2
; (36)

then the projected stellar velocity dispersion profile is

σ̃ 2
p ( R̃) = 2


̃∗( R̃)

∫ ∞

R̃

ρ̃∗( r̃)σ̃ 2
∗ ( r̃)

r̃dr̃

( r̃2 − R̃2)1/2
; (37)

and the aperture dispersion within projected radius Rap is

σ 2
ap(Rap)

GM∗,tot/Re
=

[ ∫ Rap/Re

0
σ̃ 2

p (R̃)
̃∗(R̃)R̃ dR̃

]

×
[ ∫ Rap/Re

0

̃∗(R̃)R̃ dR̃

]−1

. (38)

The right-hand side of this is determined entirely by M∗,tot once a
halo model has been chosen and a value of Rap specified. Setting
Rap = Re yields the model σ ap that corresponds to the measured
velocity dispersions in the McConnell & Ma (2013) compilation of
SMBH M–σ data.
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Panel (h) of Fig. 4 shows the calculated σ ap(Re) versus M∗,tot

for each of the four different dark-matter halo models. The points
are data for the ATLAS3D galaxies, taken again from Cappellari
et al. (2011, 2013a,b, the ACSVCS galaxies included in the plot
of Re versus M∗,tot do not have published velocity dispersions). All
of the cuspy haloes give curves that run through the middle of the
σ ap(Re) data, while the cored Burkert (1995) halo predicts velocity
dispersions that are higher for a given M∗,tot. A Burkert halo has
relatively more of its mass at larger radii than the cuspy haloes do.
The unprojected σ∗(r) is substantially higher around and beyond
r ∼ Re as a result, which inflates the line-of-sight dispersion even
inside Re and boosts the aperture dispersion noticeably.

The dimensionless aperture dispersion inside Re for a self-
consistent Hernquist sphere of stars only, with no ejecta or dark mat-
ter (Fej = 0 and 1/f∗(r) ≡ 0), is σap(Re)/

(
GM∗,tot/Re

)1/2 � 0.389.
Based on this, the dispersion with ejecta and dark matter included
can be usefully approximated by the function

σap(Re)√
GM∗,tot/Re

≈ 0.389

√ (
1 + Fej

) + 0.86

f∗(Re)
, (39)

where the term under the square root represents the ratio of an ‘ef-
fective’ total mass to the total stellar mass. This formula reproduces
the values from our full calculations with relative error <2.5 per cent
for any f∗(Re) > 0.1 in any of an NFW, Hernquist or Dehnen &
McLaughlin halo.

We have also calculated σap(Re)/(GM∗,tot/Re)1/2 for self-
gravitating Sérsic (1968) R1/n spheres without any dark matter.
For indices n � 5 – which apply to giant ellipticals and dwarfs with
masses down to M∗,tot ∼ 108–109 M� – we find 0.36 � σ̃ap(Re) �
0.43, as compared to σ̃ap(Re) � 0.389 for the Hernquist model.
Thus, over most of the mass range in Fig. 4, the model curves
for σ ap(Re) are vulnerable at only the � 10 per cent level to bias
(a slight tilt) resulting from our use of a Hernquist profile to de-
scribe all of the stellar distributions. Very massive ellipticals with
M∗,tot � 2–3 × 1011 M� are generally fitted by Sérsic indices n
≈ 5–7, for which σap(Re)/(GM∗,tot/Re)1/2 � 0.43–0.49 rather than
0.389. However, a small compensation in our parametrization of Re

versus M∗,tot at high masses then suffices to yield essentially the
same σ ap(Re) as the curve in Fig. 4(h).

3.6 Discussion

3.6.1 Dwarf galaxies

There are more physical considerations than the validity of a Hern-
quist profile for the stellar distribution, which affect how well our
models might be able to describe galaxies with stellar masses less
than a few ×109 M�.

In order to calculate velocity dispersions in Section 3.5, we as-
sumed that stellar ejecta are retained at the bottom of any galaxy’s
potential well. However, supernova-driven winds will have expelled
the ejecta from many dwarf ellipticals to far beyond the stellar dis-
tributions. In this case, Fej = 0 in equations (35) and (39) is more
appropriate than (1 + Fej) = 1/0.58. This lowers the expected
σ ap(Re) by ≈ 30 per cent at a given M∗,tot for a given halo density
profile.

On the other hand, the same galactic winds may cause changes
in the central structures of the dark-matter haloes of dwarfs, from
initially steep density cusps to shallower profiles perhaps closer
to the Burkert (1995) model (e.g. Burkert & Silk 1997; Pontzen
& Governato 2012), while subsequent tidal stripping could have

led to further modifications at large radii in the haloes. Substantial,
systematic alterations to the dark-matter density profiles may impact
the values we infer for Vd,pk, f∗(Re) and σ ap(Re) from a given M∗,tot,
Re and Md,vir. And in any case, the relationship connecting M∗,tot to
Md,vir in equation (20), from Moster et al. (2010), may itself be in
error if extrapolated to halo masses much below Md,vir � 1011 M�
(see Behroozi et al. 2013).

All in all, while the model curves in Fig. 4 can be viewed as
broadly indicative of the situation for dwarf galaxies, they should
also be seen as provisional in that regime. More comprehensive
modelling is required to be confident of how these kinds of av-
erage trends extrapolate to stellar masses much less than several
× 109 M� (or, roughly, σap(Re) � 60–70 km s−1).

3.6.2 Intracluster baryons

As already discussed in Section 3.2, we can safely ignore any small
differences that intracluster baryons (whether gas or stars) might
make to the virial radii and masses we calculate for haloes centred
on the most massive galaxies. Equation (39) in Section 3.5 now
provides a way to assess the effects of intracluster baryons on the
stellar velocity dispersions in the central galaxies of groups and
clusters.

If additional baryonic mass is distributed spatially like the dark
matter, then it can be accounted for in the Jeans equation (35),
and hence in equation (39), by decreasing f∗(r) ≡ M∗(r)/Md(r) by
a constant factor. This factor will be largest if the global baryon
fraction in a halo is equal to the cosmic average value but only
a trace amount is actually contained in the central galaxy itself.
Thus, an ‘effective’ f∗(r) in the Jeans equation might be lower than
the Moster et al. (2010) value by a factor of (1 − �b, 0/�m, 0)−1

at most, which is �1.18 for a 2013 Planck cosmology. This could
plausibly be the situation in haloes with Md(rvir) ∼ 1015 M� (which
have M∗,tot ∼ 1012 M� for the central galaxy), but the total baryon
fraction decreases systematically with decreasing (sub)halo mass
(e.g. McGaugh et al. 2010; Zhang et al. 2011; Gonzalez et al. 2013).
In galaxy-sized haloes, it is generally consistent with the mass of
stars, remnants and stellar ejecta in the galaxy proper, which we
have already accounted for fully.

The maximum effect on σ ap(Re) in the central galaxy can be
estimated by comparing the value of equation (39) with (1 + Fej) =
1/0.58 and f∗(Re) = 0.5 – the lowest value in any of our models at
M∗,tot = 1012 M� or Md,vir � 1015 M� in Fig. 4 – to the value using
f∗(Re) = 0.5/1.18 instead. The result is an increase of < 5 per cent
in the velocity dispersion. This is of the same order as the maximum
effect on our values for the halo virial radii. We have chosen to
ignore intracluster baryons altogether rather than introduce detailed
additional modelling just to make adjustments that are at most so
small.

3.6.3 Comparisons to individual systems

In Appendix A, we make some checks on the average scalings
represented in Fig. 4, by comparing various numbers extracted from
them to relevant data in the literature for the Milky Way, M87
and M49 (the central galaxies of Virgo subclusters A and B) and
NGC 4889 (the brightest galaxy in the Coma Cluster). The stellar
masses and velocity dispersions of these systems span the range
covered by the local early-type galaxies used to define empirical
black hole M–σ relations. It is notable in particular that, starting with
just the galaxies’ total stellar masses, the scalings imply detailed
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properties of the cluster-sized dark-matter haloes around each of
M87, M49 and NGC 4889, which are in reasonably good agreement
with literature values.

4 TH E B L AC K H O L E M–σ R E L AT I O N

The scalings in Section 3 give typical virial masses and peak circular
speeds for dark-matter haloes, along with stellar velocity dispersions
inside an effective radius, as one-to-one functions of galaxy stellar
mass at z = 0. Therefore, they can be re-cast to give Md,vir(0) and
Vd,pk(0) directly as functions of the observable σ ap(Re). If a theory
ties MBH to the properties of haloes at some time in the past, then
in order to predict the dependence of MBH on σ ap(Re) (or any other
galaxy properties) now, it is necessary first to connect the halo
properties at z > 0 to those at z = 0.

The SMBH–halo relation we examine here is that given by equa-
tion (1) above, from McQuillin & McLaughlin (2012). To repeat,

MBH � 1.14 × 108 M�
(

f0

0.2

) (
Vd,pk

200 km s−1

)4

. (40)

As discussed in Section 1.1, this equation is limited by simplifying
assumptions: for example, about the nature of quasar-mode SMBH
feedback (taken to be purely momentum-conserving) and the distri-
bution of gas in protogalaxies (taken to be virialized, with ongoing
cosmic infall ignored). Within these limitations it has the advan-
tage of generality, being applicable to dark-matter haloes with any
density profile.

In equation (1), Vd,pk measures the potential well of a protogalaxy
that just fails to contain the quasar-mode feedback of an SMBH with
mass MBH. It thus refers to conditions at a redshift marking the end
of rapid SMBH growth by accretion at Eddington or supercritical
rates in a series of gas-rich mergers. We denote this redshift by zqso.
It will be different for different systems, but we expect the general
range to coincide with the epoch of peak quasar number and SMBH
accretion-rate densities in the Universe: namely, zqso ∼ 2–4 in most
cases (e.g. Richards et al. 2006; Hopkins et al. 2007a; Delvecchio
et al. 2014; also Sijacki et al. 2007, 2015; Di Matteo et al. 2008).

In this Section, we apply our calculations from Section 2.6 to
find typical values of Md,vir(zqso) and Vd,pk(zqso) for the most massive
progenitors of haloes, and hence estimate an expected MBH in their
central galaxies, as functions of the stellar σ ap(Re) at z = 0. This
involves an assumption that the most massive progenitor halo at zqso

> 0 is the one that ultimately defines the centre of the larger potential
well at z = 0. This is statistically accurate but not always true in
every individual case – see, for example, the discussion in van den
Bosch et al. (2014) of the distinction between ‘most massive’ and
‘most contributing’ progenitors. Glossing over this subtlety could
lead to a small amount of scatter in the SMBH M–σ data relative to
our final curves.

The model MBH–σ ap(Re) relations we obtain do not include any
growth of the SMBH itself at redshifts z < zqso, which can occur
by coalescences in gas-poor galaxy mergers at the centre of a halo.
However, this is distinct from the growth of the halo as a whole;
many subhaloes can be accreted at low redshift that do not sink to
the bottom of the potential well and thus do not grow the central
SMBH. We discuss this further in Section 4.2

4.1 Halo masses and peak circular speeds at z > 0

The top panel of Fig. 5 shows the scaling of halo virial mass
at z = 0 versus stellar velocity dispersion σ ap(Re) in the cen-
tral galaxy at z = 0, obtained directly from the results of

Figure 5. Top two panels: dark-matter virial mass (in M�) at z = 0 and at
zqso = 3, versus stellar velocity dispersion σ ap(Re) at z = 0. Blue curves are
for galaxy models with Dehnen & McLaughlin (2005) haloes; red curves
have Hernquist (1990) haloes. Next two panels: peak dark-matter circular
speed (in km s−1) at z = 0 and at zqso = 3, versus σ ap(Re) at z = 0. Blue
and red curves correspond again to Dehnen & McLaughlin and Hernquist
halo density profiles. The dashed straight line shows Vd,pk = √

2 σap(Re).
Bottom panel: SMBH mass (in M�) calculated from equation (1) with f0 =
0.18 using the dark-matter Vd,pk at z = 0 (dot–dashed blue and red curves)
and at zqso = 3 (solid blue and red curves), all plotted against σ ap(Re) at z

= 0. The dashed straight line is equation (1) with Vd,pk ≡ √
2 σap(Re). Data

points are for the 53 ellipticals and lenticulars in McConnell & Ma (2013).
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Section 3 [combining panels (d) and (h) of Fig. 4]. The next
panel down shows Md,vir for the most massive progenitor of a
halo at redshift zqso = 3 [obtained from Md,vir(0) as described in
Section 2.6; see Fig. 3] against σ ap(Re) in the central galaxy at
z = 0.

The blue curves in Fig. 5 correspond to Dehnen & McLaughlin
(2005) models for the halo density profiles and the red curves to
Hernquist (1990) models. These bracket the scalings obtained using
NFW halo profiles, while (as discussed in Section 3) the cored halo
profiles of Burkert (1995) are not appropriate in the galaxy mass
range plotted here. Velocity dispersions σ ap(Re) ≥ 70 km s−1 at z =
0 correspond to stellar masses M∗,tot � 8–9 × 109 M� at z = 0.

The next panel in the Figure shows the peak dark-matter circular
speed at z = 0 versus stellar velocity dispersion at z = 0, again
from Section 3 [combining panels (f) and (h) of Fig. 4]. Just below
this is the scaling of Vd,pk in the most massive progenitor at zqso =
3 [obtained from Vd,pk(0) and Md,vir(0) as in Section 2.6 and Fig. 3]
versus σ ap(Re) in the central galaxy at z = 0. The dashed straight
(black) line in these panels traces out Vd,pk = √

2 σap(Re). This is
clearly a poor substitute for the actual relationship between the
two velocities at z = 0 in galaxies with σap(Re) � 200 km s−1 (or
M∗,tot � 3 × 1011 M�). It does come closer in this mass range to
correctly estimating the dependence of Vd,pk at zqso = 3 on σ ap(Re) at
z = 0; but this appears to be entirely coincidental, and the situation
is reversed for σap(Re) � 200 km s−1.

At a given value for σ ap(Re), the downward ‘corrections’ to Md,vir

and Vd,pk, from their values at z = 0 to the progenitors at zqso = 3,
are systematically larger for larger systems. This is a restatement of
the flattening towards higher masses in the dependence of Md,vir(z)
on Md,vir(0), which we showed in Fig. 3 and discussed there. Again,
it is fundamentally because in a (�)CDM cosmology, more massive
haloes were assembled and virialized more recently. A given range
of halo mass or circular speed at z = 0 thus corresponds to a
narrower range at any zqso > 0, and the contrast is greater for
higher masses. In Fig. 5, this works to make the slopes of Md,vir and
Vd,pk versus z = 0 velocity dispersions significantly shallower for
the halo progenitors at zqso = 3 than for the haloes themselves at
z = 0.

The equations from Section 2.6 that underpin these results are
approximations to the mass accretion histories of simulated haloes
in van den Bosch et al. (2014). Those simulations extend up to halo
masses Md,vir(0) � 1015 M�, corresponding to stellar σap(Re) �
350–400 km s−1 at z = 0. Beyond this, our analysis is not only
approximate but an extrapolation. Thus, for example, the peaks
around σ ap(Re) ≈ 400 km s−1 in the panels of Fig. 5 for Md,vir and
Vd,pk at zqso = 3 may not be accurate. What is secure is the simple
fact of the relative flatness in these curves for high stellar velocity
dispersions. The same effect must appear to a greater or lesser
degree for any other zqso > 0, and it directly impacts any prediction
for an observable SMBH M–σ relation at z = 0 from a model like
our equation (1) or similar.

4.2 MBH versus σ ap(Re)

The bottom panel of Fig. 5 shows SMBH mass versus σ ap(Re) at z =
0. The data points are for the E and S0 galaxies in the compilation
of McConnell & Ma (2013). (Their data for the bulges of late-
type galaxies can be seen in Fig. 1. We do not show them here
because our calculations for σ ap(Re) versus M∗,tot do not allow for
discs.) The dashed straight line (black), which we show purely for
reference, is equation (1) evaluated with a protogalactic gas fraction

of f0 ≡ �b, 0/(�m, 0 − �b, 0) = 0.18 (for the 2013 Planck cosmology)
and the simplistic substitution Vd,pk ≡ √

2 σap(Re). The other curves
(blue and red for Dehnen & McLaughlin and Hernquist halo density
profiles) also come from equation (1) with f0 = 0.18, but with Vd,pk

depending on σ ap(Re) as shown in the other panels of Fig. 5.
The broken blue and red curves come from those for Vd,pk at z

= 0 versus σ ap(Re) at z = 0 in the middle panel of Fig. 5. These
are the predictions of equation (1) for the critical SMBH masses
required to clear haloes filled with virialized gas in an 18 per cent
mass ratio, via quasar-mode feedback now. It is no surprise that such
predictions overshoot the M–σ data for normal early-type galaxies,
quite substantially for σap(Re) � 200 km s−1.

The solid blue and red curves of MBH versus σ ap(Re), which
run through the data, are based on the curves of Vd,pk at zqso = 3
versus σ ap(Re) at z = 0 in the fourth panel of Fig. 5. These are
predictions for the M–σ relation in quiescent galaxies at z = 0, if
it came from an MBH ∝ V 4

d,pk relationship established by quasar-
mode feedback and blow-out from gaseous protogalaxies at zqso

= 3 (with negligible subsequent SMBH growth via coalescence in
mergers).

Fig. 6 gives an expanded view of MBH versus σ ap(Re). Now,
the solid (blue) curves show SMBH masses obtained from
equation (1) after using our scalings to relate stellar velocity dis-
persion at z = 0 to the typical Vd,pk in progenitor haloes at a wider
range of possible zqso = 0, 1, 2, 3 and 4. All of these curves as-
sume a Dehnen & McLaughlin density profile for the dark matter;
the results for NFW or Hernquist profiles are very similar. The
dashed straight (black) reference line is again equation (1) with
Vd,pk ≡ √

2 σap(Re).
Most of the M–σ data at z = 0 lie between model curves in

which an MBH–Vd,pk relation emerged from the clearing of proto-
galaxies by quasar-mode feedback at redshifts 2 � zqso � 4. The
correspondence of this range with the epoch of peak quasar ac-
tivity and SMBH accretion rate in both observations and cos-
mological simulations is encouraging. Equation (1) represents a
highly simplified, broad-brush picture of just a few processes
at a critical stage of galaxy and black hole formation; but the
fundamental connection it makes between protogalactic dark-
matter haloes and SMBH masses appears to be along the right
lines.

The upward bends around σ ap(Re) ≈ 140 km s−1 in all of the
MBH–σ ap(Re) predictions in Fig. 6 trace back to the peak at
M∗,tot � 3.4 × 1010 M� [at z = 0; see Fig. 4(b)] in f∗,vir, the
global stellar-to-dark matter mass fraction. Thus, a linear relation
log (MBH) ∼ 4log (Vd,pk) is strongly distorted by a non-linear ‘con-
version’ from halo circular speeds and virial masses to stellar masses
and velocity dispersions. The curves with 2 ≤ zqso ≤ 4 in Fig. 6 have
average slopes 	log MBH/	log σ ap(Re) ≈ 1.5–2 for galaxies with
50 � σap(Re) � 100 km s−1, but 	log MBH/	log σ ap(Re) ≈ 5–7 in
the range 200 � σap(Re) � 300 km s−1. However, this curvature is
easily accommodated by the data. It is reminiscent of the ad hoc,
log-quadratic fits to local M–σ samples by Wyithe (2006a,b, see
also Gültekin et al. 2009; McConnell & Ma 2013).

Equally important is the flattening of the model MBH–σ ap(Re)
relations away from the zqso = 0 curve, which occurs at high
σap(Re) � 300 km s−1 and is more pronounced for larger zqso. This
is just the behaviour seen in Figs 3 and 5 above: the masses Md,vir(z)
and circular speeds Vd,pk(z) of the most massive progenitors of
haloes (which directly determine MBH here) have flatter depen-
dences at higher z on the final mass Md,vir(0) [related to σ ap(Re) at
z = 0 by the scalings of Section 3]. Accounting for the generic
redshift evolution of haloes in a �CDM cosmology is critical
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Figure 6. SMBH mass versus stellar velocity dispersion measured inside Re at z = 0. Data points represent the 53 galaxies flagged as early types in McConnell
& Ma (2013). The solid blue curves are our models for MBH versus σ ap(Re) at z = 0 if a relation MBH ∝ V 4

d,pk was established by accretion-driven feedback,
according to equation (1), at redshift zqso = 0, 1, 2, 3 or 4. The curves all assume a Dehnen & McLaughlin (2005) model for the dark-matter halo density
profile, and a spatially constant gas-to-dark matter mass ratio f0 = 0.18 in the protogalaxies. They do not include any SMBH growth between 0 < z < zqso; see
the text for discussion. For reference only, the dashed black line shows equation (1) with Vd,pk ≡ √

2 σap(Re).

to the comparison of models such as equation (1) with data at
z = 0.

4.2.1 Dry mergers at low redshift

It is also in the highest-σ ap regime that gas-poor galaxy mergers at z
< zqso may have increased MBH the most from any value determined
by quasar-mode feedback at zqso.

Volonteri & Ciotti (2013) perform cosmological simulations of
black hole growth in the central galaxies of haloes with masses at
z = 0 of 1013 M� ≤ Md,vir(0) ≤ 1015 M�. They track contribu-
tions from gas accretion and from SMBH coalescences in gas-poor
mergers separately. The results they show for six example haloes
with Md,vir(0) = 1015 M� have the central SMBH growth by ac-
cretion essentially finished in all cases at a redshift z ≈ 2–3. We
would associate this here with zqso. Coalescences in dry mergers
then drive the growth for z < zqso, and especially at z � 1. Ulti-
mately, the SMBH masses are increased by a wide range of factors,
fco ≡ MBH(0)/MBH(zqso) � 1–30. For a larger sample of 1015 M�
haloes, Volonteri & Ciotti report an average 〈fco〉 ≈ 11 ± 10.

From Section 3, at z = 0 the central galaxies in haloes with
Md,vir(0) = 1015 M� typically have M∗,tot � 1012 M� and σ ap(Re)
≈ 350–400 km s−1 (depending on the assumed dark-matter density
profile). The rightmost and highest data point in Fig. 6 sits near this
region; it represents NGC 4889 in the Coma Cluster, with σ ap(Re)
= 347 ± 17 km s−1 (McConnell et al. 2012). This may well be a
system where low-redshift merging grew MBH substantially above
a feedback-limited value at zqso = 2–3.

At lower halo and galaxy masses, there is generally much
less SMBH growth through late mergers. For the central galax-
ies of haloes with 2 × 1013 M� ≤ Md,vir(0) ≤ 1014 M�
(corresponding to M∗,tot � 2–4 × 1011 M� and σ ap(Re) ≈ 220–
275 km s−1 at z = 0), Volonteri & Ciotti give averages of 〈fco〉
≈ 2 ± 1. For a set of 1013 M� haloes (corresponding to
M∗,tot � 1.4 × 1011 M� and σ ap(Re) � 200 km s−1), they find

〈fco〉 = 1.8 ± 1.8, suggestive of a small systematic effect with a
few strong outliers.2

Thus, we can expect dry mergers to scatter data at the top end
of the M–σ relation significantly upwards from curves like those in
Fig. 6. This would mask any flattening of the curves at σap(Re) �
300 km s−1 and could appear as a much steeper, even near-vertical
mean relation there (the so-called ‘saturation’ discussed by, e.g.,
Kormendy & Ho 2013 and McConnell & Ma 2013). Among systems
with more moderate velocity dispersions at z = 0, dry merging
can still introduce some scatter, but not as much. The net shift
up from curves for MBH limited by feedback at zqso � 2–3 could
plausibly amount to a factor of ≈2–3 in the regime 200 � σap(Re) �
300 km s−1, and probably less for lower σap(Re) � 150–200 km s−1.
This should largely preserve the overall shape of such curves.

4.2.2 Discussion

Incorporating the generally modest systematic effects of low-
redshift mergers in the models shown in Fig. 6 would primarily
move the curves upwards on the plot. [Mergers at all redshifts are
already included in how Vd,pk in a progenitor halo at zqso > 0 is con-
nected to σ ap(Re) in the central galaxy at z = 0; only the value of
MBH needs to be adjusted.] However, a few factors could lower the
starting MBH–Vd,pk relation predicted by equation (1) at any given
zqso.

First, if the baryon-to-dark matter mass fraction in a protogalaxy
at zqso were less than f0 = 0.18 – the cosmic average, assumed for
all of the curves in Fig. 6 – then the critical MBH for blow-out would
be decreased proportionately. Secondly, equation (1) ignores any

2 Volonteri & Ciotti do not show explicitly for any of their haloes with
Md,vir(0) < 1015 M� that accretion-driven growth of the central-galaxy
SMBH is negligible after zqso ≈ 2–3. However, other simulations imply that
this is generally the case (and, indeed, suggest larger zqso in some instances);
see, e.g., Sijacki et al. (2007) and Di Matteo et al. (2008).
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prior work done by a growing SMBH to push the protogalactic gas
outwards before the point of final blow-out, and thus it overestimates
the mass required to clear the halo completely at zqso. Related to this,
lower SMBH masses may suffice to quench quasar-mode accretion
by clearing gas from the inner regions to ‘far enough’ away from a
central SMBH, without expelling it fully past the virial radius.

Cosmological simulations are required to evaluate the balance be-
tween these effects pushing the model MBH–σ ap(Re) curves down-
wards in Fig. 6, and the competing effects of late, dry mergers
pulling upwards. But at this level, the more fundamental simplifica-
tions underlying equation (1) – among others, the idea that quasar-
mode feedback is always momentum-driven – need to be improved
first.

Likewise, low-redshift mergers are just one possible source of
intrinsic scatter in the empirical M–σ relation at z = 0. Another
is different values in different systems for the precise redshift at
which the main phase of accretion-driven SMBH growth was ended
by quasar-mode feedback. Even if there were a single zqso, there
must be real scatter in the data around any trend line such as those
in Fig. 6, because of the scatter around the constituent scalings from
Sections 2 and 3 for haloes, halo evolution and central galaxies. It
is important, but beyond the scope of this paper, to understand the
physical content of the observed M–σ scatter in detail. Part of the
challenge is to know the ‘correct’ trend for MBH versus σ ap(Re) at
z = 0, around which scatter should be calculated. In the context of
feedback models, this again requires improving on equation (1) for
the prediction of MBH values at zqso > 0.

5 SU M M A RY

We have examined how a simple relationship between SMBH
masses MBH and the circular speeds Vd,pk in protogalactic dark-
matter haloes, established by quasar-mode feedback at redshift zqso

> 0, is reflected in a correlation between MBH and the stellar velocity
dispersions σ ap(Re) in early-type galaxies at z = 0. Straightforward
but non-trivial approximations for halo growth and scalings between
haloes and their central galaxies transform a power-law MBH–Vd,pk

relation at zqso into a decidedly non-power-law MBH–σ ap(Re) rela-
tion at z = 0. This relation nevertheless compares well to current
data, for assumed values of zqso ≈ 2–4.

We worked with two-component models for spherical galaxies.
Because the stellar properties most relevant to us are those at (or
averaged inside) an effective radius, it sufficed to assume Hernquist
(1990) density profiles for the stars inside any galaxy. Because dark-
matter haloes are key to determining SMBH mass in the feedback
scenario we focused on, we allowed for any of four different halo
density profiles: those of Navarro et al. (1996, 1997), Hernquist
(1990), Dehnen & McLaughlin (2005) and Burkert (1995).

The scaling relations we developed are trend lines connecting
average stellar properties at z = 0 [total masses M∗,tot, effective
radii Re, aperture velocity dispersions σ ap(Re) and dark-matter mass
fractions] to the typical virial masses Md,vir and peak circular speeds
Vd,pk of dark-matter haloes at z = 0 and their most massive progen-
itors up to z � 4–5. These scalings are constrained by theoretical
work in the literature on the global structures, baryon contents and
redshift evolution of dark-matter haloes (Section 2) and by data
in the literature for local elliptical galaxies (Section 3). They are
robust for normal early-type systems with stellar masses greater
than several × 109 M� at z = 0, corresponding to velocity dis-
persions σap(Re) � 60–70 km s−1, but are largely untested against
lower mass dwarf galaxies (see Section 3.6).

We applied the scalings to show in Section 4 how a relationship
of the form MBH ∝ V 4

d,pk at a range of redshifts zqso > 0 (equa-
tion 1; McQuillin & McLaughlin 2012) appears as a much more
complicated MBH–σ ap(Re) relation at z = 0. The specific form for
an initial MBH–Vd,pk relation comes from a simplified theoretical
analysis of momentum-conserving SMBH feedback in isolated and
virialized gaseous protogalaxies with non-isothermal dark-matter
haloes. Some of the simplifying assumptions involved thus need
to be relaxed and improved in future work. Meanwhile, the highly
‘non-linear’ observable MBH–σ ap(Re) relation we infer from it does
describe the data for local early types if the redshift of quasar-
mode blow-out was zqso ≈ 2–4. This range is reassuringly similar
to the epoch of peak quasar density and SMBH accretion rate in the
Universe.

This lends support to the notion that the empirical M–σ rela-
tion fundamentally reflects some close connection due to accretion
feedback between SMBH masses in galactic nuclei and the dark
matter in their host (proto)galaxies. It also demonstrates that the
true, physical relationship between MBH and stellar velocity disper-
sion at z = 0 is not necessarily a pure power law. The shape in our
analysis has an upward bend around σ ap(Re) ≈ 140 km s−1 (Fig. 6),
corresponding to stellar masses M∗,tot ≈ 3–4 × 1010 M� and halo
masses Md,vir(0) ≈ 1012 M� at z = 0. This bend comes from a
sharp maximum at these masses in the global stellar-to-dark matter
fractions, M∗,tot/Md,vir(0) (e.g. Moster et al. 2010). Consequently,
there is a sharp upturn in the dependence of halo circular speeds
Vd,pk on the stellar σ ap(Re) (see Figs 4 and 5).

Our models also show a flattening of MBH versus σ ap(Re) at z =
0 for velocity dispersions above 300 km s−1 or so, for any blow-out
redshift zqso > 0 but more so for higher zqso (Fig. 6). This is due
to the way that dark-matter halo masses grow and circular speeds
increase through hierarchical merging in a �CDM cosmology after
MBH is set by feedback and the halo properties at zqso (see Fig. 3).
However, the values we calculate for MBH include only the growth
by accretion up to z = zqso; further growth through SMBH–SMBH
coalescences in gas-poor mergers at lower redshifts is neglected.
(The effects of such mergers on halo masses and circular speeds,
and stellar velocity dispersions at z = 0, are accounted for.)

As discussed in Section 4.2, simulations by Volonteri & Ciotti
(2013) suggest that low-redshift merging has a significant effect on
the SMBH masses in systems with large σap(Re) � 300–350 km s−1

at z= 0. There, dry mergers can scatter MBH values strongly upwards
from the values at zqso, essentially erasing the flattening that might
otherwise be observed at z = 0 and ‘saturating’ the empirical M–σ

relation. In galaxies with lower σap(Re) � 300 km s−1, where most
current data fall, such scatter up from feedback-limited SMBH
masses will be much more modest in general. The expected MBH–
σ ap(Re) relations at z = 0 should then have the same basic shape as
when late mergers are ignored.

Although we have focused on the observed M–σ relation, other
SMBH–bulge correlations exist that may be just as strong intrin-
sically. These include the MBH–Mbulge correlation and multivari-
ate, ‘fundamental-plane’ relationships between MBH and non-trivial
combinations of M∗,tot, Re and σ ap(Re). They should also reflect any
underlying SMBH–dark matter connection at some zqso > 0, and
the techniques of this paper can be applied to look at them as well.
However, this will best be done with close attention also paid to
the inevitable scatter around all of the scalings we have adopted for
both stellar and dark-matter halo properties. It remains to be un-
derstood how the numerous individual sources of scatter combine
to produce SMBH correlations with apparently so little net scatter
at z = 0.
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More sophisticated predictions of critical SMBH masses for
quasar-mode blow-out in terms of protogalactic dark-matter halo
properties are required. The simple relation MBH ∝ V 4

d,pk that we
have used makes very specific assumptions about the mechanism
(e.g. momentum-driven) and the setting (spherical protogalaxies
with no stars, initially virialized gas, smooth outflows) of the feed-
back that establishes it. We mentioned in Sections 1.1 and 4.2 several
ways to improve on these assumptions. Our work in this paper is
readily adaptable to help test any refinements.
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A P P E N D I X A : MO D E L C H E C K S AT z = 0

Here we collect some properties from the literature for a few galax-
ies and haloes spanning the range of mass and stellar velocity dis-
persion covered by local galaxy samples used to define empirical
SMBH M–σ relations. We then extract numerical values from the z

= 0 scalings in Section 3 (Fig. 4) to compare with the measurements.

A1 Stellar and halo properties from the literature

Table A1 lists observed stellar properties of the Milky Way, M87
(at the centre of Virgo subcluster A), M49 (at the centre of Virgo B)
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Table A1. Values of stellar and dark-matter halo properties at z = 0, taken from various sources in the literature. References: 1 – McMillan (2011), 2 –
Freeman (1985), 3 – McConnell & Ma (2013), 4 – Cappellari et al. (2011), 5 – Cappellari et al. (2013a), 6 – McLaughlin (1999), 7 – Côté et al. (2001), 8 –
Chen et al. (2010), 9 – Côté et al. (2003), 10 – McConnell et al. (2011, 2012), 11 – Łokas & Mamon (2003).

Galaxy M∗,tot Re ref. σ ap(Re) ref. Vd,pk rpk Md,200 or Md,vir r200 or rvir ref.
( M�) (kpc) (km s−1) (km s−1) (kpc) ( M�) (kpc)

Milky Way 6.4 × 1010 – 1 – – 185 52 1.26 × 1012 230 1
MW bulge 9.0 × 109 2.7 ± 0.3 1,2 103 ± 20 3 – – – – –
M87 2.9 × 1011 6.8 ± 1.5 4 264 ± 13 5 1100 1200 4.2 × 1014 1550 6,7

3.2 × 1011 8.7 ± 1.1 8 – – – – – – –
3.7 × 1011 – 3 324+28

−16 3 – – – – –

M49 4.2 × 1011 7.9 ± 1.7 4 250 ± 13 5 710 425 9.4 × 1013 950 9
4.7 × 1011 13.4 ± 1.1 8 – – – – – – –
3.7 × 1011 – 3 300 ± 15 3 – – – – –

NGC 4889 9.5 × 1011 27 ± 2 3,10 347 ± 17 3,10 1585 670 1.2 × 1015 2900 11

and NGC 4889 (in the Coma Cluster). Properties of the dark-matter
haloes are also given, from dynamical modelling in the literature.
Our analysis is clearly not meant to describe disc galaxies, but we
have included the Milky Way as a useful check on the implications
for ∼L

�
galaxies in general.

A1.1 The Milky Way

In the first row of Table A1, the total stellar mass, the radius r200 of
mean overdensity 	 ≡ 200 and the dark-matter mass Md,200 inside
this are all taken from McMillan (2011). Combining his best-fitting
NFW concentration, r200/r−2 � 9.55, with his values of Md,200

and r200 plus rpk/r−2 = 2.16258 for an NFW halo yields rpk �
52 kpc and Vd,pk � 185 km s−1. These are consistent with separate
modelling of the Milky Way by Dehnen, McLaughlin & Sachania
(2006).

The second row of Table A1 contains the total stellar mass of the
Milky Way bulge only, according to McMillan (2011). He does not
record the effective radius of the bulge or the aperture dispersion
inside it, so we take Re � 2.7 kpc from Freeman (1985) and σ ap(Re)
� 103 km s−1 from McConnell & Ma (2013).

A1.2 M87 and M49

For M87 and M49, Table A1 quotes total stellar masses based
on three different sources: the ATLAS3D survey (Cappellari
et al. 2011), the ACSVCS (Chen et al. 2010) and McConnell
& Ma (2013). The original authors give total luminosities,
to which we have applied mass-to-light ratios from Maraston
(2005) models for a Kroupa (2001) IMF and a stellar age of
9 Gyr: M∗,tot/LK � 0.88 M� L−1� for the ATLAS3D luminosity,

M∗,tot/Lz � 1.7 M� L−1� for the ACSVCS value and M∗,tot/LV ≈
3.15 M� L−1� for McConnell & Ma (2013). Both galaxies have

Re values in the ATLAS3D survey and the ACSVCS, and velocity
dispersions in ATLAS and McConnell & Ma (2013).

McLaughlin (1999) and Côté et al. (2001) fitted the kinematics
of stars and globular clusters in M87, plus the kinematics of Virgo-
cluster galaxies and the total mass profile derived from intracluster
X-ray gas, with a two-component mass model comprising the stars
(plus remnants and stellar ejecta) in the body of M87 and an NFW
dark-matter halo with r200 � 1.55 Mpc and Md,200 � 4.2 × 1014 M�.
This clearly identifies the dark matter in and around M87 with
the halo of the entire Virgo A subcluster. McLaughlin and Côté
et al. have an NFW concentration of r200/r−2 = 2.8 ± 0.7 for the

M87/Virgo A halo, so (with rpk/r−2 = 2.162 58 again) rpk ∼ 1.2 Mpc
and Vd,pk � 1100 km s−1.

For M49/Virgo B, Côté et al. (2003) similarly use a two-
component mass model consisting of the galaxy’s stars plus a single
NFW dark-matter halo, to fit the stellar and globular cluster kine-
matics on �50 kpc scales and the X-ray mass profile out to ∼Mpc
radii. The Côté et al. analysis implies r200 � 950 kpc with Md,200 �
9.4 × 1013 M�, and r200/r−2 � 4.8. The dark-matter circular speed
therefore peaks at rpk � 425 kpc, where Vd,pk � 710 km s−1.

A1.3 NGC 4889

NGC 4889 is the brightest galaxy in Coma and not far from the
nominal central galaxy, NGC 4874. According to McConnell &
Ma (2013), NGC 4889 has LV � 3.0 × 1011 L� and hence [for
M∗/LV ≈ 3.15 M� L−1� from the Maraston (2005) population-

synthesis models] M∗,tot ≈ 9.5 × 1011 M�. It is at the uppermost
end of the range of stellar masses plotted for our relations in Fig. 4
(but it does not appear on those plots since it is not in the ATLAS3D

survey), and it hosts one of the largest SMBHs yet measured: MBH =
(2.1 ± 1.6) × 1010 M� (McConnell et al. 2011, 2012). The effective
radius Re = 27 kpc and velocity dispersion σ ap(Re) = 347 km s−1 in
Table A1 are from McConnell & Ma (2013) and McConnell et al.
(2011, 2012).

The global dark-matter properties of the Coma Cluster are taken
from dynamical modelling by Łokas & Mamon (2003). They give
values for rvir and Md,vir, rather than r200 and Md,200 like the other
galaxies in Table A1, and a best-fitting NFW concentration of
rvir/r−2 = 9.4. Together these imply rpk � 670 kpc and Vd,pk �
1585 km s−1.

A2 Comparison to models

Taking the total stellar mass M∗,tot as a starting point for each of the
systems in Table A1, we now find their other stellar and halo prop-
erties from the scaling relations developed in Section 3. Table A2
shows the results for Re, σ ap(Re), Vd,pk, rpk, Md,200 or (for
NGC 4889/Coma) Md,vir, and r200 or (for NGC 4889/Coma) rvir.

A2.1 L∗ galaxies: σ ap(Re) ∼ 100–150 km s−1

For M∗,tot � 6.4 × 1010 M� (the total Milky Way mass), our scalings
give the stellar effective radius as Re � 3 kpc and the velocity
dispersion as σ ap(Re) � 160 km s−1. This dispersion is rather higher
than the value typically used to put the Milky Way on the black hole
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Table A2. Stellar and dark-matter halo properties at z = 0 according to our scaling relations. For each galaxy, the starting point is M∗,tot, taken
from the literature.

Galaxy M∗,tot Re σ ap(Re) Vd,pk rpk Md,200 or Md,vir r200 or rvir

( M�) (kpc) (km s−1) (km s−1) (kpc) ( M�) (kpc)

Milky Way 6.4 × 1010 3.0 160 200 75 2.0 × 1012 270
MW bulge 9.0 × 109 1.4 90 120 35 3.6 × 1011 150
M87 3.3 × 1011 8.0 245 600 330 6.0 × 1013 830
M49 4.2 × 1011 9.3 265 720 420 1.0 × 1014 1000
NGC 4889 9.5 × 1011 15.2 345 1285 925 8.0 × 1014 2450

M–σ relation: for example, McConnell & Ma (2013) take σ ap(Re) =
103 km s−1 for the Galaxy. However, this value is meant to represent
the bulge only. For the bulge mass of M∗,tot � 9 × 109 M�, our
relations give Re � 1.4 kpc and σ ap(Re) � 90 km s−1.

For the total Galactic stellar mass of 6.4 × 1010 M� and assuming
an NFW halo, the scalings lead to a peak circular speed of Vd,pk �
200 km s−1, occurring at rpk � 75 kpc. Using equations (5), (24)
and (23) to go from the virial radius implied by M∗,tot to the radius
of mean overdensity 	 = 200, we find Md,200 � 2 × 1012 M�
and r200 � 270 kpc. For the mass of the bulge alone, M∗,tot � 9 ×
109 M�, we obtain Vd,pk ∼ 120 km s−1, rpk ∼ 35 kpc, Md,200 ∼ 3.6
× 1011 M� and r200 ∼ 150 kpc.

A2.2 M87 and M49: σ ap(Re) ∼ 250 km s−1

For each of these galaxies, we take the mean of M∗,tot from the
three different values in Table A1. Thus, M∗,tot = 3.3 × 1011 M�
for M87, and M∗,tot = 4.2 × 1011 M� for M49. Our parametrization
of Re versus M∗,tot in Section 3.1 then gives the values recorded in
Table A2, which broadly agree with the measurements of Re. The
model values in Table A2 for σ ap(Re), Vd,pk, rpk, Md,200 and r200

assume an NFW halo around each galaxy (as the analyses from the
literature do). The predicted velocity dispersions compare well to
the measurements for M87 and M49 in the ATLAS3D survey but not
quite as well to the values recorded by McConnell & Ma (2013),
which are 20 per cent higher.

The value of r200 for M87/Virgo A in Table A1, from McLaughlin
(1999), is � 80 per cent bigger than the one in Table A2, implied
by our models here. McLaughlin’s Md,200 is consequently larger by
about a factor of 1.83 � 6. Similarly, the circular-speed curve of
the halo in McLaughlin (1999) peaks at rpk ∼ 1.2 Mpc (with a very
large uncertainty) rather than rpk � 330 kpc as expected here, and
it has Vd,pk � 1100 km s−1 rather than Vd,pk � 600 km s−1.

These discrepancies for M87/Virgo A may simply reflect the
inevitable scatter in the properties of individual systems around
the typical values given by our trend lines. For M49/Virgo B, all
of the halo properties in Table A2 obtained from our scalings are
remarkably close to the values in Table A1 from Côté et al. (2003).

A2.3 NGC 4889: σ ap(Re) ∼ 350 km s−1

For M∗,tot = 9.5 × 1011 M�, our scalings give Re = 15.2 kpc and
(assuming an NFW halo) σ ap(Re) � 345 km s−1. The velocity dis-
persion agrees with the value in McConnell et al. (2011, 2012),
although the effective radius is smaller than their adopted 27 kpc.
Further, we find rvir � 2.45 Mpc and Md,vir � 8.0 × 1014 M�, which
compare well to the values in Table A1 determined by Łokas & Ma-
mon (2003). (This is even though NGC 4889 is not precisely at the
centre of the Coma Cluster.)

Assuming an NFW halo density profile, our models imply rpk

� 925 kpc and Vd,pk � 1285 km s−1 for the peak of the dark-matter
circular speed in NGC 4889/Coma – different by ∼ 30 per cent from
the Łokas & Mamon numbers. Comparing to the peak radii and
speeds above for M87/Virgo A and M49/Virgo B emphasizes the
clear visual impression given by Fig. 4. In large galaxies Vd,pk, along
with Md,vir, is a much more sensitive function of galaxy stellar mass
than the stellar σ ap(Re) is. [This follows directly from the steep
decline at high masses in the cosmological connection between
M∗,tot and Md,vir adopted from Moster et al. (2010).] It therefore
seems natural to expect much more scatter and many more apparent
‘outliers’ in MBH among very massive galaxies, if SMBH masses
are connected fundamentally to the global properties of dark-matter
haloes rather than to stellar velocity dispersions directly.
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