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Abstract 

    High altitude cerebral edema (HACE) is a life-threatening illness that develops during the rapid 

ascent to high altitudes, but its underlying mechanisms remain unclear. Growing evidence has 

implicated inflammation in the susceptibility to and development of brain edema. In the present study, 

we investigated the inflammatory response and its roles in HACE in mice following high altitude 

hypoxic injury. We report that acute hypobaric hypoxia induced a slight inflammatory response or 

brain edema within 24 h in mice. However, the lipopolysaccharide (LPS)-induced systemic 

inflammatory response rapidly aggravated brain edema upon acute hypobaric hypoxia exposure by 

disrupting blood-brain barrier integrity and activating microglia, increasing water permeability via the 

accumulation of aquaporin-4 (AQP4), and eventually leading to impaired cognitive and motor function. 

These findings demonstrate that hypoxia augments LPS-induced inflammation and induces the 

occurrence and development of cerebral edema in mice at high altitude. Here, we provide new 

information on the impact of systemic inflammation on the susceptibility to and outcomes of HACE.  

Key words: lipopolysaccharide (LPS), blood-brain barrier (BBB), high altitude cerebral edema 

(HACE), inflammation 

 

1. Introduction 

   High altitudes and mountains cover one-fifth of the earth’s surface. With advances in technology, 

millions of people travel to high altitude areas for recreational, religious, economic and military 

purposes (Gallagher and Hackett, 2004). High altitude is characterized by hypobaric hypoxia, 

decreased temperatures, lower humidity and increased ultraviolet radiation (Gallagher and Hackett, 

2004; Netzer et al., 2013). Among these factors, hypobaric hypoxia is regarded as the main factor 

contributing to altitude-related illness, which is quite common in those who are not adequately 

acclimated (MacInnis et al., 2010; Rodway et al., 2003; Bailey et al., 2009). Altitude-related illnesses 

include acute mountain sickness (AMS), high altitude pulmonary edema (HAPE) and high altitude 

cerebral edema (HACE). Among these, HACE is the most serious and can be lethal (Gallagher 

and Hackett, 2004; Eide and Asplund, 2009). HACE often occurs in those who abruptly ascend to over 



  

3,000 m, but the lowest reported altitude known to induce HACE was 2,100 m (Dickinson, 1979). The 

prevalence of HACE is estimated to be 0.5 to 1% among persons at altitudes of 4,000-5,000 m (Bärtsch 

and Swens. 2013). HACE is regarded as the end-stage of AMS and is characterized by truncal ataxia 

and decreased consciousness. If the appropriate treatment is not received within a certain period of time, 

coma may evolve, followed by death within 24 h due to brain herniation (Hackett and Roach. 2001). 

However, the mechanisms that cause HACE symptoms remain elusive, and methods for the prevention 

and treatment of HACE are limited (Guo et al., 2014). 

   Inflammation plays important roles in many diseases. High altitude exposure is often associated 

with gastrointestinal disorders, inflammation and increased risk of infection (Kleessen et al., 2005). It 

was reported that the incidence of digestive system disease is quite high among high altitude residents 

and immigrants (Recavarren et al., 2005). A markedly higher incidence of AMS in mountaineers with 

respiratory or gastrointestinal infections has also been reported (Murdoch, 1995). Murdoch also 

identified that the frequency of infectious symptoms was positively related to Lake Louise scores. A 

retrospective study in Colorado reported that 79% of HAPE patients had preexisting 

inflammation-inducing illness (Durmowicz, 1997). In viral infections, pulmonary edema is induced by 

hypoxia (Carpenter et al., 1998). It was recently reported that plasma TNF-α, IL-1β and IL-6 levels 

significantly increased when volunteers ascended to an altitude of 3860 m. A growing number of 

reports have also shown that inflammation plays a vital role in altitude-related illness (Song et al., 

2016). However, the relationship between inflammation and HACE has been rarely investigated. 

  In the present study, we first investigated the potential role of systemic inflammation in the 

development of HACE. We found that acute hypobaric hypoxia (AHH) exposure significantly 

augmented lipopolysaccharide (LPS)-induced systemic inflammation. Cerebral edema, blood brain 

barrier (BBB) disruption, and neurological injury were induced after pretreatment with low doses of 

LPS followed by AHH exposure, whereas neither low-dose LPS injection nor AHH exposure alone 

induced marked effects. These results indicate that systemic inflammation induced by LPS aggravates 

brain edema under AHH exposure by disrupting BBB integrity and activating microglia, thus causing 

an accumulation of aquaporin-4 (AQP4) that increases water permeability and leads to impaired 

cognitive and motor function in mice. These findings demonstrate that the inflammatory response plays 

vital roles in the occurrence and development of HACE and provide a novel and efficient HACE 

mouse model for further studies.  



  

 

2. Materials and methods 

2.1 Animals 

Male adult 8-week-old C57BL/6 mice were supplied by the Vital River Experimental Animal 

Company, Beijing. Animals were maintained in the animal house of the Beijing Institute of Basic 

Medical Sciences and were housed at a constant temperature under a 12-h light-dark cycle with 

unlimited access to standard diet and water. The animal protocol was approved by the Institutional 

Animal Care and Use Committee of the Institute of Basic Medical Sciences. 

2.2 LPS administration and AHH exposure 

For LPS administration, the mice were subjected to an intraperitoneal injection of a certain 

concentration of LPS (Escherichia coli 055:B5; Sigma-Aldrich, USA) diluted in natural salt water. For 

AHH exposure, the mice were placed in a decompression chamber (model: DYC-DWI; Fenglei, China) 

and subjected to hypobaric hypoxia equal to a height of 6,000 m (369.4 mmHg, equal to 10.16% O2) at 

the velocity of 50 m/s in 5 min) for various durations. Animals receiving both treatments were 

subjected to LPS administration first. Thirty min later, the animals showed inflammatory symptoms 

and were then subjected to hypobaric hypoxia exposure. 

2.3 Serum ELISA 

Blood samples were clotted for 2 h at room temperature before centrifuging for 20 min at 2,000 g. 

Serums were aliquoted and stored at -80°C. The concentrations of IL-1β, IL-6, and TNF-α were 

determined using a Quantikine ELISA kit (R＆D systems, USA) according to the manufacturer’s 

protocol. The results are shown as the concentration of cytokines per milliliter serum. 

2.4 Real-time PCR 

Total RNA was extracted from the hippocampus of the mouse brains using TRIzol reagent (Invitrogen, 

USA). First-stand cDNA of each sample was synthesized using an MLV reverse transcription kit 

(TAKARA, Japan) according to the manufacturer’s instructions. The cDNA was used as a template for 

quantitative real-time PCR using the SYBR green master mix (Applied Biosystems, USA). Gene 

expression was calculated relative to β-actin. The primers used were as follows: IL-1β: forward: 

5’-TGCAACTGTTCCTGAACTCAACT-3’, reverse: 5’-ATCTTTTGGGGTCCGTCAACT-3’; IL-6: 

forward: 5’-TAGTCCTTCCTACCCCAATTTCC-3’, reverse: 5’-TTGGTCCTTAGCCACTCCTTC-3’; 

TNF-α: forward: 5’-CCCTCACACTCAGATCATCTTCT-3’, reverse: 



  

5’-GCTACGACGTGGGCTACAG-3’; MCP-1: forward: 5’-TTAAAAACCTGGATCGGAACCAA-3’, 

reverse: 5’-GCATTAGCTTCAGATTTACGGGT-3’; ICAM: forward: 

5’-GTGATGCTCAGGTATCCATCCA-3’, reverse: 5’-CACAGTTCTCAAAGCACAGCG-3’; VCAM: 

forward: 5’-AGTTGGGGATTCGGTTGTTCT-3’, reverse: 5’-CCCCTCATTCCTTACCACCC-3’; 

β-actin: forward: 5’-GGCTGTATTCCCCTCCATCG-3’, reverse: 

5’-CCAGTTGGTAACAATGCCATGT-3’. 

2.5 Determination of brain water content (BWC) 

Mice were anesthetized with 1% sodium pentobarbital. For each mouse, the brain was removed and its 

wet weight was determined using a precision electronic balance (BSA124S-CW; Sartorius, Germany). 

The brains were then placed in an oven and baked at 100°C for 48 h until a constant weight was 

obtained. The percentage of BWC was calculated as follows: BWC (%) = (wet weight - dry 

weight)/wet weight × 100%. 

2.6 Magnetic resonance imaging (MRI) 

MRI was conducted using the laboratory animal imagine analysis platform, Institute of Laboratory 

Animal Sciences, China Academy of Medical Sciences. Each mouse was anesthetized with isoflurane, 

fixed in a body restrainer and placed in an MRI spectrometer (Varian, USA). T2-multiecho images 

were acquired using a spin-echo sequence with the following parameters: 5 contiguous coronal slices at 

2-mm thickness, 40 × 40 mm field of view, 128 × 128 matrix, repetition time (TR) = 2,000 ms, echo 

time (TE) = 36.00 ms. To map the apparent diffusion coefficient (ADC) of water, diffusion-weighted 

images were acquired with a spin-echo sequence. Five contiguous coronal slices were acquired (2-mm 

thick, 40 ×40 mm field of view, 128 × 128 matrix, TR = 2,000 ms, TE = 36.00 ms). ADC maps were 

automatically calculated according to the following equation: ADC = ln(S0/S1)/(b1 − b0) (mm2/s). 

After exposure to hypoxia, the mice were immediately placed in an MRI scanner (VARIAN) for ADC 

measurements and imaging. 

2.7 Immunofluorescence staining  

The mice were anesthetized and perfused with 4% paraformaldehyde. The brains were isolated, 

dehydrated and frozen sectioned. The sections were blocked with 5% donkey serum (0.3% PBST, 

containing 5% donkey serum and 5% BSA) and incubated with specific primary (GFAP 1:500, DAKO 

or Iba-1 1:200, WAKO) and secondary antibodies (Alexa Fluor 594 conjugated 1:200, Life). Images 

were captured using a scanning confocal microscope (Nikon, Japan) and analyzed with Image J 



  

software. 

2.8 Western blot 

Total protein was extracted from the mouse hippocampus. Samples were denatured and loaded on 

sodium dodecyl sulfate-polyacrylamide gels. Then, the proteins were transferred to a nitrocellulose 

membrane and blocked in 5% non-fat milk. The specific primary antibody (zonulae occludentes (ZO)-1 

1:1,000 Invitrogen, VE-cadherin 1:1,000 eBioscience, occludin 1:1,000 Invitrogen, claudin-5 1:1,000 

Thermo, VEGF 1:1,000 Abcam, AQP-4 1:8,000 Proteintech, or β-actin 1:10,000 Sigma) was applied 

overnight at 4°C, followed by incubation with HRP-conjugated goat-anti-mouse or goat-anti-rabbit 

antibodies (Bio-Rad, USA). The specific bands were detected using an ECL detection system (Bio-Rad, 

USA). 

2.9 Determination of BBB permeability 

Each mouse was subjected to an intraperitoneal injection of Evans blue dissolved in natural salt water 

(4 mg/kg of body weight) 24 h before the experiment. After AHH exposure, each mouse was 

anaesthetized and perfused. The brain was removed and dissolved in formamide and water-bathed at 

55°C overnight. The samples were centrifuged at 12,000 × g at room temperature for 30 min. The 

supernatants were transferred to a 96-well plate, and the absorbance at 620 nm was determined.  

Auto-fluorescence of Evans blue was evaluated as previously reported (Zuo et al., 2016). After AHH 

exposure, each mouse was anaesthetized and sacrificed. The brain was removed and immersed in 4% 

paraformaldehyde. Then, the brain tissue was cut into 40-µm coronal floating sections. The red 

auto-fluorescence of Evans blue was observed under a fluorescence microscope (Olympus, Japan). 

2.10 Transmission electron microscopy 

The preparation of samples for transmission electron microscopy was performed as previously 

described. The mice were anesthetized and the hippocampus was removed and immersed in 

glutaraldehyde. Ultra-microstructures were visualized and captured using a transmission electronic 

microscope (Hitachi, Japan). 

2.11 Hematoxylin-eosin (HE) and Nissl staining 

The mice were anesthetized. The brains were isolated and sectioned. The sections were immersed in 

absolute ethyl alcohol, 95% ethyl alcohol, and 70% ethyl alcohol for 1 min at room temperature and 

then incubated in cresyl violet for 30 min at 37°C. Then, the sections were subjected to dehydration and 

visualized with a microscope (Olympus, Japan). 



  

2.12 Analysis of neuron morphology 

Thy1-YFP mice were anesthetized and perfused according to the protocol above. The brains were 

post-fixed, followed by dehydration and cut in the coronal plane in 40-µm-thick sections. The sections 

were visualized with a scanning confocal microscope (Nikon, Japan), and representative images were 

captured. 

2.13 Morris water maze test 

The water maze was constructed using a black circular pool of 122 cm in diameter that was divided 

into 4 equal quadrants. A transparent circular platform (10 cm
2
) was submerged 1.5 cm beneath the 

water surface. The water temperature was kept at 19-22°C. The swimming path of each animal was 

recorded using a video camera and analyzed using a professional analysis system (ANY-maze system, 

UK). Training was performed for 5 successive days with a platform beneath the water. After 5 days of 

training, the mice were subjected to LPS injection, AHH exposure or both on the 6
th

 day. The platform 

was removed from the pool, and the trials were begun to determine spatial learning and memory 

differences. 

2.14 Rota-rod test 

A Rota-rod test was conducted as previously described (Morris et al., 2013). The mice were trained to 

walk to stay on the rod rotating from 4 to 40 rpm over 300 s 3 times a day for 2 consecutive days. The 

mice were tested on the 3
rd

 day immediately after LPS injection, AHH exposure, or both. The latency 

and rotating speed at which the mice fell off the rotating rod were recorded. 

2.15 Statistical analysis of the data 

All experiments were repeated at least 3 times. The data are presented as the group mean values with 

standard errors of the means (SEM). Asterisks indicate significant differences between groups 

according to the Student’s t-test or one-way analysis of variance (ANOVA). For all analyses, p < 0.05 

was considered significant. 

 

3. Results 

3.1 AHH alone induces a slight inflammatory response and brain edema in mice  

To explore whether exposure to AHH induced inflammation at the early stage of the ascent to the 

plateau, adult mice were exposed to a decompression chamber mimicking an altitude of 6,000 m 

(equivalent to 10.16% O2 at sea level) for 6 h, 12 h and 24 h to acutely induce hypoxic brain injury. We 



  

then examined changes in the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α after exposure to 

AHH. Real-time PCR and ELISA were used to measure the gene expression and concentrations of 

these cytokines. The results indicated that AHH exposure did not affect the levels of IL-1β and TNF-α 

in the serum at 6 h but slightly down-regulated the level of IL-6, whereas the expression levels of these 

cytokines were not changed in the brain tissue at 6 h compared to normoxic controls (Fig. 1A-F). After 

12 h of exposure to AHH, in the serum, the level of IL-1β increased from undetectable to 2 pg/ml, and 

IL-6 increased 2-fold, but no change in TNF-α was observed (Fig. 1A-C). The gene expression of 

IL-1β and IL-6 remained stable, but that of TNF-α increased by 2.7-fold in the brain tissue in mice 

exposed to AHH compared to controls (Fig. 1D-F). Twenty-four hours after exposure to AHH, in the 

serum, the level of IL-1β increased from undetectable to 3.8 pg/ml, the level of IL-6 increased by 

2.6-fold (p < 0.05), and the gene expression in the brain of IL-1β, IL-6 and TNF-α were also elevated 

by 2.1-fold, 1.7-fold and 4.1-fold, respectively (p < 0.05) compared with the controls (Fig. 1A-F). Then, 

we examined the changes in the BWC at 6 h, 12 h and 24 h after AHH exposure as a sign of brain 

swelling. BWC did not increase at 6 h or 12 h after AHH exposure (Fig. 1G). There was only a slight, 

non-significant, increase from 78.43 ± 0.07% to 78.47 ± 0.13% at 24 h after AHH exposure. These data 

indicate that hypobaric hypoxia exposure alone induces a slight inflammatory response and brain 

edema in mice, which is consistent with our previous report (Huang et al., 2015). 

 

3.2 LPS-induced systemic inflammation is amplified and rapidly induces the onset of brain edema in 

mice after AHH exposure 

To further investigate the potential role of inflammation in the development of brain edema after AHH 

exposure, mice were intraperitoneally injected with LPS to promote systemic inflammation, and the 

possible mechanisms of LPS-induced inflammation under hypoxia were then investigated. We first 

compared the changes in BWC of mice injected with different concentrations of LPS (0, 0.1, 0.5, 1, 2.5, 

5 and 10 mg/kg body weight) with or without AHH exposure for 6 h. As shown in Fig. 2A, a single 

injection of LPS from 0.1 to 5 mg/kg for 6 h did not increase BWC in mice. However, BWC was 

significantly increased in LPS-treated mice exposed to hypobaric hypoxia for 6 h compared with 

controls. This suggests that AHH exposure combined with LPS administration markedly induced 

cytotoxic or vasogenic edema compared with hypoxic exposure alone in mice. To reduce or prevent 

acute brain injury damage due to LPS administration, mice were injected with a lower dose of LPS (0.5 



  

mg/kg, BW) for 6 h to induce the formation of HACE in the subsequent experiment. To confirm brain 

edema in this model, the ADC in the brain was detected by MRI. There was a significant increase in 

the cortical ADC value between the control group and the group treated with LPS injection combined 

with AHH exposure for 6 h (Fig. 2B-C). We further investigated the inflammatory response in 

LPS-induced inflammation after AHH exposure. First, compared to the normoxia control condition, 

AHH exposure alone for 6 h did not increase the levels of IL-1β, IL-6 and TNF-α in the serum (Fig. 

2D-F) or the gene expression levels of IL-1β, IL-6 and TNF-α in the cortex (Fig. 2J-L). A single 

injection of LPS (0.5 mg/kg, BW) induced a systemic pro-inflammatory response for 6 h in mice. The 

level of IL-1β increased from undetectable to 16 pg/ml, and 88.7-fold and 3.9-fold increases in the 

levels of IL-6 and TNF-α, respectively, were also observed in the serum. Combined with AHH 

exposure, IL-1β levels increased from undetectable to 40 pg/ml, and the levels of IL-6 and TNF-α 

increased by 687.5-fold and 12-fold, respectively, in the serum (Fig. 2D-F). Pro-inflammatory 

cytokines stimulate endothelial cells to produce chemokines such as MCP-1 and cell adhesion 

molecules such as ICAM and VCAM, thus promoting leukocyte infiltration and neuroinflammation 

induction. LPS injection induced the up-regulation of MCP-1, ICAM and VCAM by 7.9-fold, 3.3-fold 

and 1.4-fold, respectively. When LPS injection was combined with AHH exposure, MCP-1, ICAM and 

VCAM were up-regulated by 93.8-fold, 33.8-fold and 2.1-fold, respectively (Fig. 2G-I). We also 

assessed neuroinflammation. The gene expression levels of IL-1β, IL-6 and TNF-α in the brain tissue 

were also elevated by 11.9-fold, 1.2-fold and 9.5-fold, respectively, after LPS injection compared with 

controls. In addition, combined with AHH exposure, significant increases in the gene expression levels 

of IL-1β, IL-6 and TNF-α by 14.3-fold, 1.4-fold and 21.7-fold, respectively, were observed in the brain 

tissue of LPS-injected mice compared with controls (Fig. 2J-L). These data show that LPS-induced 

systemic inflammation rapidly aggravates the development of brain edema in mice after AHH 

exposure. 

 

3.3 Enhancement of LPS-induced microglial activation and AQP-4 accumulation by AHH exposure  

To quantify the severity of central nerve system (CNS) inflammation accompanying the peripheral 

inflammation, we measured microglial activation at 6 h after AHH exposure using Iba-1 staining as a 

measurement of microglial density. The total numbers of microglia in the hippocampal CA1 region and 

dentate gyrus (DG) were not changed in the mice exposed to AHH alone compared with the controls. 



  

There was a significantly greater proportion of activated microglia in the CA1 and DG in the groups 

treated with LPS independent of whether they were exposed to AHH (Fig. 3A-C). The activation of 

astrocytes was evaluated by immunostaining for the astrocyte marker glial fibrillary acidic protein 

(GFAP). We did not observe any overall changes in GFAP immunostaining or GFAP protein levels in 

the brain after exposure to AHH with or without LPS treatment (Fig. 3B-D, Suppl. Fig. 1A-B). 

However, the expression of AQP-4, a glial membrane water channel in the brain, was markedly 

increased by nearly 2-fold in the brain in the group treated with LPS and AHH exposure compared with 

the three other groups (Fig. 3E-G). HIF signaling plays key roles in cells subjected to decreased oxygen 

content. Although HIF-1α is widely expressed, HIF-2α functions in endothelial cells. We found that 

both HIF-1α and HIF-2α were significantly up-regulated in the group treated with LPS injection and 

AHH exposure (Suppl. Fig. 2). At the same time, VEGF, a key molecule regulating capillary leakage 

that is itself regulated by HIF signaling, was up-regulated by 2-fold in the group treated with LPS 

injection and AHH exposure. However, LPS injection had no impact on VEGF, and the group treated 

with AHH exhibited a 1.3-fold up-regulation of VEGF (Fig. 3E-F). These data indicate that the 

combination of LPS injection and AHH exposure enhanced the glial inflammatory response and that 

the accumulation of AQP-4 increased water permeability; both may play an important role in the 

augmentation of brain edema under hypoxia. 

 

3.4 The LPS-induced inflammatory response rapidly accelerated the disruption of the BBB under AHH 

exposure 

Cerebral edema is a consequence of structural and functional disruption of the BBB that is an early and 

prominent feature of CNS inflammation. To further investigate the potential mechanism of 

inflammation in the development of hypoxic brain injury, we assessed whether LPS-induced systemic 

inflammation accelerated the disruption of the BBB under hypoxia. We first quantified BBB 

permeability using Evans blue dye. There was a marked increase in the concentration of Evans blue in 

the brain extracts of mice in the group treated with LPS injection and AHH exposure (Fig. 4A-B). The 

function of the BBB is maintained by tight junctions, and we observed the structure of tight junctions 

using transmission electron microscopy. High-density shadows between endothelial cells revealed 

intact tight junctions in the control group. LPS injection and AHH exposure did not impact the integrity 

of tight junctions. Mild swelling of the mitochondria was visualized in the group exposed to AHH. 



  

When LPS injection and AHH were combined, BBB disruption was observed; the basal lamina 

exhibited lower electron density, and dilated extracellular spaces surrounding the capillaries indicated 

perivascular edema. In addition to these changes, the opening of tight junctions between the endothelial 

cells was significantly increased (Fig. 4C). We further evaluated the molecular changes in tight 

junction proteins and adherens junctions. Although ZO-1 and claudin-5 did not exhibit marked changes, 

occludin and VE-cadherin were down-regulated by 70% and 50%, respectively, in mice that received 

LPS injection combined with AHH exposure (Fig. 4D-H). These results suggest that LPS-induced 

inflammation accelerated hypoxic brain injury by increasing BBB permeability and disrupting the tight 

junctions in mice.  

 

3.5 AHH exposure combined with LPS injection significantly induced neuronal injury  

The BBB separates the brain parenchyma from the circulatory and immune system, which shields the 

brain from blood-borne toxins and is essential for the stability of a homeostatic environment. Different 

staining methods and transgenic mice were used to evaluate brain injury. HE staining revealed no 

significant morphological changes in the group treated with LPS compared with the control group. The 

group treated with AHH exposure showed a widened blood vessel diameter. The group treated with 

LPS injection and AHH exposure showed some darkly stained pyknotic nuclei and lightly stained 

cytoplasm, which indicates cell death and swelling (Fig. 5A). Nissl staining showed that the group 

treated with LPS injection and AHH exposure exhibited the least staining of the groups, which 

indicates neuronal injury (Fig. 5B). Thy1-YFP transgenic mice were then used to evaluate 

morphological changes in projection neurons. As shown in Fig. 5C, LPS injection did not influence 

projection neurons, whereas AHH exposure induced the loss of YFP-positive neurons in the 

hippocampus. When mice were treated with LPS injection and exposed to AHH, the number of 

YFP-positive projection neurons significantly decreased. These data indicate that the combination of 

LPS injection and AHH exposure significantly induced neurological injury. 

 

3.6 LPS-induced inflammation induced cognitive dysfunction and dyskinesia under AHH exposure 

High altitude cerebral edema is characterized by ataxia and decreased consciousness. Thus, we 

evaluated the cognitive and motor abilities of mice subjected to LPS injection, AHH exposure or both 

using the Morris water maze and Rota-rod tests. After five days of training, the mice were subjected to 



  

different treatments on the 6
th

 day. Each mouse was placed in a pool and tracked for 60 s to measure 

spatial learning and memory. The mice in the group treated with LPS injection and AHH exposure took 

much longer than the controls to find the hidden platform. The number of platform crossings, path 

lengths and the time in the target quadrant also decreased significantly. The mice treated with LPS 

injection or AHH exposure alone showed no changes in these indexes (Fig. 6B-E). The mice treated 

with LPS injection swam much more slowly than the mice in the other two groups, regardless of 

whether they were treated with AHH exposure (Fig. 6F). The Rota-rod test was employed to evaluate 

the motor abilities of the mice. Although the mice in the group treated with LPS injection and exposed 

to AHH fell off the rod much earlier and at a slower rotational speed than the control mice, the mice in 

the group treated with LPS injection or AHH exposure alone showed no change compared with the 

control group (Fig. 6G-H). These data suggest that LPS-induce inflammation induced cognitive 

dysfunction and dyskinesia in the mice exposed to AHH.  

 

4. Discussion 

In this study, we found that hypoxia augments LPS-induced inflammation and triggers HACE, and 

we illuminated the potential mechanisms by which AHH exposure induces cerebral edema in mice (Fig. 

7). We demonstrated that the inflammatory response accelerates the occurrence and development of 

brain edema under AHH exposure, which is associated with increased BBB permeability, microglial 

activation, and the enhanced expression of the water channel AQP-4, ultimately leading to impaired 

cognitive and motor function in mice. These findings prove that the inflammatory response is a key 

determinant in the occurrence, progression, and acute outcomes of HACE and suggest a potential 

therapeutic target for the treatment of various pathological states that are involved in hypoxic brain 

injury.  

Inflammation plays a role in the generation and development of many diseases. As the main 

reservoir of bacteria and endotoxins, intestinal tract dysfunction also exerts vital effects in many 

diseases (Luo et al., 2012). However, the incidence of digestive system disease has been reported to be 

high in those living at high altitude (Recavarren et al., 2005). In a recently published study, scientists 

found that bifidobacteria and species belonging to the Atopobium, Coriobacterium and Eggerthella 

lenta groups decreased, whereas potential pathogenic bacteria of the gamma subdivision of 

Proteobacteria and specific Enterobacteriaceae such as Escherichia coli increased after high altitude 



  

exposure above 5,000 m (Kleessen et al., 2005). An investigation conducted by Murdoch also showed 

that those with respiratory or gastrointestinal infections during ascent to high altitude have a higher 

incidence of AMS. The author also found that the frequency of infectious symptoms was positively 

related to Lake Louise scores (Murdoch, 1995). A growing body of evidence shows that infection and 

inflammation play pivotal roles in altitude-related illnesses (Bailey et al., 2004). 

Rodent species are particularly insensitive to hypoxia exposure. AHH exposure does not induce 

pro-inflammatory cytokine release in the short-term. As hypobaric hypoxia exposure is prolonged, 

pro-inflammatory cytokines in the plasma and brain are up-regulated. LPS is a strong inducer of 

pro-inflammatory cytokines. When animals receive low-dose LPS injections, AHH exposure rapidly 

augments the expression and release of pro-inflammatory cytokines. In a study by Jian et al., cytokine 

expression induced by LPS was amplified by 1% O2 exposure in periodontal ligament cells (Jian et al., 

2014). When neuroinflammation is induced, pro-inflammatory cytokines are the major factors that 

cause BBB disruption. It is well known that TNF-α, IFN-γ, IL-1β, and IL-6 exposure induce the 

down-regulation of tight junctions (Varatharaj and Galea., 2016; Erickson et al., 2012). This 

phenomenon is induced by the over-production of reactive oxygen species (ROS), COX-2 and PG and 

the inhibition of SHH (Almutairi et al., 2016). Additionally, pro-inflammatory cytokines can 

up-regulate the expression of VEGF, a key regulator of BBB permeability (Ahmed-Jushuf et al., 2016), 

which was also observed in our experiment. In addition, AQP-4 was up-regulated, further indicating 

the onset of cerebral edema. 

    The BBB separates the CNS and the peripheral circulatory system, thus maintaining stability of 

the homeostatic environment, which is the basis of the normal function of neurons (Abbott, 2013). The 

BBB is maintained by tight junctions between adjacent endothelial cells. Tight junctions include 

members of the claudin family, occludin and junctional adhesive molecules (Stamatovic et al., 2016), 

of which claudin-5 and occludin are the most important and widely researched. These molecules are 

linked to the cytoskeleton by ZO. Adherens junctions also constitute junctional complexes and play 

important roles in BBB stability (Chow and Gu. 2015). In our experiment, the opening of tight 

junctions was prominent in the group treated with LPS injection and exposed to AHH. The tight 

junction protein occludin and the adherens junction protein VE-cadherin were also significantly 

down-regulated only in the group treated with LPS injection and exposed to AHH. In the study by 

Kangwantas et al., the authors found that both oxygen glucose deprivation (OGD) and IL-1β treatment 



  

induced the translocation of tight junction proteins from the cytomembrane, but the transepithelial 

electric resistance (TEER) was not changed. When OGD and IL-1β exposure were combined, the 

translocation of tight junctions was much more significant, and TEER also decreased significantly, 

which reflected the disruption of the BBB (Kangwantas et al., 2016). Luo also reported that rats 

exposed to hypoxia and LPS injection exhibit significant bacterial translocation in the intestinal tract 

and sub-epithelial tight junction opening (Luo et al., 2012). These experiments all show that 

inflammation is amplified by hypoxia in conjunction with tight junction opening in both cells and 

animals. 

    LPS injection is widely used to model systemic inflammation. Bacterial endotoxins exert strong 

effects on the immune neuroendocrine network and induce profound physiological and behavioral 

alterations that include fever, anorexia, anhedonia, lethargy, ptosis, and depression of both exploration 

and social behavior, among others (Gasparotto et al., 2007). A medium-dose LPS injection (5 mg/kg) 

reversibly impaired spatial learning and memory. However, the impairments induced by high-dose 

injections (10 mg/kg) of LPS were irreversible (Bian et al.,2013). Physiological parameters such as 

body weight, blood pressure and heart rate were not influenced in rats that received low-dose LPS 

injections (Krizak et al., 2016). Furthermore, motor abilities were not affected by low-dose LPS 

injections (0.5 mg/kg) in mice (Couch et al., 2016). In our experiments, we found that LPS injection 

reduced swimming speed but did not impair spatial memory. The combination of LPS injection and 

AHH exposure prolonged the latency to find the hidden platform, reduced the number of times the 

platform area was crossed, and reduced the time and path length in the target quadrant. The Rota-rod 

test showed that reduced motor ability appeared only in the group treated with LPS injection and 

exposed to AHH. These findings resembled those reported by Gasparotto et al. in which low dose LPS 

injections exacerbated stress-induced depressive-like behaviors (Gasparotto et al., 2007). 

   In this study, our results indicated that the systemic inflammatory status is a key determinant of 

acute outcomes and the long-term progress of brain edema in high altitude hypoxia. Thus, we propose 

herein a mechanistic explanation for the relationship between inflammation and brain edema under 

hypoxia and provide a novel potential therapeutic target for the treatment of HACE. The effects of 

anti-inflammation in high altitude-induced brain injury need to be addressed in future studies.  
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Figure legends 

Fig. 1 AHH slightly increased the levels of TNF-α, IL-1β, and IL-6 in mice within 24 h. 

(A-C) The levels of TNF-α, IL-1β, and IL-6 in the serum of mice after exposure to AHH at different 

time points were determined by ELISA. (D-F) The mRNA expression levels of TNF-α, IL-1β, and IL-6 

in the hippocampus of mice after exposure to AHH at different time points were determined by qPCR. 

G. Changes in BWC in mice after AHH exposure at different time points within 24 h. (The data are 

presented as the mean ± SEM. *: p < 0.05 compared with the control group, **: p < 0.01 compared 

with the control group. n = 5 in each group.) 

 

Fig. 2 LPS-induced systemic inflammatory response rapidly aggravated the development of brain 

edema after exposure to AHH in mice.  

(A) BWC was determined using the wet/dry weight ratio in mice treated with different dosages of LPS 

with or without AHH exposure. (B) Representative image of a mouse brain that underwent a 

combination of AHH exposure and LPS treatment. (C) The ADC values determined by MRI after a 

combination of AHH exposure and LPS treatment were significantly increased compared with the 

control group. (D-F) TNF-α, IL-1β, and IL-6 levels in the serum of mice were measured by ELISA 



  

following LPS injection, AHH exposure or a combination of both treatments. (G-I) The mRNA 

expression levels of MCP-1, ICAM, and VCAM in the hippocampus of mice were determined by 

qPCR following LPS injection, AHH exposure or a combination of both treatments. (J-L) The mRNA 

expression levels of TNF-α, IL-1β, and IL-6 in the hippocampus of mice were determined by qPCR 

following LPS injection, AHH exposure or a combination of both treatments. (The data are presented 

as the mean ± SEM. *: p < 0.05 compared with the control group, **: p < 0.01 compared with the 

control group. n = 5 in each group.) 

 

Fig. 3 Enhancement of LPS-induced microglia activation and AQP-4 expression by AHH exposure  

(A) Representative image of microglia activation in the brains after the different treatments. (B) 

Representative image of astrocyte activation in the brain after the different treatments. (C) Microglia 

were activated in the group treated with LPS injection and in the group treated with the combination of 

LPS injection and AHH exposure. (D) GFAP expression was not influenced by the different treatments. 

(E-G) The expression levels of VEGF and AQP-4 were significantly up-regulated in the group treated 

with the combination of LPS injection and AHH exposure. (The data are presented as the mean ± SEM. 

*: p < 0.05 compared with the control group, **: p < 0.01 compared with the control group. n = 3 in 

each group.) 

 

Fig. 4 Increased permeability of the BBB after AHH exposure combined with LPS treatment 

(A) Representative image of the extraction of Evan’s blue in the brain after LPS injection, AHH 

exposure or a combination of both treatments. (B) Quantitative analysis of BBB permeability based on 

Evans blue dye after the different treatments. There was a marked increase in the concentration of 

Evans blue in the brain extracts after exposure to AHH for 6 h with LPS injection. (C) Transmission 

electron microscopy was utilized to detect the morphology of the tight junctions in the brain after the 

different treatments. (D-H) Western blot analysis showed the down-regulation of the tight junction 

protein Occludin and the adherens junction protein VE-Cadherin in the group treated with both LPS 

injection and AHH exposure. (The data are presented as the mean ± SEM. *: p < 0.05 compared with 

the control group, **: p < 0.01 compared with the control group. n = 3 or 5 in each group.) 

 

Fig. 5 Neuronal injury was induced by the combination of LPS injection and AHH exposure 



  

(A) Darkly stained pyknotic nuclei and lightly stained cytoplasm by HE staining indicate cell injury in 

the groups treated with the combination of LPS injection and AHH exposure. (B) Lightly stained Nissl 

bodies by Nissl staining indicate neuronal injury in the groups treated with the combination of LPS 

injection and AHH exposure. (C) Neuron and axon loss were apparent in the group treated with the 

combination of LPS injection and AHH exposure as observed in Thy1-YFP transgenic mice.  

 

Fig. 6 Cognitive and motor dysfunction were induced by the combination of LPS injection and AHH 

exposure 

(A) Mice were trained to find the hidden platform under the water. (B) The time to find the hidden 

platform under the water was longer in the group of mice treated with the combination of LPS injection 

and AHH exposure. (C) The number of platform entries was significantly decreased in the group 

treated with the combination of LPS injection and AHH exposure. (D) Path length in the target 

quadrant was significantly decreased in the group treated with the combination of LPS injection and 

AHH exposure. (E) The time spent in the target quadrant was significantly decreased in the group 

treated with the combination of LPS injection and AHH exposure. (F) Swimming speed was decreased 

in the groups treated with LPS injection with or without AHH exposure. (G) The time at which the 

mice fell off the rolling rod was significantly decreased in the group treated with the combination of 

LPS injection and AHH exposure. (H) The speed of the rotating rod when the mice fell off was 

significantly decreased in the group treated with the combination of LPS injection and AHH exposure. 

(The data are presented as the mean ± SEM. *: p < 0.05 compared with the control group, **: p < 0.01 

compared with the control group. n = 8 or 10 in each group.) 

 

Fig. 7 Model of how hypoxia augments LPS-induced inflammation and triggers high altitude cerebral 

edema.  

We demonstrated that the inflammatory response accelerates the occurrence and development of brain 

edema under AHH exposure, which is associated with increased BBB permeability, microglial 

activation, and the enhanced expression of the water channel AQP-4, ultimately leading to impaired 

cognitive and motor function in mice. 

 



  

Suppl. Fig. 1: expression of GFAP was not affected upon either treatment. A-B: content of GFAP 

in each group didn’t get changed. (The data are presented as the mean ± SEM. n=3 in each group)  

 

Suppl. Fig. 2: HIF signaling was activated significantly in group treated by LPS-injection and  

hypobaric hypoxia exposure  A-C: HIF-1α and HIF-2α were up regulated in group treated by 

LPS-injection and hypobaric hypoxia exposure  D-F. ET-1, HO-1, EPO, VEGF were 

up-regulated in group treated by LPS-injection and hypobaric hypoxia exposure. (The data are 

presented as the mean ± SEM. *: p < 0.05 compared with the control group, **: p < 0.01 compared 

with the control group. n=3 in each group)  
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1. Inflammation may play vital roles in high altitude cerebral edema is proposed. 

2.Hypoixa augments LPS-induced systemic inflammation and neuroinflammation. 

3.combination of hypoxia exposure and LPS injection rapidly induces cerebral edema. 

4.combination of hypoxia exposure and LPS injection induces blood-brain barrier leakage by 

disrupting tight junctions. 

5.combination of hypoxia exposure and LPS injection induces cognitive and motor dysfunction. 

 




