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Abstract. Voltage-sensitive dye imaging (VSDi) which enables simultaneous 

optical recording of many neurons in the pyloric circuit of the stomatogastric 

ganglion is an important technique to supplement electrophysiological record-

ings. However, utilising the technique to identify pyloric neurons directly is a 

computationally exacting task that requires the development of sophisticated 

signal processing procedures to analyse the tri-phasic pyloric patterns generated 

by these neurons. This paper presents our work towards commissioning such 

procedures. The results achieved to date are most encouraging. 
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1 Introduction 

In recent years, an optical recording technique based on voltage-sensitive dye imaging 

(VSDi) has become a practical means of simultaneously capturing the activities of 

multiple neurons in living tissues, providing a valuable tool for studying neural circuit 

connectivity and neuromodulation at the single cell level. This is exemplified by re-

cent studies of the stomatogastric ganglion (STG) of the crab, Cancer borealis [1-2]. 

In particular, the STG that contains the pyloric circuit in the crab stomatogastric nerv-

ous system, one of the two central pattern generators in the STG that are responsible 

for controlling the musculature of the digestive system. The pyloric rhythm (PR) con-

trols the pylorus, which performs the mixing and filtering of food particles after 

chewing by the gastric mill inside of the crab stomach. Analytically, it is a classic 

model for motor pattern generation, where regular and predictable oscillatory activi-

ties of the participating neurons can be monitored and studied in vitro. In particular, a 

typical approach identifies neuron types participating in the PR by comparing the 

intracellular membrane potential oscillations and firing phases using extracellular 

captured activity patterns through the lateral ventricular nerve (lvn) [2-4]. 

This paper demonstrates the identification of pyloric neurons in the STG using the 

image/data obtained from the optical recordings with the VSDi approach described 

above without resorting to the difficult electrophysiological method of intracellular 

electrode recordings. Instead, the neural membrane potential oscillations in the STG 
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were measured through the optically recorded intensity of the fluorescence produced 

by the voltage-sensitive dye (Di-4-ANEPPS) that was bath-applied to the STG exoge-

nously. Several key challenges had to be overcome. (1) The relatively low yield
1
 of 

the potential-dependent fluorescence change (2-10%/100mV) achieved by the Di-4-

ANEPPS dye used in our study make the PR extraction from the recorded dye 

bath/images a complex signal processing task [5]. (2) The inherently tri-phasic PR 

monitored on the lvn by the activity of three distinct types of neurons; namely, lateral 

pyloric (LP, one cell) neuron, the pyloric constrictor (PY, 5 cells) neurons and the 

pyloric dilator (PD, two cells) neurons, is recorded as extracellular neuronal potentials 

(i.e. spikes) corresponding to the highly coordinated oscillatory activities of the par-

ticipating neurons. As with most extracellular electrode recordings of neuronal activi-

ty, such recording is typically displayed in the form of high-frequency sequence or 

train of spikes (i.e. bursts).  Consequently, robust signal processing methods are need-

ed to identify the network activities at a single-cell level, to facilitate analysing these 

spike trains (e.g. burst and network burst detection) in order to decode the (three) 

characterising phases of the PR. (3) The timing lag between the optical and lvn re-

cordings of the characteristic spike peaks for the participating neurons due to the ax-

onal transmission delay between the ganglion and the extracellular recording site is 

unknown and dependent upon (a) the biological/STG sample, (b) the equipment en-

semble and (c) the experiment setup. 

Our work required the development of a computationally robust solution that 

would reliably detect and extract the PR from the simultaneous measurement of 

membrane potential changes in the pattern generating neurons described in (1) above. 

This problem is discussed in [5]. In this paper, we present our work toward addressing 

the outstanding challenges. 

2 Duty Cycle of Component Neurons as Biometrics 

In electrical engineering, it is commonly known that duty cycles (DCs) can be used 

to specify the percentage time of an active signal in an electrical device such as the 

power switch in a switching/mode power supply or, relevantly, the firing of action 

potentials by a living system such as a neuron
2
. In the biological context [6-7], the 

relative phasing and DCs of the component neurons in a network are critically im-

portant for the generation of a specific behavior. Importantly, the ability of the pace-

maker ensemble to maintain constant DC at different frequencies in the pyloric circuit 

of the STG could explain how the full network maintains fixed phase relationships at 

different frequencies [6].To maintain fixed phase relationships, neurons must all 

begin to fire later in the cycle as the cycle period increases. As the pacemaker ensem-

ble releases transmitters in a voltage-dependent fashion during the burst when the 

duration of the pacemaker burst increases, the time during which inhibitory transmit-

ter is released is accordingly extended. This, in turn, retards the onset of a firing of the 

                                                           
1https://www.thermofisher.com/order/catalog/product/D1199 last accessed 2/4/2017 
2 Broadly, the DC of a neuron is defined as the ratio of the duration of the oscillator burst to the 

cycle period. 
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follower neurons inhibited by the pacemaker network. Thus, the maintenance of con-

stant phase in these follower neurons critically relies on the ability of the pacemaker 

ensemble to maintain a constant DC as frequency is changed. Recent studies on how 

pyloric neurons maintain their phase relationships with a relatively constant DC 

against temperature changes add further weight to such analysis [8]. 

2.1 Ratio of Harmonics (RH) 

Computationally, the DC of a pyloric neuron can be defined as the percentage of 

the time, in each (pyloric) cycle, that the displayed waveform by the neuron is above 

its mean membrane potential. This enables studying of the waveform using the classi-

cal theory of Fourier/harmonics analysis. Specifically, any non-sinewave periodic 

waveform contains energy at harmonics of the fundamental frequency (f). This can be 

illustrated using a simple rectangular pulse wave/train as shown in Fig. 1 below, 

where the DC (d = k/T) is defined as the fraction of time when the amplitude (A) of 

the wave is positive. Here, the Fourier series coefficients (an and bn) are computed by 

correlating the waveform, x(t), with cosine and sine waves over a full period T (or f = 

1/T). The results, described in most textbooks (e.g. [9]), are given in equation (1) 

which provides a complete description (based on the Fourier series expansion) of the 

harmonics (nf, n=1,2,…) contained in x(t). The latter can be used to characterize the 

pulse train and, in general, any periodic waveform
3
. In particular, the ratio of harmon-

ics (RH), which has been used in recent years to measure symmetry, or relevantly, 

rhythmicity, as a defining characteristic in the investigation of the impact of various 

pathologies on locomotion [10], offers an amplitude independent measure of the peri-

odic waveform of interest in this study; namely, RH21 =   /   and R31 =  /  , which 

are calculated as 
             and              respectively. 

                    ሺ ሻ     ∑             
                                        ሺ ሻ 

 

Fig. 1. An example pulse train x(t) (blue) with a duty cycle (DC) calculated as the ratio of k/T. 

3 Experimental Setup 

Adult Cancer pagurus were obtained from Hodgkinson Fresh Fish, Manchester; they 

were kept in artificial seawater tanks (red sea salt, Red Sea) at 12-14°C with 12h 

                                                           
3NB. The bn coefficients in this example are all zeros, as x(t) is symmetrical at t = 0 without 

loss of generality. 
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light-dark cycle. The STG sample was prepared following the protocol described in 

[11] and was stained with Di-4-ANEPPS dye (Cambridge Bioscience, UK) and sub-

sequently washed out using a saline flow. 

The extracellular recording was executed on the lvn, with the resulting signal fil-

tered and amplified by an AC differential amplifier before it was converted using 

Spike2 v8.07 (Power 1401, Cambridge Electronic Design, UK). The dyed STG was 

recorded using the MiCAM02 imaging system (SciMedia Ltd., Japan) simultaneously 

with the lvn recording. The optical data was extracted and exported using the BVAna 

imaging software (SciMedia Ltd., Japan) as a 3-D image stack written in CSV format-

ted spreadsheets, alongside a high-resolution image (HRI) of the sample. The HRI 

was used to identify neurons and select the pixels corresponding to the neurons as 

distinct regions of interest (ROIs). Signals corresponding to these ROIs were extract-

ed from the 3-D stack in the form of 1-D time series data [5]. 

4 Signal Processing  

To identify the pyloric neurons (PD, LP and PY) in the imaging data recorded from 

the dye-bathed STG, first we determined the three phases of the tri-phasic pyloric 

rhythm recorded on the lvn. This provided the discerning references with which the 

detected pyloric rhythm from the individual ROIs can be compared and analysed [5]. 

Here, so-called spike sorting techniques which were developed primarily to compare 

the waveforms of the individual spikes recorded extracellularly as “action potentials” 
of different neurons could be used [12].  However, while a detailed discussion or 

review on this approach is outside the scope of this paper, it should be noted that it is 

most difficult to identify the best algorithm with sufficient generality and also to de-

fine which spike sorter is the most appropriate given the task at hand [13]. In particu-

lar, the features-based approach that is primarily based on PCA and ICA to group 

spikes into clusters both rely on the orthogonality of components in a mixture and are 

unlikely to perform well, as the tri-phasic pyloric waveforms generated by the partici-

pating neurons are necessarily non-orthogonal [5]. Likewise, the template-based ap-

proach is unlikely to work well, as both the spatial and temporal variations displayed 

in the lvn would require the availability of an impractically large number of samples 

to be compared with the demonstrably noisy data obtained using the VSDi [5].  

Our solution is formulated using the widely studied multi-resolution technique of 

time-frequency analysis to deconstruct the regular and predictable phasing of the py-

loric activities recorded in the lvn [14].  Importantly, this is aided by the sequential 

Singular Spectrum Analysis (s-SSA) procedure, which we developed previously in [5] 

to extract the pyloric rhythm from the dye-bathed STG samples. As with the dye-

bathed image/data, the SSA-based procedure removed much of the noise from the lvn 

whilst preserving selectively the pyloric frequency and, relevantly, its higher order 

harmonics. The effect on the resulting spectrogram is depicted the Fig. 2.  
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Fig. 2. Spectrograms generated with wavelet (Morse) based time-frequency decomposition. 

The improvement on clarity afforded to the frequency responses of the SSA processed lvn, 

particularly at the lower frequency bands, can be seen in bottom spectrogram. The colour bar 

accompanying each figure represents the amplitude computed by the continuous wavelet trans-

form (CWT).  

The analytic Morlet wavelet, known for its superior time localization, was used to 

better localize the transients between individual phases of the pyloric rhythm from the 

relatively noise free recording on the lvn.  This was achieved by selecting in the con-

structed spectrogram a frequency band, where the amplitude response produced in the 

PY-led pyloric cycle is significantly lower than that in either of the LP-led and PD-led 

pyloric cycle. This is illustrated in Fig. 3, where the noise-free version of the lvn re-

cording and the end-of-cycle marker (*) are overlaid on the responses obtained in the 

selected frequency bands on which the PY-led cycles are effectively „silenced‟.  
 

 

Fig. 3. Responses of the analytic wavelet in different frequency bands where the PY cycle is 

„silenced‟. The noise-free lvn is overlaid to demonstrate the accurate time localization of the 

transients between LPPY and PYPD cycles.   
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5 Results and Discussions 

The transients of the PY bursts in each cycle obtained were used to reconstruct the PY 

phase of the pyloric cycle recorded in the lvn. The total wave energy of each cycle is 

also computed to approximate the average amplitude for the reconstructed pulse train; 

see Section 2.1. An example of the latter is shown in Fig. 4, where the PY 

phase/cycles were overlaid on the top of the lvn recording. Additionally, the duty 

cycle (DC) of each of these PY-led cycle/bursts were computed and their descriptive 

statistics calculated over the entire recording (32 pyloric cycles) are noted as follows: 

DCmean = 40.09%, DCs.t.d. = 6.61%,  DCmin= 26.02  and  DCmax = 50.15%. 

The spectral content of the reconstructed PY burst train (depicted in Fig. 4) was 

examined by computing the periodogram as shown in Fig. 5d, where the pyloric fre-

quency and its higher order harmonics are also noted; i.e., PR = 1.017Hz, RH21 = 

0.061 and RH31  = 0.029 which correspond to a DC of 41.5%, 38.75% and average DC 

of 40.13% respectively. These parameters would be used, in the final validation step 

(described below), to compare with those obtained from the optically recorded dye-

bathed data in the ground truth set.  The results are summarised in Fig. 5a, b & c. 

 

Fig. 4. Reconstruction of the PY burst train on the lvn recording (green background). The red 

asterisks are included to mark the end of each of the PD/burst cycle, to aid visual examination. 

The pyloric cycle of the three (known) PY cells taken from the dye bath was ex-

tracted using the previously described s-SSA procedure in [5]. Here, it should be not-

ed that this s-SSA procedure was adjusted to enable extraction of the higher order 

harmonic components of the pyloric frequency from the individual PY neurons. A 

periodogram is then constructed for each of these (PY) neurons in order to measure 

respective harmonics and, relevantly, the harmonic ratios, RH12 and RH13 from which 

the respective DCs can be calculated as follows: DCcell_1 = 39.5%, DCcell_2  = 39.9%, 

DCcell_3  = 38.1%. These figures represent the averaged DC values corresponding to 

the RH12 and RH13 shown in each figure (a, b and c) for the respective cells (1, 2 and 

3) in Fig. 5. Finally, the time delay between the optical and lvn recordings was com-

puted using the Hilbert transform approach, whereby the instantaneous phase of the 

PY-cycle separate from each recording was obtained from the respective Hilbert spec-

tra [15]. Here, the ability to effectively unpick the mono-frequency component of the 
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pyloric rhythm by the s-SSA procedure developed in [5] was evident.  The results are 

summarized in Fig. 6, where it is shown that the timing lag between the individual PY 

cell and the lvn maintains an expectedly constant mean phase shift of 3.34 radians 

(s.t.d = 0.24 rads). 

 

Fig. 5 Periodograms constructed for the individual cells (Fig. 5a,b&c) and the reconstructed PY 

burst (Fig. 5d), showing the pyloric frequency, 2nd and 3rd harmonics at 1.107Hz, 2.035Hz and 

3.052Hz respectively. The ratios of harmonics, RH12 and RH13 are also given in each case. 

 

Fig. 6. Plots of the instantaneous phase shifts between the optical and lvn recordings obtained 

for the PY cells. The instantaneous phase changes of the lvn recording over the 32 pyloric 

cycles are also shown as a reference (green). 

6 Conclusions 

The ability to locate circuit neurons and simultaneously record from them at single-

cell resolution is fundamental to understanding the full-scale network behaviour of 

neural systems.  In STG, the traditional method to identify pyloric neurons by intra-
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cellular recording can be challenging and VSDi, an optical recording technique which 

simultaneously measures the membrane potential of multiple neurons, offers a prom-

ising solution. However, analysing features of VSDi based recordings of these neu-

rons in relation to the PR obtained on the lvn is an exacting task, requiring the devel-

opment of sophisticated computational/signal processing techniques that aim to de-

code the intrinsically tri-phasic pattern of the PR. Using DC as a biologically mean-

ingful biometric, this paper demonstrates a practical means of achieving this aim. 

Importantly, the proposed solution required few manual adjustments and thus lends 

itself to potential real-time implementations. 
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