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1. Introduction 
 

 

Growing experimental evidence from humans and non-humans (Ainslie, 1992; 

Lowenstein and Prelec, 1992; Angeletos, Laibson, Repetto, Tobacman and Weinberg, 

2000; Frederick et al., 2002; DellaVigna and Malmendier, 2006; DellaVigna, 2009; 

Sprenger, 2015) shows a present-bias and impatience in intertemporal decision-

making, in sharp contrast to the predictions of exponential/geometric discounting. 

Such behaviour can be captured by a discount factor that takes the form of a 

generalised hyperbola, leading to the label ‘hyperbolic discounting’ (HD).
1
 Present 

bias and HD have important implications for many areas in dynamic macroeconomics 

(consumer behaviour, saving, pensions) including the theory of growth. There is a 

growing interest in the effects on growth-related issues as witnessed by Barro (1999), 

Strulik (2015) and Cabo, Martín-Herrán and Martínez-García (2015). Our paper 

relates to this strand of literature; specifically, we analyse the effects of hyperbolic 

discounting within a continuous-time, representative-agent, deterministic growth 

model.  

 

As is well known since at least Strotz (1956; see also Frederick et al., 2002; Sprenger, 

2015), in general, non-exponential/geometric discounting scheme induces time 

inconsistency:
2
 The same intertemporal dilemma will receive different resolutions as 

the planning period gets nearer to it in time. If so, the perturbation arguments that 

underlie the Euler equation are not valid. To resolve this difficulty, one may assume 

full commitment to the initial plan via e.g. a saving plan or the purchase of illiquid 

assets such as housing; the analysis of full commitment has been carried out by Barro 

(1999) and Tsoukis (2014). In this case, the Euler equation is re-instated (optimisation 

is carried out once only at the beginning of time). But commitment is often not sought 

even if there are grounds to believe that it may be beneficial (Laibson, 2015; 

O’Donoghue and Rabin, 2015). Assuming away commitment, the alternative route is 

to seek a time-consistent maximisation procedure for the representative agent. In 

continuous time, this has been developed by Barro (1999), following Pollak (1968).  

 

In line with Barro (1999) and much other literature, we postulate a ‘sophisticated’ 

presently-biased individual, namely one who is aware of their present bias and 

internalises the implications. Another approach to dealing with time-inconsistency is 

to assume that the individual is ‘naïvely presently-biased’, whereby the individual 

does not realise that their plans will be changed the next instant; see e.g. Strulik 

(2015), Caliendo and Adland (2007) and Farzin and Wendner (2014). The 

‘sophisticated’ case is analytically more cumbersome, as the re-optimised plan 

tomorrow is taken into account today, but more internally consistent. In reality, 

individuals may not be either perfectly sophisticated or perfectly naïve (see Frederick 

et al., 2002).
3
 

 

We propose a hybrid exponential-HD discount factor that is both tractable and 

plausible; we show that the exponential part is required alongside the HD part. Our 

                                                           
1
 There is a strand of literature that assumes declining impatience by modelling the discount factor on 

consumption (see Frederick et al., 2002); this insight is outside our scope.  
2
 An exception is suggested by Drouhin (2009) which considers a multiplicatively separable hyperbolic 

discount function which in fact supports a time-consistent solution. 
3
 Note however that neither Barro (1999) nor Strulik (2015) explicitly use such terminology. 
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model of HD also generalises the ‘beta-delta’ discounting scheme typically employed 

in discrete time models (e.g. Laibson, 1997; Harris and Laibson, 2001; Krusell and 

Smith, 2003).
4
 Laibson (1997) takes credit for re-awakening interest on present bias; 

he applies his discrete-time setup to a neoclassical model with exogenous growth. 

Moreover, we make the following advances over other closely related contributions: 

We considerably extend the analysis of Barro (1999) by fully analysing the case of 

iso-elastic preferences and endogenous growth, on which Barro (1999) is rather 

tentative. In extending these results, Cabo, Martín-Herrán and Martínez-García (2015) 

considers a more general HD discount factor with the same properties in the context 

of an AK model, much as we do. Our advances over their analysis are several: firstly, 

we develop explicit dynamics of the composite discount rate and relate that to the 

interest rate/productivity that follows exogenous dynamics. Secondly, as explained 

below, we start from a formulation that allows a clear economic interpretation of the 

composite discount rate (as the consumption-intertemporal resources ratio, the main 

‘grand ratio’ of our balanced growth path), in contrast with their analysis in which 

such an interpretation is not possible. Finally, Cabo et al. (2015) do not offer closed-

form results, as we do. In all, within our continuous-time setup, we offer the most 

integrated and analytically tractable model of HD in growth.  

 

More specifically, the first part of the paper develops a time-consistent maximisation 

procedure proposed by Barro (1999) under a sophisticated bias and derives and fully 

characterises the dynamic behaviour of the consumption-intertemporal resources 

ratio. We then embed this analysis into a continuous-time, flexible AK model and 

derive closed-form solutions. In terms of steady state, we derive a rich set of results 

on growth, the consumption-capital ratio, saving and the ‘r-g’ relation (to be 

explained below). Though the setup involves a representative agent, there are indirect 

implications for income distribution via this differential. Though the framework is 

non-stochastic, we allow for a business cycle by letting the exogenous driver 

fluctuate. Finally, the model provides the foundation towards an extension to flexible 

labour and a more thorough integration of HD into growth theory.  

 

To pre-amble, we show that the presence of present-bias increases the individual’s 

propensity to consume out of lifetime wealth and reduces saving and the growth rate 

in the steady state. Furthermore, the wedge between the real interest rate and the 

growth rate (r-g) also rises; this wedge in the view of Piketty (2014, 2015) may 

increase income inequality (a point on which we do not dwell further). In terms of 

transitional dynamics, a standard AK model with exponential discounting can be 

interpreted as a limiting case of the more general framework presented here. We show 

that HD results in intrinsic dynamics richer than the entirely extraneous dynamics of 

the standard AK model when the exogenous driver of productivity, here equal to the 

interest rate, exhibits its own dynamics. Near the benchmark case of no HD, we find 

that a greater present-bias and intensity of HD makes the consumption-capital ratio 

more procyclical and variable. In other words, present-bias induces individuals to 

consume guided more by current and less by permanent income than otherwise. This 

potentially resolves the long-standing ‘consumption-output puzzle’ in standard 

models by bringing the predicted consumption-output ratio closer to that observed in 

the data. As a result, the level of capital is lower under HD. In other words, in addition 

                                                           
4
 Zou et al. (2014) develops a stochastic discount factor, from which we abstract. 
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to the steady-state growth rate effects, we also point out level effects as a result of 

transitional dynamics.  

 

An important aspect of all our results is that the form, and not only the amount of 

discounting, plays a key role. In order to distinguish between amount and form of 

discounting, we use a present value-equivalent (PVEE) discounting scheme that is 

purely exponential but does the same amount of discounting in some sense as our 

hybrid HD scheme. All effects derived under our scheme markedly differ from those 

under the ‘PVEE’ scheme. This includes results on both steady-state and transitional 

dynamics. Thus, there is no observational equivalence: Economies that differ in their 

pattern of discounting behave quite differently. We discuss related literature briefly 

before summarising our own findings in Corollary 7.  

 

The remainder of the paper is organised as follows. In Section 2, we present a simple 

model with HD and derive a set of results related to the marginal propensity to 

consume. In Section 3, we characterise the transitional dynamics of this variable. In 

Section 4, we embed this analysis into a standard AK model and derive steady-state 

and dynamic results. We conclude in Section 5. A series of Online Appendices (A-E) 

elaborate on the most technical aspects of our results.  

 

 

 

2. Hyperbolic discounting without commitment 
 

 

2.1: Exponential versus hyperbolic discounting (HD) 

 

As in Barro (1999) and others, the framework assumes an infinitely-lived, 

representative-agent model where preferences are characterised by HD and there is no 

commitment mechanism; time is continuous; utility is assumed iso-elastic. At the time 

of planning (t), the individual is assumed to maximise:  

 

𝑈𝑡 ≡ ∫
𝐶
1−

1−
(, 𝑡)𝑑𝜏



𝑡
,       (1) 

 

where C is real consumption and  the inverse of the elasticity of substitution. 

Empirical evidence suggests that the intertemporal elasticity of substitution is less 

than unity, (e.g. Hall, 1988), i.e., >1; we maintain this assumption in the sequel, but 

we shall also briefly consider the commonly-used benchmark case of log-utility 

(=1). 

 

Assumption 1:  > 1 

 

Our discount factor is given by:  

 

(, 𝑡) ≡ exp⁡{−𝜌(− 𝑡)}(1 + δ(− 𝑡))
−φ/𝛿

, , ,   0  (2) 
 

which involves a mix of exponential and HD-based discounting: The former involves 

the standard discount rate, >0; the latter is parameterised by (a) the strength of HD 
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discounting,  0<1, and (b) an index of present-bias, >0.
5
 Note that the exact 

functional form proposed here is one contribution of the present paper. 

 

For the parameters shown, the discount factor (2) has the usual properties: 

 

(𝑡, 𝑡) = 1,  𝑙𝑖𝑚𝜏→∞(, 𝑡) = 0, 
𝑑(,𝑡)

𝑑φ
< 0, 

𝑑(,𝑡)

𝑑
> 0  

 

𝑙𝑖𝑚0(, 𝑡) = exp⁡{−(𝜌 + φ)(− 𝑡)} ,   𝑙𝑖𝑚(, 𝑡) = exp⁡{−𝜌(− 𝑡)} 
 

The associated discount rate is:  

 

−
d(,𝑡)

𝑑

(,𝑡)
= 𝜌 +

φ

1+(−𝑡)
.       (2’) 

 

This discount rate begins high and asymptotically drops to the exponential discount 

rate (). As a result, the individual is more ‘presently-biased’, exhibiting higher  

impatience in any intertemporal dilemma the nearer it appears in the future. It is easy 

to check that a rise in  decreases the distant-future discount rate in relation to the 

near-future one, i.e. makes the present-bias more pronounced.  

 

The HD part of (2) is standard, see e.g. Al-Nowaihi and Dhami (2008). Our 

innovation is to combine this with an exponential part, and to restrict the 

configuration of parameters by Assumption 2. In the present framework, an 

exponential part is included both because of the need to have a positive discount rate 

asymptotically (see Proposition 1 and Corollary 1 below) and because in a growth 

context variables like consumption will be growing exponentially in the steady state; 

hence calculation of lifetime utility will necessarily involve integration of exponential 

and hyperbolic elements. In a recent contribution with a similar dynamic system as 

our own, Cabo, Martín-Herrán and Martínez-García (2016) have shown that non-

exponential discounting facilitates the appearance of non-standard, non-exponential 

patterns of growth; but investigation of such possibilities is beyond our scope.  

 

It should be noted that the issue of what exactly is the appropriate form of the 

discount factor in (2) is not settled (see, e.g., Frederick et al., 2002, footnote 13; 

O’Donoghue and Rabin, 2015; Findley and Caliendo, 2014). Following Loewenstein 

and Prelec (1992), al-Nowaihi and Dhami (2008) use a generalised hyperbola without 

any exponential portion. This however implies that the discount rate in the distant 

future is arbitrarily low, implying arbitrarily high patience asymptotically; there is no 

particular reason to think that this is the case. In general, Barro (1999) uses a hybrid 

exponential-hyperbolic formulation; for tractability, in parts of his analysis, he uses an 

exponential discount rate. As mentioned, the formulation of Cabo, Martín-Herrán and 

Martínez-García (2015) is more general but does not give rise to closed forms. Our 

formulation is a special case of Barro’s (1999) general functional form that allows 

tractability (cf. Proposition 1).  

 

                                                           
5
 To use a metaphor, one knob () turns the water on-off while the other () adjusts the temperature. 

We show that the effects of these parameters are quite similar; we refer to them (jointly and 

interchangeably) as the intensity of HD and/or present bias. 
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In order to facilitate comparisons with the standard model, following Strulik (2015), 

we postulate a purely exponential discount rate  that is equivalent in present-value 

terms to the mixed exponential-HD of (2); i.e., we define a >0 such that:  

 

∫ exp⁡{−(τ − t)}𝑑𝜏


𝑡
≡ ∫ (, 𝑡)𝑑𝜏



𝑡
     (3) 

 

As Appendix A shows in detail, under Assumption 2, the RHS of (3) can be 

integrated to yield: 

 

 =

φ/ρ1−φ/

(1−φ/)
         (3’) 

 

Obviously, 𝑙𝑖𝑚𝜑→0 = : the purely exponential case emerges as a special case of 

our framework. Furthermore, as Appendix A shows, we also have: 

 
𝑑

𝑑
> 0 ,  

d

d
> 0        (3’’) 

 

 increases with the intensity of HD and present bias. By defining a discount rate () 

that does the same ‘amount’ of discounting in a present-value sense allows us to 

differentiate between the form and the ‘amount’ of discounting. We shall indicate as 

‘present value-equivalent’ (superscripted ‘PVEE’) the propensity to consume () and 

the growth rate that would result from purely exponential discounting at rate . 

Furthermore, for comparison, we shall also derive results under an exponential-only 

discounting scheme (=0, >0), indicated by superscript ‘EXP’. Results under the 

PVEE and EXP schemes are to be contrasted with those under the hybrid scheme 

(superscripted ‘HD’), which is our main focus.  

 

The root of the time inconsistency problem is that, according to the scheme in (2), 

discounting between two future times ’>>t depends not only on the difference ’- 

(as in the exponential case) but also on the time of planning period (t) itself; to see 

this, write such discounting between these future dates evaluated now as:  

 

̅(′, ; 𝑡) ≡
(′,𝑡)

(,𝑡)
= exp⁡{−𝜌(′ − )}

(1+δ(−𝑡))
−φ/𝛿

(1+δ(′−𝑡))
−φ/𝛿. 

 

As a result, the perturbation argument underlying the standard Euler equation is not 

valid as the results depend on the horizon which we are considering. Developing the 

analyses of Strotz (1956) and Pollak (1968), Barro (1999) has presented a 

perturbation argument which is time-consistent as it depends on a ‘policy’ rule 

(consumption rule) and the resulting consumption dynamics that are both time-

consistent.  We follow this procedure here.
 
 

 

In order for integration involving (2) to converge with sensible properties, we impose:  

 

Assumption 2:  ,  > 0; 0 < / < 1;    /exp{1} <  <  for a >1 defined as: 
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ln⁡1 + ln⁡(ρ) −
′ (1 −

1

)

 (1 −
1
⁡)

 

 

where (.) is the Gamma function.  

 

Proposition 1:  

Under the parameter restrictions of Assumption 2, the discounting scheme (2) and (2’) 

has a number of desirable properties:  

- Tractability: it allows closed-formed solutions; 

- Consistency:  a rise in  signifies both a rise in present-bias, and an increase in 

overall discounting in the sense that 
d

d
> 0; 

- Generality: The model boils down to the purely exponential scheme when 

=0, which is therefore a special case of our framework. 

 

Proof: Tractability is due to the fact that expressions involving (2) under Assumption 

2 are integrable owing to /<1; consistency: as mentioned, a rise in  raises both the 

discount rate of the near future relative to that of the distant future, and increases the 

overall discount rate, , see (3-3’’) below; generality: we show that the model’s 

features boil down to those of the purely exponential scheme at key points below.      

 

Notice that the restrictions in Assumption 2 resolve a tension: In this range of 

parameters, a rise in  both increases present-bias but also discounts more heavily 

over the life time ( rises, see below). Outside it, a rise in  increases the near-future 

discount rate in relation to the distant-future one (i.e., increases present-bias), but 

decreases overall discounting; which seems a contradiction. This ambiguity in the 

role of  seems to have gone unnoticed in existing literature. Assumption 2 resolves it. 

 

 

2.2: A time-consistent procedure 

 

Following Barro (1999), the utility functional (1) may be linearised as:
 

 

(1 − )𝑈𝑡 = 𝜀𝐶𝑡
1− + ∫ 𝐶

1−(, 𝑡)𝑑𝜏


𝑡+𝜀
.     (1’) 

 

This expresses intertemporal utility as two portions, a (linearised) flow of 

instantaneous utility for some for a sufficiently small period of time >0 ahead, and 

the standard utility functional thereafter (discounted at t). The strategy is to consider a 

possible perturbation whereby the consumer changes consumption starting at t, and 

then uses the proceeds of that change to reset their consumption at t+ and beyond; 

this information is given by the consumer’s budget constraint and some postulated but 

time-consistent consumption dynamics.  

 

More formally, the perturbation should leave utility at time t unaltered, if the 

consumer is on an optimal path. Accordingly, the change in lifetime utility from a 

change in Ct is: 
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𝑑𝑈𝑡

𝑑𝐶𝑡
= 𝜀𝐶𝑡

− + {∫ 𝐶
− 𝑑𝐶𝜏

𝑑𝐶𝑡+𝜀
(, 𝑡)𝑑𝜏



𝑡+𝜀
}
𝑑𝐶𝑡+𝜀

𝑑𝐾𝑡+𝜀

𝑑𝐾𝑡+𝜀

𝑑𝐶𝑡
= 0.   (4) 

 

This approach allows the entire stream of consumption, and not only consumption at a 

specific point in time as in the perturbation underlying the Euler equation, to be 

potentially affected after the initial change; this is key to delivering time consistency. 

The total effect on utility from a change in current consumption is made up of the sum 

of the direct effect on utility for as long as the initial change occurs () plus the effect 

on discounted utility from the change in consumption at t+. Furthermore, to gauge 

the change in future consumption, one needs an evolution formula for consumption 

from t+ onwards (the ratio inside the curly brackets), the effect of altered assets at 

t+ on consumption at t+ (a kind of propensity to consume out of assets, the first 

ratio outside the curly brackets), times the effect on assets at t+ from changed 

consumption at t (the second ratio). We consider these effects in turn.  

 

The individual’s budget constraint is expressed as: 

 
𝑑𝐾𝑡

𝑑𝑡
= 𝑟𝑡𝐾𝑡 +𝑊𝑡 − 𝐶𝑡,       (5) 

 

where Kt are assets, rt is the rate of interest, and Wt the labour income of the 

individual (all in real terms). The real interest rate need not be time-invariant; in fact, 

as it reflects the marginal productivity of capital, we shall take it as an exogenous 

driver of growth in what follows. Written as an approximation in terms of the small 

but finite period of time , this equation reads: 

 

𝐾𝑡+𝜀 = (1 + 𝜀𝑟𝑡)𝐾𝑡 + 𝜀𝑊𝑡 − 𝜀𝐶𝑡.      (5’) 

 

The labour income (W) will be linked to the production function, to be specified 

below. The main point here is, it is exogenous to the individual. Therefore,  

 
𝑑𝐾𝑡+𝜀

𝑑𝐶𝑡
= −𝜀.         (5’’) 

 

Evaluating the effect of higher assets at t+ on consumption at that time and beyond 

(𝑑𝐶𝑡+𝜀/𝑑𝐾𝑡+𝜀) is trickier. Following Barro (1999), we conjecture that there is a 

‘propensity to consume’ out of current assets and life-time labour income, defined by: 

 

𝜆𝑡 ≡
𝐶𝑡

𝐾𝑡+𝑊̅𝑡
> 0.        (6) 

 

Formally, t is defined as the consumption-intertemporal resources ratio; it will play a 

prominent role in what follows. It is allowed to be non-constant in dynamics, but will 

be the constant ‘grand ratio’ in the balanced growth path. Under purely exponential 

discounting, t reduces to the standard non-linear function of the interest rate and the 

exponential rate of time preference. Effectively, (6) gives the individual’s 

hypothesised policy rule. Even though it is time-varying, the resulting outcome is 

time-consistent, as we explain below.
6
  

                                                           
6
 This is a good place to state more precisely a point of difference of our analysis with both Barro 

(1999) and Cabo et al. (2015). Our starting point (6), equivalently (6’) is Barro’s (1999) eq. (10) which 

is postulated under log-utility. We generalise that by considering more general preferences and 
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(6) implies a consumption path equal to:  

 

𝐶𝑡 = 𝜆𝑡(𝐾𝑡 + 𝑊̅𝑡),        (6’) 

 

Life-time labour earnings, 𝑊̅𝑡, are defined as: 

 

𝑊̅𝑡 = ∫ 𝑊𝜏𝑒𝑥𝑝{−∫ 𝑟𝑣
𝜏

𝑡
𝑑𝑣}𝑑𝜏



𝑡
,      (7) 

 

Thus, using (7), we obtain: 

 

       
𝑑𝑊̅𝑡

𝑑𝑡
= −𝑊𝑡 + 𝑟𝑡𝑊̅𝑡. 

 

Using this and the budget constraint (5) into (6’), we get an expression for the 

dynamics of consumption: 

 

𝑑𝐶𝑡/𝑑𝑡 = (𝑟𝑡 − 𝜆𝑡)𝐶𝑡 + (𝑑𝑡/𝑑𝑡)𝐶𝑡/𝑡 ,     (8) 

 

This equation replaces the Euler equation of consumption dynamics in the standard 

framework. The novelty of this setup in relation to standard theory is the existence of 

𝜆𝑡, as mentioned. Hence, consumption at any time t+ is given by: 

 

𝐶𝜏 = 𝑒𝑥𝑝{∫ (𝑟𝑣 − 𝜆𝑣 + 𝜆̇𝑣/𝑣)𝑑𝑣
𝜏

𝑡+𝜀
}𝐶𝑡+ ,     (8’) 

 

with 𝜆̇𝑣 ≡ 𝑑𝑣/𝑑𝑣.  

 

Inserting the information from the budget constraint (5’’), the policy rule (6’) and 

consumption dynamics (8’), we are able to express the perturbation in (4) as:  

 

0 = 𝜀𝐶𝑡
− − 𝜀𝑡+𝐶𝑡+

− {∫ exp[(1 − )Λτ−t−ε](, 𝑡)𝑑𝜏


𝑡+𝜀
},   (9) 

 

where 

 

Λτ−t−ε ≡ ∫ (𝑟𝑣−𝜆𝑣 + 𝜆̇𝑣/𝑣)𝑑𝑣
𝜏

𝑡+𝜀
.      (10) 

 

 

Letting 0, we impose Ct+Ct, otherwise there would be discrete jumps in the path 

of consumption. Re-arranging (9), we get a value for the propensity to consume: 

 

                                                                                                                                                                      

allowing for a variable t (constant under log-utility); differentiating (6’), we get (8). Note that under 

log-utility, (8) reduces to 
𝑑𝐶𝑡

𝑑𝑡
= (𝑟𝑡 − 𝜆)𝐶𝑡, as  is constant; this is derived in Barro from (6’ – his eq. 

10). In considering more general preferences, however, Barro (1990, eq. 30) hypothesises an analogue 

to that in the manner of the Euler equation, which is 
𝑑𝐶𝑡

𝑑𝑡
=

1

𝜎
(𝑟𝑡 − 𝜆𝑡)𝐶𝑡 ; and Cabo et al. (2015, eq. 6) 

use that. However plausible, this is not compatible with (6’), as can easily be checked. The main 

problem with this formulation is that it does not allow an interpretation of  as the consumption-

intertemporal resources ratio (intuitively: the ‘propensity to consume’); but, based on Barro’s eq. (10), 

we do maintain this interpretation. Thus, our approach generalises that of Barro’s Section 3, we 

therefore develop it explicitly.    
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𝑡 =
1

∫ exp[(1−)Λτ−t](,𝑡)𝑑𝜏


𝑡

.       (11) 

 

Time-consistency has now been achieved: The propensity to consume t does not 

depend on  (after integration), therefore it imposes the same rule on consumption at 

any given time irrespective of the timing of planning.   

 

 

2.3: Steady state 

 

Here, we characterise the steady state of equations (10) and (11). With constant r and 

, the former becomes: 

 

Λτ−t = (r − 𝜆)(τ − t) 
 

Introducing this into (11), we get:    

 

 =
1

∫ exp⁡{(τ−t)}(1+δ(−𝑡))
−φ/𝛿

𝑑𝜏


𝑡

 ,      (12) 

 

Where,  

 

 ≡ −+ (1 − )(r − ).       (13) 

 

Integrating the denominator in (12) in a completely analogous manner to (3’), we get:  

 

 =
(−)1−φ/

(1−φ/)

φ/

        (14) 

 

Equations (13) and (14) define a non-linear static system, depicted in Figure 1 in (-, 

) space:  

 

 

Figure 1: The steady-state system 

  

      

   
 

 

        (14)          

 (13) 

   
                        

              

                   
       

           

 

             0         + (− 1)𝑟    - 
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We obtain:  

 

Proposition 2: 

 

a) There exists a unique steady-state equilibrium (HD
, HD

); 

b)  0<HD
<r; 

c) dHD
 /d > 0; 

d) dHD
 /d > 0;  

e) dHD
 /d > 0;  

f) dHD
 /d > 0;  

g) 0 < dHD
 /dr < 1; 

h) Under the EXP and PVEE schemes, 𝐸𝑋𝑃 = ρ+(−1)𝑟


 and 𝑃𝑉𝐸𝐸 = +(−1)𝑟


, resp.; 

i) EXP
 < PVEE

 < HD
. 

 

Proof: 

a) A simple geometric argument based on Figure 1 establishes the existence and 

uniqueness of equilibrium: (14) is upward-sloping because of 0<1, /<1; 

while the slope of (13) is −
1

(−1)
< 0 (from Assumption 1). As the loci are 

monotonic and with slopes of opposite signs, they do intersect once only in the 

positive quadrant; 

b) See Appendix B; 

c) By analogy with (3’’), using Assumption 2;  

d) By analogy with (3’’), using Assumption 2; 

e) We have from (13) that 
d(−HD)

d
= r − HD − 

dHD

d
 and from (14) that 

dHD

d
= (1 −

φ


)

HD

−HD
d(−HD)

d
. Therefore, 

d(−HD)

d
=

r−HD

1+(1−
φ


)
HD

−HD

> 0, 

therefore 
dHD

d
> 0 since by part (b) of the Proposition, r-

HD
>0; 

f) A rise in  shifts (13) right; therefore, the equilibrium ‘slides’ up (14), 

establishing the result;  

g) A rise in r also shifts (13) right; by analogy with (e), the positive sign of the 

result follows. Furthermore, combining (13) and (14) we have:  

𝐻𝐷 = r +
−[

𝐻𝐷


φ/(1−φ/)]

1/(1−
φ

)

−1
, from which we get:  

 

 
𝑑𝐻𝐷

𝑑𝑟
= 1/ (1 +

1

1−
φ



(−)𝐻𝐷

𝐻𝐷
1

−1
). From (13), 

(−)𝐻𝐷

𝐻𝐷
1

−1
=



(−1)𝐻𝐷
+

r

𝐻𝐷
−

1 > 0. Therefore, the ‘<1’ part of the clause readily follows.  

 

h) The PVEE and EXP special cases are defined by the following variants of (13) 

and (14) (setting =0 and using either  or ):  

 

𝑃𝑉𝐸𝐸 ≡ −ρ+ (1− )(r − 
𝑃𝑉𝐸𝐸).     (13’) 

 


𝑃𝑉𝐸𝐸 = −𝑃𝑉𝐸𝐸 +  −       (14’) 

 

and 
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𝐸𝑋𝑃 ≡ −ρ+ (1− )(r − 
𝐸𝑋𝑃).     (13’’) 

 


𝐸𝑋𝑃 = −𝐸𝑋𝑃        (14’’) 

 

i) From (13’/14’) and (13’’/14’’), we see that  
 


EXP

 < 
PVEE

        (15) 
 

follows trivially from >. We focus on 
PVEE

<
HD

 next. From (14) and (3’) 

we have: 

 

𝐻𝐷 =
(−𝐻𝐷)1−φ/

(1−φ/)

φ/ = (

−𝐻𝐷


)1−φ/ >      

  

The inequality follows from r>
HD

 as is required for positive steady-state 

growth, therefore −𝐻𝐷 > . On the other hand, from (13’) and (14’), we get:  

 

𝑃𝑉𝐸𝐸 = + (1− )(r − 

𝑃𝑉𝐸𝐸) <  

 

This establishes that:  

 


PVEE < 

HD
       (16) 

 
 

Apart from establishing the uniqueness and existence of steady-state equilibrium, 

Proposition 2 is key in several other respects. Part (b) implies the existence of a 

positive steady-state growth rate. Parts (c) and (d) jointly establish that a greater 

present-bias leads to more current (as opposed to future) consumption. Part (e) 

establishes that a rise in the intertemporal elasticity of substitution (decline in ) 

decreases the current propensity to consume, an intuitive property (a rise in this 

elasticity implies that the individual can shift consumption towards the future by more 

if the incentives are right). Part (i), particularly inequality (16), is key, implying that 

the form of discounting matters and not just its ‘quantity’: The PVEE schemes and 

HD involve an equal amount of discounting in a present value sense, yet the latter 

implies a greater propensity to consume. By (8), this also yields a lower steady-state 

growth; we defer this discussion till later.  

 

Furthermore, it is also straightforward to establish a further point related to the case of 

log utility (=1); though not supported by evidence, this is a common benchmark in 

much theoretical work.  We see that, if =0 and =1 (against Assumption 1), (13) and 

(14) yield the trivial equilibrium *=*=0. To eliminate this possibility, we require 

>0: 

 

Corollary 1: 

In the case of log utility (=1), the discount factor must contain a non-trivial 

exponential portion with a positive discount rate alongside the HD portion.  
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3. Short-run dynamics of t 
 

 

3.1: The system 

 

The dynamic equation is given by (11), using (10) and (2); it may expressed as the 

following system (letting 0): 

 

𝑡 =
1

∫ exp[−𝜌(−t)+(1−)Λτ−t](1+δ(−t))
−φ/𝛿

𝑑𝜏


𝑡

.    (17) 

 

Λτ−t ≡ ∫ (𝑟𝑣−𝜆𝑣 + 𝜆̇𝑣/𝑣)𝑑𝑣
𝜏

𝑡
.     (18) 

 

Linearising and expressing in terms of deviations from the steady state, we get the 

following dynamic equation:  

 

̇𝑡 = EXP⁡̃𝑡 +

HD


(1 − )𝑟̃𝑡 −


HD⁡


(1 − )γΛ̃t   (19) 

 

We use the following notational conventions:  

- 𝐸𝑋𝑃 ≡
𝜌−(1−)𝑟


 , cf. (13’’) and (14’’);  

-  
HD

 is the steady-state value of t – the superscript differentiates it from 𝐸𝑋𝑃; 

- a tilde on the propensity to consume indicates a deviation from the steady 

state, i.e., ̃𝑡 ≡ 𝑡 −  and similarly with Λ̃t;  

- 𝛾 ≡ 
(1−φ/)

(−+δ)1−φ/φ/
 .                 (20) 

 

Appendix C reviews the properties of (20) in more detail.  

 

From (10), we have in deviations form: 

 

Λ̃t ≡ ∫ (𝑟̃𝑣−𝜆̃𝑣 + 𝜆̇𝑣/𝜆𝑣)𝑑𝑣
∞

𝑡
,      (21) 

 

implying: 

 

Λ̇̃t = −𝑟̃𝑡 + 𝜆̃𝑡 − 𝜆̇𝑡/
HD

 .      (21’) 

 

(19) and (21’) can be consolidated as: 

 

Λ̇̃t = −
𝑟̃𝑡


+ (1 −


EXP


HD ) 𝜆̃𝑡 +

1−


γΛ̃t     (22) 

 

Equations (19) and (22) are a 2x2 first-order, linear differential system in ̃𝑡 and Λ̃t.   
 

 

3.2: The purely exponential special case  

 

It is instructive to review briefly the case of purely exponential discounting/no HD, 

shown by 
HD

=
EXP

 and =0 in (22). In this case, the system collapses to:  
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̇𝑡 = 𝐸𝑋𝑃̃𝑡 +
𝐸𝑋𝑃


(1 − )𝑟̃𝑡,     (23) 

 

for which the solution is entirely forward-looking:  

 

̃𝑡 = −𝐸𝑋𝑃
(1−)


∫ exp{−𝐸𝑋𝑃(𝑣 − 𝑡)}𝑟̃𝑣⁡𝑑𝑣
∞

𝑡
.   (24) 

 

Thus, even in the absence of any present-bias, there will exist non-trivial, but entirely 

extraneous, dynamics of t, providing it is purely exponential. There are two 

implications from this: The dynamics under purely exponential discounting is not 

different from the standard framework, where the exogenous driver also elicits purely 

extraneous dynamics. Secondly, the dynamics under PVEE will differ from the HD 

case although the ‘amount’ of discounting in the two cases is the same. Sub-Section 

4.4 below shows that the dynamics in the HD case under an evolving external driver 

is not trivial and not purely extraneous.  

 

In our framework, the dynamics of consumption is given by (8) and, evaluating at 

𝑡 = 𝐸𝑋𝑃, it may be re-written as:  

 

𝐶̇𝑡

𝐶𝑡
= (𝑟̃𝑡 − ̃𝑡) +

[𝐸𝑋𝑃̃𝑡+
𝐸𝑋𝑃


(1−)𝑟̃𝑡]

𝐸𝑋𝑃
=

𝑟̃𝑡


     (8’) 

 

This is standard. Thus, from the point of view of consumption dynamics as well, the 

standard theory is a special case of this framework under no HD.  

  

 

3.3: The general case: Properties of the system (19, 22) and diagrammatic exposition 

  

Appendix C has the full details. Under Assumption 1, the system’s eigenvalues are 

real and of opposite signs, and are given by:   

 

2𝑞1,2 = 𝐸𝑋𝑃 +
1−


𝛾 ± √(EXP +

1−


𝛾)

2

− 4

HD


(1 − )   (25) 

 

The eigenvalues have the following properties:  

 

a) 0 < 𝑞1 ; 

 

b) 𝑞2 ≤ 0  with equality when =0 (no present-bias).  

 

The equilibrium is saddle-point stable; the full dynamics is described in Appendix C. 

The major point that emerges here is that the existence of the negative eigenvalue will 

generate non-trivial intrinsic dynamics, in sharp contrast to the counterpart case under 

purely exponential discounting. Below, we illustrate the dynamic adjustment; in 

Section 4, we outline the implications in the context of a simple ‘AK’ growth model.  
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Figure 2: Dynamics 

 
 

 
 

Figure 2 illustrates the saddle-point equilibrium implied by equations (19) and (22) in 

(t, t) space, under the textbook case of a constant external driver (here r). The stable 

arm is downward-sloping. For illustrative purposes, let A be the initial steady-state 

equilibrium and let the interest rate r rise once-and-for-all. From Proposition (2g) and 

(18), both  and  rise in the steady-state; therefore the new equilibrium (B) will be 

northeast of A. Since the system is a saddle point, stability requires that there be a 

predetermined and a ‘jump’ variable (Turnovsky, 1995, Ch. 6; Buiter, 1982). We 

assume that t is a ‘predetermined’ variable, unable to jump and to cause any 

instantaneous jump in consumption; while t, as it is a forward sum, is able to change 

instantaneously. Note that this assumption may be underpinned by ‘habits’ in 

consumption (not modelled explicitly), which imply that individuals are reluctant to 

change consumption too much at any particular moment. Therefore, at the time of the 

exogenous change, there is an instantaneous jump up only of t; thereafter, t 

gradually increases and t decreases to correct the overshoot. The stable arm becomes 

flatter with a greater degree of present-bias; in that case, t jumps up by less and 

subsequently corrects by less; therefore |Λ̇̃t| decreases. This finding underpins some 

of the results below: To preamble, we shall see that the consumption-capital ratio 

rises, therefore a greater present bias leads to more consumption now and less saving 

and growth.  

 

 

3.4: The general case: analytical solution 

 

As Appendix D describes in full detail, the solution to system (19), (22) is given by:  

 

̃𝑡 = 𝑐Q2exp{q2𝑡} + 𝑅1𝑡Q1exp{q1𝑡} + 𝑅2𝑡Q2exp{q2𝑡},   (26a) 

 

and 

𝑡 

Saddle path/stable arm 

t 

A 

B 

A

’ 
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̃𝑡 = cexp{q2𝑡} + 𝑅1𝑡exp{q1𝑡} + 𝑅2𝑡exp{q2𝑡},    (26b) 

 

where [Qi 1], i=1,2 are the normalised eigenvectors corresponding to roots qi, 

derived in Appendix C.  The properties of Q1 and Q2 are defined in Appendix D. 

Moreover, R1,2t are defined as follows:  

 

𝑅1𝑡 ≡ −
(1−)+𝑄2

(𝑄1−𝑄2)
∫ exp{−q1𝑣}𝑟̃𝑣⁡𝑑𝑣
∞

𝑡
, 

 

𝑅2𝑡 ≡ −
𝑄1+(1−)

(𝑄1−𝑄2)
∫ exp{−q2𝑣}⁡𝑟̃𝑣𝑑𝑣
𝑡

0
, 

 

c is a constant, to be determined as follows: As 𝑡 does not change discretely, 

assuming that the exogenous driver (interest rate) is at a stationary equilibrium for t<T 

and changes at t=T, we have the following expression for c: 

 

̃𝑇 = 𝑐Q2exp{q2𝑇} − exp{q1𝑇}Q1

HD(1−)+𝑄2

(𝑄1−𝑄2)
∫ exp{−q1𝑣}𝑟̃𝑣⁡𝑑𝑣
∞

𝑇
          (26a’) 

 

This is as there were no interest rate deviations before T. The value of ̃𝑇 depends on 

the specific context; below, we turn to the AK model. After developing the essentials 

in sub-Sections 4.1-4, we continue the discussion of dynamics in sub-Section 4.5.  

 

 

 

4. Application: HD in a ‘flexible AK’ model 

 

 
4.1: Setup:  

 

Consider the AK production function: 

 

𝑌𝑡 = 𝐴𝑡𝐾𝑡,  

 

where Kt  is capital defined in a broad sense, and we assume that labour is 

inelastically supplied and equal to the time endowment of one. We let the marginal 

product of capital 𝐴𝑡 can vary over time; it is assumed proportional to the exogenous 

real interest rate, rt.
7
 To differentiate this setup from the standard AK model of a fixed 

productivity/interest rate, we call it a ‘flexible AK’ model:  

 

 𝑟𝑡 = 𝛼𝐴𝑡. 
 

The economy-wide budget constraint is:  

 
𝑑𝐾𝑡

𝑑𝑡
= 𝑌𝑡 − 𝐶𝑡,          (27) 

 

                                                           
7
 Implicitly, 0<α<1 is the share of privately owned physical capital in the broad concept of capital that 

is envisaged in the AK model; which is proportional to physical capital in the production function (K). 
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And the aggregate budget constraint is 

 
𝐾̇𝑡

𝐾𝑡
=

𝑟𝑡

𝛼
−

𝐶𝑡

𝐾𝑡
.         (27’) 

 

 

 

4.2: Steady-state results 

 

Growth is given by:  

 

gHD = r − 
HD

.        (28) 

 

Considering Proposition 2, parts (b-h), we readily get:  

 

Proposition 3: Determinants of the steady-state growth rate: 

 

a) dg
HD

 /d < 0; 

b) dg
HD

 /d < 0;  

c) dg
HD

 /d < 0;  

d) dg
HD

 /d < 0;  

e) 0 < dg
HD

 /dr < 1; 

f) g
EXP

 > g
PVEE

 < g
HD

. 

 

Proof: Consider (28) and Proposition 2.        

 

Present bias increases the propensity to consume out of lifetime resources () and 

consequently decreases the growth rate. Importantly, the steady-state growth rate 

under HD is less than the purely exponential equivalent (PVEE) counterpart.  

 

Corollary 2: 

The form of discounting, as well as its amount, matters for the steady-state marginal 

propensity to consume and the growth rate.  

 

Furthermore, we can derive the consumption-capital ratio: In the steady state, from 

(27’) with (28) and dropping the HD subscript, we have:  

 
𝐶

𝐾
=

r


− g         (27’’) 

 

Considering Proposition 2, we unambiguously get the following results:  

 

Proposition 4: Determinants of the steady-state consumption-capital ratio: 

 

a) d(C/K)
HD

/d > 0; 

b) d(C/K)
HD

/d > 0;  

c) d(C/K)
HD

/d > 0;  

d) d(C/K)
HD

/d > 0;  

e) (1-)/ < d(C/K)
HD

/dr < 1/; 

f) (C/K)
PVEE

 < (C/K)
HD

. 
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Proof: It follows from (27’’) with Proposition 2.       

 

The consumption-capital (C/K) ratio is inversely indicative of the saving rate; this 

rises with technology (indicated by the real interest rate r) and falls with the discount 

rate; part (f) shows that saving is less under HD than with an equivalent (PVEE) 

amount of exponential discounting:  

 

Corollary 3: 

The saving rate is less under HD than with an equivalent (PVEE) amount of 

exponential discounting. 

 

 

4.3: The r-g relation 

 

In his recent, much talked about book, Picketty (2014) argues that the difference 

between the interest and the growth rates is crucial for the future of capitalism. 

Specifically, an r-g>0 will imply, the argument goes, that the share of capital in 

national income will perpetually rise; this is as this tends to get reproduced at the rate 

of the real interest rate (r) whereas real national income grows at rate g. Distributional 

considerations are outside the scope of this paper and we take no stance on Picketty’s 

arguments here; but we note that they have already stirred a fair amount of debate, as 

exemplified e.g. in the Winter 2015 issue of the Journal of Economic Perspectives. 

 

Our point here is that this model has interesting implications for the relation between 

these two variables. (28) readily gives:  

 

r − g =  
 

Therefore, our results can shed light on the ‘r-g’ wedge. We have:  

 

Corollary 4:  

 

a) The HD-related degree of present-bias raises the wedge between the real 

interest rate and the growth rate; 

b) The HD-type of economy has a higher r-g difference than an economy that 

discounts at an equivalent (in the PVEE sense) purely exponential rate.  

 

As r is constant in the steady state, r-g increases because of a decrease in g. The 

implication is that, if Piketty’s (2014) arguments are correct, the extent of present-bias 

will have important implications for the evolution of income distribution.  

 

 

4.4: Dynamics 

 

Re-writing the consumption dynamics (8) as:  

 
𝐶̇𝑡

𝐶𝑡
= 𝑟𝑡 − 𝜆𝑡 + 𝜆̇𝑡/𝜆𝑡        (8’’) 
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Next, combining (27’) and (8’’), we have:  

 
𝐶̇𝑡

𝐶𝑡
−

𝐾̇𝑡

𝐾𝑡
= −

1−𝛼

𝛼
𝑟𝑡 +

𝐶𝑡

𝐾𝑡
− 𝜆𝑡 + 𝜆̇𝑡/𝜆𝑡      (29) 

 

Linearising and using Λ̇̃t = −𝑟̃𝑡 + 𝜆̃𝑡 − 𝜆̇𝑡/𝜆, we obtain:  

 
𝐶̇𝑡

𝐶𝑡
−

𝐾̇𝑡

𝐾𝑡
= −

1

𝛼
𝑟̃𝑡 +

𝐶

𝐾
(1 + 𝑙𝑜𝑔𝐶𝑡̃ − 𝑙𝑜𝑔𝐾𝑡̃ )− Λ̇̃t −

(1−𝛼)

𝛼
𝑟 − .  (29’) 

 

This equation gives the dynamics of the consumption-capital ratio and depends 

crucially on the dynamics of Λ̃t  derived above.
8
  

 

Solving forward the deviations yields: 

 

𝑙𝑜𝑔𝐶𝑡̃ − 𝑙𝑜𝑔𝐾𝑡̃ =∫ exp {−
𝐶

𝐾
(𝜏 − t)} (

1

𝛼
𝑟̃𝜏 + Λ̇̃τ)𝑑𝜏

∞

𝑡
,   (30) 

 

The effect of Λ̇̃t on the consumption-capital ratio is critical; it shows the channel by 

which present-bias affects the dynamics of the growth model. This necessitates 

another look at the dynamics of the marginal propensity to consume, undertaken in 

the next-sub-Section.  

 

 

4.5: Dynamics of 𝜆̃𝑡 and Λ̃t  (again) 

 

We now continue the discussion of the dynamics from where we left it at the end of 

Section 3. Since there is a close relationship between the real interest rate and 

productivity (𝑟𝑡 = 𝛼𝐴𝑡), in what follows we shall take the interest rate as the 

exogenous driver of the dynamics: We consider exogenous changes in productivity 

(and the interest rate). We begin by definitising the constant c in the context of the 

initial condition (26a’). Following an unexpected, once-and-for-all rise in in steady-

state interest rate at t=T, which will be reflected in a rise in steady-state from ̅ to 

̿ > ̅, (26a’) becomes:  

 

c = exp{(q1 − q2)𝑇}
Q1

Q2

(1−)+𝑄2

(𝑄1−𝑄2)
∫ exp{−q1𝑣}𝑟̃𝑣⁡𝑑𝑣
∞

𝑇
−

exp{−q2𝑇}

Q2
∆               (26a’’) 

     

This is because, at time t=T, with 𝑇 = ̅ (no jump), the deviation is ̃𝑇 = 𝑇 − ̿ =

̅− ̿− ∆ < 0, and the sign follows from the assumption that r jumps upwards. (It 

would have been the opposite if it had jumped downwards.)  

     

Equations (26a, b) as well as (26a’’) depend on the deviations of the interest rate from 

its steady-state value. Therefore, one key result emerges immediately: When the 

interest rate jumps instantaneously to its steady-state value, there are no interest rate 

deviations at any time (𝑟̃𝑣 = 0, t), and the marginal propensity jumps freely to the 

new steady-state value. In this case, c=0 and the solution for ̃𝑡 is, 

 

                                                           
8
 Since Λ̇̃t = −𝑟̃𝑡 + 𝜆̃𝑡 − 𝜆̇𝑡/𝜆, one may rely on either Λ̇̃t or 𝜆̃𝑡 − 𝜆̇𝑡/𝜆 to solve; we choose the former. 
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̃𝑡 = 0 , t          

 

i.e., in this case the model’s dynamics degenerates: As in the standard AK model, the 

propensity to consume, and therefore the growth rate, jumps straight to the new 

steady-state values determined by the model’s fundamentals (cf. Section 2 above).  

 

But, under HD, this model deviates from the standard case if the external driver 

exhibits its own (extraneous) dynamics. For concreteness, let the interest rate rise after 

some time T, but only gradually approach its steady state:  

 

r𝑡 = r̅ ,       t<T, 

 

r𝑡 = r̅exp{−β(𝑡 − 𝑇)} + r̿(1 − exp{−β(𝑡 − 𝑇)}),  tT,  r̿ > r̅ 
 

where >0 is the speed of adjustment of rt from its former long-run equilibrium (r̅) to 

the new one (r̿). With , the driver exhibits an instantaneous jump to its new 

equilibrium (this is the textbook case of a once-and-for-all change). The case of r̿ > r̅ 
will be discussed in detail, while the symmetric opposite of a decrease in the interest 

rate will be discussed only briefly. Thus, the deviations are:  

 

𝑟̃𝑡 = 0 ,       t<T, 

 

𝑟̃𝑡 = r𝑡 − r̿ = (r̅ − r̿)exp{−β(𝑡 − 𝑇)} ≤ 0,   tT 

 

With these assumptions, from (26b), we get (see Appendix D for more details):  

 

̃𝑡 = −exp{q2(𝑡 − 𝑇)}
1

Q2
∆+ (r̅ − r̿)[exp{q2(𝑡 − 𝑇)} − exp{−β(𝑡 − 𝑇)}]𝑥 

 

𝑥 [
(1 − ) + 𝑄2

(𝑄1 −𝑄2)(q1 + β)
−

𝑄1 + (1 − )

(𝑄1 − 𝑄2)(q2 + β)
] + 

 

    (31) 

+(r̅ − r̿)exp{q2(𝑡 − 𝑇)}
(1 − ) + 𝑄2
Q2(q1 + β)

 

 

Therefore:  

 

Λ̇̃t = −q2exp{q2(𝑡 − 𝑇)}
1

Q2
∆+ (r̅ − r̿)[q2exp{q2(𝑡 − 𝑇)} + βexp{−β(𝑡 − 𝑇)}]𝑥 

 

𝑥 [
(1 − ) + 𝑄2

(𝑄1 −𝑄2)(q1 + β)
−

𝑄1 + (1 − )

(𝑄1 − 𝑄2)(q2 + β)
] + 

(32) 

 

+q2(r̅ − r̿)exp{q2(𝑡 − 𝑇)}
(1 − ) + 𝑄2
Q2(q1 + β)
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Following a rise in the steady-state value of  due to a rise in the exogenous driver r, 

̃𝑡 jumps at t=T, thereafter asymptotically approaching zero.  

 

As Appendix E shows, differentiating (32) with respect to the parameters of interest 

(, ), evaluating at 0, we obtain: 

 

𝑠𝑔𝑛 {
𝑑Λ̇̃t

𝑑
|
=0

} = 𝑠𝑔𝑛(r̿ − r̅)      (32’a) 

 

𝑠𝑔𝑛 {
𝑑Λ̇̃t

𝑑
|
=0

} = −𝑠𝑔𝑛(r̿ − r̅)     (32’b) 

 

Aside from restricting attention to the vicinity of no present bias, results (32’a, b) 

come with two additional assumptions: that the rate of adjustment () be high enough 

and that the time since the change (t-T) not be too high (see Appendix E). But it must 

be stressed that these restrictions are rather mild and not severely binding. Under 

these conditions, increasing present-bias will increase the value of Λ̇̃t during the 

transition while the external driver is adjusting upwards. Things will be different 

when the driver adjusts downwards (r̿ − r̅ < 0): (32’a, b) imply that this will be lower 

with more HD-related short-termism. The next sub-Section will outline the wider 

implications of these results for the ‘AK’ growth model. But before, we summarise: 

 

Proposition 4: Dynamics of the propensity to consume (t) in the AK model: 

 

a) HD in general generates richer dynamics of the propensity to consume than 

under purely exponential discounting;  

b) The dynamics degenerates in the special case of an infinite speed of 

adjustment of the external driver, , as e.g. in the textbook case of a once-

and-for-all change in the exogenous fundamental (and without any habits-

induced inertia in the marginal propensity to consume, t); 

c) There exists non-trivial but entirely extraneous dynamics in the case of 

sluggish adjustment (finite ) of the exogenous driver (interest rate) under a 

purely exponential discounting;  

d) In the general case of less-than-infinite, but not too low, rate of adjustment 

(<) and with present-bias, and in particular early on in the adjustment 

process (t-T>0 not too high), if the exogenous interest rate increases 

(decreases) gradually, in the vicinity of no present-bias, a rise in HD-related 

present-bias increases (decreases) Λ̇̃t;  
e) Under (d) above, the presence of endogenous dynamics is due to the form 

rather than the amount of discounting: The dynamics under the HD scheme is 

qualitatively different than under the PVEE scheme.  

 

Proof: See the preceding discussion.        

 

 

4.6: Consumption and growth dynamics 
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Proposition (4d) applied to (30) leads to a major result: In the case of a rise (fall) in 

the exogenous interest rate, a rise in present bias implies that the consumption-capital 

ratio is higher (lower) than otherwise, as Λ̇̃τ rises (falls); intuitively, consumption is 

more front-loaded in anticipation of the future rise (fall) in capital and available 

resources. Hence, 
𝐶𝑡

𝐾𝑡
 is more intensely pro-cyclical (its variance rises) and ‘leading’ (it 

rises or falls ahead of the rise in productivity/interest rate). Note that this effect is 

induced by HD-related present-bias only, and is unrelated to the exponential part of 

discounting, no matter how intense. These effects are of course derived under the 

presumption that productivity (as reflected in the real interest rate) is the only 

exogenous driver. A voluminous business cycles research (particularly ‘Real Business 

Cycles’ models, e.g. King and Rebelo, 1999) has argued that this is indeed the main 

driver. Future research following this paper can establish whether the results derived 

here for illustration purposes, under the interest rate as the sole driver, hold under 

other external drivers. We can partially summarise as follows:  

 

Proposition 5: Business cycles effects of HD: 

 

a) When the exogenous interest rate is rising (falling), a rise in the degree of HD-

related present-bias will generate a rise (fall) in the consumption-capital ratio 

and a reduction (rise) in the capital growth rate during the transition process. 

b) Under the assumption that the real interest rate (reflecting productivity) is the 

sole driver of business cycles:  

o More intense HD results in the consumption-capital ratio being more 

intensely procyclical with a higher variance; 

o These effects are due only to the form of discounting; thus, an 

economy with more intense HD will have a more procyclical 

consumption-capital ratio than an economy with an equivalent (in the 

PVEE sense) amount of discounting.  

 

Proof: Consider the preceding discussion.        

 

Note that since 𝑟𝑡 = 𝛼𝐴𝑡, these business cycle-related results carry over to the 

consumption-output ratio; in deviations, this ratio is given by the following 

modification to (30): 

 

𝑙𝑜𝑔𝐶𝑡̃ − 𝑙𝑜𝑔𝑌𝑡̃ = 𝑙𝑜𝑔𝐶𝑡̃ − 𝑙𝑜𝑔𝐾𝑡̃ −𝑟̃𝑡 = 
(30’) 

= ∫ exp {−
𝐶

𝐾
(𝜏 − t)} (

1

𝛼
𝑟̃𝜏 + Λ̇̃τ)𝑑𝜏

∞

𝑡
− 𝑟̃𝑡           

 

As the interest rate is exogenous, none of the above effects of present-bias on the ratio 

via Λ̇̃τ is to be altered.  

 

The increased procyclicality of consumption relative to output following an 

intensification of HD-related present-bias is interesting from yet another perspective.  

Standard models have some difficulty accounting for the fact that consumption is very 

procyclical and almost tracks income (the 'excess sensitivity result’ or ‘consumption-

output puzzle’). For instance, King and Rebelo (1999, Table 1) shows a standard 

deviation of consumption relative to that of output of 0.74 in the data, whereas their 
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baseline RBC model predicts 0.44 (Table 3). Our results confirm the finding first 

suggested by Laibson (1997) that the presence of present-bias and non-exponential 

discounting may be able to account for the discrepancy. Intuitively, this is because in 

this case consumption is driven less by permanent-income and more by current 

income considerations. We have:  

 

Corollary 5:  

HD-related present-bias gives rise to a more procyclical and variable consumption-

output ratio, potentially resolving a long-standing macroeconomics puzzle.   

 

This leads us on to the implications for the growth rate of capital, to be gauged from 

the above in relation to the aggregate budget constraint (27). As the rate of capital 

accumulation equals productivity (proportional to the interest rate) minus the 

consumption-capital ratio, the rise (fall) induced by present-bias to the 
𝐶𝑡

𝐾𝑡
 ratio when 

the interest rate rises (falls) implies that the rate of capital accumulation 

correspondingly falls (rises). (Under plausible parameter values 
𝑟𝑡

𝛼
−

𝐶𝑡

𝐾𝑡
> 0 always.) 

Thus, the enhanced pro-cyclicality of the consumption-capital ratio due to present bias 

leads to a reduced pro-cyclicality and a reduced variance of the rate of capital 

accumulation.  

 

From here, it is a small step to show that the level of the capital stock will in fact be 

lower under a more intense HD. Writing that level as,   

 

𝑙𝑜𝑔𝐾𝑡 = 𝑙𝑜𝑔𝐾0 + ∫
𝐾̇𝜏

𝐾𝜏
𝑑𝜏

𝑡

0
, 

 

we can express log-capital as the sum of an exogenous endowment at the beginning of 

time plus the growth rate ever since. If we approximate,
9
  

 

∫
𝐾̇𝜏

𝐾𝜏
𝑑𝜏

𝑡

0
≈ 𝑡𝐸 (

𝐾̇𝜏

𝐾𝜏
) +

𝑡2

2
𝑉𝑎𝑟 (

𝐾̇𝜏

𝐾𝜏
) ,     (33) 

 

we immediately see that the reduction in the variance of capital accumulation due to 

more intense HD will in fact reduce that overall amount of capital accumulation and 

the level of capital stock. Intuitively, the percentage decline in I/K during a boom, 

when capital is high, minus the (equiproportional) rise in the same ratio during a 

trough, when capital is low, leaves a negative net effect on capital accumulation. This 

is a levels effect additional to the steady-state effect on the growth rate discussed in 

sub-Section 4.2 above (which would show up in the expectations term): Economies 

with more intense HD are less capitalised and poorer in relation to economies with an 

equivalent (PVEE) amount of purely exponential discounting. This is yet another 

important implication of HD, with relevance to cross-country income distribution.   

 

The last result merits a highlight in a separate Corollary:  

 

Corollary 6:  

 

                                                           
9
 This equation will be accurate in the case of log-normality, otherwise an approximation. 
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a) Present-biased economies, in the sense of HD discounting, differ in their 

degree of capitalisation even if their steady-state growth rates are identical.  

b) An HD-related present-biased economy will be less capitalised in the steady 

state than an exponentially discounting economy that discounts at a present 

value-equivalent (PVEE) rate ().  

c) The form of discounting, particularly the presence of HD, may account for 

parts of the capital and income disparities between richer and poorer countries.  

 

These results have implications for development accounting and cross-country 

income inequality in so far as in any historical sample, the level of development is 

likely to be a mixture of steady-state growth and transitional dynamics.   

 

Finally, we come to the question of ‘observational equivalence’ between hyperbolic 

and exponential discounting, which comes in two forms, ‘weak’ – whether a (any) 

purely exponential discount rate exists that replicates the results under hyberbolic 

discounting, and ‘strong’ – whether the PVEE rate replicates these results.  Previous 

literature has taken a mixed stance, no doubt attributable to the different setups 

employed. E.g., Barro (1999) shows that strong equivalence is preserved for log 

utility in a neoclassical growth model and a sophisticated bias; Strulik (2015) shows 

the same for the AK models under naïve bias; but that does not hold true in general as 

shown by Farzin and Wedner (2014) under isoelastic utility for a neoclassical model 

and naïve bias. Under a fairly general setup with and AK model, Cabo, Martin-Herran 

and Martinez-Garcia (2015) find weak equivalence for both naïve and sophisticated 

bias and strong equivalence under a sophisticated bias. Drawing on all our results, we 

have found that present-biased economies have different both steady-state properties 

and cyclical properties from purely exponentially-discounting economies, even from 

those discounting with a PVEE discount rate.
10

 The behaviour of HD-type economies 

cannot be replicated by ‘exponential’ economies, no matter what the exponential 

discount rate is. 

 

Corollary 7:  

There is no ‘observational equivalence’ between HD and purely exponentially-

discounting economies.   

 

 

 

5. Conclusions 

 

 
This paper integrates hyperbolic discounting (HD) into the theory of growth in a 

continuous-time, deterministic framework when no commitment is assumed. It uses 

the methods of Barro (1999), who in turn builds on earlier work by Strotz (1956) and 

Pollak (1968), for dealing with the time-inconsistency problem that is inherent in any 

non-exponential discounting. The way time-inconsistency is dealt with is by 

foregoing entirely the Euler equation; instead, a dynamic equation is derived of the 

propensity to consume (consumption-to-lifetime resources ratio). Following Barro 

                                                           
10

 It cannot be precluded that some exponential discount rate exists that replicates the steady-state 

results obtained here. But the results related to transitional dynamics are qualitatively different arguing 

against equivalence of any kind.  
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(1999), the paper allows for HD discounting in addition to exponential discounting. 

Our contribution may be partly summarised as extending the results of Barro, Strulik 

(2015) and Cabo, Martín-Herrán and Martínez-García (2015) by allowing for iso-

elastic utility, deriving sharper results on the time-consistent procedure under a 

‘sophisticated’ present  bias and expressly linking those to growth (the AK model). 

We also derive the implications for growth dynamics. All our results are derived 

analytically. In all these respects, we go beyond existing literature. In addition, this 

setup provides the foundations for an extension to the flexible labour case, thus more 

firmly embedding it into the theory of growth.  

 

The discounting scheme is flexible enough yet lends itself to closed-form solutions 

and is an innovation of this paper. It is an exponential-HD hybrid characterised by an 

exponential discount rate (), an intensity of HD parameter () and the degree of 

present-bias (). It includes the standard pure exponential as the special case of  =0. 

To sharpen the questions we ask, we postulate a ‘present value-equivalent’ (PVEE) 

purely exponential discount rate that does the same overall amount of discounting as 

our scheme. In this way, we are able to distinguish between the effects of present-bias 

per se from the amount of discounting. We derive a wide range of results related to 

both the hypothesised propensity to consume () per se, but also related to growth and 

the dynamics of business cycles. Our results consistently point to one conclusion, 

namely that the form and not only the amount of discounting matters: There is no 

observational equivalence between HD and exponential discounting as is sometimes 

argued.   

 

We find that the existence of HD-related present-bias matters for the long run 

properties of the system: The degree of present-bias increases the marginal propensity 

to consume out of lifetime resources (), decreases the growth and saving rates and 

increases the difference between the real interest rate and the growth rate (r-g), a 

quantity argued by Piketty (2014) to predict the long-term evolution of income 

distribution.  Moreover, these effects are more pronounced than under PVEE.  

 

Our setup also generates potentially non-standard dynamics. The dynamics may be 

decomposed into the dynamics of the propensity to consume and the dynamics of the 

full (otherwise standard AK) growth model. This framework implies endogenous 

dynamics of the propensity to consume in the case of a finite rate of adjustment of the 

external driver (for illustration here: the interest rate, reflecting productivity). The 

dynamics degenerates in the special case of an infinite speed of adjustment of the 

external driver, as e.g. in the textbook case of a once-and-for-all change in the 

exogenous fundamental, and becomes completely exogenous in the case of purely 

exponential discounting. Outside these special cases, the dynamics of the propensity 

to consume becomes richer with the existence of HD-related present-bias.  

 

The implications for growth are illustrated by grafting the framework just discussed 

onto the AK growth model. Aside from the special cases mentioned above, the 

consumption-capital ratio and the growth rate will be affected by a rise in HD-related 

present-bias during transition as well as in the steady state. The results for growth 

dynamics are derived in the vicinity of no HD or present-bias (0) and under some 

additional, rather mild assumptions (high enough  and low enough t-T). In the case 

of a rise (fall) in the interest rate, a rise in the present-bias will generate a rise (fall) in 

the consumption-capital ratio and a reduction (rise) in the capital growth rate during 
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the transition process. Thus, when the exogenous driver is productivity (captured by 

the real interest rate) as has been assumed here, partly guided by much business 

cycles research and partly for illustration purposes, the consumption-capital and 

consumption-output ratios become more volatile and procyclical, as consumption is 

driven more by current than permanent income. We argue that this result can 

potentially resolve a long-standing ‘consumption-output puzzle’, namely the difficulty 

by standard models to account for the high volatility and ‘excess sensitivity’ of 

consumption; by raising the predicted volatility, our model shows that present-bias 

can bring the predicted closer to the data. Furthermore, present-biased economies 

have a lower (average) steady-state level of capital; this is in addition to the steady-

state growth rate effect of the present-bias. This result, as well as the results on 

steady-state growth, will have implications for cross-country income inequality. A 

final remark is that the transitional dynamics and business cycles-related results are 

not present at all under purely exponential discounting; therefore, an economy with an 

equivalent amount (in the PVEE sense) of purely exponential discounting will not 

exhibit these features at all.  

 

In sum, we find that present-bias in discounting under no commitment has important 

implications for both long-term growth and business cycle-related dynamics, saving, 

development and for intra- or inter-country income inequality. These results should be 

of acute interest to both theorists and policy-makers.  
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