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Abstract  

The use of data from multiple studies or centers for the validation of a clinical test or a 

multivariable prediction model allows researchers to investigate the test’s/model’s performance 

in multiple settings and populations. Recently, meta-analytic techniques have been proposed to 

summarize discrimination and calibration across study populations. Here, we rather consider 

performance in terms of Net Benefit, which is a measure of clinical utility that weighs the 

benefits of true positive classifications against the harms of false positives. We posit that it is 

important to examine clinical utility across multiple settings of interest. This requires a suitable 

meta-analysis method, and we propose a Bayesian trivariate random-effects meta-analysis of 

sensitivity, specificity, and prevalence. Across a range of chosen harm-to-benefit ratios, this 

provides a summary measure of Net Benefit, a prediction interval, and an estimate of the 

probability that the test/model is clinically useful in a new setting. In addition, the prediction 

interval and probability of usefulness can be calculated conditional on the known prevalence in a 

new setting. The proposed methods are illustrated by two case studies: one on the meta-analysis 

of published studies on ear thermometry to diagnose fever in children, and one on the validation 

of a multivariable clinical risk prediction model for the diagnosis of ovarian cancer in a 

multicenter dataset. Crucially, in both case studies the clinical utility of the test/model was 

heterogeneous across settings, limiting its usefulness in practice. This emphasizes that 

heterogeneity in clinical utility should be assessed before a test/model is routinely implemented.  

 

Keywords: meta-analysis, net benefit, test accuracy, diagnostic, decision curves 
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1. Introduction 

Clinical diagnoses are often predicted using tests and multivariable prediction models that 

combine various predictors.
1
 Before diagnostic tests or models are introduced into clinical 

practice, it is of the utmost importance that their predictive performance is externally validated on 

new data. This preferably takes place in a setting that is independent from the test’s or model’s 

development setting, for example in new centers or by other research teams.
2
 Typically, 

researchers assess the discriminative ability of the test/model to distinguish between patients who 

do and do not suffer from the suspected disease. These results are summarized using, among 

others, sensitivity, specificity, and the c-statistic. If the diagnostic tool yields a predicted risk that 

the patient suffers from the disease, measures of calibration can be used, which assess how well 

predicted risks correspond to observed event rates.
3
  

A problem with measures of discrimination and calibration is that they do not assess the 

consequences of using a test/model in practice. In contrast, decision-analytic measures of clinical 

utility incorporate the harms of false negative and false positive classifications. A measure of 

clinical utility that has received broad support is the Net Benefit (NB).
4-8

 Briefly, the NB 

quantifies the benefit of using a test/model for clinical decision making by correcting the number 

of true positive classifications for the number of false positive classifications using a weighting 

factor.
9,10

 The weight reflects the ratio of the harm of a false positive and a false negative. 

Because the assumed harms can vary, the NB is usually calculated for a relevant range of harm 

ratios. A plot of the NB for various harm ratios is a decision curve.  

All measures of clinical utility depend on disease prevalence,
11

 which may vary across studies, 

centers, and regions. In addition, the predictive performance of a test/model may be 

heterogeneous, reflecting differences in patient case-mix or true variations in the association 

between predictors and the disease.
1,12,13

 Recently, meta-analytic techniques have been proposed 

to investigate heterogeneity in predictive performance (discrimination and calibration) across 

populations.
14,15

 The NB is influenced by an interplay of the prevalence of the outcome, 

discrimination, and calibration. Although heterogeneity in clinical utility may naturally be 

expected, methods for the meta-analysis of the clinical utility of a test/model have not been 

considered. Indeed, before routinely implementing a test/model in practice, it is surely essential 

to examine its clinical utility across multiple settings of interest. To address this, we consider a 

method for the meta-analysis of the NB, using a Bayesian trivariate random-effects meta-analysis 

of sensitivity, specificity, and prevalence.  

In what follows, we introduce two motivating examples. The first concerns diagnosing fever in 

children, and investigates the clinical usefulness of using ear thermometry based on a systematic 

review of the literature. The second is a multicenter external validation of the clinical utility of 

the IOTA LR2 model, which is a multiple logistic regression model based on ultrasound 

characteristics to distinguish between benign and malignant adnexal masses. In Section 3 we 

introduce the NB measure of clinical utility, and explain how to calculate it from a trivariate 

random-effects meta-analysis of sensitivity, specificity, and prevalence. Bayesian prediction 

intervals may be used to predict the clinical utility in randomly selected new studies or centers. 

We propose to construct prediction intervals conditional on a known prevalence, if this 
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information is available in a new setting. We apply these ideas to our examples in Section 4. In 

section 5 we put the NB of the test/model into perspective by comparing it to other diagnostic 

strategies, such as the default strategies that classify all patients as positive or negative. We show 

how to graphically present the comparison using decision curves, and introduce the Bayesian 

probability that the test/model performs better than the default strategies in a randomly selected 

new setting. 

2. Two motivating examples 

2.1. Meta-analysis of the clinical utility of ear temperature for diagnosing fever in 

children 

Rectal temperature measurement can be difficult in children, particularly when they are 

uncooperative or restless. Ear thermometry is a commonly used and attractive alternative, as the 

ear is easily accessible and the procedure is very quick. Craig and colleagues performed a 

systematic review of the accuracy of infrared ear thermometry for diagnosing fever in children.
16

 

They retrieved eleven studies evaluating the accuracy of ear thermometers of the ‘FirstTemp’ 

brand. All studies considered patients with an ear temperature ≥38.0 °C as test positive, and the 

gold standard diagnosis of fever was a rectal temperature ≥38.0 °C. The number of children with 

(n1) and without (n0) fever, and the number true positive (r11) and true negative (r00) 

classifications per study j are summarized in Table 1. The observed prevalence of fever as 

diagnosed by the gold standard varied between 27% and 75%, reflecting that the studies included 

children who were already in a hospital or an emergency unit. 

A random-effects meta-analysis of the discriminative performance has already been performed, 

yielding a summary sensitivity of 65% and a summary specificity of 98%, and demonstrating 

considerable between-study heterogeneity, especially in sensitivity.
15

 We may now ask the 

question whether using ear thermometry to diagnose fever is clinically useful to inform patient 

management and treatment decisions. On the one hand, one may want to avoid missing serious 

infectious diseases in young children, and stress the harm of a false negative classification. In this 

case, sensitivity is important, and the test accuracy does not appear satisfactory in most studies 

(Table 1). On the other hand, one may want to avoid overtreatment of fever and unnecessary 

hospitalization costs, when the child can be safely taken care of at home. In this case, specificity 

is important, and this was very good (Table 1), despite heterogeneity across settings. To make 

any statement regarding the likely clinical usefulness of ear thermometry in a new population, a 

random-effects meta-analysis of the NB is required. Such an analysis directly takes into account 

the relative harms of false positive and false negative classifications. 

2.2. Multicenter validation of a diagnostic multivariable risk model for diagnosing 

ovarian cancer 

The LR2 model is a logistic regression model based on ultrasound characteristics to obtain a pre-

operative diagnosis of ovarian cancer, yielding a predicted probability of malignancy.
17

 Testa et 

al. performed a multicenter validation study of the predictive performance of the LR2 model, 

which included 2403 patients from 18 centers. All patients were selected for surgical removal of 

an adnexal mass and histology was the reference standard to diagnose cancer.
17

 The predicted 

probabilities of malignancy for cancer cases and healthy patients in the validation dataset are 
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shown per center in Figure 1, for the 15 largest centers. The observed prevalence of malignancy 

varied between 15% and 69%. 

A meta-analysis in the included centers yielded a summary c-statistic of 0.92 with little between-

center heterogeneity, demonstrating excellent discrimination between benign and malignant 

tumors.
17

 However, Testa et al. showed that the LR2 model tends to underestimate the probability 

of malignancy in most centers, that is, there was some miscalibration of the model’s 

predictions.
17

 To conclude whether or not the LR2 model is clinically useful in new centers 

despite the miscalibration, it is required to perform a random-effects meta-analysis of the NB. 

This takes into account the harms of missing a cancer and the harms of unnecessarily referring a 

patient without cancer for specialized oncology care based on a predefined risk threshold. 

Figure 1. Density plots of predicted probabilities of ovarian cancer from the LR2 model, per 

center. Plot headings indicate the center’s location, number of patients and number of cancer 

cases. 

[insert figure 1 here] 

3. Investigating heterogeneity in the Net Benefit of a test/model using meta-analysis 

3.1. Net Benefit 

Unlike traditional measures of predictive performance, NB incorporates the consequences of 

using the test/model to guide clinical decision making. The method assumes that there is a risk 

threshold, t, at which one is uncertain about treating or not treating a patient. If P(disease)<t, the 

patient should forego treatment, whereas the patient should receive treatment if P(disease)≥t. The 

relative consequences of falsely treating a patient without disease versus falsely withholding 

treatment from a patient with disease are implied by t: odds(t) is the ratio of the harm associated 

with a false positive result and the harm associated with a false negative result.
10

 For example, if 

a risk threshold of 0.20 is used, the harm ratio is 1:4. The harm of a false negative is four times 

larger than the harm of unnecessary treatment. This implies that unnecessarily treating up to four 

patients for each correctly treated patient is considered acceptable. Odds(t) can also be thought of 

as a ‘harm-to-benefit’ ratio. Indeed, the harm of a false negative equals the forgone benefit of 

being rightly treated. 

NB corrects the number of true positives (r11) for the number of false positives (r01) weighted by 

the harm ratio (odds(t)), and divides the result by the total sample size (n):
10

 

(1) 

NBt =
r11−(r01×

t

1−t
)

n
. 

NBt quantifies benefit in terms of the net proportion of true positives at threshold t. If we evaluate 

a risk prediction model that yields predicted probabilities, r11 and r01 vary with the chosen risk 

threshold (and hence the harm ratio), as we classify patients with a predicted risk >t as positive. If 

we are evaluating a binary diagnostic test, r11 and r01 are constant but the harm ratio can still be 

varied.
18

 Reasonable choices for the harm ratio reflect differences in risk aversion (the highly risk 

averse prefer a lower threshold) and/or health care systems. For example, when long waiting lists 
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for treatment are a reality, higher risk thresholds may be adopted. Note that NBt should not be 

used to select the risk threshold t.
4
 Rather, for a given t, reflecting a certain harm ratio, we can 

find out whether a test/model is clinically useful. 

NBt can also be computed for default strategies where either everyone is treated or no one is 

treated.  In fact, for ‘treat none’, r11=r01=0, hence NBt treat none=0 by definition. If NBt of a 

test/model is higher than the NBt of ‘treat all’ or ‘treat none’, the test/model is considered useful 

at threshold t. We will elaborate on these comparisons in section 5. In the next sections, we first 

consider a meta-analysis of the NBt. 

3.2. A trivariate meta-analysis model of the true positive rate, true negative rate and 

prevalence 

3.2.1. Trivariate meta-analysis 

The NBt is a function of classification results and the risk threshold. Hence, in a meta-analysis, 

the summary NBt can be computed from summary measures of prevalence, sensitivity, and 

specificity, at a given risk threshold.  

Suppose data from J (j=1 to J) settings are available. We will use the term ‘setting’ throughout 

this work to refer to a single center in a multicenter study, or to a single study in the meta-

analysis of multiple published studies. Each has n1j and n0j patients with and without the disease 

(or other outcome of interest), respectively, and n1j+n0j=nj. In setting j, at a chosen risk threshold, 

the test or model under validation yields a positive classification for r11j patients with the disease 

(true positives), and a negative classification for r00j patients without the disease (true negatives). 

The observed sensitivity in each setting is r11j/n1j and the observed specificity is r00j/n0j. To 

combine this information across settings, a trivariate random-effects meta-analytic model for 

prevalence, sensitivity, and specificity has been proposed previously.
19

 Assume a binomial 

distribution for the number of patients with the disease or outcome, the number of true positives, 

and the number of true negatives in each setting: 

(2) 

n1j~bin (nj,pj
) 

r11j~bin(n1j,Sej) 

r00j~bin (n0j,Sp
j
). 

After applying the logit transformation, the true setting-specific prevalences (pj), sensitivities 

(Sej), and specificities (Spj) are assumed to be normally distributed with means γ1, γ2, and γ3. The 

variance-covariance matrix Ω contains the between-setting variance in the logit prevalence (τ1
2), 

the logit sensitivity (τ2
2), and the logit specificity (τ3

2), and the covariances. Hence, we account 

for the heterogeneity and the correlations between the logit prevalence and the logit sensitivity 

(ρ
12

), the logit prevalence and the logit specificity (ρ
13

), and the logit sensitivity and the logit 

specificity (ρ
23

): 
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(3) 

(

 
 

logit (p
j
)

logit(Sej)

logit (Sp
j
)
)

 
 

~N [(

γ
1

γ
2

γ
3

) ,Ω] , Ω=

(

 

τ1
2 ρ

12
τ

1
τ2 ρ

13
τ

1
τ3

ρ
12

τ
1
τ2 τ2

2 ρ
23

τ
2
τ3

ρ
13

τ
1
τ3 ρ

23
τ

2
τ3 τ3

2
)

 . 

The summary NBt can now be estimated from γ1, the summary logit prevalence, γ2, the summary 

logit sensitivity, γ3, the summary logit specificity, and t, as follows: 

(4) 

NBt =
exp(γ2)

1 + exp(γ2)
×

exp(γ1)

1 + exp(γ1)
− [(1 −

exp(γ3)

1 + exp(γ3)
) × (1 −

exp(γ1)

1 + exp(γ1)
) ×

t

1 − t
]. 

The process can be repeated for each threshold (i.e., at each threshold apply a trivariate meta-

analysis of sensitivity, specificity, and prevalence, and then use equation (4) to obtain the NBt). 

The trivariate model of sensitivity, specificity, and prevalence can be estimated using a 

frequentist or Bayesian approach. We prefer a Bayesian approach, because it yields an estimate 

of the posterior probability distribution of the NBt that accounts for all parameter uncertainty and 

naturally enables subsequent predictions of the NBt in new settings. However, it also requires the 

specification of prior distributions. We used a vague multivariable normal prior distribution for 

the vector of logit prevalence, logit sensitivity and logit specificity, with mean 0, variances 1000, 

and covariances 0. An inverse Wishart prior was used for the between-setting variance-

covariance matrix Ω, with variances 10, covariances 0, and the number of degrees of freedom as 

small as possible (3, the number of outcomes) to reflect vague prior knowledge. However, it has 

been shown that seemingly vague Wishart priors may still be influential, which can affect 

posterior inferences for the between-setting variances, correlations, and pooled summary 

estimates.
20-22

 Therefore, in the next section, an alternative product normal parametrization of the 

model is introduced, which allows specifying priors for all elements of the variance-covariance 

matrix separately. 

3.2.2. Alternative product normal parametrization of the between-setting model. 

The between-setting model (3) can be reparametrized in the product normal formulation, as 

proposed by Bujkiewicz et al.
21,23

 This formulation models the true logit prevalence, the true logit 

sensitivity and the true logit specificity as conditional univariate normal distributions, using linear 

models for the relations between them: 

(5) 
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{
 
 
 
 

 
 
 
 logit (p

j
) ~N(η

1
,ψ

1
2 )

logit(Sej)|logit (p
j
)~N (η

2j
,ψ

2
2 )

η
2j

=λ20+λ21logit (p
j
)

logit (Sp
j
) |logit (p

j
) , logit(Sej)~N (η

3j
,ψ

3
2 )

η
3j

=λ30+λ31logit (p
j
)+λ32logit(Sej).

 

Instead of specifying a prior distribution for the between-setting variance-covariance matrix Ω as 

a whole, this formulation allows us to place realistic prior distributions on separate elements of 

Ω. Hence, this formulation eases the incorporation of prior information on the between-setting 

standard deviations and correlations obtained from previous studies or published literature. If this 

information is not available, realistic weak priors can be used, such as weak Fisher priors for 

correlations, which restrict correlations between -1 and 1, and weak half-normal priors for 

variances, which are bounded by zero.
20,21

 The implied prior distributions on the parameters λ21, 

λ31, and λ32, and the hyper-parameters ψ1, ψ2, and ψ3 are dictated by the relationships between 

these parameters and the elements of the between-setting variance-covariance matrix, which have 

been derived by Bujkiewicz and colleagues: 

(6) 

ψ
1
2 = τ1

2,  ψ
2
2 = τ2

2 − λ21
2

τ1
2,  ψ

3
2 = τ3

2 − λ31
2

τ1
2 − λ32

2
τ2

2 

λ21 =
τ2

τ1

ρ
12
,   λ31 =

τ3

τ1

ρ
13
− λ32λ21,    λ32 =

ρ
23
 τ2τ3 − ρ

13
 τ1τ3λ21

τ2
2 − λ21

2
τ1

2
. 

The remaining parameters can be given vague prior distributions, for example, η1~N(0,1000), 

λ20~N(0,1000), λ30~N(0,1000). The summary logit prevalence, logit sensitivity, and logit 

specificity are directly linked to the re-parametrized model formulation: 

(7) 

γ
1
= η

1
 

γ
2
= λ20+λ21γ

1
 

γ
3
=λ30+λ31γ

1
+λ32γ

2
. 

Hence, the summary NBt can be computed based on γ1, the summary logit prevalence, γ2, the 

summary logit sensitivity, γ3, the summary logit specificity, and t, the risk threshold of interest, as 

in equation (4). 

3.3. Net Benefit for a new population 

3.3.1. 95% prediction intervals 

In the presence of between-study (or between-center) heterogeneity in disease prevalence or 

predictive performance, the summary NBt is potentially inadequate to quantify the expected NBt 
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in a new study (or center). A 95% prediction interval for the NBt in a new setting reveals the 

potential impact of heterogeneity on the clinical utility in new settings. A 95% prediction interval 

for NBt can be obtained in a natural way in a Bayesian framework, by sampling sensitivity, 

specificity, and prevalence for new studies (or centers) from their joint posterior distribution. 

Hence, the uncertainty in all parameters estimated in the meta-analytic model is propagated when 

deriving predictions for the NBt in a new setting.  

3.3.2. Prediction intervals using prior knowledge on the prevalence in the new setting 

The product normal formulation of the between-setting model allows an elegant prediction of 

NBt in a new setting, conditional on a known prevalence, using the posterior estimates of lambda 

parameters: 

(8) 

γ̂2 = λ̂20+λ̂21logit(prevalence) 

γ̂3=λ̂30+λ̂31logit(prevalence)+λ̂32γ̂2 

NB̂t|prevalence =
exp(γ̂2)

1+exp(γ̂2)
× prevalence − [(1 −

exp(γ̂3)

1+exp(γ̂3)
) × (1 − prevalence) ×

t

1−t
]. 

The prevalence can be treated as known a priori, or given a distribution reflecting uncertainty in 

the prevalence estimate. By sampling from the posterior distribution, uncertainty in all 

parameters is accounted for in the prediction interval of the NBt at a given prevalence, while the 

interrelations between prevalence, sensitivity, and specificity are accounted for. When a Wishart 

prior is used instead of the product normal formulation, the sensitivity and specificity of a new 

setting can be sampled and combined with the prevalence to obtain the predicted NBt. 

3.4. Implementation in WinBUGS 

The models were implemented in WinBUGS. The estimates were obtained using MCMC 

sampling with 2 chains of 100 000 iterations, excluding a burn-in of 50 000, and using a thinning 

factor of 20. The convergence was checked visually by monitoring the chains for the parameters 

of interest (i.e., sensitivity, specificity, prevalence, NBt, τ1
2, τ2

2, τ3
2 , NBt | prevalence, and NBt treat 

all (see section 5). The NBt, NBt | prevalence, and NBt treat all were monitored separately for 

settings in the sample and new settings sampled from the joint posterior of sensitivity, specificity 

and prevalence to obtain prediction intervals). The model syntax is included in Web Appendix 1 

and 2. Summary estimates of NBt are reported as posterior means with 95% credible intervals and 

95% prediction intervals. 

4. Application to the two case studies 

In what follows, the NBt is computed for using the in-ear thermometer to diagnose fever and for 

the LR2 model to diagnose ovarian cancer. The results we present are the results of the product 

normal formulation, using realistic priors for the between-study (between-center) variance-

covariance matrix. Comparisons with the results obtained when using the Wishart distribution are 

presented in Appendix Table 2 and Appendix Table 3. 



10 
 

4.1. Meta-analysis of the clinical utility of ear temperature for diagnosing fever in 

children 

The NBt of using an ear thermometer was calculated at three risk thresholds: 0.2, 0.5, and 0.8. A 

risk threshold of 0.2 indicates that we would be willing to diagnose 4 healthy children with fever 

to detect one true positive case. A risk threshold of 0.5 indicates that we believe the harm of a 

false positive is equal to the harm of a false negative. A risk threshold of 0.8 indicates that we 

perceive the harm of a false positive to be 4 times larger than the harm of a false negative. We 

selected these risk thresholds for illustrative purposes and assume they reflect different opinions 

regarding the perceived relative harms of false positive and false negative diagnoses of fever 

clinicians may hold. 

We used Fisher priors (z~N(-0.20, 0.50
2
), with z=log((1+ ρ)/(1- ρ))) for the correlations between 

logit sensitivity and logit specificity (ρ
23
), and logit specificity and logit prevalence (ρ

13
). The 

chosen prior distribution corresponds to a moderate negative correlation (Appendix Figure 1) to 

reflect prior knowledge on spectrum bias, the phenomenon that the performance of a test or 

model differs between clinical settings due to case-mix differences. Referral patterns may lead to 

higher sensitivities and lower specificities in high-prevalence settings.
24

 Leeflang found empirical 

evidence for a negative correlation between specificity and prevalence, indicating that differences 

in prevalence may represent changes in the spectrum of people without the disease of interest.
25

 

People with symptoms or prior test results indicative of the disease may be referred to certain 

centers, yielding at the same time a higher prevalence and a group of patients without the disease 

that are harder to diagnose correctly. For the correlation between logit sensitivity and logit 

prevalence (ρ
12
), a uniform prior (U[-0.99, 0.99]) was used, as previous empirical research could 

not demonstrate an overall positive or negative correlation relation between sensitivity and 

prevalence.
25

 We used a half-normal prior distribution for the between-setting variance of logit 

sensitivity, logit specificity, and logit prevalence, τ1 (2,3)
2 ~N(0, 2

2)I(0, ) (see Appendix Figure 1).  

Arbitrary but plausible initial values were manually set for some key parameters to facilitate 

convergence (η1: 0.45, λ20: 0.7, λ30: 0.08, Z(ρ12): 0, Z(ρ13): 0, Z(ρ23): 0, the between-setting 

variance of sensitivity: 0.31, the between-setting variance of specificity: 0.47, and between-

setting variance of prevalence: 0.2). The initial values for remaining parameters in the model 

were randomly sampled from the prior distributions, using the “gen inits” function in WinBugs. 

In the case of vague priors, this function generates extreme initial values. 

Recall that children with an ear temperature ≥38.0 °C were classified as having fever, and 

children with an ear temperature <38.0 °C were classified as not having fever, regardless of t. 

This yielded a summary sensitivity of 65%, and a summary specificity 98%. When the risk 

threshold was 0.2, reflecting larger perceived harms of false negatives than false positives, the 

summary NB0.2 was 0.30 (95% CrI 0.19 to 0.42). This indicates that the net benefit of this 

diagnostic test is equivalent to the benefit of correctly classifying a net number of 30 children 

with fever per 100 patients, and no false positive classifications (Table 2). In section 5, we will 

give an interpretation that puts the magnitude of this value into perspective. The prediction 

interval reveals there is a 95% probability that NB0.2 will be between 0.03 and 0.68 in a new 

study. For a new study with a prevalence of fever of 50%, we find a summary NB0.2 of 0.32 and a 
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narrower prediction interval of 0.12 to 0.47, reflecting that we now have information on the 

prevalence, which restricts the likely values of NBt in the new setting.  

If we compute the NBt at higher risk thresholds, indicating equal or lower perceived harms for 

false negatives than for false positives, the summary NBt is lower. This reflects the increasing  

correction for the number of false positives. Results for risk thresholds 0.5 and 0.8 are given in 

Table 2.  

Similar point estimates with generally narrower credible intervals were obtained when inverse 

Wishart priors were used for the between-study variance-covariance matrix, but small differences 

were observed, especially for NBt at t=0.8 (see Appendix Table 2). 

Sensitivity to the choice of initial values was checked by repeating the analysis with widely 

separated starting values for the two chains (η1: -2.2 versus 2.2 , λ20: -2.2 versus 2.2, λ30: -2.2 

versus 2.2, ρ12: 0 versus 0.9, Z(ρ13): 0 versus -1.47, Z(ρ23): 0 versus -1.47, the between-setting 

variance of sensitivity: 0.1 versus 5, the between-setting variance of specificity: 0.1 versus 5, and 

between-setting variance of prevalence: 0.1 versus 5). All chains started mixing in the first 300 

iterations and converged to summary estimates that were very similar to the ones reported. 

4.2. Multicenter validation of a diagnostic multivariable risk model for ovarian cancer 

The NBt of the LR2 model for diagnosing ovarian cancer was calculated at three risk thresholds: 

0.05, 0.1, and 0.5. The low risk thresholds indicate the need for a diagnostic strategy with a high 

sensitivity for malignancy, and perceived harms of false negatives that are at least as high as the 

perceived harms of false positives. In clinical reality, risk thresholds above 0.5 are not sensible 

because this would imply that a false positive case (unnecessarily being referred to specialized 

oncology care to undergo additional MRI testing) is more harmful than a false negative (an 

undetected cancer). 

In this analysis, we used the posterior probability distributions obtained from the analysis of 

another validation study of the LR2 model (n=1938) as prior distributions in the current 

analysis.
26,27

 This external dataset contained data from 19 centers (12 of which also contributed 

data to the current dataset), and was collected at an earlier time. The external dataset was 

analyzed using weak realistic priors (the same as in section 4.1). We characterized the resulting 

posterior distributions by their means and standard deviations (which varied with t as shown in 

Appendix Table 1), and chose parametric distributions to match their shapes. We used normal 

distributions for η1, λ20, and λ30, lognormal distributions for the between-center variance of logit 

sensitivity, logit specificity, and logit prevalence, and normal distributions for the Fisher 

transformations of the correlations. The resulting distributions were used as prior distributions in 

the current analyses. 

To facilitate convergence, the means of the posteriors obtained in the external datasets were used 

to set initial values for some key parameters (η1, λ20, λ30, Z(ρ12), Z(ρ13), Z(ρ23), and the 

between-setting variance of sensitivity, specificity, and prevalence). The initial values for 

remaining parameters in the model were randomly sampled using the “gen inits” function in 

WinBugs. 
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Because the number of patients classified as test positive decreases as the adopted risk threshold 

increases, the summary sensitivity decreases from 0.95 at t=0.05 to 0.63 at t=0.5, and the 

summary specificity increases from 0.68 at t=0.05 to 0.95 at t=0.5 (Table 3). At a risk threshold 

of 0.05, the summary NB0.05 is 0.27 (95% CrI 0.21 to 0.34). Hence, the net benefit of the model is 

equivalent to the benefit of a strategy that correctly detects a net number of 27 cancer cases per 

100 patients, without false positive classifications. A more complete interpretation is given in 

section 5. The heterogeneity in NB0.05 between centers is quite large, as reflected by the 95% 

prediction interval: 0.05 to 0.66. A more precise prediction of the NB0.05 in a new center may be 

obtained by conditioning on a known prevalence. Regional centers typically have a lower cancer 

prevalence than university hospitals with a specialized gynecological oncology unit. For new 

center with a known prevalence of 15%, the NB0.05 lies between 0.12 and 0.14 with 95% 

certainty. For a new center with a known prevalence of 35%, the NB0.05 lies between 0.29 and 

0.33 with 95% certainty.  

With higher risk thresholds, the NBt is lower, reflecting that by adopting these perceived harm 

ratios gradually more weight is given to false positive classifications (Table 3). 

The point estimates, 95% credible intervals and 95% prediction intervals were influenced by the 

choice of prior for the variance-covariance matrix, but differences nearly disappeared when NBt 

was estimated conditional on a known prevalence in a new setting (see Appendix Table 3). 

Credible intervals were often wider when the Wishart prior was used. 

5. Putting the Net Benefit into perspective: is the test/model clinically useful? 

5.1. The probability that a test/model is clinically useful in a new setting 

The NBt of a test/model is usually compared to the NBt of ‘treat all’ and ‘treat none’. The NBt of 

treat all equals p-[(1-p)×t/(1-t)], with p the prevalence of the disease, while the NBt of treat none 

equals 0, irrespective of t. Similar to NBt of a test/model, NBt of ‘treat all’ may vary between 

settings, because it is dependent on the prevalence. By sampling from the posterior distribution of 

the prevalence, the summary NBt of treat all and a 95% prediction interval can be obtained in the 

Bayesian random-effects meta-analytic framework outlined above. By using a priori knowledge 

on the prevalence, we can also calculate the NBt of treat all in a new setting with the given 

prevalence. 

If the NBt of the test/model of interest is below that of treat all or treat none, the test/model is 

harmful, because decisions made without use of the test/model have higher clinical utility.
9,10

 In 

contrast, if the NBt of the test/model of interest higher than that of treat all and treat none, the 

test/model is clinically useful: 

(9) 

P(useful)=P[NBt>max(NBt treat all, 0)] . 

In the Bayesian framework, we can sample from the joint posterior distribution of sensitivity, 

specificity and prevalence, and evaluate in each sample whether the NBt of the test/model in a 

new setting is larger than the NBt of treat all and treat none. Hence, we obtain the probability that 

the test/model is useful in any new setting. By using a priori knowledge on the prevalence, we 
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can also calculate the probability that the test/model is clinically useful in a new setting with the 

given prevalence. 

At a risk threshold of 0.2, treat all is the best default strategy for fever, with a NB0.2 of 0.33 (95% 

CrI 0.20 to 0.46). At the 0.5 and 0.8 risk thresholds, the summary NBt of treat all is <0, making 

treat none the best default strategy (Table 4). Nonetheless, there is considerable heterogeneity in 

the NBt of treat all in new studies, reflecting heterogeneity in prevalence. For example, at t=0.5, 

the 95% prediction interval is -0.65 to 0.57. The probability that using an in-ear thermometer is 

better than the two default strategies of diagnosing fever in all or none of the children depends on 

the adopted risk threshold. At t=0.2 (i.e., a harm ratio of 1:4) there is a 44% chance that using an 

ear thermometer is clinically useful in any new setting, and a 34% chance that this strategy is 

clinically useful in a setting with a known prevalence of fever of 0.50. However, if we assume 

that false positive and false negative diagnoses are equally bad (t=0.5), there is a 97% chance that 

using an in-ear thermometer is clinically useful in any new setting, and a 99.9% chance that this 

strategy is clinically useful in a setting with a known prevalence of fever of 0.50. At t=0.8, the 

probability of usefulness in any new setting is 95%, and the probability of usefulness in a new 

setting with a prevalence of 0.50 is 99%.  

The best default strategy to diagnose ovarian malignancy at risk thresholds 0.05 and 0.1 is treat 

all (NB0.05 0.26, 95% CrI 0.20 to 0.34; NB0.1 0.22, 95% CrI 0.15 to 0.30), while it is treat none at 

t=0.5 (Table 5). Here too, the between-center heterogeneity in the NBt of treat all is large, with 

the 95% prediction interval at t=0.05 ranging from 0.02 to 0.69. If the perceived harms of false 

negatives are 19 times larger than the perceived harms of false positives (t=0.05), there is a 69% 

chance that LR2 is useful in any new center. The probability of usefulness is 99.9 % in a center 

with a malignancy rate of 15%. Interestingly, if the malignancy rate is 35%, the probability that 

LR2 is useful is lower: 75%. This is likely due to the miscalibration of LR2, which seemed to be 

especially pronounced in centers with a high prevalence.
17

 The probabilities that the LR2 model 

is useful to diagnose ovarian cancer in a new center when risk thresholds 0.1 or 0.5 are adopted 

are given in Table 5. 

The summary estimates, 95% credible intervals and 95% prediction intervals of the NBt for treat 

all were influenced by the choice of prior in both case studies (see Appendix Table 2 and 

Appendix Table 3). The probability of usefulness was also influenced by the choice of prior; the 

biggest difference was observed in the fever case study with t=0.2 (0.31 with the Wishart prior 

versus 0.44 with the realistic weak informative priors). 

A straightforward extension of the proposed methods to quantify the probability of clinical utility 

in new settings is to include a routinely suggested competitor test/model in the comparison. One 

may want to quantify the probability that the model/test of interest performs better than the 

routinely used test/model and both default strategies: P[NBt > max(NBt routinely used model/test, NBt treat 

all, 0)]. Routinely used competitor models/tests may be the temperature taken in the mouth or 

under the arm for the first example, and the RMI algorithm for ovarian cancer in the second 

example.
17,26,27

 

5.2. Decision curves 
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A decision curve is a plot of the NBt of a test/model and the NBt of default strategies for a range 

of relevant risk thresholds, and allows an easy graphical comparison of diagnostic strategies.
10

 In 

the Bayesian framework outlined above, the NBt, pointwise credible intervals and pointwise 

prediction intervals can be computed for each risk threshold of interest, and subsequently plotted 

and connected, as in Figure 2 below for the fever example and Figure 3 below for the ovarian 

cancer example.  

In the first example, it is immediately clear that the summary NBt of infrared ear thermometry 

(blue curve) is below the summary NBt of treating all patients (purple curve) up to risk threshold 

0.23. For higher risk thresholds, the summary NBt of using an ear thermometer is higher than the 

summary NBt of both default strategies. The large between-study heterogeneity in NBt  is 

reflected by the broad prediction intervals around the summary curves (light transparent bands). 

The large heterogeneity makes it impossible to visually assess whether ear thermometry will have 

clinical utility to diagnose fever in a new setting. Therefore, we added a plot of the probability 

that ear thermometry is useful in a new population, that is, the probability that the NBt of ear 

thermometry is higher than the NBt of treat all or treat none in a new setting. The probability that 

using an ear thermometer for diagnosing fever is useful in a new setting is above 90% for risk 

thresholds between 0.39 and 0.86. Hence, if the perceived harm of a false negative is between 1.7 

and 0.2 times as large as the harm of a false positive, using an in-ear thermometer is a good 

diagnostic strategy. In contrast, if the perceived harm of a false negative is at least 9 times larger 

than the harm of a false positive (t≤0.1), reflecting that is very important not to miss cases of 

fever, the probability that using an in-ear thermometer is clinically useful in a new setting is less 

than 10%. In this case, it is better to err on the safe side and assume all patients have fever, or to 

use a rectal thermometer when possible.  

In the second example, the summary curve for the LR2 model (blue line) is higher than the 

summary curve of treat all (purple line) and treat none (black horizontal line) at all considered 

risk thresholds. However, the heterogeneity in the NBt of LR2 and treat all is very large, as 

reflected by the large prediction intervals. This is mainly caused by the large heterogeneity in the 

prevalence of malignancy across centers. The probability that LR2 has clinical utility to make 

treatment decisions in new centers is above 90% for risk threshold between 0.20 and 0.50. Hence, 

if the clinician’s judgement is that a false negative is between four and one times as harmful as a 

false positive, the LR2 model is a good tool to pre-operatively diagnose ovarian cancer. If the 

clinician believes that a false negative is 19 times as harmful as a false positive, the probability 

that the LR2 model is clinically useful in a new setting is still 70%. 

Extensions of the plot are straightforward: one may add the NBt curve of another diagnostic test, 

for example, temperature taken in the mouth or under the arm for the first example, and other 

diagnostic models for ovarian cancer in the second example. In addition, one may create a plot 

depicting NBt curves and the probability that the test/model is useful for a known prevalence in a 

new setting. Note that in this case, there will be no heterogeneity in the NBt curve for treat all, 

and the heterogeneity in the NBt of the test/model will only reflect heterogeneity in diagnostic 

accuracy (not heterogeneity in prevalence). 
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Figure 2. Decision curve for diagnosing fever using an in-ear thermometer. The bottom panel 

shows the probability that using an in-ear thermometer is clinically useful (i.e., has a higher NBt 

than treat all and treat none) in a randomly chosen new study. 

[insert figure 2 here] 

Figure 3. Decision curve for diagnosing ovarian malignancy using the LR2 model. The bottom 

panel shows the probability that using LR2 is clinically useful (i.e., has a higher NBt than treat 

all and treat none) in a randomly chosen new center. 

[insert figure 3 here] 

6. Discussion 

When heterogeneity in disease prevalence or diagnostic accuracy exists, the clinical usefulness of 

diagnostic tests and models differs between populations. We proposed to evaluate the Net Benefit 

(NBt) of a test or model across different studies or centers through a trivariate random-effects 

meta-analysis of sensitivity, specificity, and prevalence. This approach directly models the 

binomial distributions of true positive counts, true negative counts, and the number of diseased 

patients, and estimates the summary Net Benefit in a second step. Differences between settings 

are modelled through a product normal formulation of the between-study (or between-center) 

model of the logit sensitivity, logit specificity, and logit prevalence. This allows the user to 

specify realistic prior distributions for all elements of the variance-covariance matrix separately.  

Probability statements on the likely NBt in new settings provide crucial insights into the 

heterogeneity of the clinical utility. Using a Bayesian analysis, we sampled values for a new 

setting from the joint posterior distribution of sensitivity, specificity, and prevalence, to formulate 

statements on the likely NBt in a new setting. Examples include 95% prediction intervals for the 

NBt, 95% prediction intervals for the NBt for settings with a known prevalence, and the 

probability that a test/model is useful in a new setting (i.e., a higher NBt for the test/model than 

for default strategies of treating all or treating none). Heterogeneity in the clinical utility of the 

diagnostic test/model was demonstrated in two case studies. 

Heterogeneity in diagnostic accuracy is omnipresent: a systematic review estimated that 

heterogeneity affects 70% of published meta-analyses.
28

 However, even if the heterogeneity in 

diagnostic accuracy is negligible, heterogeneity in disease prevalence may still render the NBt of 

the test/model under investigation highly heterogeneous, as demonstrated in our case study on the 

diagnosis of ovarian cancer. The NBt of treating all patients without using a test/model is also 

heterogeneous across settings, whenever there is heterogeneity in the prevalence of the disease. 

This makes it very difficult to assess when a test/model is clinically useful, that is, superior to 

treat all or treat none: prediction intervals are very wide and swamp graphical depictions of the 

decision curves. Therefore, we proposed to calculate the posterior probability that the test/model 

is clinically useful in a new setting. 

Our case studies have demonstrated that the  probability of clinical usefulness in a new setting 

may be far from 0 or 1 at certain risk thresholds, effectively illustrating variability in the clinical 

usefulness of tests/models. This finding highlights once more the necessity of validating 
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diagnostic tests and risk prediction models in multiple relevant care settings to investigate 

heterogeneity in predictive performance and clinical utility, and assess generalizability and 

transportability.
1,2

 A practical approach is proposed in Box 1. If a risk prediction model has no 

clinical utility in certain settings, it may be worthwhile to update the model for these settings by 

recalibrating the model intercept or adjusting regression coefficients.
29,30

 It has been shown that 

perfectly calibrated models are never harmful.
13

 However, in practice, it may be difficult to 

obtain perfect calibration in all settings.
3
 

Box 1. Practical recommendations for validation. 

[insert Box 1 here] 

To get a more precise estimate of the clinical utility in a new setting, we suggest using prior 

knowledge on the prevalence in the target setting, if available. A similar idea was developed by 

Willis and colleagues,
31,32

 who proposed to use a priori information on the test positive rate and 

prevalence to exclude studies from the meta-analysis and obtain tailored estimates of test 

accuracy. Rather than excluding studies/centers from the meta-analysis, our approach uses all 

available information to explicitly model the correlations between prevalence and diagnostic 

accuracy. By subsequently conditioning on the known prevalence, we obtain a relevant summary 

NBt, a prediction interval, and the probability that the test/model will be useful in a new setting 

with the given prevalence. It is straightforward to reformulate our between-setting model of 

sensitivity, specificity, and prevalence in terms of test positive rates, positive predictive values, 

and negative predictive values. Such an alternative formulation may be of practical use, allowing 

assessments of clinical usefulness conditional on the test positive rate. Centers that wish to use 

the test/model under investigation may be more likely to know the test positive rate in their 

setting than the prevalence. 

As an alternative to the proposed random-effects meta-analysis of the NBt, you may consider 

combining the individual patient data from all centers or studies. One then computes the NBt 

based on the pooled dataset as if all observations came from the same setting. This approach is 

equivalent to computing a weighted average of the study or center-specific NBts, using the 

number of observations in each study or center as weights. As this approach fails to acknowledge 

any potential heterogeneity in clinical utility across settings, we do not recommend it. Kerr and 

colleagues proposed to calculate separate NBt-values for subpopulations, especially when 

diagnostic models have different predicted risk distributions.
4
 Although Kerr did not focus on 

subpopulations defined by different care settings, but rather on patient subgroups within one 

population (e.g., men and women), the idea may be applied to centers and studies as well. This 

approach recognizes heterogeneity in clinical utility, but a random-effects meta-analytic approach 

has the advantages of providing an overall summary estimate of NBt, and borrowing of strength 

for small populations. Indeed, estimates of the NBt may be unreliable for small centers or studies. 

Instead of performing a two-step approach (i.e. first performing a multivariable meta-analysis of 

diagnostic accuracy and prevalence and then, post-estimation, calculating the NBt) one could 

rather perform a random-effects meta-analysis of the study- or center-specific NBts directly. 

However, a number of difficulties are associated with this approach. First, it requires estimates of 
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the sampling variance of the NBt, for which no closed formula exists.
9,33

 Obtaining bootstrap 

standard errors for each study/center at each risk threshold is computationally intensive. Second, 

a between-study (or between-center) model of the NBt would need to be specified. Often, a 

normal distribution is chosen, but this may not be appropriate. At low thresholds asymmetric 

distributions may be expected, especially when the disease prevalence is high, as the NBt is 

bounded by 1 and the maximum attainable NBt equals the prevalence. At high risk thresholds, 

one may also expect an asymmetric distribution, one that is peaked near zero, with many 

studies/centers with a NBt well below zero. Especially in settings in which a diagnostic model 

discriminates well but is badly calibrated such that it overestimates the risk of an event, NBts 

below zero may occur at high risk thresholds.
13

 Lastly, the NBt estimates are not independent 

from their variance estimates. Typical variance-stabilizing functions, such as the logit and arcsine 

transformations, are not appropriate for the analysis of the NBt, which can take on any value 

between -∞ and 1. For these reasons, we prefer the proposed two-step approach over a direct 

meta-analysis of the NBt. 

The most important advantage of studying the clinical utility of a test/model, is that the NBt 

transcends traditional measures of discrimination and calibration, to incorporate consequences for 

clinical decision-making into the evaluation. The strength of our meta-analytic approach is that 

we explicitly address heterogeneity in clinical utility. In practice, a test/model may be widely 

recommended if the meta-analysis demonstrates clinical utility in a broad range of care settings. 

This generalist approach may be more feasible than a particularistic approach in which studies 

are conducted for each setting separately, and the use of the test/model is restricted to those 

centers in which utility has been demonstrated. A particularistic approach is often characterized 

by small sample sizes and high uncertainty in individual studies. 

This study has a number of limitations. For one, we merely investigate the presence of 

heterogeneity, but do not address the sources of heterogeneity. In the future, meta-regressions 

may be undertaken to incorporate study or center characteristics in the between-setting model as 

potential sources of heterogeneity. We assumed normality of the logit sensitivity, logit 

specificity, and logit prevalence. These are common assumptions,
15,19,34

 but future simulation 

studies could investigate whether our proposed approach is robust against violations of this 

assumption. Our analyses have shown that our method is sensitive to the choice of priors for the 

between-setting variance-covariance matrix, which is in accordance with previous studies.
20-22

 

Hence, we recommend picking priors based on available knowledge, or realistic weak priors, 

which is facilitated through the product normal formulation of the between-setting model.
21,23

 In 

case no prior knowledge is available, we suggest to use the priors specified in section 4.1. The 

presented case studies have only focused on the difference in the NBt between one test/model and 

the default strategies (treat all and treat none). The applications can easily be extended to 

compare the clinical utility of competing diagnostic tests or risk prediction models. 

A hindrance to the uptake of our method in practice may be that individual patient-data from all 

studies (or centers) is needed when a risk model is evaluated, as the classification then depends 

on the adopted risk threshold. One needs to evaluate for each risk threshold whether patients’ 

predicted risks fall below or above it. For binary tests, individual patient data is not needed, as 
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long as the numbers of diseased patients, true positives and false positives can be calculated from 

the reported outcomes.  

In summary, we have demonstrated a method to calculate the NBt based on a trivariate random-

effects meta-analysis of diagnostic accuracy and disease prevalence. The findings on our case 

studies suggest that the heterogeneity in clinical utility of a test/model across care settings should 

be quantified, before it is routinely implemented in practice. 
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 Table 1. True positives (r11), number with fever (n1), sensitivity, true negatives (r00), number 

without fever (n0), and specificity, for each temperature study included in the meta-analysis. 

First 

author 
r11j n1j Sensitivity r00j n0j Specificity 

Brennan 150 203 0.74 155 167 0.93 

Davis 9 18 0.50 46 48 0.96 

Green 8 9 0.89 12 12 1.00 

Greenes 53 109 0.49 193 195 0.99 

Hoffman 30 42 0.71 56 58 0.97 

Hooker 10 15 0.67 24 24 1.00 

Lanham 53 103 0.51 74 75 0.99 

Muma 48 87 0.55 136 136 1.00 

Nypaver 282 425 0.66 445 453 0.98 

Rhoads 7 27 0.26 38 38 1.00 

Stewart 57 59 0.97 20 20 1.00 
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Table 2. Summary sensitivity, specificity, and Net Benefit of ear thermometry to diagnose fever. 

 t=0.2 t=0.5 t=0.8 

Sensitivity  0.65 0.65 0.65 

Specificity 0.98 0.98 0.98 

    

NBt ear 0.30 0.29 0.27 

95% CrI 0.19 to 0.42  0.17 to 0.42 0.15 to 0.40 

95% PI 0.03 to 0.68 0.02 to 0.66 -0.05 to 0.66 

    

NBt ear | prev=.5 0.32 0.32 0.29 

95% CrI 0.24 to 0.40 0.23 to 0.39 0.21 to 0.37 

95% PI 0.12 to 0.47 0.10 to 0.46 0.04 to 0.44 

NBt: Net Benefit; CrI: credible interval; PI: prediction interval; t: risk threshold. 
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Table 3. Summary sensitivity, specificity, and Net Benefit of the LR2 model to diagnose ovarian 

malignancies pre-operatively. 

 t=0.05 t=0.1 t=0.5 

Sensitivity  0.95 0.90 0.63 

Specificity 0.68 0.80 0.95 

    

NBt LR2 0.27 0.25 0.16 

95% CrI 0.21 to 0.34 0.20 to 0.31 0.11 to 0.21 

95% PI 0.05 to 0.66 0.05 to 0.63 -0.01 to 0.52 

    

NBt LR2 | prev=0.15 0.13 0.12 0.06 

95% CrI 0.12 to 0.13 0.11 to 12 0.04 to 0.07 

95% PI 0.12 to 0.14 0.10 to 0.13 -0.01 to 0.08 

    

NBt LR2 | prev=0.35 0.32 0.30 0.19 

95% CrI 0.31 to 0.33 0.29 to 0.31 0.17 to 0.22 

95% PI 0.29 to 0.33 0.26 to 0.32 0.11 to 0.25 

NBt: Net Benefit; CrI: credible interval; PI: prediction interval; t: risk threshold 
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Table 4. Summary Net Benefit of treat all and the probability that ear thermometry will be useful 

in a new study. 

 t=0.2 t=0.5 t=0.8 

NBt treat all 0.33 -0.08 -1.69 

95% CrI 0.20 to 0.46 -0.29 to 0.13 -2.21 to -1.16 

95% PI -0.04 to 0.73 -0.65 to 0.57 -3.14 to -0.10 

    

NBt treat all | prev=0.5 0.38 0 -1.5 

    

P(ear useful) 0.44 0.97 0.95 

P(ear useful | prev=0.5) 0.34 1.00 0.99 

NBt: Net Benefit; CrI: credible interval; PI: prediction interval; t: risk threshold. 
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Table 5. Summary Net Benefit of treat all and the probability that LR2 will be useful in a new 

center. 

 t=0.05 t=0.1 t=0.5 

NBt treat all 0.26 0.22 -0.40 

95% CrI 0.20 to 0.34 0.15 to 0.30 -0.53 to -0.26 

95% PI 0.02 to 0.69 -0.03 to 0.66 -0.88 to 0.43 

    

NBt treat all | prev=0.15 0.11 0.06 -0.70 

NBt treat all | prev=0.35 0.32 0.28 -0.30 

    

P(LR2 useful) 0.69 0.78 0.95 

P(LR2 useful | prev=0.15) 1.00 1.00 0.93 

P(LR2 useful | prev=0.35) 0.75 0.91 1.00 

NBt: Net Benefit; CrI: credible interval; PI: prediction interval; t: risk threshold. 
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Box 1. Practical recommendations for validation. 

 

  

Recommendations for the validation of the predictive performance of a test/model: 

 Collect data from a broad range of clinical care settings in which the test/model is intended to be used.
1
 

 Assess the predictive performance of the test/model in terms of calibration and discrimination,
1
 

preferably using summary statistics from random-effects models.
14,15

 

 Assess the heterogeneity in predictive performance across settings, for example by using a random 

effects meta-analysis, and by providing 95% prediction intervals and probabilistic statements for the 

calibration and discrimination in new settings.
14,15

 

 Consider model recalibration or updating in settings where calibration is problematic.
29

 

Recommendations for the validation in terms of clinical utility: 

 Conduct a decision curve analysis and compare (for relevant harm to benefit ratios) the Net Benefit of 

the test/model to competing strategies (e.g., treat all, treat none),
9
 preferably using summary statistics 

from a random-effects model. 

 Assess the heterogeneity in clinical utility, by conducting a random-effects meta-analysis of Net Benefit 

and calculating 95% prediction intervals and probabilistic statements about the Net Benefit in new 

settings. 

o P(useful) is close to zero: advise against the test/model. Serious calibration issues are likely.  

o P(useful) is close to one: recommend the test/model. 

o P(useful) is close to 0.5: clinical utility is too variable to make a general recommendation; then 

 Investigate clinical usefulness in specific settings by conditioning on prevalence. 

Recommend the model settings in where utility is demonstrated. 

 Consider model recalibration or updating in settings where utility is not demonstrated.
29

 

 Caution is advised when the test/model has not been validated in a setting similar to 

yours. Findings may not generalize to your setting.
29

 



27 
 

Appendix 

Appendix Figure 1. Fisher prior for correlations (upper panel) and half-normal prior for 

between-setting variances (lower panel). 

[insert appendix figure 1 here] 
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Appendix Table 1. Normal priors for η1, λ20, and λ30, lognormal priors for between-setting 

variances, and Fisher priors for correlations, for the NBt analysis of LR2, based on posterior 

distributions obtained from the analysis of an external dataset. 

Parameter distribution mean sd 

t=0.05    

η1 Normal -1.04 0.23 

λ20 Normal 2.99 0.36 

λ30 Normal 1.37 1.73 

τ1
2 Lognormal -0.21 0.38 

τ2
2 Lognormal -1.08 1.09 

τ3
2 Lognormal -1.49 0.62 

Z (ρ12) Normal 0.07 0.49 

Z (ρ13) Normal -0.63 0.33 

Z (ρ23) Normal -0.41 0.41 

    

t=0.10    

η1 Normal -1.04 0.22 

λ20 Normal 2.31 0.31 

λ30 Normal 2.12 2.26 

τ1
2 Lognormal -0.28 0.38 

τ2
2 Lognormal -1.35 1.23 

τ3
2 Lognormal -1.21 0.68 

Z (ρ12) Normal -0.16 0.42 

Z (ρ13) Normal -0.74 0.33 

Z (ρ23) Normal -0.23 0.38 

    

t=0.50    

η1 Normal -1.05 0.24 

λ20 Normal 0.87 0.26 

λ30 Normal 4.12 0.65 

τ1
2 Lognormal -0.09 0.39 

τ2
2 Lognormal -0.99 0.69 

τ3
2 Lognormal -0.37 0.66 

Z (ρ12) Normal 0.50 0.33 

Z (ρ13) Normal -0.15 0.32 

Z (ρ23) Normal -0.55 0.35 
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Appendix Table 2. Sensitivity to choice of priors for the variance-covariance matrix for the ear 

thermometry case study. 

 t=0.2 t=0.5 t=0.8 

 Inverse 

Wishart 

Weak 

realistic 

Inverse 

Wishart 
Weak realistic 

Inverse 

Wishart 
Weak realistic 

Sensitivity  0.64 0.65 0.64 0.65 0.64 0.65 

Specificity 0.98 0.98 0.98 0.98 0.98 0.98 

       

NBt ear 0.30 0.30 0.29 0.29 0.25 0.27 

95% CrI 0.20 to 0.42 0.19 to 0.42 0.19 to 0.39 0.17 to 0.42 0.15 to 0.36 0.15 to 0.40 

95% PI 0.05 to 0.65 0.03 to 0.68 0.04 to 0.63 0.02 to 0.66 0.01 to 0.59 -0.05 to 0.66 

       

NBt ear | 

prev=.5 
0.32 0.32 0.31 0.32 0.28 0.29 

95% CrI 0.25 to 0.38 0.24 to 0.40 0.24 to 0.37 0.23 to 0.39 0.21 to 0.34 0.21 to 0.37 

95% PI 0.09 to 0.46 0.12 to 0.47 0.10 to 0.44 0.10 to 0.46 0.06 to 0.40 0.04 to 0.44 

       

NBt treat all 0.33 0.33 -0.07 -0.08 -1.67 -1.69 

95% CrI 0.23 to 0.44 0.20 to 0.46 -0.24 to 0.10 -0.29 to 0.13 -2.09 to -1.25 -2.21 to -1.16 

95% PI 0.02 to 0.66 -0.04 to 0.73 -0.55 to 0.44 -0.65 to 0.57 -2.91 to -0.35 -3.14 to -0.10 

       

P(ear useful) 0.31 0.44 1.00 0.97 0.98 0.95 

P(ear useful | 

prev=0.5) 
0.27 0.34 

1.00 

 
1.0 

0.99 

 
0.99 
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Appendix Table 3. Sensitivity to choice of priors for the variance-covariance matrix for the IOTA 

case study. 

 t=0.05 t=0.10 t=0.50 

 Inverse 

Wishart 

Weak 

realistic 

Inverse 

Wishart 

Weak 

realistic 

Inverse 

Wishart 

Weak 

realistic 

Sensitivity  0.95 0.95 0.90 0.90 0.64 0.63 

Specificity 0.66 0.68 0.79 0.80 0.95 0.95 

       

NBt LR2 0.31 0.27 0.29 0.25 0.18 0.16 

95% CrI 0.22 to 0.41 0.21 to 0.34 0.21 to 0.38 0.20 to 0.31 0.11 to 0.26 0.11 to 0.21 

95% PI 0.07 to 0.68 0.05 to 0.66 0.06 to 0.67 0.05 to 0.63 0.02 to 0.52 -0.01 to 0.52 

       

NBt LR2 | 

prev=.15 
0.13 0.13 0.11 0.12 0.05 0.06 

95% CrI 0.12 to 0.13 0.12 to 0.13 0.11 to 0.12 0.11 to 12 0.04 to 0.07 0.04 to 0.07 

95% PI 0.12 to 0.14 0.12 to 0.14 0.10 to 0.13 0.10 to 0.13 0.003 to 0.08 -0.01 to 0.08 

       

NBt LR2 | 

prev=.35 
0.32 0.32 0.30 0.30 0.19 0.19 

95% CrI 0.31 to 0.33 0.31 to 0.33 0.29 to 0.31 0.29 to 0.31 0.17 to 0.21 0.17 to 0.22 

95% PI 0.30 to 0.33 0.29 to 0.33 0.26 to 0.31 0.26 to 0.32 0.11 to 0.24 0.11 to 0.25 

       

NBt treat all 0.30 0.26 0.27 0.22 -0.32 -0.40 

95% CrI 0.21 to 0.41 0.20 to 0.34 0.17 to 0.38 0.15 to 0.30 -0.51 to -0.13 -0.53 to -0.26 

95% PI 0.04 to 0.71 0.02 to 0.69 -0.02 to 0.70 -0.03 to 0.66 -0.81 to 0.45 -0.88 to 0.43 

       

P(LR2 useful) 0.64 0.69 0.77 0.78 0.98 0.95 

P(LR2 useful | 

prev=0.15) 
1.00 1.00 1.00 1.00 0.98 0.97 

P(LR2 useful | 

prev=0.35) 
0.78 0.75 0.93 0.91 1.00 1.00 

 


