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In this paper we report the synthesis and single-crystal X-ray characterisation of six novel indium(III) xanthate complexes. 

These xanthates have been used as an In-source for the synthesis of highly crystalline CuInS2 nanoparticles in conjunction 

with a Cu(I)-xanthate. In synthesising the nanoparticles we have  also demonstrated an ability to control the phase of the 

material through choice of solvent. 

Introduction 

Transition metal chalcogenides (TMCs) have witnessed a 

remarkable surge in interest in recent years, owing to 

extensive investigations into their exciting properties and wide 

ranging applications. These applications, which include playing 

key roles in sensors, photovoltaics, photocatalysts and other 

electronics, are driven by the presence of a controllable band 

gap which causes the semi-conductor properties of TMCs.
1–3

 

I-III-VI2 ternary TMCs, such as CuInS2 (CIS), offer an 

environmentally benign alternative to the more common II-VI 

binary systems like PbS or CdS.
4
 CIS has been explored as the 

active light harvesting component in photovoltaic devices
5–7

 as 

it has a direct band gap of 1.5 eV, an absorption coefficient 

>10
5
 cm

-1 
and a good defect tolerance.

8–10
 However, it is 

synthetically challenging to make pure CIS owing to the 

difference in reactivity of Cu(I) (soft Lewis acid) and In(III) (hard 

Lewis acid) to sulfur. Additionally, the phase diagram of CuInS2 

is complex, and the window to form CuInS2 at temperatures 

lower than 800 C is narrow.
11

 These challenges mean that the 

formation of contaminating CuxSy phases is often observed.
12

 

The challenge that we address in this manuscript is one of 

how to reliably and easily synthesise CuInS2, whilst 

demonstrating a certain level of control. In order to do this, we 

turned to a combination of copper(I) xanthates
13

 and novel 

indium(III) xanthates. Metal xanthates [M(S2COR)x] have been 

shown to be excellent precursors to an array of metal 

chalcogenides previously, including complex materials such as 

alkaline earth metal sulfides.
14–26

 The xanthates breakdown 

cleanly to form metal sulfides via a Chugaev elimination 

mechanism, in which volatile gases are the only by-products.
27

 

Previous synthetic routes to CIS nanoparticles have 

included the reaction of metal salts (e.g. CuI, CuOAc, In(OAc)3 

or indium stearate) with thiols/elemental sulfur,
28–32

 cation 

exchange of Cu
+
 for In

3+
 into previously prepared CuxSy 

nanoparticles,
33–35

 or the use of single source precursors like 

[(PPh3)2CuIn(SEt)4],
36

 thiobenzoates,
37

 and [(Ph3P)2Cu-(µ-

SEt)2In(SEt)2].
38

 However, these procedures are relatively 

complex, requiring fine control of the reaction conditions. 

Additionally, there have been some reports of the use of 

simple, previously known xanthates to make CIS.
39–41

 Here we 

present a robust synthetic route which demonstrates control 

over the phase of the obtained CIS through choice of the 

reaction solvent. 

Results and Discussion 

Precursors 

We report here the synthesis and single crystal structures 

of six novel indium xanthates: [In(S2CO
n
Pr)3] (8), [In(S2CO

i
Bu)3] 

(10), [In(S2CO(CH2)2OEt)3] (11), [In(S2CO(CH2)2OMe)3] (12) 

[In(S2CO(CH2)2C(OMe)(Me)2)3] (13) and 

[In(S2COC(H)(Me)CH2OMe)3] (14) as well as 

[K(S2CO(CH2)2C(OMe)(Me)2)] (ESI Tables S2 and S3). We also 

prepared [In(S2CO
i
Pr)3] (9), which has previously been 

reported.
42

 These complexes were prepared from the reaction 

of a previously prepared potassium xanthate (from the 

insertion of CS2 into the relevant potassium alkoxide) and 

indium(III) chloride. Crystals suitable for X-ray analysis can be 

grown from the slow evaporation of chloroform at room 

temperature. 

Compounds 8, 11, 12 and 13 adopt a monoclinic crystal 

system with space groups P21/c1, C2/c, P21/n, and P21/n 

respectively, whilst 10 is orthorhombic Pbca and 14 is trigonal 

R-3.  
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In all cases the central In ions are 6-coordinate, bound by 

three chelating xanthate ligands in a distorted octahedral 

manner (Figure 1). The In-S bond lengths show little variation 

across the series: 2.5650(8)-2.6166(8) Å (8), 2.575(1)-2.626(1) 

Å (10), 2.5577(9)-2.655(1) Å (11), 2.5683(6)-2.6298(6) Å (12), 

2.558(2)-2.634(2) Å (13) and 2.576(2)-2.63(2) Å (14). This is 

also mirrored in the S-In-S bond angles of 69.93(2)-70.51(3) 

(8), 69.68(3)-70.27(3) (10), 69.71(3)-70.30(3) (11), 70.06(2)-

70.44(2) (12), 69.72(6)-70.03(5) (13) and 69.66(3) (14) and 

S-C-S bond angles of the xanthates: 122.0(2)-122.2(2) (8), 

121.3(2)-122.4(3) (10), 122.1(2)-123.2(2) (11), 121.8(1)-

122.4(1) (12), 121.4(4)-123.0(4) (13) and 121.9(3) (14). 

It is clear from the bond angles, that the distortion around 

the In centre, noted above, is due to the sharp ligand bite 

angle and associated formation of a CS2In 4-membered chelate 

ring. This results in an acute S-In-S intraligand bond angle, in 

turn forcing the S-In-S interligand bond angle to become 

obtuse. 

 

Figure 1. The structures of the indium xanthates. (a) [In(S2COnPr)3] (8), (b) [In(S2COiPr)3] 

(9),
42

 (c) [In(S2CO
i
Bu)3] (10), (d), [In(S2CO(CH2)2OEt)3] (11), (e) [In(S2CO(CH2)2OMe)3] (12), 

(f)  [In(S2CO(CH2)2C(OMe)(Me)2)3] (13) and (g) [In(S2COC(H)(Me)CH2OMe)3] (14). H 

atoms are omitted for clarity. Bronze = In, yellow = S, red = O, grey = C. 

The decomposition of the indium complexes was assessed 

via thermogravimetric analysis (TGA, ESI Figure S1). Complexes 

8-10, i.e. those with a pure hydrocarbon xanthate backbone, 

decompose cleanly in one-step to form InS at 120-150 C. In 

contrast, 11-14, which have an ether moiety within the 

xanthate chain undergo a two-step process, initially forming 

In2S3 before the remaining sulfur is driven off to leave InS. 

 

Synthesis of Nanoparticles 

 We initially chose complex 11, [In(S2CO(CH2)2OEt)3], as our 

source of In, reasoning that the two-step decomposition 

process would give rise to a control handle for the phase 

produced. We selected triphenylphosphine copper(I) 2-

ethoxyethylxanthate (15)
13

 as the copper source to avoid any 

potential problems involving ligand exchange. 

 We prepared CuInS2 nanoparticles using the hot-injection 

method in two distinct solvent systems. Firstly, we suspended 

a 1:1 ratio of 11:15 in octadecene and injected it into castor oil 

preheated to 260 C. This resulted in the formation of 

hexagonal phase CuInS2 (Figures 2a and 2b), with unit cells 

comparable to the literature (ESI Table S4).
43

  

 

Figure 2. The pXRD patterns and Raman spectra of CIS prepared at 260 C via hot 

injection, (a, b) hexagonal CIS and (c, d) cubic CIS. In each case the upper pattern 

corresponds to a 45 minute reaction, whilst the lower corresponds to a 10 minute 

reaction length. Hexagonal CIS reference pattern generated from Qi et al.,
43

 cubic CIS 

reference pattern generated from Pan et al.
44

 

Secondly, we dissolved the precursors 11 and 15 in separate 

mixtures of trioctylphosphine (1 ml) and oleylamine (1 ml). 

These two solutions were then injected into oleylamine (20 ml) 

that had been preheated to 260 °C and held at that 

temperature for a set length of time before quenching. This 

resulted in the formation of cubic CIS (i.e. zincblende 

structure) again with unit cells comparable to the literature 

(Figures 2c and 2d and ESI Table S4).
44

  

This intriguing result indicates that the choice of solvent has 

a remarkable impact on the phase that is formed. Octadecene 

is of course a non-coordinating solvent, but the main 
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component of castor oil is the triester of glycerol and ricinoleic 

acid, which does have pendant hydroxyl groups on the 

backbone and has been previously used as a ‘green’ capping 

ligand.
45–47

 Oleylamine and trioctylphosphine on the other 

hand are very much coordinating ligands that can act to 

stabilise metal surfaces.
48

 It is interesting to note that in a 

previous study oleic acid (i.e. an acid capping ligand) gave the 

cubic, zincblende structure, which is the reverse of what we 

observe here.
44

 On the other hand, a reaction (of different 

precursors) in oleylamine gave the same cubic CIS that we 

report.
49

 

In order to be sure that there was no exchange of the alkoxy 

group of the xanthates for oleylamine (to make a 

dithiocarbamate) we heated a solution of 11 in oleylamine to 

100 °C (i.e. just below the initial breakdown temperature) and 

then ran a 
1
H NMR of the resulting mixture (ESI Figures S8 and 

S9). For 11 + oleylamine, there was no evidence of any 

exchange occurring with the oleylamine signals remaining 

identical after heating (ESI Figure S8). There is some slight 

shifting of the xanthate signals after heating (ESI Figure S9) but 

this is most likely due to the beginnings of decomposition. We 

have previously conducted a similar experiment for 15 and 

seen no ligand exchange either.
13

  

Figures 2b and 2d show the Raman spectra of CuInS2 

nanoparticles. 240 (E mode), 258 (E/B2 modes), 289 (A1 mode), 

297 (likely associated with lattice ordering) and 341 (B2 mode) 

cm
-1

.
50–53

 Similar peak positions were observed for both 

hexagonal and cubic CIS with a slight shift for some individual 

peaks. 

The particles themselves are highly crystalline, though of an 

indeterminate shape for both solvent systems (Figure 3). 

Lattice fringes for hexagonal CuInS2 can be indexed to the 

(100) plane (Figure 3b), and for cubic CuInS2 can be indexed to 

the (111) plane. There is little discernible difference from a 10 

min reaction (Figure 3) and a 45 min reaction (ESI Figure S4) 

 

Figure 3. TEM images and associated selected area electron diffraction (SAED) patterns 

for (a)-(c) hexagonal CuInS2 from a 10 min reaction and (d)-(f) cubic CuInS2 from a 10 

min reaction.  

Energy dispersive x-ray spectroscopy (EDX) indicates that the 

composition of the particles is consistent across the different 

solvent systems and reaction times (ESI Table S5, Figure S3), 

close to the ideal CuInS2 ratios. Raman spectroscopy gave 

additional confirmation as to the purity of the phases We have 

also measured the optical properties of the nanoparticles and 

found them to be in the range 1.47-1.53 eV, but all within 

error of each other (ESI Figure S7, Table S6). This result is 

consistent with the literature.
44,54

 

In order to confirm the consistency of the phase control, we 

also performed the experiment using the equivalent 2-

methoxyethylxanthate (i.e. 12 and the corresponding copper(I) 

analogue). We found that the precursors behaved identically 

as 11 and 15 (ESI Figures S5-S6). 

Conclusions 

We have demonstrated an ability to generate highly crystalline 

CuInS2 from indium and copper xanthate precursors, whilst 

exhibiting phase control through choice of solvent. We have 

reported the crystal structures of six novel indium xanthates, 

comprehensively extending this family of compounds. 

Experimental  

Materials and Synthesis: All chemicals were purchased from 

Sigma Aldrich, and were used as received. Elemental analyses 

(EA) and Thermogravimetric analyses (TGA) were carried out 

by the Microelemental Analysis service at the University of 

Manchester. EA was performed using a Flash 2000 Thermo 

Scientific elemental analyzer and TGA data was obtained with 

Mettler Toledo TGA/DSC1 star
e
 system between the range of 

30 - 600 °C at a heating rate of 10 °C min
-1

 under nitrogen flow. 

NMR spectra were recorded in CDCl3 and D2O solutions on a 

Bruker Ascend spectrometer operating at 400 MHz. 

Transmission electron microscope (TEM) images were 

collected using an FEI Tecnai G2 F30 with Schottky Field 

Emitter operated at 300keV. Powder X-ray diffraction (pXRD) 

analyses were carried out using an X-Pert diffractometer with 

a Cu-Kα1 source (λ = 1.54059 Å), the samples were scanned 

between 10 and 80°, the applied voltage was 40 kV and the 

current 30 mA. Raman spectra were measured using a 

Renishaw 1000 Micro-Raman System equipped with a 514 nm 

laser. UV-Vis spectra were collected on a Shimadzu UV-1800, 

using 3.09 mM solution of CuInS2 nanoparticles in methanol. 

Potassium iso-butylxanthate (3), Potassium 2-

methoxyethylxanthate (4), potassium 2-ethoxyethylxanthate 

(5), potassium 3-methoxy-3-methyl-1-butylxanthate (6) 

potassium 1-methoxy-2-propylxanthate (7) and 

triphenylphosphine copper(I) 2-ethoxyethylxanthate (15) were 

all prepared according to our previously published 

procedure.
13

 

 

Synthesis of potassium n-propylxanthate (1): Potassium n-

propylxanthate was prepared following a literature method.
55

 

Potassium hydroxide (11.2 g, 0.20 mol) and n-propanol (150 

ml) were stirred for 2 h at room temperature and then CS2 

(15.2 g, 12.0 ml, 0.20 mol) was added dropwise to the 

reaction, resulting in an orange solution. The unreacted 
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alcohol was removed in vacuo and the yellow solid product 

was dried to give [K(S2CO
n
Pr)] (27.3g, 0.157 mol, 78.4% yield). 

M.p. = 228-230°C. Calc. for C4H7KOS2 (%):C 27.6, H 4.05, S 

36.7, K 22.5; found: C27.8, H 3.99, S 37.0, K 22.9. FT-IR (cm
-1

): 

2965 (m), 2937(w), 2873 (w), 1453 (m), 1445 (w), 1270 (m), 

1148 (s), 1087 (s), 1061 (s), 925 (m), 902 (m), 765.0 (s), 660.1 

(s), 544 (s). 
1
H NMR (400 MHz, D2O)  (ppm) = 0.89 (t, 3H, CH3), 

1.68 (s, 2H, CH2CH2CH3), 4.31 (t, 2H, OCH2CH2). 

 

Synthesis of potassium iso-propylxanthate (2): [K(S2CO
i
Pr)] 

was prepared via the same method as 1, using iso-propanol 

(150 ml). (25.8 g, 0.148 mol, 74.1% yield). M.p. = 223-227 °C. 

Calc. for C4H7KOS2 (%):C 27.6, H 4.05, S 36.7, K 22.5; found: 

C27.6, H 3.96, S 36.6, K 23.3. FT-IR (cm
-1

): 2970 (m), 1460 (w), 

1370 (m), 1182 (m), 1048 (s), 901 (s), 1092 (s), 662 (w), 583 

(w). 
1
H NMR (400 MHz, D2O)  (ppm) = 1.25 (d, 6H, CH(CH3)2), 

5.44 (s, 1H, CH(CH3)2). 

 

Synthesis of indium(III) n-propylxanthate (8): A solution of 

potassium n-propylxanthate (2.35 g, 0.0135 mol) in water (60 

ml) was added to a solution of InCl3 (1.00 g, 0.0045 mol) in the 

same amount of water. A white precipitate was obtained after 

continuous stirring for 30 min at room temperature. The solid 

was collected by vacuum filtration and washed three times 

with water. The product was dried in vacuo and recrystallized 

from chloroform at room temperature to give (1.96 g, 0.0038 

mol, 83.76% yield). M.p. = 102-104 °C. Calc. for C12H21InO3S6 

(%): C 27.7, H 4.07, S 36.9, In 22.1; found: C 27.8, H 3.98, S 

36.1, In 22.0. FT-IR (cm
-1

): 2970 (m), 2875(w), 1453 (m) 1245 

(s), 1217 (s), 1136 (m), 1039 (s), 1034 (s), 937.5 (m), 899.2 (w), 

755.2 (m), 648.8 (m), 561.6 (w). 
1
H NMR (400 MHz, CDCl3)  

(ppm) = 1.06 (t, 3H, CH3), 1.91 (s, 2H, CH2CH2CH3), 4.43 (t, 2H, 

OCH2CH2). 

 

Synthesis of indium(III) iso-propylxanthate (9): [In(S2CO
i
Pr)3] 

was synthesized via the same method as 8, using potassium 

iso-propylxanthate (2.35 g, 0.0135 mol). (1.85 g, 0.0035 mol, 

79.0% yield). M.p. = 142-144 °C. Calc. for C12H21InO3S6 (%): C 

27.7, H 4.07, S 36.9, In 22.1; found: C 27.8, H 3.98, S 36.7, In 

22.5. FT-IR (cm
-1

): 2976 (m), 2930 (w), 1461 (m), 1373 (m), 

1232 (s), 1142 (m), 1083 (s), 1011 (s), 899.3 (m), 808.4 (w), 

645.2 (m), 567.7 (w). 
1
H NMR (400 MHz, CDCl3)  (ppm) = 1.5 

(d, 6H, CH(CH3)2), 5.14 (s, 1H, CH(CH3)2). 

 

Synthesis of indium(III) iso-butylxanthate (10): [In(S2CO
i
Bu)3] 

was synthesized via the same method as 8, using potassium 

iso- butylxanthate (2.54 g, 0.0135 mol). (1.94 g, 0.0034 mol, 

76.7% yield). M.p. = 109-113 °C. Calc. for C15H27InO3S6 (%): C 

32.0, H 4.84, S 34.1, In 20.4; found: C 32.0, H 4.79, S 34.1, In 

20.2. FT-IR (cm
-1

): 2955 (m), 2870 (w), 1466 (m), 1454 (m), 

1372 (m), 1221 (s), 1197 (m), 1025 (s), 958.3 (s), 822.5 (w), 

654.6 (m), 575.3 (w). 
1
H NMR (400 MHz, CDCl3)  (ppm): 0.96 

(d, 6H, CH(CH3)2), 2.12 (s, 1H, CH(CH3)2), 4.15 (d, 2H,OCH2CH). 

 

Synthesis of indium(III) 2-ethoxyethylxanthate (11): 

[In(S2CO(CH2)2OEt)3] was synthesized via the same method as 

8, using potassium 2-ethoxyethylxanthate (2.75 g, 0.0135 mol). 

(2.25 g, 0.0037 mol, 82% yield). M.p. = 81-84 °C. Calc. 

for  C15H27InO6S6 (%): C 29.5, H 4.46, S 31.5, In 18.8; found: C 

29.5, H 4.36, S 31.2, In 18.7. FT-IR (cm
-1

): 2971 (m), 2865 (w), 

1441 (m), 1384 (m), 1352 (w), 1214 (s), 1116 (s), 1035 (s), 

998.5 (s), 936.1 (m), 863.3 (m), 836.1 (m). 
1
H NMR (400 MHz, 

CDCl3)  (ppm): 1.17 (t, 3H, OCH2CH3), 3.51 (q, 2H, OCH2CH3), 

3.74 (t, 2H, CH2CH2O), 4.49(t, 2H, CH2CH2O). 

 

Synthesis of indium(III) 2-methoxyethylxanthate (12): 

[In(S2CO(CH2)2OMe)3] was synthesized via the same method as 

8, using potassium 2-methoxyethylxanthate (2.56 g, 0.0135 

mol). (2.2 g, 0.0038 mol, 86.1% yield). M.p. = 95-98 °C. Calc. for 

C12H21InO6S6 (%): C 25.4, H 3.73, S 33.8, In 20.2; found: C 25.4, 

H 3.66, S 33.5, In 19.8. FT-IR (cm
-1

): 2922 (m), 1438 (m), 1392 

(m), 1367 (m), 1212 (s), 1120 (s) 1092 (s), 1036 (s), 1021 (s), 

976.2 (s), 845.6 (s), 661.6 (m), 575.8 (w). 
1
H NMR (400 MHz, 

CDCl3)  (ppm): 3.36 (s, 3H, OCH3), 3.71 (t, 2H, CH2CH2O), 4.50 

(t, 2H, CH2CH2O). 

 

Synthesis of indium(III) 3-methoxy-3-methyl-1-butylxanthate 

(13): [In(S2CO(CH2)2C(OMe)(Me)2)3] was synthesized via the 

same method as 8, using potassium 3-methoxy-3-methyl-1-

butylxanthate (3.13 g, 0.0135 mol). (2.3 g, 0.0033 mol, 73.6% 

yield). M.p. = 78-81 °C. Calc. for  C21H39InO6S6 (%): C 36.3, H 

5.66, S 27.6, In 16.6; found: C 36.5, H 5.67, S 27.3, In 16.5. FT-

IR (cm
-1

): 2975 (m), 2825 (w), 1466 (m), 1381 (m), 1366 (m), 

1310 (w), 1227 (s), 1210 (s), 1173 (s), 1155 (s), 1074 (s), 1040 

(s), 1019 (s), 933.7 (m), 871.4 (m), 788.1 (w), 751.9 (m), 644.7 

(w), 568.2 (w). 
1
H NMR (400 MHz, CDCl3)  (ppm): 1.24 (s, 6H, 

CH2C(CH3)2OCH3), 2.09 (t, 2H, CH2C(CH3)2OCH3), 3.23 (s, 3H, 

CH2C(CH3)2OCH3), 4.59 (t, 2H, CH2CH2C(CH3)2OCH3). 

 

Synthesis of indium(III) 1-methoxy-2-propylxanthate (14): 

[In(S2COC(H)(Me)CH2OMe)3] was synthesized via the same 

method as 8, using potassium 1-methoxy-2-propylxanthate 

(2.75 g, 0.0135 mol). (2.25 g, 0.0036 mol, 82% yield). M.p. = 

109-112 °C. Calc. for  C15H27InO6S6 (%): C 29.5, H 4.46, S 31.5, In 

18.8; found: C 29.3, H 4.26, S 29.3, In 19.4. FT-IR (cm
-1

): 2984 

(m), 2938 (w), 1448 (m), 1392 (w), 1344(w), 1236 (s), 1198 (s), 

1161 (m), 1121 (w), 1092 (w), 1055 (s), 1009 (s), 943.9 (m), 

815.6 (m), 643.1 (w), 574.0 (w). 
1
H NMR (400 MHz, CDCl3)  

(ppm): 1.39 (d, 3H, CHCH3), 3.35 (s, 3H, OCH3), 3.50-3.59 (m, 

2H, CH2O), 5.08 (m, 1H, CHCH3). 

 

X-ray Crystallography: Single crystal X-ray diffraction was 

performed using a Bruker diffractometer with a Cu-Kα source (λ 

= 1.5418 Å) (10, 12, 13) and XtaLAB AFC11 (RINC): Kappa single 

diffractometer with a Mo-Kα source (λ = 0.71073 Å) (6, 8, 14) 

SuperNova, Single source at offset, Eos diffractometer with a 

Mo-K source (11). Crystallographic data available from the 

CCDC, numbers: 1812198-1812204. 

 

Synthesis of CuInS2 nanoparticles: CuInS2 nanocrystals were 

synthesized via the hot injection method and a typical 

procedure is described. A stoichiometric mixture of 15 (0.0752 

g, 0.0001 mol) and 11 (0.0609 g, 0.0001mol) were used. The 

reactions were performed under nitrogen. To obtain a 



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5  

Please do not adjust margins 

Please do not adjust margins 

hexagonal phase, the mixture was suspended in octadecene (2 

ml) and injected into 20 ml castrol oil preheated to 260 °C. To 

form a zinc blende CuInS2, the precursors were dissolved into 

trioctylphosphine (1 ml) and oleylamine (1 ml) and injected 

into oleylamine (20 ml) preheated to 260 °C. After a set period 

of time (10 or 45 min), the solution was cooled to room 

temperature with the addition of iso-propanol and the 

particles separated by centrifugation. The nanoparticles were 

extracted by diluting the resultant product with 30ml 

methanol (three times) and 30ml acetone (two times). 
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