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Abstract. This paper proposes and evaluates an efficient approach for
loading models stored in a change-based format. The work builds on
language-independent change-based persistence (CBP) of models con-
forming to object-oriented metamodelling architectures such as MOF
and EMF, an approach which persists a model’s editing history rather
than its current state. We evaluate the performance of the proposed load-
ing approach and assess its impact on saving change-based models. Our
results show that the proposed approach significantly improves loading
times compared to the baseline CBP loading approach, and has a negli-
gible impact on saving.

1 Introduction

Conventional approaches for file-based model persistence in metamodelling ar-
chitectures such as MOF [1] and EMF [2] are state-based – saving the current
state of a model. In these approaches, version control and change detection are
delegated to external systems. State-based persistence is computationally ex-
pensive, as a whole model must be saved and loaded; this can particularly affect
large models and collaborative developments.

In [3], we proposed change-based persistence (CBP), an approach that persists
the full sequence of changes made to a model instead of persisting the state.
Compared to state-based approaches, CBP supports fast detection of changes,
which can speed up model comparison and merging, as well as fast incremental
model validation and transformation [4,5]. However, saving the change history
of a model results in large, and ever-growing, CBP files. Loading times are also
significant, as the loading process has to reconstruct a model’s current state from
its history [3]. This paper proposes and evaluates an approach that reduces CBP
model loading time by avoiding the replaying of historical changes that have no
impact on the final state of the model.

The rest of the paper is structured as follows. Section 2 introduces a running
example and provides a brief introduction to CBP. Section 3 presents the ap-



proach to speed up model loading and its supporting data structures. Section 4
presents experimental results and evaluation. Section 5 provides an overview of
related work, and Section 6 concludes with a discussion on directions of future
work.

2 Running Example

To explain model CBP, we use a minimal tree metamodel and an example tree
model in Fig. 1a and 1b. The metamodel is expressed in the Eclipse Mod-
elling Framework (EMF) Ecore metamodelling language, the de-facto standard
for object-oriented metamodelling. The example is contrived to avoid unneces-
sary repetition, whilst providing adequate coverage of the core features of Ecore
(classes, single/multi-valued features, references). In this example, a tree model
consists of named nodes which can – optionally – contain other nodes (child
reference).

(a) The tree metamodel
(EMF/Ecore).

(b) A tree model that conforms to the metamodel. Node n3
is created and then deleted.

Fig. 1: Running example of a metamodel and a conformant model.

The current state of the model in Fig. 1b has two nodes, n1, n2. The model was
constructed by firstly creating the three nodes (n1, n2 and n3) and then nodes
n2 and n3 were then added as children of n1. Finally, node n3 was deleted.

Listing 1: State-based tree model.

1 <Node id="n1" name="A">
2 <children id="n2" name="B"/>
3 </Node>

Listing 2: Change-based tree model.

1 create n1 of Node
2 set n1.name to "A"
3 create n2 of Node
4 set n2.name to "B"
5 create n3 of Node
6 set n3.name to "C"
7 add n2 to n1.children
8 add n3 to n1.children
9 remove n3 from n1.children

10 delete n3

Listings 1 shows the state-based representation of the model, using simplified
XMI. Listing 2 shows the change-based representation, using the CBP syntax
introduced in [3]. Lines 1-6 of Listing 2 record the creation and naming of the
three nodes; lines 7-8 record the addition of n2 and n3 as children of n1; lines
9-10 capture the deletion of n3 (the remove command removes f n3 from its
container; the delete command completely removes n3 from its model). Changes
in a CBP representation can be uniquely identified by their line numbers.



The example model history illustrates a case where earlier events (creating n3
in line 5, naming it in line 6, making it a child of n1 in line 8, removing it from
the container in line 9) are superseded by a subsequent event (deletion of n3 in
line 10). Loading of the current model would arguably be faster if the events in
lines 5, 6, 8, 9 and 10 could be ignored.

3 Towards Efficient Loading of Change-Based Models

The flowchart in Fig. 2 provides an overview of the editing lifecycle of a CBP
model [3], with the proposed extensions shown as starred blocks. A model is
loaded (1), edited (2) and saved (3). During editing, the changes made to the
model are recorded in a memory-based data structure, serialised and with the
latest events appended at the end (4). The change events are persisted into a
CBP file every time the model is saved (5). When a model is re-loaded, the
current model state is recreated by replaying the events stored in the CBP file
(6).

Fig. 2: CBP workflow, with optimised loading elements indicated by starred
blocks.

A key principle of CBP is that the editing history is immutable, as this is essential
for supporting incremental model management operations. As such, superseded
events cannot be simply removed from the CBP file. Therefore, the proposed
approach adds two artefacts: a in-memory ModelHistory data structure which
aggregates change events per model element, and an IgnoreList file, which per-
sists the position (i.e. line numbers) of superseded events so that the events can
be ignored the next time the model is loaded. The Ignore List is saved alongside
the CBP file. The rest of this section presents how the Model History is used to
detect superseded events and generate the Ignore List.

3.1 Model History

The Model History data structure stores events and their line numbers in a CBP
representation. The data can be used to reason about the events of a particular
element and to determine which events are superseded. We refer to the line



number in the CBP representation as the event number. The proposed data
structure is defined in Fig. 3 using a class diagram.

A ModelHistory has a URI attribute to identify the model for which it records
changes. A ModelHistory can link to many ElementHistory objects, each iden-
tified by its element field which is queried from the model. An ElementHistory
can link to many FeatureHistories, representing the editing histories of individ-
ual features – either references or attributes of the element. A FeatureHistory
has a type (attribute or reference) and a name, identifying the feature.

Fig. 3: The class model defining Model History.

Fig. 4: The object diagram of the CBP model history in Listing 2.

An EventHistory represents series of events of the same type; it has an attribute
type to identify the events’ type and can have many Lines. A Line has a number
attribute, to record the event number and a value that records the element in-
volved in the event (Value is only used for events with types ADD, REMOV E
and MOV E). Each FeatureHistory can have many EventHistories, to represent
the events that modify the values of the features. Each ElementHistory can have
many EventHistories to represent events that affect the state of the elements
(life-cycle and relations to multivalued features). Fig. 4 shows an object diagram
corresponding to the model in Fig. 3 that captures the model history shown in



Listing 2. The grey rectangles are History objects related to the deleted node
n3. The rectangles with the dashed outline are Line objects that represent su-
perseded changes.

Next, we present the different strategies used to identify superseded events that
will be added to the Ignore List.

3.2 Set and Unset Events

During the lifecycle of a model, a single-valued feature can have its value set
(assigned) or unset many times. Each event is persisted, but only the last as-
signed value needs to be considered. For example, in Listing 3, the feature name
is set to the value “A”, unset, and finally set to the value “B”. In the final state
of the model, n1.name = “B”. Thus, only line 4 is significant for the model’s
final state and therefore lines 2 and 3 can be ignored when loading the model.
For a set event, all preceding set and unset events can be ignored, but for an
unset event, all set and unset events can be ignored. Executing it does not have
any effect on the final state of a model if all the preceding events also have been
ignored.

Listing 3: A CBP representation of at-
tribute name assignments.

1 create n1 of Node
2 set n1.name to "A"
3 unset n1.name
4 set n1.name to "B"

Listing 4: A CBP representation of at-
tribute name assignments.

1 create n1 of Node
2 set n1.name to "A"
3 set n1.name to "B"
4 unset n1.name

Based on the Listing 3, our approach creates an instance of ElementHistory
n1 which contains an instance of FeatureHistory name. The FeatureHistory
name consists of two EventHistory instances, with types SET and UNSET
(the instances are named set and unset respectively for brevity). The set records
the Line instances that hold the event numbers where the set events, and simi-
larly for unset.

From Listing 3, we can thus infer that name.set.lines = {2, 4} and name.unset.
lines = {3}. The event numbers in both lists are used to determine that the
events represented by lines 2 and 3 are superseded by that in line 4, which is a
set event, giving an ignoreList = {2, 3}. By the same process, for Listing 4, we
can reason that name.set.lines = {2,3} and name.unset.lines = {4}. However,
this case, the highest-numbered event is an unset, all so line numbers are put
into the ignoreList (ignoreList = {2, 3, 4}) (unset event can be ignored along
with all preceding set and unset events).

3.3 Add, Remove, and Move Events

For a multi-valued feature, add, remove, and move events can be called many
times, to modify the feature. If an element is added to the feature, moved mul-



tiple times, and finally removed, then all the element’s preceding events can be
ignored, as long as the order of the feature’s elements is not changed.

Listing 5 shows an example without a move event. In the Listing, nodes n1, n2,
and n3 are added to the children feature of p (lines 5-7), In the latest state of
the model, children only contains n1 and n3. As a result, the loading process
could ignore the events that represent the add and remove events on n1.

Listing 5: A CBP of add
and remove operations.

1 create p of Node
2 create n1 of Node
3 create n2 of Node
4 create n3 of Node
5 add n1 to p.children
6 add n2 to p.children
7 add n3 to p.children
8 remove n2 from p.

children

Listing 6: A CBP representation of add, move,
and remove operations.

1 create p of Node //children=[]
2 create n1 of Node //children=[]
3 create n2 of Node //children=[]
4 create n3 of Node //children=[]
5 add n1 to p.children //children=[n1]
6 add n2 to p.children //children=[n1,n2]
7 add n3 to p.children //children=[n1,n2,n3]
8 move 0 to 1 in p.children //children=[n2,n1,n3]
9 remove n2 from p.children //children=[n1,n3]

To create the Ignore List for the Listing 5, we can deduce that children.add.
lines = {{5, n1}, {6, n2} {7, n3}} (5 is the line number and n1 is the value) and
children.remove.lines = {{8, n1}}. Since n2 is removed from its containing fea-
ture (line 8), then executing its preceding add and remove events is unnecessary.
Note that we retain the create event (line 3) as n2 has not been deleted from the
model – only removed from its containing feature. We can iterate through the
add and move structures to identify the events on n2 that should be removed,
resulting in the ignoreList = {6, 8}.

Listing 6 shows an example with a move event1. A move event is inserted at
line 8 thus makes the remove event of n2 moves to line 9. With the introduction
of this move event, we now have the children.add.lines = {{5, n1}, {6, n2}
{7, n3}}, children.move.lines = {{8, n1}}, and children.remove.lines = {{9,
n2}}. In the final state of the model, the children should have the n1 and n3 in
order, children = [n1, n3].

However, executing the previous strategy naively leads to an erroneous final
state. Using ignoreList = {6, 8} produced by the naive strategy leads to a
different order of n1 and n3 in the final state of the model where children =
[n3, n1] as shown by the naive optimised CBP in Listing 7. To overcome this
problem, *IsMoved flags in Fig. 3 is used to sign features and elements if they
have been moved – the flags are set to true. If an element’s *IsMoved flag is
true then all of its line numbers related to add, move, remove events cannot be
put into the ignoreList. The flags are set to false if the feature is empty.

Listing 7: A naive optimised CBP representation of original CBP representation
in Listing 6 .

1 create p of Node // children = []
2 create n1 of Node // children = []
3 create n2 of Node // children = []

1 The commented parts show the end states of children after each event



4 create n3 of Node // children = []
5 add n1 to p.children // children = [n1]
6 add n3 to p.children // children = [n1, n3]
7 move 0 to 1 in p.children // children = [n3, n1]

3.4 Create and Delete Events

When an element is deleted, it is completely removed from the model. Therefore,
all previous events (create, set, unset, move, add, remove, delete) on features
of element can be ignored, along with all events on the element’s features. For
example, when node n3 in Listing 2 is deleted, the events in lines 5-6 and 8-10
are superseded. If the Listing 2 is optimised – some of its events are ignored –
when loading, it runs as if the Listing 8 are executed.

Listing 8: Change-based representation of the model in Fig. 1b after removal of
node n3.

1 create n1 of Node
2 set n1.name to "A"
3 create n2 of Node
4 set n2.name to "B"
5 add n2 to n1.children

Using the Listing 2, we can construct the structure of histories that are re-
lated to element n3 as follows: n3.create.lines = {5}, n3.name.set.lines = {6},
n1.children.add.lines = {{7, n2}, {8, n3}}, n1.children.remove.lines = {{9,
n3}}, and n3.delete.lines = {10}. Thus, when element n3 is deleted, by iterat-
ing through all these history structures, all line numbers associated with n3 can
be identified and added to ignoreList producing ignoreList = {5 6, 8, 9, 10} so
they can be ignored in the next model loading.

4 Performance Evaluation

We developed the proposed efficient loading approach on top of the original
CBP implementation2 from [3] and evaluated our approach’s model loading per-
formance, as well as its memory footprint and its impact on the time required
to save changes made to CBP models. The evaluation was performed on Intel R©

CoreTM i7-6500U CPU@2.50GHz 2.59GHz, 12GB RAM, and the JavaTM SE
Runtime Environment (build 1.8.0 162-b12).

Given that CBP is a very recent contribution and we are not aware of any existing
datasets containing real-world models expressed in a change-based format, we
have used synthetic change-based models for the evaluation of our experiments.

2 The prototype, tests, and data used in the evaluation are available under https:
//github.com/epsilonlabs/emf-cbp and https://goo.gl/1zUBQC for re-
producibility

https://github.com/epsilonlabs/emf-cbp
https://github.com/epsilonlabs/emf-cbp
https://goo.gl/1zUBQC


The synthetic models were derived from real-world cases: the BPMN2 [6,7] and
Epsilon [8,9] software projects, and the United States article [10] on Wikipedia
(the article is further referred as Wikipedia). For the first two projects, for each
version of the cases, we used MoDisco [11] to generate a UML2 [12] model that
reflects its source code. For the Wikipedia article, a model that conforms to
the Modisco XML metamodel [13] was generated. Since these cases have many
versions – represented by commits/revisions, different models of the versions
can be generated, and to some degree, they reflect the time-ordered changes
of the cases. The synthetic change-based model for each case was derived by
comparing an initially-empty running model to different versions of the case’s
models sequentially. All identified differences were then reconciled by performing
a unidirectional merging to the running model. All changes made to the running
model during the merging process were captured and persisted into a CBP file.
EMF Compare was used [14] to perform the comparison and merging.

Using the synthetic models, we performed performance evaluation on loading
time, saving time, and memory footprint for both loading and saving. To compare
the loading time, we ran the optimised and original (baseline) CBP algorithms
to reconstruct the current state of each of the three models (the results are
shown in Fig. 5). As discussed in Section 3, optimised CBP also does extra work
when saving the changes to a model, in order to save time (relative to original
CBP) when loading a model. To analyse the performance effect of optimisation
activities, we, therefore, compared the overall time required to save a new version
of the models described above, after one single change has been made (The results
are shown in Fig. 6). We also compare the memory footprints for both loading
and saving since the optimised CBP approach also requires the maintenance of
an additional in-memory data structure that keeps track of element and feature
editing histories (see Fig. 7 and 8 for the results).

For each combination of dimensions (loading time, saving time, loading memory
footprint, saving memory footprint), persistence types (original CBP, optimised
CBP, and XMI), and cases (BPMN2, Epsilon, and Wikipedia), we performed
measurement 22 times. The results of the measurement enabled us to perform
the Welch’s t-test [15] to find the significance of the comparisons for each case.
We used a significance level of 5%. If t-test’ p-value < 0.05, we rejected the null
hypothesis – the means of the compared persistence types are equal (H0) – and
accepted the alternative hypothesis – the means of the compared persistence
types are not equal (H1).

For loading and saving time, we measured the delta time required to complete
the loading and saving. For memory footprint, we measured the delta of memory
used before and after loading and saving completes. The results are presented
below.

4.1 Data Description

Table 1 summarises events, elements and saved versions for the Epsilon, BPMN2,
and Wikipedia cases. Total Events is the numbers of events that were produced



Table 1: Description of change-based models generated for evaluation.
Model Total

Events
Ignored
Events

Elements Total
Versions

Processed
Versions

BPMN2 1.2 million 1.1 million 62,062 192 192 (100.0%)
Epsilon 2.6 million 1.8 million 79,459 3,037 727 (23.9%)

Wikipedia 11.5 million 7.8 million 12,144 37,996 3,100 (8.2%)

by our approach in generating a change-based model for each case. Ignored
Events is the number of superseded events that do not need to be replayed
when reloading the models. Elements is the number of elements contained in
each model. Total V ersions is the number of commits/revisions made to the
cases, taken from the git repositories or Wikipedia at the time this evaluation
performed. Processed V ersions is the number of commits/revisions that were
processed to produce change-based models: since the comparison between ver-
sions takes considerable time, not all versions are processed here.

4.2 Model Loading Time

This subsection presents the results of the loading time measurement of change-
based models for each pair of the persistence types and cases, and the t-test
results of their comparisons (Table 2 and Fig. 5).

Table 2: The t-test results of loading time comparison between original CBP
(CBP), optimised CBP (OCBP), and XMI.
Group Mean SD Comparison t df p-value

BPMN2 Load Time (s) BPMN2 Load Time
CBP 5.81 0.08 CBP vs. XMI 315.95 21.46 < 0.05
OCBP 3.02 0.13 CBP vs. OCBP 87.67 35.10 < 0.05
XMI 0.47 0.47 OCBP vs. XMI 93.86 21.18 < 0.05

Epsilon Load Time (s) Epsilon Load Time
CBP 16.60 0.23 CBP vs. XMI 324.18 22.78 < 0.05
OCBP 8.28 0.09 CBP vs. OCBP 160.06 27.48 < 0.05
XMI 0.60 0.05 OCBP vs. XMI 354.52 42.06 < 0.05

Wiki Load Time (s) Wikipedia Load Time
CBP 34.23 0.145 CBP vs. XMI 1,110.10 21.00 < 0.05
OCBP 26.14 1.583 CBP vs. OCBP 23.90 21.35 < 0.05
XMI 0.02 0.001 OCBP vs. XMI 77.37 21.00 < 0.05
Mean = average, SD = standard deviation, t = t-test’s t-value, df = degree of freedom,
p-value = significance, s = the unit is seconds

These loading times show a considerable time saving for optimised CBP: BPMN2
was 48.02% faster, Epsilon 50.12% faster, and the Wikipedia page 23.63% faster
than in the original CPB implementation (all optimised CBP’s means are smaller
than all original CBP’s means), which has a positive correlation to the number
of ignored events. All the t-test results also show that loading times for all the
persistence types are significantly different (all the p-values < 0.05).



For reference, we also compare CBP loading with the execution time for load-
ing the equivalent state-based model in XMI. Fig. 5 shows that, even with the
improvements delivered by the new algorithm, loading change-based models is
still significantly slower than loading a state-based model (all XMI’s means are
smaller than other persistence types’ means).
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Fig. 5: Results for loading a model in original CBP (CBP), optimised CBP
(OCBP), and for loading a state-based (XMI) representation.

4.3 Model Saving Time

This subsection presents the results of the saving time measurement of change-
based models for each pair of the persistence types and cases, and the t-test
results of their comparisons (Table 3 and Fig. 6). As discussed in [3], CBP loading
time penalties are balanced against the benefits that CBP brings, in terms of
persisting changes (saving time).

Table 3: The t-test results of saving time comparison between original CBP
(CBP), optimised CBP (OCBP), and XMI.
Group Mean SD Comparison t df p-value

BPMN2 Save Time (s) BPMN2 Save Time
CBP 0.00097 123e-5 CBP vs. XMI -175.58 22.01 < 0.05
OCBP 0.00081 12e-5 CBP vs. OCBP 0.62 21.38 0.54
XMI 0.30122 793e-5 OCBP vs. XMI -177.76 21.01 < 0.05

Epsilon Save Time (s) Epsilon Save Time
CBP 0.00069 3.4e-5 CBP vs. XMI -6.01 21.00 < 0.05
OCBP 0.00080 8.0e-5 CBP vs. OCBP 160.06 28.24 < 0.05
XMI 0.40025 595e-5 OCBP vs. XMI -314.80 21.01 < 0.05

Wiki Save Time (s) Wikipedia Save Time
CBP 0.00071 4.9e-5 CBP vs. XMI -46.19 21.08 < 0.05
OCBP 0.00075 4.1e-5 CBP vs. OCBP -3.48 40.77 < 0.05
XMI 0.01195 114e-5 OCBP vs. XMI -46.01 21.06 < 0.05
Mean = average, SD = standard deviation, t = t-test’s t-value, df = degree of freedom,
p-value = significance, s = the unit is seconds
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Fig. 6: A comparison on time required for persisting an event between original
CBP (CBP), optimised CBP (OCBP), and XMI.

As shown in Table 3 and Fig. 6, the performance of the two CBP implementations
is not very different. Since the significance level is 5%, only the BPMN2 case
that fails. However, the difference between the means of its original CBP (0.97
ms) and optimised CBP (0.81 ms) is small. This indicates that the cost of the
extra work in the optimised CBP algorithm is negligible. On the other hand,
both CBP implementations are significantly faster at saving changes than state-
based XMI (the means of both CBP implementations are smaller than XMI’s
means, and both CBP implementations have p-values < 0.05 when compared
to XMI). This is expected, as the CBP implementations only need append the
last changes to the existing model file (their performance is thus relative to the
number of changes since the last save), while the XMI implementation needs to
reconstruct an XML document for the entire state of the model, and replaces
the contents of the model file every time (and hence its performance is relative
to the size of the entire model).

4.4 Memory Footprint

Here we present the results of measuring the memory footprint after loading
models (Table 4 and Fig. 7) and persisting single changes (Table 5 and Fig. 8)
using the models from the three cases. The results show the significant memory
overhead of the extra data structure when loading models (all the means of
optimised CBP are greater than all the means of original CBP and all compar-
isons between both CBPs show p-values < 0.05, Table 4). Both CBPs are also
outperformed by XMI in terms of memory footprint when loading models (all
the means of XMI are smaller than all the means of both CBPs and all com-
parisons against XMIs show all p-values < 0.05, Table 4). In loading, XMI uses
significantly less memory than the optimised CBP representation and performs
slightly better than the original CBP.

In terms of saving, both CBP implementations persist a single change faster
than XMI indicated by their means that are smaller than the means of XMI,
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Fig. 7: A comparison on memory footprint after loading a model between original
CBP (CBP), optimised CBP (OCBP), and XMI.
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Fig. 8: A comparison on memory footprint after persisting an event between
CBP, optimised CBP, and XMI.

and all the CBPs’ t-tests with XMI show that their differences are significant
at p-value < 0.05 (Table 5). The optimised CBP has a larger memory footprint
than the original CBP since the means of the optimised CBP for all cases are
greater than the means of the original CBP. However, their memory footprints
are not very different. Even though the BPMN2 and Epsilon cases have p-values
< 0.05, the differences of the means of their original and optimised CBPs are
small, and the Wikipedia case also shows p-value > 0.05 on its original CBP vs.
optimised CBP comparison.

4.5 Threats to Validity and Limitations

In this work, we have only tested the algorithms on synthesised models which
may not be representative of the complexity and interconnectedness of models
in other domains. Diverse characteristics of models in different domains can
affect the effectiveness of the algorithm and therefore yield different outcomes.
So far, CBP optimisation only supports ordered and unique features. Support
for duplicate values means that removal of an item does not necessarily result in



Table 4: The t-test results of memory footprint comparison after loading a model
between original CBP (CBP), optimised CBP (OCBP), and XMI.
Group Mean SD Comparison t df p-value

BPMN2 Load Memory (M) BPMN2 Load Memory
CBP 9.76 76.0e-4 CBP vs. XMI 4,392.5 21.22 < 0.05
OCBP 22.36 0.015 CBP vs. OCBP -3,695.7 32.28 < 0.05
XMI 2.63 5.5e-4 OCBP vs. XMI 6,572.4 21.06 < 0.05

Epsilon Load Memory (M) Epsilon Load Memory
CBP 15.74 1.248 CBP vs. XMI 28.16 41.99 < 0.05
OCBP 43.15 0.056 CBP vs. OCBP -102.9 21.08 < 0.05
XMI 5.05 1.271 OCBP vs. XMI 140.49 21.08 < 0.05

Wiki Load Memory (M) Wikipedia Load Memory
CBP 2.29 2.4e-4 CBP vs. XMI 4,523.5 25.16 < 0.05
OCBP 126.48 0.29 CBP vs. OCBP -2,009.3 21.00 < 0.05
XMI 1.52 7.6e-4 OCBP vs. XMI 2,021.8 21.00 < 0.05
Mean = average, SD = standard deviation, t = t-test’s t-value, df = degree of freedom,
p-value = significance, M = the unit is megabytes

the item not being present in the feature value. Additional information must be
captured to persist the number of copies and positions of the feature members
to properly generate the ignore list.

4.6 Discussion

For the original CBP loading, the total time required to load a model is TCBP

= TE + TO, where TE is the total time required to complete executing all
events, and TO is the total time needed to complete other required routines (e.g.
initialisation, reading files). For the optimised CBP loading, the total time to
load a change-based model is reduced by the total time saved-up by ignoring
superseded events TI , that is TOCBP = TE + TO − TI . Thus, it is expected
that optimised CBP can load a model faster than original CBP. This statement
is in accordance with our finding in Section 4.2 that the total saved-up loading
time corresponds to the number of ignored events. However, it still requires more
investigation to determine the degree of their correlation, which will be addressed
in our future work.

5 Related Work

There are several non-XMI approaches to state-based model persistence, using
relational or NoSQL databases. For example, EMF Teneo [16] persists EMF mod-
els in relational databases, while Morsa [17] and NeoEMF [18] persist models
in document and graph databases, respectively. None of these approaches pro-
vides built-in support for versioning and models are eventually stored in binary
files/folders which are known to be a poor fit for text-oriented version control
systems like Git and SVN. Connected Data Objects (CDO) [19], provides sup-
port for database-backed model persistence as well as collaboration facilities,



Table 5: The t-test results of memory footprint comparison after saving an event
between original CBP (CBP), optimised CBP (OCBP), and XMI.
Group Mean SD Comparison t df p-value

BPMN2 Save Memory (M) BPMN2 Save Memory
CBP 0.0023 6.3e-5 CBP vs. XMI -489,170 41.49 < 0.05
OCBP 0.0029 80e-5 CBP vs. OCBP -3.22 21.26 < 0.05
XMI 8.84 5.6e-5 OCBP vs. XMI -51,180 21.21 < 0.05

Epsilon Save Memory (M) Epsilon Save Memory
CBP 0.0025 18.8e-6 CBP vs. XMI -4.3e+6 21.00 < 0.05
OCBP 0.0031 279.9e-6 CBP vs. OCBP -10.131 21.19 < 0.05
XMI 17.61 2.4e-6 OCBP vs. XMI -295,090 21.00 < 0.05

Wiki Save Memory (M) Wikipedia Save Memory
CBP 0.0025 1.9e-5 CBP vs. XMI -391,970 40.52 < 0.05
OCBP 0.0028 84.1e-5 CBP vs. OCBP -1.75 21.02 0.094
XMI 2.0194 1.5e-5 OCBP vs. XMI -11,245 21.01 < 0.05
Mean = average, SD = standard deviation, t = t-test’s t-value, df = degree of freedom,
p-value = significance, M = the unit is megabytes

but its adoption necessitates the use of a separate version control system in the
software development process (e.g. a Git repository for code and a CDO reposi-
tory for models), which introduces fragmentation and administration challenges
[20]. Similar challenges arise in relation to other model-specific version control
systems such as EMFStore [21].

6 Conclusions and Future Work

This paper proposes an efficient algorithm and supporting data structures for
loading change-based models. Performance is evaluated on synthesised models,
with comparison against the existing change-based implementation, and state-
based XMI. Our results show considerable savings in terms of loading time with
a negligible impact on saving time, but at the cost of a higher memory footprint.
In future, we intend to evaluate CBP against state-based persistence on real
complex models. We also plan to investigate the impact of change-based model
persistence on the performance of change detection, model merging, and conflict
resolution in the context of collaborative modelling. Meanwhile, the CBP ap-
proach can be further optimised to consume less memory and speed up parsing,
such as using binary format instead of text. We are also exploring a hybrid persis-
tence representation that offers a combination of state-based and change-based
persistence.
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