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ABSTRACT 19 

Objective: Measurement error in predictor variables may threaten the validity of clinical prediction 20 

models. We sought to evaluate the possible extent of the problem. A secondary objective was to 21 

examine whether predictors are measured at the intended moment of model use. 22 

Methods: A systematic search of Medline was used to identify a sample of articles reporting the 23 

development of a clinical prediction model published in 2015. After screening according to a 24 

predefined inclusion criteria, information on predictors, strategies to control for measurement error 25 

and intended moment of model use were extracted. Susceptibility to measurement error for each 26 

predictor was classified into low and high risk. 27 

Results: Thirty-three studies were reviewed, including 151 different predictors in the final prediction 28 

models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not 29 

accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended 30 

moment of model use and when the predictors were measured.  31 

Conclusion: Reporting of measurement error and intended moment of model use is poor in 32 

prediction model studies. There is a need to identify circumstances where ignoring measurement 33 

error in prediction models is consequential and whether accounting for the error will improve the 34 

predictions. 35 

Keywords: Prediction models, prediction, prognosis, diagnosis, measurement error, error 36 

Word count: 541637 
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WHAT IS NEW? 38 

Key findings 39 

• Many published prediction models include predictors that are susceptible to measurement 40 

error and this measurement error is not being acknowledged or accounted for in the 41 

development of the models. 42 

• Most prediction model articles do not explicitly state the intended moment of model use, or 43 

exactly when the predictors used in the model development were measured. 44 

What this adds to what is known 45 

• Reporting of measurement error and intended moment of model use is poor in prediction 46 

model studies. 47 

What is the implication, what should change now? 48 

• There is a need to identify circumstances where ignoring measurement error in prediction 49 

models is consequential and whether accounting for the error will improve the predictions. 50 

• Future prediction model research studies must clearly report the intended moment of use of 51 

the prediction model, and be explicit about when the predictors were measured. 52 

 53 

 54 

 55 
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BACKGROUND 56 

Predicting a patient’s future outcome risk is an important part of medical research as it guides 57 

treatment, informs clinical decision making and helps patients understand their risk. Prognosis 58 

research can be used to help predict future outcomes in patients with a particular disease or health 59 

condition by developing a prediction model [1]. The number of articles reporting clinical prediction 60 

models has been increasing steadily over time, with approximately 500 articles published in 2011 [2], 61 

and these models utilise values of multiple predictors to enable individualised risk prediction [3]. 62 

Such models are intended “to assist clinicians with their prediction of a patient’s future outcome and 63 

to enhance informed decision making with the patient” [4]. Therefore, the predictions from these 64 

models should have optimal performance when being practically implemented at the “intended 65 

moment of using the model” [5].  66 

However, when developing such models, measurement error may affect the observed predictor 67 

values, which could potentially lead to biased or incorrect estimates of predictor-outcome 68 

associations [6-9]. Measurement error is a difference between the measured values of a predictor 69 

and the true values of the predictor, or if the predictor is categorical, it is the classification to an 70 

incorrect category (misclassification). The term measurement error will be used throughout this 71 

article to refer generally to measurement error in continuous predictors and misclassification of 72 

categorical predictors. Measurement error is common within clinical studies, particularly 73 

observational studies [10], and has been found to be commonly neglected within the medical 74 

literature [11] Measurement error can occur for many different reasons such as biological variability, 75 

inaccuracy of measurement instruments, imperfect recall, cost or resource limitations, the 76 

subjective nature of measures, laboratory or measurer error and timing error. For example, 77 

measurement error in blood pressure commonly occurs due to biological variability [12]. Body mass 78 

index (BMI) is also commonly measured with error either due to the inaccuracy of measurement 79 
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instruments (i.e. the scales not being calibrated correctly), or due to imperfect recall by the patient, 80 

and this measurement error could then cause misclassification into an incorrect category.  81 

Prognosis research is becoming increasingly more important [1], but there has been little research 82 

into the impact that measurement error in the predictors used to develop a prediction model may 83 

have, both in terms of the predictions made and model performance. It is also unclear how 84 

accounting for measurement error within the statistical modelling may improve this. A recent study 85 

demonstrated that measurement error in the predictors can dramatically reduce the c-statistic and 86 

increase the Brier score [13], and another study found that both random and systematic error in self-87 

reported health data influences the calibration, discrimination and predicted risks [14], but in 88 

general the extent and impact of measurement error in prediction model research is often 89 

overlooked. However, the STRATOS (STRengthening Analytical Thinking for Observational Studies) 90 

initiative (www.stratos-initiative.org) have identified measurement error as a common issue in 91 

observational studies which is often ignored and for which guidance is needed. There is a vast 92 

amount of literature on the statistical effect of measurement error in general, but whether 93 

investigators consider measurement error when developing a prediction model, has not previously 94 

been evaluated.  Models developed with predictors containing measurement error could therefore 95 

provide inaccurate estimates of patient risk and the model may not perform as well as expected in 96 

practice. A summary of the most commonly used methods to correct for measurement error is given 97 

by Brakenhoff et al [11] with more detailed reviews of these (and other) methods given by Caroll et 98 

al. [8] and Gustafson [9]. Several other methods that can be used to account for measurement error 99 

in the particular context of prediction research have been developed, including methods in a 100 

Bayesian framework, using an item response theory model to handle the measurement error [15] 101 

and bootstrap regression calibration [16], based on resampling techniques. 102 

A particular aspect of measurement error in the predictors is timing error, so whether the predictors 103 

used in the model development were measured at the moment the model is intended to be used in 104 
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practice. When time-dependent predictors are not able to be measured at `baseline’ this creates 105 

time-dependent bias, which has been shown to often have an impact on the estimates of key 106 

predictors and study conclusions [17]. Additionally, the TRIPOD (Transparent Reporting of a 107 

multivariable prediction model for Individual Prognosis or Diagnosis) statement recommends to 108 

clearly define when the predictors used in the development of the model were measured [18] and 109 

states that “all predictors should be measured before or at the study time origin and known at the 110 

intended moment the model is intended to be used” [19]. Nevertheless, for a range of practical and 111 

ethical reasons, researchers may design prognosis studies that collect time-varying predictor 112 

information after the intended moment of use, which itself may lead to errors and misleading 113 

predictions [20]. 114 

 115 

The aim of this article is to present a systematic review of recent studies developing prediction 116 

models, to ascertain how susceptible to measurement error the predictors used in the final models 117 

are and how often the measurement error was acknowledged or accounted for within the 118 

development of the models. A secondary objective is to determine whether the predictors were 119 

measured at a different time point to the intended moment of using the prediction model.  120 

 121 

METHODS 122 

Data source and search 123 

A systematic search was carried out in Medline on 27
th

 November 2015 to identify the 30 most 124 

recent articles reporting the development of a multivariable prediction model for either 125 

individualised diagnosis or prognosis. It was decided a priori that approximately 30 articles would be 126 

sufficient in providing qualitative saturation of whether measurement error and incorrect timings 127 

was a general concern for the prediction model field. 128 
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The search strategy used was an adaptation of a published search string for finding prognostic and 129 

diagnostic prediction studies in Medline [21]. The search string was adapted by changing the term 130 

“OR ‘Multivariable’” to “AND (Multivariable OR Multivariate)” to refine the search further to studies 131 

developing multivariable prediction models for individualised prediction, which would hopefully 132 

remove other studies just examining associations between specific factors and an outcome but not 133 

developing a prediction model (see Supplementary Table 1 for the full search string). 134 

 135 

Selection of articles 136 

The titles and abstracts of the 1000 most recently published articles found using the search string 137 

were screened for inclusion, as we estimated this would return approximately 30 articles to be 138 

included. The full article was then obtained for any articles which were deemed to be potentially 139 

eligible or for any articles in which it was unclear from the title and abstract whether they met the 140 

eligibility criteria. These full articles were then screened for suitability and categorised into one of 141 

three groups: ‘include’, ‘exclude’ and ‘unsure’. The selection of articles until this stage was 142 

undertaken by a single reviewer (RW). Articles in the ‘include’ and the ‘unsure’ groups were sent to 143 

two additional reviewers (GP & RR). Both reviewers checked all ‘unsure’ articles, and the ‘include’ 144 

articles were split between the two reviewers to check they met the eligibility criteria. Any ‘unsure’ 145 

articles on which an agreement could not be reached were checked by a fourth reviewer (JB) and the 146 

decision to include or exclude was based on the verdict of the fourth reviewer. 147 

 148 

Inclusion/exclusion criteria 149 

Articles were included if they reported the development of a clinical prediction (prognostic or 150 

diagnostic) model for individualised prediction in human participants, based on a multivariable 151 

regression model or studies updating a previously developed prediction model by adding new 152 
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predictors. Articles were excluded if they developed a model using non-regression based techniques, 153 

validated a previously developed prediction model, created a risk score from an existing prediction 154 

model, used a multivariable model to examine whether a particular predictor is associated with the 155 

outcome when adjusting for other factors (prognostic factor research), estimated the prognostic 156 

effect (e.g. hazard ratio) of a previously developed score, updated a previously developed model 157 

without adding any new predictors to the model or investigated the optimal cut off value of a 158 

previously developed model. Any articles in excess of the required 30 that met the eligibility criteria 159 

were also retained for inclusion, to avoid any potential selection bias concerns when choosing which 160 

articles to remove. 161 

 162 

Data extraction 163 

Data were extracted from the selected articles by a single reviewer (RW). The list of items presented 164 

in Table 1, where available, were extracted from each article and were based on the CHARMS 165 

checklist [5], with the addition of information related to the intended moment of using the model 166 

and measurement error. 167 

  168 
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>> insert Table 1: Data extracted from each article<< 169 

 170 

Measurement error 171 

The level of susceptibility to measurement error for each predictor used in the final models of the 172 

included articles were classified into two categories: 173 

• Low risk: Unlikely to be measured with error, or possibly/likely to be measured with error 174 

but expected to be unimportant; 175 

• High risk: Possibly/likely to be measured with error and may be important. 176 

For example, age and gender are both extremely unlikely to be measured with error, and any error 177 

in age recorded would be expected to be negligible. Thus, age and gender would be classed as ‘low 178 

risk’ with regards to important measurement error. Whereas, blood pressure could be measured 179 

with error, as error in blood pressure measurement commonly occurs because of improper 180 

techniques such as talking during measurement or wrong cuff size [22] and blood pressure is also 181 

commonly measured with error due to biological variability [12]. This error could be large, and could 182 

be important when developing a prediction model for hypertension, for example, because blood 183 

pressure is an important component of the diagnostic evaluation for hypertension. Hence, blood 184 

pressure would be classed as ‘high risk’ of measurement error. Another high risk example would be 185 

body mass index (BMI), which the extent of the measurement error would depend on the way in 186 

which it was measured, but there would be a high chance it would be measured with some error. 187 

To categorise the list of predictors into the two groups of susceptibility to measurement error, first 188 

the literature was searched for any publications discussing measurement error in any of the 189 

predictors of interest. For those where no evidence could be found, the categorisations were made 190 

based on the judgement of the reviewer (RW), which was corroborated by a postdoctoral academic 191 

General Practitioner.   192 
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 193 

Timing of measurements and intended moment of model use 194 

If the timing of predictor measurements and intended moment of using the model was not explicitly 195 

stated in the article then, wherever possible, information on where the predictor information came 196 

from and the setting they were measured in were used to establish a likely time of measurement. If 197 

the intended moment of use of the model was not stated then, again where possible, information on 198 

what the model would be used for and the predictors that would be used within the model were 199 

considered to make a decision on the most probable intended moment of use.  200 

 201 

RESULTS 202 

Included studies 203 

A total of 1000 titles and abstracts were extracted and screened for inclusion. Of these, 876 were 204 

excluded based on not meeting the inclusion criteria from screening their title and abstract (Figure 205 

1). Study eligibility was then assessed for 124 full-text articles and 33 met eligibility criteria for 206 

inclusion [23-55], hence all 33 were retained for the review. The 33 included articles consisted of 27 207 

prognostic model studies and 6 diagnostic model studies published in 2015. The additional 208 

information extracted from the articles that is not related to measurement error or the timing of 209 

measurements is presented in Supplementary Table 3.  210 

>>insert Figure 1: Flow chart of included studies<< 211 

 212 

 213 

 214 

Measurement error 215 
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In the 33 articles reviewed, there was a total of 151 different predictors in the final prediction 216 

models. Many of the predictors were included in several different models, for example, age and 217 

gender were in many of the models (13 models and 5 models, respectively). Of the reported 218 

predictors included in the final models, we categorised 51 (33.8%) as high risk of being susceptible to 219 

measurement error (Table 2) and the remaining 100 (66.2%) as low risk (Supplementary Table 2).  220 

>> insert Table 2: Predictors in final models at high risk of measurement error<< 221 

 222 
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Despite a third of the included predictors being at high risk of being susceptible to measurement 223 

error, only three studies acknowledged, or accounted for, measurement error within their model 224 

development. One study mentioned measurement error as a general limitation due to the study 225 

being from a single centre [23], but did not specify any particular predictor which may be at risk of 226 

error. Additionally, two studies used repeated measurements of a predictor within the modelling 227 

process [24, 27]. The first of the studies that used repeated measures [24] used generalised 228 

estimating equations (GEE’s) to fit models accounting for the correlations among multiple biopsies 229 

that were performed on the same patients. The authors state that GEE’s yield the same mean 230 

predictions as maximum likelihood, but result in inflated standard errors, wider confidence intervals 231 

and diminished statistical significance that more accurately reflect the amount of uncertainty in the 232 

data. There is no mention of measurement error within the article, and so it assumed that the 233 

authors have not made use of the repeated measures in a conscious effort to reduce measurement 234 

error, but to take advantage of all the data available (which may consequently potentially minimise 235 

measurement error). The second study using repeated measures [27] used joint modelling of 236 

longitudinal measures of CA125 with the stated purpose of estimating the time trend of CA125 237 

rather than explicitly accounting for measurement error (although again, this may consequently 238 

account for measurement error). 239 

 240 

Despite only two of the reviewed articles included repeated measurements in the modelling process, 241 

repeated measurements of at least one of the candidate predictors were actually reported to be 242 

available in 6 (18.2%) of the articles [24, 27, 30, 31, 37, 45]. Of these 6 articles that repeated 243 

measures were available, 4 of these had repeated measures that we categorised as being high risk 244 

[27, 30, 31, 45], one of which used the repeated measures within the modelling [27]. 245 
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Predictors considered at high risk of measurement error have been grouped by key reasons for being 246 

susceptible to error in Table 2, and several examples of these predictors with more detail and 247 

related references are given in Table 3. 248 
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>> insert Table 3: Key reasons for measurement error in examples of predictors at high risk of being susceptible to error<< 249 

 250 

 251 

One example of a predictor at high risk of error and used in several of the final prediction models is 252 

prostate specific antigen (PSA). Roehrborn et al. [69] conclude that there is significant variability 253 

between two serum PSA measurements obtained within a short time interval, which is due to 254 

chance alone. Biomarkers such as CA125, creatinine, C-reactive protein, serum albumin and other 255 

serological markers are also likely to change if a second sample was assessed, meaning they are 256 

measured with error due to biological variability causing discrepancies away from an underlying 257 

(mean) value [71]. There is also the possibility of laboratory error being present in these biomarkers, 258 

as the equipment or methods used to take the measurements within the laboratory may not be 259 

accurate.  260 

In another example of a predictor likely measured with error, Ali et al. [68] found that the depth of 261 

myometrial invasion (DMI) was different in 29% of cases when the DMI was reassessed. The area 262 

under a patients pain curve could also be measured with error as it is a subjective measurement that 263 

may be affected by various things including how the question is asked, the setting in which the 264 

question is asked or when the question is asked. It could also be subject to recall error if the patient 265 

is asked about previous days pain levels. Another example is pulse rate, where Kobayashi [63] found 266 

that error occurred when pulse rates were objectively scored for various durations (e.g. 10, 15 or 30 267 

seconds) rather than for a whole minute, so the error in a pulse rate could depend on how long the 268 

pulse was taken for.  269 

A patient’s primary tumour diameter is another example of a predictor which may be susceptible to 270 

being measured with error. If a histologist determined the diameter under a microscope there would 271 

be little deviation from the true value, whereas if a surgeon recorded the diameter using an 272 

endoscopy then this could be recorded with error and could have an effect on the therapy chosen to 273 

be used [72]. Another example is BMI, which again the amount of error would depend on how it was 274 
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measured. If measured by a clinician then there is unlikely to be much measurement error, but if 275 

measured by the patient and recalled this may be subject to error [73]. Other examples include 276 

duration of convulsions, duration of neck pain, duration on nervousness and duration of tingling 277 

which are all self-reported predictors which could be subject to imperfect recall by the patient.    278 

There were also many examples of predictors that were considered to be at low risk of important 279 

error. For example, one model that aimed to identify trauma patients at high risk of pulmonary 280 

embolism included a predictor indicating if the patient arrived at the hospital by helicopter [26], and 281 

it would be unlikely this would be incorrectly classified. Other models included the patient’s disease 282 

location as a predictor and again, it is unlikely that this would not be recorded correctly.  283 

 284 

Timing of measurements and relation to intended moment of model use 285 

Only eight of the articles explicitly stated exactly when the intended moment of using the model 286 

would be, or exactly when the predictors used in the final model were measured. However, for the 287 

majority of the 33 included articles it was possible to make a reasonable assumption about these 288 

details. If these assumptions were indeed correct, then in 30 (90.9%) of the 33 articles, the predictor 289 

measurements were all either taken at the intended moment of model use or were available prior to 290 

this. For example, one study [42] developed a model to predict survival prognosis after surgery in 291 

patients with symptomatic metastatic spinal cord compression from non-small cell lung cancer, with 292 

the aim of being able to provide optimal treatment. Although the specific timing of the predictor 293 

measurements was not stated, the predictors were specified as preoperative characteristics. The 294 

assumption was made that the model would be intended to be used at the point when a treatment 295 

decision was being made, as it was reported that those with the most favourable survival prognosis 296 

may instead be treated with more radical surgery. Therefore, it was assumed that the preoperative 297 

characteristics considered as predictors were either measured prior to or at the point that the model 298 

would be intended to be used. 299 
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In another example [40], a diagnostic model was developed to predict colorectal cancer in patients 300 

selected for colonoscopy in a primary health care setting, with the aim of identifying high risk 301 

patients to reduce the time till diagnosis and hence provide more efficient treatment strategies and 302 

success. As the model is to be used to help identify high risk patients when being considered for 303 

colonoscopy, which would happen during a GP consultation, it was assumed that the model would 304 

be intended to be used during a GP consultation when considering referral for colonoscopy. The 305 

model used predictors recorded in routine care data, which would all be available at the point of 306 

care, and although the article did not state at which time the predictors were recorded, it was 307 

assumed that only measurements recorded prior to colonoscopy referral were considered in the 308 

model development.  309 

In all 6 of the articles in which repeated measures were available, each of the repeated measures 310 

were recorded either at or prior to the intended moment of using the prediction model.   311 

In two (6.1%) of the articles [32, 48] it was not possible to make an assumption with regards to when 312 

the predictors were measured in relation to when the model was intended to be used. In the first 313 

article [32], a prognostic model was developed to predict the specific risk of non-sentinel node 314 

metastases in women with breast cancer with the aim of preventing unnecessary axillary lymph 315 

node dissections. The model was intended to be used after diagnosis of breast cancer, and as it is to 316 

be used to prevent unnecessary axillary lymph node dissections it could be assumed that the model 317 

would be intended to be used when deciding whether to perform an intraoperative axillary lymph 318 

node dissection. Little information was given on the predictors used in the model meaning the 319 

timing of the measurements of the predictors could not be deciphered, hence it was not possible to 320 

determine whether the predictors were measured at the intended moment of using the model or 321 

not. In the second article [48], a model was developed to predict unfavourable disease in patients 322 

with prostate cancer. The aim of the model was to avoid or postpone interventions in subjects with 323 

prostate cancer of low biological potential. The article states that the model is intended to be used 324 
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in patients after radical prostatectomy, but who were eligible for active surveillance. The predictors 325 

included were recorded from clinical evaluation, prostatic biopsy and radical prostatectomy 326 

specimens, but the timing of the clinical evaluation and prostatic biopsy was unclear and hence it 327 

was unknown whether these were before, at, or after the intended moment of using the model.    328 

For one of the included articles [30], a classification algorithm was developed for the diagnosis of 329 

non-alcoholic fatty liver disease (NAFLD). The model was not developed to be intended to be used at 330 

a specific time but to be used to identify large scale longitudinal cohorts from electronic medical 331 

records for use in research studies. 332 

 333 

DISCUSSION 334 

Our review suggests that many published clinical prediction models include predictors that are 335 

susceptible to potentially important measurement error and yet this was seldom acknowledged. Of 336 

33 articles in our review only two used methods that could potentially account for measurement 337 

error by using repeated measurements in the modelling. Though the impact of ignoring 338 

measurement error in the articles reviewed is difficult to establish, it raises an important 339 

methodological consideration for future prediction model research to address, particularly as a third 340 

of the predictors used in the prediction models were categorised as being at high risk of being 341 

susceptible to measurement error. The review also found that over three-quarters of the articles 342 

included did not explicitly state the exact timing that the model is intended to be used in clinical 343 

practice, or exactly when the predictors used in the modelling development were measured. 344 

However, a reasonable assumption could be made for the majority of the articles included and, 345 

based on this, there were no articles that obviously recorded a predictor after the time it was 346 

intended to be used.  347 

 348 
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Related research 349 

Measurement error has been found to generally have three main effects if not accounted for in 350 

medical research: biased or inaccurate estimates of the parameters, loss of power and masking the 351 

features of the data (making it harder to spot relationships via graphical methods) [8]. The direction 352 

and magnitude of bias from measurement error depends heavily on whether the distribution of 353 

errors for one variable depends on the actual value of the variable, the actual values of other 354 

variables, or the errors in measuring other variables [7], as well as on the true strength of 355 

association, the prevalence of the predictors [74] and whether the errors are random or systematic. 356 

Hence, the direction of bias from predictor measurement error is likely to be difficult to predict. 357 

However, failing to adjust for random measurement error could potentially lead to estimates being 358 

biased towards the null [6], which could subsequently lead to an underestimate of a patients’ 359 

probability of outcome if measurement error is present in the prediction model used. Conversely, 360 

failing to account for systematic errors may change the results in different directions, which could 361 

again lead to incorrect predictions of a patients’ probability of future outcome.  362 

There are currently two conflicting views about whether measurement error in prediction models is 363 

an issue or not. Firstly, Carroll and colleagues [8] state that if a predictor (X) is measured with error, 364 

and this measure (W) is used to predict a patients outcome, then if it is this same surrogate measure 365 

of X that will be used when applying the prediction model in practice, there is little issue with using 366 

W to develop the prediction model. On the other hand, a prediction model should provide the most 367 

accurate estimate possible, and if a predictor used in the development of a model is measured with 368 

error then the estimates of the predictor-outcome associations will be biased, meaning the 369 

predictions made may be untrue. Measurement error in the candidate predictors could also lead to 370 

certain predictors not being included in the final model due to the measurement error.  371 

In etiologic research we are most interested in the (adjusted) estimate of a single predictor-outcome 372 

association and hence would want to minimise bias of this particular estimate. Whereas when 373 
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developing a prediction model, we are not predominantly interested in the individual estimates of 374 

one (or more) of the predictor-outcome associations, but in the actual absolute risk predictions 375 

calculated from the model (and the predictive performance of these risk predictions from the 376 

model). Hence, even if one (or more) of the estimates of a predictor-outcome association in a 377 

prediction model is biased due to measurement error, this may not be an issue if the model as a 378 

whole performs well in terms of the absolute risk predictions. However, measurement error in 379 

prediction models has been shown to reduce the c-statistic and increase the Brier score dramatically 380 

[13], but in that article the authors focussed on the gain in prediction performance from using error-381 

free predictors instead of error-prone predictors, rather than the gain in prediction performance 382 

from accounting for the measurement error in the model when the true error-free values are not 383 

known. The article also only evaluated the scenario where only one error-prone predictor was 384 

included in the prediction model. 385 

Another article assessed the impact of random and systematic error in self-reported height and 386 

weight on the performance of a model used to predict diabetes [14]. The authors found that random 387 

error reduced the calibration and discrimination, and biased the predicted risk upwards, whereas 388 

systematic error reduced the calibration and biased the predicted risk in the direction of the bias, 389 

but had no effect on the discrimination.  390 

 391 

Strengths and Limitations 392 

A strength of this review was that a clearly defined search strategy which was based on a previously 393 

published search filter [21] was used. Although this review did not include a search of every 394 

prediction model published within a certain time period due to the sheer volume of prediction 395 

models published each year [2], a search of a few of the most recently published studies was 396 

deemed appropriate to enable a general overview of the current literature and provide qualitative 397 

saturation of whether there was a susceptibility for measurement error within the predictors and 398 
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whether this was considered and also the timing of the predictor measurements in relation to the 399 

intended moment of using the model.  400 

The reviewer’s judgement had to be used and assumptions were made about the timing of 401 

measurements and when the model is intended to be used. This was due to the reviewed articles 402 

not explicitly stating these details. Based on this, all of the papers here did actually measure the 403 

predictors at the intended moment of using the model (or before), in those that it was possible to 404 

decipher this information. However, it is possible that some of these assumptions made were 405 

incorrect.  406 

Another concern within prediction models in relation to predictor timing is the relevant time 407 

window, or the length of the induction period, in which the predictor of interest is causally related to 408 

the outcome. For some prediction models, certain causal factors may need to be considered from 409 

much longer ago than others, i.e. with a longer induction period. For example, if considering 410 

asbestos exposure in relation to future lung disease, the association could span back many years, 411 

whereas recent asbestos exposure may not be related to the outcome if the induction period is only 412 

relatively short, e.g. 1-2 years. On the other hand, when predicting infectious diseases, the current 413 

and recent exposure of the patient is likely to be most important, and so a relatively short induction 414 

period would be needed. Hence, the duration of follow-up of predictors prior to the intended 415 

moment of model use should be clearly specified when developing a prediction model, however we 416 

did not assess this within this review. 417 

When developing a prediction model, the calendar year of time in which the measurements were 418 

made is important (relative to the calendar time of the intended moment of model use), because the 419 

precision of measurements often improves when using newer measurement methods. Using a more 420 

recent, up-to-date data set that used more improved measurement techniques to develop a 421 

prediction model would potentially provide a more relevant and better performing model than if 422 
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using an older dataset. While study recruitment dates are generally reported, we did not consider 423 

this in relation to when the article was published or would be intended to be used.  424 

Due to many of the included studies not actually stating a complete list of all of the candidate 425 

predictors considered in the model development, only the predictors included in the final models 426 

were assessed for their susceptibility to measurement error. However, measurement error in the 427 

candidate predictors could lead to the exclusion of these predictors in the model development stage 428 

and so measurement error in these predictors could be as equally as important as measurement 429 

error in the predictors in the final models.  430 

Little information was given within the included articles about any measurement error that may be 431 

present in the predictors. Without the availability of previous research on the amount of error in 432 

certain predictors, a subjective decision on whether measurement error was likely had to be made 433 

by the reviewer, although an academic GP also reviewed the list of predictors and gave their opinion 434 

on whether they would judge the predictor to be susceptible to measurement error when using in 435 

practice. One difficulty with making a decision on whether the predictor is likely to be susceptible to 436 

measurement error was that for many of the predictors it would depend on exactly how the 437 

predictor was measured, but often this level of detail is missing from the article. Despite this 438 

subjective approach to categorising measurement error, there were several predictors included in 439 

the final models that had corresponding published research suggesting they are likely to be 440 

measured with error, and this was not considered within the development of the models. 441 

 442 

CONCLUSIONS 443 

It is possible that many published prediction models include predictors that are measured with error, 444 

and this is often not accounted for or even considered. Additionally, even if the authors considered 445 

the predictors to be measured without error, either because of the way they were measured, or for 446 
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some other reason, this was still not stated within the articles. This suggests a need to assess under 447 

what circumstances ignoring measurement error in prediction models is a concern and whether 448 

accounting for the error will improve the predictions made and the model performance. However, 449 

researchers should be considering how susceptible to measurement error their predictors may be 450 

when developing a model.  451 

Although there were no clear examples within this review of a prediction model being developed 452 

using a predictor that was measured after the intended moment of using the model, it is common in 453 

prognosis studies of recurrent and long-term conditions presenting to primary care for information 454 

on predictors (e.g. pain intensity) to be ascertained by mailed self-complete questionnaires, or 455 

personal interview and examination in research clinics several days after their index consultation 456 

[75-81]. It was found in this review that the timing of the measurements and the intended moment 457 

of using the model is often not explicitly stated, which could mean that future users of the model 458 

unknowingly estimate misleading probabilities of a patients’ outcome if they are using predictors 459 

measured at a different time than those used in the model development in relation to the timing of 460 

the model use. We have previously found that displacing the collection of time-varying predictors 461 

from the intended moment of use of a prediction model can result in differences in the magnitude of 462 

predictor-outcome associations and the subsequent accuracy of the model performance [20]. 463 

Hence, future prediction model research studies must clearly report the intended moment of use of 464 

the prediction model, and be explicit about whether the predictors were collected before the 465 

intended moment of use or not, and if not, justify why. 466 

 467 

 468 

 469 

 470 
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LIST OF ABBREVIATIONS 471 

AUC=area under the curve; BMI=body mass index; DMI=depth of myometrial invasion; GP=general 472 

practitioner; NAFLD=non-alcoholic fatty liver disease; PSA=prostate specific antigen; 473 

TRIPOD=Transparent Reporting of a multivariable prediction model for Individual Prognosis or 474 

Diagnosis. 475 
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Table 1: Data extracted from each article 1 

Design and aim • Prognostic versus diagnostic prediction model 

• Intended scope of the review 

− Clinical area 

− Aim of prediction model (e.g. inform therapeutic decision 

making, inform referral or withholding from invasive 

diagnostic testing, inform patients of probability of event) 

• Source of data (e.g. cohort, case-control, randomised trial or registry 

data) 

Outcomes to be 

predicted 

• Definition and method for measurement of outcome 

• Type of outcome (e.g. single or combined endpoints; binary or time 

to event) 

Candidate 

predictors 

• Number and type of predictors (e.g. demographics, patient history, 

physical examination, additional testing, disease characteristics) 

• Definition and method for measurement of candidate predictors 

• Timing of predictor measurement 

• Handling of predictors in the modelling (e.g. continuous, linear, non-

linear transformations or categorised) 

Sample size • Number of participants 

• Number of outcomes/events 

• Number of outcomes/events in relation to the number of candidate 

predictors (events per variable) 

Missing data • How much missing data 

• Handling of missing data (e.g. complete-case analysis, imputation, or 

other methods) 

Model 

development 

• Modelling method (e.g. logistic or survival) 

• Method for selection of predictors for inclusion in multivariable 

modelling 

• Method for selection of predictors during multivariable modelling 

Intended moment 

of using the model 

& timing of 

predictor 

measurements 

• Intended moment of use 

• Timing of the measurement of predictors included in the final model, 

and whether it matched the intended moment of using the model 

Measurement 

error of predictors 

 

• Susceptibility to measurement error for the predictors included in the 

final model 

• Whether measurement error was accounted for and, if so, how 

Model 

performance 

 

• Calibration (e.g. calibration slope, calibration plot, Hosmer-

Lemeshow test) 

• Discrimination (e.g. c-statistic, D-statistic, log-rank) 

• Classification measures (e.g. sensitivity, specificity, predictive values, 

net reclassification improvement) 

Model evaluation 

 

• Method used for testing model performance: internal (e.g. random 

split of data, resampling methods, none) or external (e.g. temporal, 

geographical, different setting, different investigators) 

• In case of poor validation, whether the model was adjusted or 

updated (e.g. intercept recalibrated, predictor effects adjusted, new 

predictors added) 
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 2 

Table 2: Predictors in final models at high risk of measurement error 3 

Key reasons for being 

at  high risk of error 

Predictors included in final models 

Fluctuations in human 

samples/ biological 

variability 

Serum albumin, Serologic markers, Prostate Specific Antigen (PSA) density, 

Prostate Specific Antigen (PSA), Ki-67, Human epididymis protein 4 (HE4), 

Glomerular filtration rate, Emergency room pulse rate, CRUSADE score, C-

reactive protein, Creatinine on admission, CA125, Ascites 

Inaccuracy of 

measurement 

instruments 

Body Mass Index (BMI), Myometrial invasion depth, Emergency room pulse 

rate, Creatinine on admission, Weight, Ascites, International normalised 

ratio (INR1) , Infection/bioburden 

Imperfect recall Body Mass Index (BMI), Duration of convulsions, Duration of drowsiness, 

Duration of neck pain, Duration of nervousness, Duration of tingling, History 

of transactional sex, Area under pain curve, Congestive heart failure, Weight, 

Previous bleeding, Endoscopic retrograde cholangiopancreatography 

(ERCP) time, Time developing motor deficits, ImPACT  total symptom score, 

Eastern Cooperative Oncology Group (ECOG) performance status, 

Depression, Number of non-major comorbidities, Systemic illness/organ 

failure 

Subjective nature of 

measures 

Abdominal pain, Tumour stage, Suboptimal pelvic examination or enlarged 

uterus during preoperative evaluation, Area under pain curve, Hypertension, 

Clinical stage, Malnutrition, Obesity, Procedure risk category, Pressure ulcer 

stage, ImPACT  total symptom score, Eastern Cooperative Oncology Group 

(ECOG) performance status, Depression, Pre-catheterisation diagnosis 

Laboratory or measurer 

error 

Tumour stage, Suboptimal pelvic examination or enlarged uterus during 

preoperative evaluation, Myometrial invasion depth, CRUSADE score, CA125, 

Histologic grade, Primary tumour diameter, Clinical stage, Residual tumour, 

Endoscopic Retrograde Cholangiopancreatography (ERCP) Time, Tumour 

size, Pressure ulcer stage, Ascites, International normalised ratio (INR1) , 

Peritoneal Cancer Index, Infection/bioburden, Operating time and age, 

Wound (ulcer) age at first encounter 

 4 
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Table 3: Key reasons for measurement error in examples of predictors at high risk of being susceptible to error 

Predictor Key Reasons Explanation 

Area under pain curve Subjective/subject to 

recall 

Requires patient to report pain, which is a 

subjective measure and could report the 

same pain differently at a different time/by 

a different method or if previous scores 

were not provided [56], and recall 

incorrectly [57] 

CA125 Biological variability/ 

laboratory error 

Assay imprecision can contribute 

considerably to result variations in a 

conventional laboratory setting [58] and 

changes can occur due to normal biological 

variation [59] 

Creatinine on 

admission 

Biological variability/ 

inaccuracy of 

measurement method 

Bias and imprecision may occur by use of 

different measurement methods [60] and 

changes can occur due to normal biological 

variation [61] 

C-reactive protein Biological variability Within-individual variability exists, so a 

second sample may produce different 

results [62] 

CRUSADE score Biological 

variability/measurer 

error 

May get a different value if calculated again 

shortly afterwards as includes measures that 

vary and may be affected by measurer error 

such as of blood pressure [22]  

Emergency room 

pulse rate 

Biological 

variability/inaccuracy 

of measurement 

method 

May change if measured a couple of minutes 

later and there may be error depending on 

how long the measurer counted for [63] 

History of 

transactional sex 

Imperfect recall Patient may not be truthful about history 

[64] 

Glomerular filtration 

rate 

Biological variability A second sample may produce different 

results due to biological variation [65] 

Human epididymis 

protein 4 (HE4) 

Biological variability A second sample may produce different 

results [66] 

Ki-67 Biological variability A second sample may produce different 

results and differences may be present from 

different laboratories [67] 

Myometrial invasion 

depth 

Measurer 

error/inaccuracy of 

measurement method 

Results may be different when reassessed 

[68] 
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Prostate specific 

antigen (PSA) 

Biological variability A second sample may produce different 

results [69]  

Serum albumin Biological variability A second sample may produce different 

results [70] 

Tumour stage Subjective/measurer 

error 

May get a different result from different 

assessors dependent on experience level or 

areas of speciality 
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Figure 1: Flow chart of included studies 
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WHAT IS NEW? 

Key findings 

• Many published prediction models include predictors that are susceptible to measurement 

error and this measurement error is not being acknowledged or accounted for in the 

development of the models. 

• Most prediction model articles do not explicitly state the intended moment of model use, or 

exactly when the predictors used in the model development were measured. 

What this adds to what is known 

• Reporting of measurement error and intended moment of model use is poor in prediction 

model studies. 

What is the implication, what should change now? 

• There is a need to identify circumstances where ignoring measurement error in prediction 

models is consequential and whether accounting for the error will improve the predictions. 

• Future prediction model research studies must clearly report the intended moment of use of 

the prediction model, and be explicit about when the predictors were measured. 

 


