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Abstract

Propagation of anti-plane waves through a discrete square lattice and through a continuous

fibrous medium is studied. In the long-wave limit,  for periodically heterogeneous structures the

solution can be periodic or anti-periodic across the unit cell. It is shown that combining periodicity

and anti-periodicity conditions  in different directions of the translational symmetry allows one to

detect different types of modes that do not arise in the purely periodic case. Such modes may be

interpreted  as  counterparts  of  non-classical  waves  appearing  in  phenomenological  theories.

Dispersion  diagrams  of  the  discrete  square  lattice  are  evaluated  in  a  closed  analytical  from.

Dispersion properties of the fibrous medium are determined using Floquet-Bloch theory and Fourier

series approximations. Influence of a viscous damping is taken into account.

Key words: wave propagation; heterogeneous media; phononic bands; dispersion; Floquet-Bloch 

waves; gradient elasticity; Biot’s theory.

1. Introduction

Wave propagation in heterogeneous materials and structures is characterised by a number of

significant phenomena, which can never be observed in homogeneous solids. In recent decades,

intensive studies have been devoted to photonic and phononic band gaps (Sigalas and Economou,

1993;  Kushwaha et al., 1994;  Nicorovici et al., 1995; Movchan et al., 2002), negative refraction

(Pendry,  2000;  Grbic  and  Eleftheriades,  2004),  dynamic  anisotropy  and  waves  focusing

(Ayzenberg-Stepanenko and Slepyan, 2008; Colquitt et al.,  2012), acoustic diodes (Liang et al.,

2009), acoustically invisible cloaks (Milton et al., 2006; Norris and Shuvalov, 2011; Colquitt et al.,

2013), waves localisation in structures with defects (Craster et al.,  2010b; Colquitt et al.,  2011;
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Andrianov  et  al.,  2014).  All  these  remarkable  effects  and  properties  have  a  great  practical

importance for a large variety of applications in physics,  engineering,  biomechanics,  and many

other areas. Extended survey of the recent progress in the field can be found in the review papers by

Maldovan (2013) and Hussein et al. (2014).

Theoretical modelling of waves in periodically heterogeneous media can be performed using

Floquet-Bloch theory. Named after the original theorems of Floquet (1883) and Bloch (1928), it has

been documented in  the classical book by Brillouin (2003) and later utilized by many authors.

According  to  this  approach,  a  solution  is  represented  as  an  effective  wave  multiplied  by  a

modulation function; such a modulation aims to describe the influence of the microstructure. Spatial

periodicity of the medium implies similar periodicity conditions for the modulation function. This

yields  an  eigenvalue  problem,  which  allows  to  determine  dispersion  relations  between  the

frequency  and  the  wave  number.  In  order  to  evaluate  numerical  results,  unknown  fields  in  a

heterogeneous medium are usually  approximated by some series expansions.  The most popular

implementations are based on Fourier series (Sigalas and Economou, 1993; Kushwaha et al., 1994;

Vasseur et al., 1994) and on Rayleigh multipole expansions (Nicorovici et al., 1995; Poulton et al.,

2000; Movchan et al., 2002).

Another  approach  is  provided  by  a  two-scale  asymptotic  homogenisation  procedure.

Supposing  the  wave  length  to  be  considerably  larger  than  the  characteristic  size  of  the

microstructure, it becomes possible to separate macro- and micro-scale components of the solution.

The  latter  are  evaluated  from a  recurrent  sequence  of  cell  problems.  Next,  application  of  the

homogenising operator  over  the  unit  cell  domain  allows one to  obtain homogenised (so called

effective) differential equations governing the macroscopic response of the material. The method of

asymptotic homogenisation was originally developed for quasi-static problems (see, for example, a

review by Kalamkarov et al. (2009) and references therein). Later, taking into account more terms

of  two-scale  asymptotic  expansions  gave  a  possibility  to  derive  new higher-order  macroscopic

equations  that  are  applicable  for  modelling  dynamic  problems  and  can  predict  the  dispersion

properties of the medium (Boutin and Auriault, 1993; Fish and Chen, 2001; Andrianov et al., 2008;

Soubestre and Boutin, 2012; Auriault and Boutin, 2012).

More recently,  the two-scale asymptotic procedure was successfully generalised to a high-

frequency  domain.  Choosing  the  leading  order  approximation  corresponding  to  resonant

frequencies of the unit cell (i.e., to standing waves excited at the band gaps thresholds) made it

possible to describe a dynamic response of heterogeneous materials even when the wave length is

comparable to the length-scale of the microstructure. The original idea has been proposed by Daya

and Potier-Ferry (2001) and was further considerably developed by Craster et al. (2010a, 2010b),
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Nolde  et  al.  (2011),  Antonakakis  et  al.  (2014)  and  Colquitt  et  al.  (2015).  The  high-frequency

homogenisation technique is closely related to the effective mass framework established in the solid

state physics (see, for example, Kittel, 2005).

The approaches described above are based on rigorous theoretical origins in the sense that the

obtained  macroscopic  models  encapsulate  information  about  the  microstructure  and  all  the

coefficients  of  these  models  can  be  determined  basing  on  the  geometry  of  the  unit  cell  and

properties  of  the  components.  An  alternative  way  to  describe  the  dynamic  behaviour  of

heterogeneous media is provided by gradient continuum theories. According to them, the influence

of the microstructure is modelled phenomenologically by allowing the medium some additional

internal  degrees  of  freedom.  As a  result,  it  becomes  possible  to  derive  macroscopic  equations

capable to predict scattering of the wave field by the microstructure. However, the coefficients of

such equations are usually not known a priori and are expected to be determined experimentally.

The origins of the gradient elasticity can be traced back to Cauchy (1851), who suggested to use

higher-order  spatial derivatives in continuum equations for discrete lattices, and to  Voigt (1887),

who included molecular rotations into the lattice models of crystals. Gradient theories for elastic

continua were introduced by Cosserat (1909) and Le Roux (1911). Later on, various models were

developed and specified by Aero and Kuvshinskii (1961), Toupin (1962), Kröner (1963), Mindlin

(1964),  Kunin  (1966,  1982,  1983),  Herrmann and Achenbach (1968),  Levin  (1971),  and many

others. Eringen (1983) has shown that gradient models can be also derived from integral non-local

theories.  Transformation  of  non-local  problems  into  gradient  ones  were  recently  presented  by

Borino and Polizzotto (2014). A detailed review of the gradient elasticity can be found in the paper

by Askes and Aifantis (2011).

In a general case, assigning a medium by additional degrees of freedom can induce new forms

of motion.  That is  why gradient theories may predict  some new kinds of waves,  which do not

appear in the classical theory of elasticity. As examples, we can note waves associated with micro-

rotations in Cosserat continuum and so called “slow” or “second” wave appearing in Biot’s theory.

Biot (1956a, 1956b,  1962) has introduced a phenomenological theory to describe propagation of

elastic waves in porous media. In the framework of Biot’s model, two types of longitudinal waves

can arise. The first wave corresponds to the case when solid and fluid components move in-phase

on the micro level, which is consistent with the classical theory. The second wave requires a relative

shift between the components, so they can move out-of-phase. Existence of the second Biot’s mode

was questioned many times. Experimental confirmations were reported by Plona (1980), Lakes et

al. (1983), Hosokawa and Otani (1997).
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The aim of the paper is to bridge a gap between rigorous and phenomenological approaches.

We would like to show that theoretical models are able to predict some additional types of waves,

which may be interpreted as counterparts of non-classical waves appearing in gradient theories. Our

analysis is based on so called “envelope continualisation” approach, which is originated back to the

papers by Il’iushina (1969) and Kovalev and Kosevich (1975). In physics it is usually referred to as

the “semi-discrete approximation” (see, for example, Remoissenet (1986) and Dauxois (1991)).

As  an  illustrative  example,  let  us  consider  wave  propagation  through a  discrete  lattice  of

identical  particles  connected  by  elastic  springs.  The  classical  solution  is  obtained  using  the

irreducible unit cell that contains a single particle. According to this model,  in the long-wave limit

the neighbouring particles move nearly in-phase. For continuous heterogeneous media it implies

that the wave field is locally periodic across the unit cell. The shape of the wave is schematically

sketched in Fig. 1a. As the wave length tends to infinity, the frequency vanishes and no vibrations

occur, so the motion is simply a rigid body translation.

However, there exist another possibility to describe the dynamic behaviour of the lattice. Let

us now consider a unit cell containing two particles. If in the long-wave limit the neighbouring

particles move out-of-phase, then the solution is represented as a combination of the envelope wave

propagating on the macro level and the carrier wave that corresponds to sawtooth vibrations of the

lattice (Fig.  1b).  In continuous media such types of waves can be predicted by imposing anti-

periodicity conditions at the opposite sides of the unit cell. At the long-wave limit, the motion turns

to a standing wave with zero group velocity and a non-zero frequency.

As we can see, the choice of the reference unit cell can principally influence the solution. Rallu

et al. (2017) studied different waves arising in one-dimensional lattices and reticulated beams with

double and triple periodic macro cells. Vasiliev et al. (2010) have shown that considering a macro

cell consisting of several translational cells increases the number of independent fields and brings

additional degrees of freedom. Thus, multi-field models of different orders can be developed.

In this paper, we specialise the analysis to the waves which are periodic and anti-periodic with

respect to the only one primitive unit cell. Our motivation is that such waves can present the main

theoretical importance for the development of homogenised models. In the long-wave case they

describe the low-frequency and the high-frequency limiting states of vibrations, which correspond

accordingly to the continuous and to the semi-discrete approximation. Increasing the number of

particles in the macro cell would provide us with additional models valid in a middle-frequency

range, but it does not determine new forms of motion at the long-wave limit. The middle-frequency

approximations can also be developed matching the low- and high-frequency solutions with the

help of two-point Padé approximants (see a recent contribution by Colquitt et al. (2018)).
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a) periodic mode

b) anti-periodic mode

Fig. 1. Shape of the waves in the one-dimensional monatomic lattice.

It  is  important  to  note  that  propagation  of  high-frequency  long  waves  in  heterogeneous

structures can represent a fundamental analogy with the waves in thin-walled elastic waveguides

(Craster et al., 2014; Kaplunov et al., 2017). The local solution across the unit cell corresponds to

the solution within the transverse cross section of a thin rod, plate or shell. A theoretical framework

for  the  asymptotic  theories  of  long  wave  motion  in  thin-walled  structures  was  developed  by

Rogerson  et  al.  (2006,  2007,  2009),   Lutianov  and  Rogerson  (2010),  Mukhomodyarov  and

Rogerson (2012).

The  paper  is  organised  as  follows.  In  Section  2  we  consider  anti-plane  waves  in  a  two-

dimensional  lattice.  The  discrete  model  allows  us  to  derive  explicit  results  for  the  dispersion

properties in a closed analytical form. The influence of a viscous damping is studied and continuous

approximations in  the long-wave case are  presented.  In  Section 3 we generalise  the developed

solutions to a continuous medium. Propagation of anti-plane shear waves through a square array of

cylindrical  inclusions  embedded into  an  isotopic  matrix  is  considered.  Dispersion  relations  are

– 5 –



obtained  using  Floquet-Bloch  theory  accompanied  by  periodic  and  anti-periodic  boundary

conditions  at  the edges  of  the unit  cell.  Numerical  results  are  evaluated  using  a  Fourier  series

approximation.  The  developed  solutions  are  verified  by  some  comparisons  with  data  of  other

authors. Section 4 is devoted to the conclusions.

2. Two-dimensional lattice

We start with a problem of propagation of anti-plane waves through an infinite periodic square

lattice consisting of identical particles connected by elastic springs. Discrete lattice-type models are

widely used to  describe vibrations in  crystals  (Kittel,  2005);  in  foams (Cantat  et  al.,  2013);  in

cellular  structures  and  bone  tissues  (Gibson  et  al.,  2010).  Some  novel  applications  include

modelling  of  polymer  molecules,  atomic  lattices  (e.g.,  graphene),  and nanocrystalline  materials

(Friesecke, James, 2000; Potapov et al., 2009). Discrete models can also appear in engineering, e.g.,

for simulating lightweight truss structures with attached masses.  Waves in complex lattices and

cracked media were studied by Slepyan (2002). For a detailed review of the subject we refer to

Andrianov et al. (2010).

In contrast to continuous media, discrete lattices often allow evaluation of exact dispersion

relations in a closed analytical form, which is particularly convenient for further analysis. That is

why  they  can  be  considered  as  benchmark  models  to  highlight  the  main  effects  of  the  wave

propagation in heterogeneous structures.

A single-particle unit cell of the lattice under consideration is displayed at Fig. 2. The mass of

the particle is  m. Every particle is supposed to interact with its eight neighbours. The interaction

forces are linear and represent an analogy to anti-plane shear in a continuous medium. We assume

that  the  interaction  forces  can  depend  on  the  distance  between  particles,  so  the  springs  have

different stiffness, namely, c and c0 in the orthogonal and in the diagonal directions respectively.

The  classical  solution  can  be  developed  as  follows.  The  equation  of  motion  of  a  typical

particle is given by

m
d 2 un1, n2

d t 2
=c (un1+1 ,n 2

+un1−1 ,n2
+un1 ,n2+1+un1 , n2−1−4 un1 ,n2

)+

c0(un1+1 , n2+1+un1−1 ,n2−1+un1+1 ,n2−1+un1−1 , n2+1−4 un1 ,n2
),

(1)

where u is the displacement in the direction transverse to the x1 x2 plane and subscripts n1, n2 denote

the number of the particle, n1 , n2=0 ,±1 ,±2 ,… .
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Fig. 2. Square lattice with a single-particle unit cell.

Let  us consider  a  harmonic wave propagating with amplitude  A ,  frequency  ω  and non-

dimensional wave vector k  having components k1, k2

un1,n2
=A exp(i ω t)exp [−i (k 1 n1+k 2 n2)] . (2)

Substituting (2) into (1), we obtain the dispersion relation

 

ω̄
2
=4 [sin 2(

k 1

2 )+sin2(
k2

2 )]+ 4 c0

c [sin 2(
k 1+k 2

2 )+sin2(
k 1−k 2

2 )] , (3)

where ω̄  is the non-dimensional frequency, ω̄=ω(m/ c)1/2 .

The monatomic lattice under consideration has only one pass band. Equation (3) describes a

conventional acoustic mode, whose frequency vanishes as the wave length tends to infinity. This

long-wave limit corresponds to non-dispersive propagation that happens in homogeneous media.

However, in heterogeneous structures there can appear additional types of modes, which do not
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match the classical long-wave zero-frequency limit. To show this, let us consider a unit cell that

includes four particles (Fig. 3).

Fig. 3. Lattice with a four-particles unit cell. Different amplitudes of the particles are indicated.

We use different notations for the displacements of odd and even particles, i.e.

un1 , n2
={

un1 , n2

(00)  for n1, n2=±0 ,±2 ,±4 ,…;

un1 , n2

(01)  for n1=±0 ,±2 ,±4 ,… , n2=±1 ,±3 ,±5 ,…;

un1 , n2

(10)  for n1=±1 ,±3 ,±5 ,… , n2=±0 ,±2 ,±4 ,…;

un1 , n2

(11)  for n1, n2=±1 ,±3 ,±5 ,…  .

The equations of motion for the particles in the unit cell take the form:
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n1+1 , n2−1

x1
n1 , n2 n1+1 , n2n1−1 , n2

n1−1 , n2+1 n1 , n2+1

n1−1 , n2−1 n1 , n2−1 n1+2 , n2−1

n1+2 , n2

n1+2 , n2+1

n1+2 , n2+2n1−1 , n2+2 n1 , n2+2 n1+1 , n2+2

A00 A00

A00 A00

A01 A01

A01 A01

A10 A10

A10 A10

A11 A11

A11 A11
n1+1 , n2+1



m
d 2 un1 ,n 2

(00)

d t2 =c(un1+1 , n2

(10)
+un1−1 , n2

(10)
+un1 , n2+1

(01)
+un1 ,n2−1

(01)
−4un1 , n2

(00)
)+

c0(un1+1 ,n2+1
(11)

+un1−1 ,n2−1
(11)

+un1+1 , n2−1
(11)

+un1−1 ,n2+1
(11)

−4 un1 ,n2

(00)
) ,

(4)

m
d 2 un1 ,n 2+1

(01)

d t 2 =c (un1+1 ,n2+1
(11)

+un1−1, n2+1
(11)

+un1 ,n2+2
(00)

+un1 , n2

(00)
−4un1 , n2+1

(01)
)+

c0(un1+1 ,n2+2
(10)

+un1−1 , n2

(10)
+un1+1 ,n2

(10)
+un1−1 , n2+ 2

(10)
−4un1 ,n 2

(01)
) ,

m
d 2 un1+1 , n2

(10)

d t 2 =c (un1+2 , n2

(00)
+un1 , n2

(00)
+un1+1 , n2+1

(11)
+un1+1 , n2−1

(11)
−4un1+1 , n2

(10)
)+

c0(un1+2 , n2+1
(01)

+un1 , n2−1
(01)

+un1+2 , n2−1
(01)

+un1 ,n2+1
(01)

−4un1+1 , n2

(10)
) ,

m
d 2 un1+1 , n2+1

(11)

d t 2 =c (un1+2 , n2+1
(01)

+un1 ,n2+1
(01)

+un1+1 , n2+2
(10)

+un1+1 , n2

(10)
−4un1+1,n2+1

(11)
)+

c0(un1+2 ,n2+2
(00)

+un1 , n2

(00)
+un1+2 ,n 2

(00)
+un1 , n2+2

(00)
−4un1+1 ,n2+1

(11)
) .

Let us suppose that the particles in the unit cell can vibrate with different amplitudes A00 , A01

, A10 , A11 , i.e.

un1 , n2

( j1 j2 )=A j 1 j2
exp(i ω t)exp[−i(k1 n1+k 2 n2)] ,   j1, j 2=0,1. (5)

Substituting (5) into (4), we come to a system of equations for the unknown amplitudes. In the

matrix form it reads

[M(k)+ω̄
2 I4]⋅A=0 . (6)

Here A=[ A00, A01, A10, A11]
T ; I4 is the 4th order identity matrix; M is the symmetric matrix

M=[
−4(1+

c0

c ) 2cos (k 2) 2cos(k 1)
2c0

c
[cos (k 1+k 2)+cos(k 1−k 2)]

… −4 (1+
c0

c )
2c0

c
[cos (k1+k2)+cos (k 1−k 2)] 2 cos (k1)

… … −4(1+
c0

c ) 2 cos (k 2)

… … … −4(1+
c0

c )
] .
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Equation  (6)  determines  the  eigenvalue  problem that  allows  us  to  evaluate  the  dispersion

relation. Depending on the ratio between the amplitudes of the particles, four different types of

waves can be distinguished.

1.  A00=A01=A10=A11 . In this case the particles in the unit cell move in-phase. In the long-

wave limit as k1 , k 2→0 one obtains a solution, which is periodic across the unit cell in both the x1

and  x2 directions.  We refer  to this  type of wave as a  periodic mode and will  denote it  by the

abbreviation P1P2. This is the conventional acoustic mode that appears in the classical theory.  The

dispersion relation is given by equation (3).

2.  A00=A01=−A10=−A11 . The neighbouring particles move out-of-phase in the direction x1

and in-phase in the direction x2. In the long-wave limit the solution is locally anti-periodic by x1

and periodic by x2. This mode is denoted as A1P2. The dispersion relation reads

ω̄
2
=4 [cos2(

k1

2 )+sin 2(
k 2

2 )]+ 4 c0

c [cos2(
k 1+k 2

2 )+cos2(
k 1−k2

2 )] . (7)

3. A00=−A01=A10=−A11 . The wave is periodic by x1 and anti-periodic by x2 (P1A2 mode).

The solution is identical to case 2 with the interchanging k1⇔ k 2:

ω̄
2
=4 [sin 2(

k 1

2 )+cos2(
k 2

2 )]+ 4 c0

c [cos2(
k 1+k 2

2 )+cos2(
k 1−k2

2 )] . (8)

4.  A00=−A01=−A10=A11 .  In this  case the solution is  anti-periodic in  both the  x1 and  x2

directions (A1A2 mode). The dispersion relation is 

ω̄
2
=4 [cos2(

k1

2 )+cos2(
k 2

2 )]+ 4 c0

c [sin2(
k 1+k 2

2 )+sin2(
k1−k 2

2 )] . (9)

From equations (6)–(9), it is easy to see that the anti-periodicity of the solution in the direction

x1 (or x2) results in a shift of the corresponding component of the wave vector to half of its period:

k 1⇔ k 1+π  (or k 2 ⇔k 2+π ).
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From the physical point of view, the developed solutions can be interpreted as follows. The

original  difference  equation (1)  accounts  for  the displacement  of  individual  particles.  We have

introduced new equations (4), which describe a motion of the centre of masses of the unit cell and

motions around this  centre. Then, the periodic modes represent a displacement of the centre of

masses. The anti-periodic modes describe oscillations around a stationary centre of masses.

Let us consider two numerical examples. In the first  case,  we suppose that the interaction

forces  are  inversely  proportional  to  the  distance  between  the  particles,  then  c0=c /√2.  The

dispersion curves are presented at Fig. 4. The right part of the diagram displays the solution for the

x1 direction of the wave propagation (k1=k ,  k 2=0) and the left part corresponds to the diagonal

direction (k1=k 2=k /√2). When the frequency ω̄ exceeds the cut-off threshold, the wave number k

becomes complex. Then the signal decays exponentially with the attenuation coefficient equal to the

imaginary part of the wave number.

Fig. 4. Dispersion curves of the square lattice with c0=c /√2.

Blue – P1P2 mode; red – A1P2 mode; black – P1A2 mode; green – A1A2 mode.

In the long-wave limit the frequency of the periodic mode P1P2 vanishes, ω̄→0  as k →0 , so

no vibrations occur. Alternatively, all the anti-periodic modes tend to standing waves with zero

group velocities and non-zero frequencies. This regime can be considered as “hidden” or “trapped”

modes, when no energy is transmitted on the macro scale, but on the micro scale the lattice exhibits

sawtooth oscillations.
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Let us analyse waves propagating in the direction x1 (the right part of the diagram at Fig. 4).

The modes P1P2 and A1P2 turn to each other by the interchanging k ⇔ k +π . Both these modes

describe the same displacement field, however, for the mode P1P2 the wave number is associated

with the carrier wave and for the mode A1P2 – with the envelope wave.

Meanwhile, the modes P1A2 and A1A2 describe a particularly different type of motion when

the wave is anti-periodic in the direction transverse to the direction of propagation. This represents a

clear analogue with the propagation of high-frequency long waves in thin-walled elastic waveguides

(see, for example,  Craster et al. (2014) and Kaplunov et al. (2017)). For wave propagating in the

direction  x1, the local solution across the unit cell in the direction  x2 corresponds to the solution

within the transverse cross section of a thin rod, plate or shell. We note that these types of waves

arise specifically in multi-dimensional problems and they cannot be described by one-dimensional

models.

Analysis  of  the  dispersion  surfaces  provides  information  about  the  directions  of  energy

propagation  within  the  lattice.  Numerical  results  are  presented  in  the  electronic  supplementary

material (Section S1). Fig. S1 displays the dispersion surfaces covering the entire region of the

wave numbers  −π≤k1 , k 2≤π. For the modes P1P2 and A1A2, in the long-wave limit the lattice

exhibits isotropic response, so the isofrequency curves are almost circular near the origin. However,

when  the  wave  length  decreases  and  approaches  the  size  of  the  microstructure,  the  dynamic

properties  of  the  lattice  become  strongly  anisotropic.  This  effect  is  caused  particularly  by  the

heterogeneity of the medium.

Energy transmission is defined by the group velocity vector vg=∂ω̄ /∂k . Thus, one can easily

see that the directions of the energy flow at a given frequency are identified by the normals to the

corresponding isofrequency curve. When the isofrequency curves are nearly circular (e.g., in the

low frequency case for  P1P2 and A1A2 modes)  energy can propagate  in  all  directions  almost

uniformly.  As  the  frequency  increases,  the  energy  flows  become  focused  in  certain  specific

directions. This effect results in a strong “beaming” of the wave field. It allows to design phononic

crystals  and  metamaterials  with  wave focusing  capabilities,  which  is  remarkably  important  for

many engineering applications.

In the second example, let us consider a “degenerate” lattice, when the stiffness of the diagonal

springs  is  zero:  c0=0.  The dispersion  curves  are  displayed at  Fig.  5.  We may  notice  that  the

“degeneracy” leads to some changes in symmetry of the problem. As a result, localised flat-band

modes (P1A2 and A1P2) appear in the diagonal direction of propagation. They transmit no energy

at  any  value  of  the  wave  number.  In  Section  3  we  will  observe  a  similar  phenomenon  in  a
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heterogeneous medium with nearly touching cylindrical inclusions. The dispersion surfaces of the

“degenerative” lattice are presented in the electronic supplement, Fig. S2.

Fig. 5. Dispersion curves of the “degenerative” lattice with c0=0.

Blue – P1P2 mode, red – A1P2 mode, black – P1A2 mode, green – A1A2 mode.

The propagation of anti-periodic modes can be essentially influenced by dissipation effects,

which arise in real structures due to the viscosity of materials. In order to simulate the viscoelastic

behaviour  of  the  lattice,  we apply  the  classical  Kelvin-Voigt  model  (see,  for  example,  Flügge

(1975), Christensen (1982)). The developed solution and the obtained numerical results are given in

the electronic supplement, Section S2. We may conclude that the presence of viscosity provides a

“mode selection mechanism”. Anti-periodic modes can be observed on a relatively short timescale,

while on a long timescale periodic modes become dominant.

Continuous approximations of the discrete lattice are considered in the electronic supplement,

Section S3. We present macroscopic dynamic equations applicable for different periodic and anti-

periodic  modes  in  the  long-wave  case.  These  equations  may  be  used  for  solving  macroscopic

boundary value problems subject to appropriate boundary and initial conditions.

3. Fibrous heterogeneous medium

We aim to generalise the results presented above to a continuous medium. Let us consider the

propagation of anti-plane shear waves in an infinite heterogeneous solid consisting of a matrix Ω1
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and a periodic square array of cylindrical inclusions  Ω2 (Fig. 6). This model may correspond to

unidirectional  fibre-reinforced  composite  materials.  It  may  also  be  applicable  to  describe  the

dynamics  of  two-dimensional  porous  media.  The  waves  propagate  in  the  plane  x1 x2 and  the

governing equation reads 

∇ x [μ(x)∇ x u ]=ρ(x )
∂

2 u
∂ t 2

, (10)

where x= x1e1+ x2e2; ∇ x=(∂/∂ x1)e1+(∂/∂ x2)e2; e1 and e2 are the Cartesian unit vectors; u is the

displacement  in  the  direction  transverse  to  the  plane  x1 x2;  μ  and  ρ  characterise  physical

properties  of  the  medium,  namely,  the  shear  modulus  and  the  mass  density.  Due  to  the

heterogeneity, the coefficients μ  and ρ  are represented by functions of co-ordinates:  μ(x)=μs ,

ρ(x)=ρ s  for x∈Ωs; μs  and ρs  are the properties of the components, s=1,2.

Fig. 6. Fibrous heterogeneous medium.

Functions  μ(x) ,  ρ(x)  are piecewise continuous in the unit  cell  domain  Ω0.  Therefore,  a

function u that satisfies equation (10) should be treated as a weak (generalised) solution (see, for

example,  Lebedev  and  Vorovich  (2002)).  The  governing  model  (10)  can  be  equivalently

represented  by  two  equations  with  constant  coefficients  (namely,  for  the  matrix  and  for  the

inclusions domains) accompanied by conditions of perfect bonding at the interface ∂Ω. However,

for the further evaluations we prefer to use the form (10).

Let us note that equation (10) can have different physical interpretations. Here we shall discuss

this  with  respect  to  the  elastic  anti-plane  shear  waves.  However,  it  can  also  describe  in-plane

propagation of electromagnetic and optical waves through an array of dielectric cylinders.
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The  dispersion  properties  can  be  evaluated  using  Floquet-Bloch  theory  (Brillouin,  2003).

According  to  this  approach,  the  solution  of  the  partial  differential  equation  (10)  with  periodic

coefficients μ(x), ρ(x ) can be written as follows

u=F (x )exp [−i( K1 x1+ K2 x2)]exp(i ω t ), (11)

where  F (x ) is a function of the same period as  μ(x),  ρ(x ) and the term  exp [−i( K1 x1+ K2 x2)]

describes a phase shift across the single period. Considering the propagation of a harmonic wave,

the variables K 1, K 2 can be interpreted as the components of the wave vector.

In the classical theory, F (x ) is considered to be periodic across the unit cell. In order to predict

periodic as well as anti-periodic modes, we introduce a new set of boundary conditions

for P1P2 mode F (x1 , x2)=F (x1+l , x2),   F (x1 , x2)=F (x1 , x 2+ l); (12)

for A1P2 mode F (x1 , x2)=−F (x1+l , x2),   F (x1 , x2)=F (x1 , x 2+ l);

for P1A2 mode F (x1 , x2)=F (x1+l , x2),   F (x1 , x2)=−F (x1 , x2+ l);

for A1A2 mode F (x1 , x2)=−F (x1+l , x2),   F (x1 , x2)=−F (x1 , x2+ l);

where l  is the size of the unit cell.

A solution of the input problem can be developed using series expansions. Among the most

popular  methods,  we  note  Rayleigh  multipole  expansions  (see,  for  example,  Nicorovici  et  al.

(1995),  Poulton et  al.  (2000), Movchan et  al.  (2002)) and Fourier  series (so called plane-wave

expansions,  Sigalas and Economou (1993), Kushwaha et al.  (1994),  Vasseur et al.  (1994)). The

main differences between these two approaches are as follows. Rayleigh series are based on Bessel

functions. They meet strictly the constitutive equation (10) and the bonding conditions at the fibre-

matrix interface, whereas conditions (12) imposed at the outer boundary of the unit cell are satisfied

approximately.  The  Fourier  series  incorporate  the  periodic  and  anti-periodic  expressions  (12)

exactly, but the local fields at the interface are evaluated approximately. Generally, both approaches

give explicit representations of the displacement field in terms of infinite series and, following a

proper truncation, lead to the same results for the effective properties of the medium.

Here we employ Fourier series expansions. Let us represent

for P1P2 mode F (x)= ∑
n1=−∞

∞

∑
n2=−∞

∞

Fn1 n 2
exp [i 2π

l
(n1 x1+n2 x2)], (13)
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for A1P2 mode F (x)= ∑
n1=−∞

∞

∑
n2=−∞

∞

Fn1 n 2
exp{i 2π

l
[(n1+

1
2
) x1+n2 x2]},

for P1A2 mode F (x)= ∑
n1=−∞

∞

∑
n2=−∞

∞

Fn1 n 2
exp {i 2π

l
[n1 x1+(n2+

1
2
) x2]},

for A1A2 mode F (x)= ∑
n1=−∞

∞

∑
n2=−∞

∞

Fn1 n 2
exp {i 2π

l
[(n1+

1
2
) x1+(n2+

1
2
) x2]}.

Properties of the medium are given by the expansions

μ(x)= ∑
n1=−∞

∞

∑
n2=−∞

∞

μn1 n2
exp[ i 2π

l
(n1 x1+n2 x2)], (14)

ρ(x )= ∑
n1=−∞

∞

∑
n2=−∞

∞

ρn1 n 2
exp [i 2π

l
(n1 x1+n2 x2)],

with coefficients μn1 n2
, ρn1 n2

 evaluated as follows

μn1 n2
=

1
S0
∬
Ω0

μ(x)exp [−i
2π

l
(n1 x1+n2 x2)]dS ,

ρn1 n2
=

1
S0
∬
Ω0

ρ(x)exp[−i
2π

l
(n1 x1+n2 x2)] dS ,

where  ∬
Ω0

(⋅)dS  is  the  integral  over  a  specific  unit  cell  Ω0;  S0 is  the  area  of  the  unit  cell,

S0=l 2.

Substituting ansatz (11) and expansions (13), (14) into the wave equation (10) and collecting

the terms exp [i(2π /l )(m1 x1+m2 x2)],  m1 ,m2=0,±1,±2,…, we come to infinite systems of linear

algebraic equations for the unknown amplitudes F n1 n2
:

for P1P2 mode

∑
n1=−∞

∞

∑
n2=−∞

∞

F n1 n2
∑

m1=−∞

∞

∑
m2=−∞

∞

{μ j1 j2
[(k 1+2πn1)(k1+2πm1)+

(k 2+2π n2)(k 2+2 πm2) ]−(ω̄ v1)
2
ρ j1 j 2}=0,

(15)

for A1P2 mode
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∑
n1=−∞

∞

∑
n2=−∞

∞

F n1 n2
∑

m1=−∞

∞

∑
m2=−∞

∞

{μ j1 j2
[(k 1+π+2πn1)(k 1+π+2πm1)+

(k 2+2πn2)(k 2+2π m2)]−(ω̄v1)
2
ρ j1 j2}=0 ,

for P1A2 mode

∑
n1=−∞

∞

∑
n2=−∞

∞

F n1 n2
∑

m1=−∞

∞

∑
m2=−∞

∞

{μ j1 j2
[(k 1+2πn1)(k1+2πm1)+

(k 2+π+2π n2)(k 2+π+2π m2)]−(ω̄v1)
2
ρ j1 j2}=0 ,

for A1A2 mode

∑
n1=−∞

∞

∑
n2=−∞

∞

F n1 n2
∑

m1=−∞

∞

∑
m2=−∞

∞

{μ j1 j2
[(k 1+π+2πn1)(k 1+π+2πm1)+

(k 2+π+2πn2)(k 2+π+2πm2)]−(ω̄ v1)
2
ρ j1 j2}=0 ,

where j1=m1−n1, j2=m2−n2; k1=K 1 l, k2=K 2l ; ω̄ is the non-dimensional frequency, ω̄=ω l /v1;

v1 is the velocity of the wave propagation through the matrix, v1=√μ1/ρ1.

Systems (15) has a non-trivial solution if and only if the determinant of the matrix of the

coefficients is zero. Equating the determinant to zero, we derive a dispersion relation between  ω̄

and k1, k2.

In  the  numerical  examples  presented  below  the  dispersion  relations  are  calculated

approximately in Maple by truncation of the infinite systems (15). From the physical point of view

such a truncation means cutting off higher frequencies. Increasing the number of the equations kept

improves the accuracy of the solution in the high-frequency domain. Convergence of the results

depends also on the volume fraction of the inclusions and on the contrast between the properties of

the components. Expansions (13), (14) can lack convergence in the case of nearly touching and

perfectly rigid (or perfectly soft) inclusions, when rapid oscillations of the physical fields occur in

the narrow gaps between the fibres.  This computational difficulty is not associated with  Fourier

series  only,  but  it is  rather  typical  for  many  approaches  based  on  series  expansions,  e.g.,  for

Rayleigh multipole method (Perrins et al., 1979) and for the boundary shape perturbation method

(Andrianov et al.,  2005, 2018).  Li (1996, 1997) has proposed a new formulation of the Fourier

analysis for piecewise-continuous structures, which improved significantly the convergence of the

procedure.

In order to verify the developed approach, let us consider numerical results for the quasi-static

effective shear modulus ~μ . It can be evaluated from the dispersion relation for P1P2 mode in the

long-wave limit as follows
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~μ=~ρ lim
K→ 0

(d ω/d K )
2,

where  ~ρ  is  the  effective  mass  density,  ~ρ=ρ1(1− f )+ρ2 f ;  f  is  the  volume  fraction  of  the

inclusions, 0≤ f ≤π/4=0.785….

If we truncate system (15), and let  −nmax≤n1,n2≤nmax, the number of the equations kept is

(2nmax+1)2 . In Table 1 we compare the developed solution for ~μ  with the convergent proved data

presented by Perrins et al. (1979). Calculations are made for the case of porous inclusions, μ2=0,

which requires the highest computational costs. We observe that results obtained for  nmax=2 and

nmax=3 are  very close,  which  confirms a  fast  practical  convergence of  the  procedure.  Keeping

nmax=3 provides a good accuracy even for large values of the inclusions volume fraction. At nmax=3

, the 49 equations of system (15) are taken into account. This order of approximation is close to

Perrins et al. (1979), who considered 40 equations for f =0.77. Let us also note that in the case of

perfectly rigid fibres,  μ2→∞, the effective modulus can be easily determined using the data from

Table 1 with the help of Keller’s theorem (Keller, 1964): ~μ (μ2/μ1)=1/~μ (μ1/μ2).

Table 1. Effective shear modulus ~μ /μ1 of the fibrous medium with porous inclusions.

Inclusions volume

fraction f

Fourier series solution Perrins et al.

(1979)nmax=1 nmax=2 nmax=3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.74

0.76

0.867

0.705

0.560

0.437

0.333

0.239

0.147

0.109

0.089

0.833

0.670

0.539

0.426

0.325

0.231

0.136

0.094

0.071

0.821

0.667

0.538

0.425

0.325

0.230

0.135

0.091

0.067

0.818

0.667

0.538

0.425

0.325

0.230

0.135

0.091

0.065

The implemented procedure may bring a residual error in the solution on micro level. The

Fourier series are continuous and differentiable throughout the unit cell domain Ω0. Therefore, the

evaluated  displacements  and  stresses  are  also  continuous  across  the  interface  ∂Ω,  which

corresponds to the perfect bonding between the matrix and fibres. But the truncation of the infinite
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expansions (13), (14) does not allow us to derive the exact values of the local fields. Evaluation of

the  effective  properties  implies  a  homogenisation,  which  can  partially  compensate  for  the

inaccuracies of the local solution. This is evidenced by the results shown in Table 1. In this paper

we are interested primarily in the effective behaviour of the medium; analysis of the local fields is

not within the scope of our study.

The continuous heterogeneous solid exhibits an infinite sequence of pass and stop bands. Here

we present the results for the lowest branches of the dispersion curves, since the low-frequency

domain is  in  many cases  the most  important  for the engineering practice.  The calculations  are

performed at nmax=3 and the evaluated graphs are almost indistinguishable from the case nmax=2.

Fig. 7 displays the dispersion diagrams for  a high-contrast material with porous inclusions,

μ2=0. We can observe that for f =0.7 the pattern of the dispersion curves is qualitatively similar to

the  case  of  the  lattice  having  no  diagonal  interactions  between  the  particles  (see  Fig.  5).  In

particular, localised nearly flat-band modes appear in the diagonal direction of propagation. This

can be explained in such a way. In the case of densely packed pores the geometry of the structure

can be approximately described by the square lattice model: nearly rhombus areas of the matrix

correspond to the particles, while narrow matrix strips separating neighbouring pores play a role of

the  massless  springs.  The  analogy  between  dispersion  diagrams  of  continuous  and  discrete

structures  gives  a  possibility  to  tune  relatively  simple  lattice-type  models  in  such a  way as  to

describe  the  dynamic  properties  of  more  complicated  materials.  Carta  and Brun (2012),  Brito-

Santana et al. (2015) developed lattice approximations for periodic laminates. Lattice and frame

models  of  two-dimensional  heterogeneous  media  were  considered  by  Movchan  et  al.  (2002),

Martinsson and Movchan (2003).

In Fig. 8, the dispersion diagrams are presented for a low-contrast material with  μ2/μ1=0.5,

ρ1=ρ2. The results are similar to the high-contrast case with the main exception that now the flat-

band  modes  do  not  exist.  We  may  conclude  that  if  the  fibres  are  not  too  soft  and  the  both

components are noticeably involved in the deformation, the lattice-type models can not provide a

reasonable approximation.

Let us note that for a porous material with a relatively low volume fraction f  of the inclusions

the dispersion curves for P1P2 and A1A2 modes propagating in the diagonal direction are nearly

straight (see Figs. 7a, 8a). In this case, the wave propagation is non-dispersive within the whole

pass band except a narrow and visually non-distinguishable frequency region in the vicinity of the

cut-off threshold. As f  increases, the structure of the material becomes more heterogeneous and the

dispersion effect increases as it can be observed at Figs. 7b, 8b.
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a) f =0.3

b) f =0.7

Fig. 7. Low-frequency dispersion curves of the high-contrast fibrous medium; μ2=0.

Blue – P1P2 mode, red – A1P2 mode, black – P1A2 mode, green – A1A2 mode.
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a) f =0.3

b) f =0.7

Fig. 8. Low-frequency dispersion curves of the low-contrast fibrous medium; μ2/μ1=0.5, ρ1=ρ2.

Blue – P1P2 mode, red – A1P2 mode, black – P1A2 mode, green – A1A2 mode.

4. Conclusions

We considered propagation of elastic anti-plane waves through two-dimensional periodically

heterogeneous structures. Dispersion properties of the discrete square lattice are determined in a

closed analytical from. Solution for the continuous fibrous medium is developed using Floquet-

Bloch theory and Fourier  series  approximations.  The practical  convergence of the procedure is
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verified by comparing the results obtained for the quasi-static effective modulus with available data

from the literature.

The aim of the paper is to highlight that imposing different boundary conditions at the opposite

sides of the unit cell gives a possibility to describe propagation of various types of modes. If in the

long-wave limit the wave field is spatially periodic across the unit cell, then classical modes arise.

This is consistent with a continuous approximation of the discrete lattice. However, if the solution is

anti-periodic  within  the  unit  cell,  we  can  predict  new types  of  modes.  In  lattice  models,  this

corresponds to the “envelope continualisation” limit.  For two-dimensional structures, combining

periodic and anti-periodic conditions in different directions of the translational symmetry reveals a

number of modes having different dispersive properties and velocities of propagation. We have

shown that anti-periodic modes can be interpreted as theoretical counterparts of non-classical waves

that appear in phenomenological approaches, such as gradient and Biot’s theories.

It is also shown that within the acoustic band, viscous damping results in a faster attenuation of

anti-periodic  modes.  Therefore,  in  real  materials  and  structures  anti-periodic  modes  should  be

detected on a relatively short timescale, while on a long timescale periodic modes are expected to

dominate.

For the sake of clarity, we have considered the anti-plane problems only. Let us note that in the

case of in-plane deformation longitudinal and shear waves are coupled and propagate together. This

brings much more admissible combinations of periodic and anti-periodic conditions for different

components of the displacement field. Therefore, the problems of in-plane wave propagation should

demonstrate a considerably richer variety of non-classical modes.
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