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Abstract
(231 words)
Prediction models in healthcare aim to estimate for an individual, the’s probability that a condition or disease is already present (diagnostic model) or that an outcome will occur in the future (prognostic model), conditional on the valuesbased on of multiple predictors.
Publications on prediction models have increased in recent years, and there are often competing prediction models for the same outcome or target population. Healthcare providers, guideline developers and policymakers are often unsure which model to use or recommend, and in which individuals or settings. Hence systematic reviews of these studies are increasingly demanded, required and performed.
A key part of a systematic review of prediction models is to examine the risk of bias and applicability for the intended population. To help reviewers with this process, we developed PROBAST, a Prediction model Risk Of Bias ASsessment Tool for studies developing, validating or extending (adjusting) prediction models, both diagnostic and prognostic, models.
PROBAST was developed through a consensus process involving a group of experts in the field. PROBAST includes four domains (Participant selection; Predictors; Outcome; Analysis) containing 20 signalling questions. This Explanation and Elaboration paper describes the rationale for including each domain and signalling question and provides guidance for reviewers on how to use these to assess risk of bias and applicability concerns. All concepts are illustrated with published examples across different topics. The PROBAST checklist and accompanying documents can also be downloaded from www.probast.org.
Introduction
(740503  words)
Prediction models in healthcare often aim to predict, for an individual, whether a particular outcome, e.g.such as a diseaseor disorder, is present (diagnostic models) or will occur in the future (prognostic models).(1-6)  Diagnostic models may can be used to decide whether to refer patients for further testing, to initiate treatment or to reassure patients that it is unlikely that their symptoms are the result of a serious underlying disorder. Prognostic models can be used for multiple purposes, includingdecisions on preventive lifestyle changes, therapeutic interventions or, monitoring strategies, or for risk stratification in randomised trial design and analysis.(7, 8) Potential users of prediction models include healthcare professionals, policy makers, guideline developers, patients and nd members of the general public. The latter may use prediction models disseminated via online web tools and ‘apps’, e.g. to direct lifestyle changes or self-management of (medical treatment of) chronic conditions.
In the medical literature, there are thousands of studies developing and validating prediction models. Even for the same target population or same outcome there are and often numerous prediction models for the same patients and outcomes, exemplified by. For example, there are over 60 models for breast cancer prognosis,(9) over 250 models in obstetrics,(10) and nearly 800 models predicting outcomes in patients with cardiovascular disease.(9) It is widely expected that Tthis rapid growth of prediction models will will increase further in the current era ofwith the growth of personalized or precision medicine.
A systematic review of prediction models aims to identify, appraise and summarise primary studies reporting the development, validation or adjustment of a prediction model. Confronted with numerous prediction models, systematic reviews are needed to identify existing models, to examine their methodological robustness, and to summarise their predictive accuracy and applicability for their use in particular situation. Systematic reviews are well established as the most reliable form of evidence for decision makers for randomised therapeutic studies and diagnostic test accuracy studies.(10) There is now growing interest in systematic reviews of primary prediction model studies, as exemplified by the formation of the Cochrane Prognosis Methods Group to support systematic reviews of prognosis, tic studies, including prognostic model, studies.(11, 12) 
Guidance to facilitate systematic reviews of prediction models has been developed (Table 1) including for. This includes guidance on search strategies(13-16), formulating the a focused review question (14+15), data extraction (CHARMS checklist(17)), and on how to perform a meta-analysis of prediction model performance estimates(18-20).
There is a growing body of evidence on the consequences of methodological shortcomings on effect estimates of therapeutic interventions in randomised studies and on accuracy estimates in diagnostic test accuracy studies.(23, 24) The same applies to prediction model studies. Assessment of the risk of bias (RoB) of primary studies used to answer a review question is an essential step in any systematic review. SMany shortcomings in study design, conduct and analysis can result in study estimates being at ‘risk of bias’ (RoB), i.e. of reporting flawed or distorted results, or reporting an inadequate model to address the research question. When interpreting results from a systematic review, stronger conclusions can be derived from a systematic reviewwhen evidence is based on primary studies at low RoB, rather than studies at high or unclear RoB.(21) It is also important to identify the studies with Besides RoB assessments, it is also important to assess concerns for the applicability of primary studies in a systematic review, as some studies can be moremost or less relevancet to the  particular settings and or target populations targeted in the  review, based on the applicability of primary studies for the review question. , but may still be eligible for inclusion in the review.

WeWe developeded  PROBAST (Prediction model Risk Of Bias ASsessment Tool) asdue to the lack of suitable  we were unable to find a tools designed specifically to assess risk of bias and applicability of of primary prediction model studies.models of individualised prediction. 
This lack was the motivation to develop a tool to formally assess the risk of bias and concerns for applicability in primary studies on the development, validation, or adjusting (e.g. extension) of multivariable prediction models, called PROBAST: Prediction model Risk Of Bias ASsessment Tool.
PROBAST consists of four domains, with : participant selection; predictors; outcomes; and analysis. T20 wenty signalling questions are included across the domains to facilitate RoB assessment. of risk of bias (see Appendix and (REF Paper 1M18-1376] The structure and rating are is similar to tools designed to assess the risk of bias in randomised trials (revised Cochrane tool), diagnostic accuracy studies (QUADAS-2)(QUADAS-2) and systematic reviews (ROBIS) (ROBIS).(22-24) Although PROBAST was designed for use in systematic reviews, it can be used as a general critical appraisal tool for prediction model studies.
Here we describe the rationale behind the fourdomains and twenty signalling questions, and explain how these relate to risk of bias. We also give guidance on how to use them, answer the signalling questions and how to reach domain level and overall judgements on risk of bias , and on how a primary study should be judged for its applicability of primary studies ility to the review question. We Each rationale isillustrate d withusing examples from across the medical field. The latest tool version and six filled-in examples of theusing PROBAST tool can be downloaded from www.probast.org.
Focus of PROBAST
(1,367 947 words)
PROBAST is designed to assess primary studies that developed,  or validated,  updated or extended one or more one or more multivariable prediction models for diagnosis or prognosis (Boxes 1 and 2). Development of a prediction model can also include adding new predictors to established predictors, i.e. the extension of an existing prediction model. Similarly, validation of an existing model can be accompanied by adjusting (updating) and also extending of the model, i.e. the development of a new model. PROBAST is also applicable to these two situations (Box 1). A multivariable prediction model is defined as any combination or equation of two or more predictors for estimating the probability or risk for an individual.(1, 4, 6-8, 25-27) Other names for  prediction model include risk prediction model, predictive model, prediction index or rule, and risk score.(1, 3-8, 27, 28)
Diagnostic and prognostic models
Diagnostic prediction models estimate the probability that a certain outcome, often referred to as target condition or disease, is currently present. Participants included in studies developing or validating Ddiagnostic prediction model studies typically include should be individuals who are typical of the population in whom the diagnostic model would be used, i.e. commonly patients who are suspected of having the target condition but not yet known to have it.
Prognostic prediction models estimate the probability that an outcome or event will occur, e.g. in the future. Typical model outcomes are the occurrence of a specific event such as death, disease recurrence, disease complication, or therapy response. The time period of prediction can vary from hours, e.g. pre-operatively predicting the risk of in-hospital post-operative nausea and vomitingcomplications, to years, e.g. predicting life-long risk of developing a coronary event. Although many prognostic models enrol patients with an established diagnosis, this does not have to be the starting point. For example, there are models for predicting the development of diabetes in pregnant women(32) or, as seen in models for predicting osteoporotic fractures in the general population(29). Consistent with the TRIPOD Statementstatement(7, 8), PROBAST thus uses a broad definition of prognostic models referring to the prediction of future outcomes, studied  in individuals at risk of that outcome., rather than the often used narrow definition of predicting the natural course of patients diagnosed with a particular disease. Participants included in studies developing or validating prognostic models should be individuals who are typical of the population in whom the model will be used, i.e. individuals at risk of developing the outcome of interest.
We refer to both diagnostic and prognostic models as prediction models and will highlight issues when they are specific to either type. (31)
Diagnostic and prognostic model studies often use different terms for the predictors and outcomes (Box 2). In the cancer literature, one often a distinctguision is madehes between prognostic versus predictive factors and predictive models, where predictive factors/models are used torefer to identifying individuals with differential treatment effectswho have a differential response to a particular treatment.(30) For this manuscript, these types of (predictive) models are out of scope.
Types of predictors, outcomes and modelling technique 
PROBAST can be used to assess any type of diagnostic or prognostic prediction model aimed at examining individualised predictions, regardless of the predictors used, outcomes being predicted, or method to develop, validate or adjust the model.
Predictors range from demographics, medical history and physical examination to results from imaging, electrophysiology, blood and urine measurements, pathological examinations, disease stages or characteristics, to results from -omics and any new biological measurement.(19) Predictors are also referred to as covariates, risk indicators, prognostic factors, determinants, index test results or in statistical terminology independent variables.(4, 6, 8, 27, 31)(7, 8, 35, 36)
PROBAST distinguishes between candidate predictors and predictors included in the final model.(32) Candidate predictors are those variables predictors considered to be potentially predictive of the outcome, i.e. all those evaluated in the study whether or not included in the final multivariable model.
PROBAST primarily addresses prediction models for binary outcomes, where the outcome is expressed as presence or absence, and time-to-event outcomes such as 5‑year disease-free survival, as these are thethe most common types of predicted outcomes in medicine. However, PROBAST can also be used to assess models predicting non-binary outcomes such as continuous scores, for example pain scores or cholesterol levels, or categorical outcomes such as the Glasgow Coma scaleComa or Rankin Scale. Almost all PROBAST signalling questions apply equally to the assessment of studies on developing or validating of prediction models for continuous and categorical outcomes, except signalling questions addressing number of outcome events per predictor, and certain model performance measures (e.g. c-statistic), which are not relevant to continuous (e.g. c-statistic) and categorical outcomes.
PPrediction models usually involve regression modelling techniques such as logistic regression or time-to-event (survival) models. Prediction models may also be developed or validated using non-regression techniques such as neural networks, random forests or support vector machines. As the use of routine big data increases, additional modelling techniques are becoming more common, such as machine and artificial learning fields. The main differences between studies using regression and other types of prediction non-regression modelling include the methods of data analysis; non-regression development models can often have greater risks of overfitting when data are sparse, and the potential lack of transparency can affect the applicability and usability of the models.(33) Below we provide guidance how PROBAST can be adapted to address other types of outcomes and modelling techniques. 
Types of review question
PROBAST can be used to assess different types of systematic review questions.  and more than one question can be addressed in a single review. For some review questions it is relevant to include all models including both development and validation, but for other  questions only validation models would be relevant. Box 3 gives examples of potential review questions for both prognostic and diagnostic prediction models, for whichwhere PROBAST is applicable. Table 2 provides explicit guidance for framing a focused review question, which helps to better assess the risk of bias in and the applicability of the primary studies. (17)
.
If, for example, the aim is to review the performance of all existing models to predict the risk of any type of cardiovascular or neurological events in patients with type 2 diabetes mellitus, all model development and validation studies in type 2 diabetes mellitus patients should be included. If, in contrast, a review aims to estimate the average performance of a single specific prediction model, for example, the Framingham risk score, then the external validation studies of that prediction model need to be reviewed.(20)
The CHARMS checklist provides explicit guidance on how to frame a focused and explicit systematic review question(s) for prediction models (see also Table 4).(19) A focused review question enables researchers to develop a tailored search strategy, to define the inclusion and exclusion criteria, and to define the data extraction list; it is also useful for the assessment of risk of bias and essential for highlighting concerns for applicability of primary studies included in the review.
Types of prediction model studies
PROBAST addresses is designed for assessing studies on multivariable models that are to be used to make predictions in  individuals, i.e. individualised predictions (Box 1), including s. Such studies onmight include:
· the development of one or more new prediction models
· the development and validation of the same prediction model(s)
· the validation of one or more existing prediction models
· the development of a new prediction model  compared with the vcompared with validation of existing prediction models
· the updating (e.g. , adjusting model coefficients) or extension (e.g. i.e. adding one or more new predictors)) of existing prediction models
· the combinations of any of the above.
PROBAST can thus also be used for studies that focus on quantifying the added value of a specific predictor to an existing prediction model, for example, a study aimed at updating or extending the Framingham risk score with an additional predictor such as a CRP measurement,(39) but may require tailoring to include some additional signalling questions (see concluding remarks).
PROBAST is not designed for assessing predictor finding studies where the aim of multivariable modelling is to identify (diagnostic or prognostic) predictors associated with outcome, and not necessarilyrather than to developing a model or tool for individualised predictions.(17, 34, 35);  tThe QUIPS tool has been developed for assessment of bias to assess the risk of bias inin predictor (notably prognostic factor) findingthese studies.(36) However, this tool is not designed or sufficient to assess the risk of bias of studies on multivariable prognostic or diagnostic prediction models that are specifically developed, validated or adjusted for estimating outcome probabilities in individuals.
PROBAST is also not suitable for assessing comparative studies that quantify the effect or impact on participants’ health outcomes of using a prediction model (as part of a complex intervention) as compared to not using such modelin comparison to no model or an alternative (Box 1). Such comparative model impact studies use either randomised or non-randomised designs(37-40) and appropriate risk of bias tools include the risk of bias tool for randomised studies (22) or ROBINS-I tool for non-randomised studies(41).
For diagnostic test accuracy studies, another RoB tool, QUADAS-2,, QUADAS-2, has been developed.(24) However, it should be noted that some diagnostic test accuracy studies include a diagnostic prediction model. In these cases, the use of PROBAST should be considered.
Risk of bias and Applicability
(344 454 words)
Risk of Bias
Bias is usually defined as presence of systematic error within a study leading to distorted or flawed study results, hampering the internal validity of that study. In prediction model development and validation, there are known features which make a study at risk of bias, although there is limited empirical evidence to demonstrate the most important sources of bias. We define risk of bias to occur when shortcomings in the study design, conduct or analysis lead to systematically distorted estimates of model predictive performance or to an inadequate model to address the research question. Model predictive performance is typically evaluated using calibration and discrimination, and sometimes (notably in diagnostic model studies) classification measures (Box 4).(8) When assessing risk of bias, To understand bias in study estimates of model predictive performance, it helps to think about how the equivalent a hypothetical methodologically robust prediction model (development or validation) study would have been designed, conducted and analysed.
Applicability 
Concerns for the applicability of primary studies to the review question can arise when the study population, predictors or outcomes of a primary study differ from those specified in the review question. For example, aApplicability concerns may arise when participants in the prediction model study are from a different medical setting than the targeted population defined in the review question (Table 2). For example, participants in a primary prediction model study may be enrolled from a hospital setting but the review question specifically relates to participants in primary care. A The reported prediction model developed in secondary care may have different discrimination and calibration may not be applicable in primary care as patients in hospital settings typically have more severe disease than patients in primary care.(37, 42) 
For systematic reviews where eligibility criteria as well asparticipants, predictors and outcomes of the primary studies directly match the review question, there will likely be small no concerns about for applicability of the a primary study for the review. However, typically systematic reviews have inclusion criteria that are broader than the precise focus of the review question.
We It is important to note that in reviews aiming to meta-analyse the predictive performance of a specific prediction model (and thus only the external validation studies of that model need to be reviewed, see Box 3), that bias and applicability concerns should here not be confused with heterogeneity in mpredictive odel performance of a particular model across different validation studies, that may result for example from different disease severities or case-mix. Even when all validation studies are unbiased, the true predictive performance of a model naturally tends to change across validation studies due to differences in, for example, the case-mix of their participants or in the definition and measurement of predictors or outcomes.(19) Variation of performance of a model across multiple validations can be reported with relevant prediction intervals, as part of investigation of heterogeneity using meta-analysis methodsIn the analysis phase, comparable to meta-analyses of treatments and diagnostic tests, the reviewer needs to analyse whether there is still heterogeneity in the reported predictive performance measures of the model. If present, such heterogeneity needs to be reported or prediction intervals are estimated.(18)
Applying PROBAST
(15,474 076 16,592 words)
[bookmark: _Hlk524693798]The PROBAST tool consists of four steps (Table 23). A PROBAST assessment should be completed for each distinct model that is relevant to the  developed, validated or adjusted in a study, so there may be more than one PROBAST assessment for a primary study. Assessors are advised to focus only on the prediction models included in a study that are of interest for the systematic review question. 

Examples used in this paper
We use a variety of We include examples throughout this article to illustrate how to apply each signalling question to identify potential sources of bias and assess concerns for applicability. We chose these articles toto illustrate a range of key issues relating to risk of bias and applicability (Table 4). These examples address relating todiagnostic and prognostic models,  different medical areas, study designs, predictor andor outcome types, and study designs spanning both diagnosis and prognosis, and  includeing development and validation studies. models. An overview of the examples used in this document can be found in Table 3. Assessments of theseall examples used in this paper are available at www.probast.org.
Step 1 – Specify your review questions
Before using PROBAST,First reviewers first need to specify their review question in terms of intended use, participants, predictors used in modelling, and outcome. Structured reporting of these elements facilitates assessment of applicability.(7, 8)  Specific guidance was developed to help reviewers define a clear focused review question(17), summarized in Table 2. It basically includes definition of the well known PICO (Population, Intervention, Comparison, and Outcome) complemented by the Timing (the time point and time period of the prediction) and Setting of the prediction. The CHARMS checklist provides explicit guidance for this stage of a systematic review of prediction model studies, see Table 4.(19) pplicability. (7, 8)
Intended use of the model covers whether the model is to be used for diagnosis or prognosis and when it will be used, for example prior to surgery or during recovery after surgery. Step 1 is completed once per systematic review. Table 5 provides an example.The section on participants includes setting, study inclusion criteria and any prior treatments. Subsequently, the section on predictors should include information on the type of predictors (e.g. biochemical markers, imaging tests, clinical examination), the point in time at which predictors were measured, and whether there were any specific measurement issues such as need for specialised equipment. The outcome to be predicted may be a single outcome such as mortality or a composite of multiple outcomes such as a combination of major adverse cardiac events.Step 1 is completed once per systematic review. Table 5 provides an example of a completed step 1 ta
Step 2 – Classify the type of prediction model evaluation
In Step 2 the type of prediction model is identified to link to the relevant signalling questions in PROBAST.  is completed once for each prediction model of interest being assessedWhen both, development and validation (see Box 1) of a particular model, is of interest and reported in a publication, each will be assessed separately. For example, if more than one model was developed or validated in the same publication, if a certain model is both being developed and validated in the same publication,Similarly,  or whenif a certain model is being validated and adjusted or extended in the same publication. , PROBAST will need to be completed separately for each. Step 2 includes a summary box to identify the publication, model and outcome being assessed. For each model assessment, reviewers classify a model as “development only”, “development and validation in the same publication” or “validation only”. A model extension, where new predictors are added to an existing model, would be assessed as new model development.When a publication focuses on adding one or more new predictors to established predictors then use “development only”. When a publication focuses on validation of an existing model in other data though followed by adjusting (updating) or extending of the model such that in fact a new model is being developed, then use “development and validation in the same publication” (see above under ‘Types of prediction model studies’ and Box 1).
Step 2 is completed once for each prediction model assessed for the review (Table 6 provides an example).
Step 3 – Assess risk of bias and applicability
The main component of PROBAST is the assessment of risk of bias and applicability.
Assessing risk of bias
PROBAST provides a structured approach to identify potential risk of bias, based on four domains with signalling questions.  in prediction model studies across four key domains. Each domain is judged for risk of bias (low, high or unclear) and includes signalling questions to facilitate these judgements. These signalling questions flag aspects of study design or conduct that have the potential to bias the results of a primary study. Signalling questions are factual questions and are rated as yes (Y), probably yes (PY), no (N), probably no (PN), or no information (NI). All signalling questions are phrased so that “yes” indicates low risk of bias, and “no” high risk of bias. The ratings of PY and PN are included to allow judgements to be made when there is not sufficient information for reviewers to be confident of making a Y or N rating. Conforming to other risk of bias tools, responses of “yes” are intended to have similar implications to responses of “probably yes” (and similarly for “no” and “probably no”), but allow for a distinction between something that is known and something that is likely to be the case.(22, 23, 41) “No information” should only be used when there is truly no information to answer a signalling question. 
The answers to these signalling questions assist reviewers when judging the overall risk of bias for a specificeach domain. A domain where all signalling questions are answered Y or PY should be judged as “low risk of bias”. An answer of N or PN on one or more signalling question flags the potential for bias while NI indicates insufficient information. This does not mean that bias is definitely present. For example, in a prognostic study where predictors were clearly determined before event occurrence and measurement, but where the study the report does not specifically state report information on whether predictor measurements were blinded for information on the outcome occurrence, this signalling question (2.3, see below) is factually scored rated as NI. However, in the overall risk of bias judgement of this domain one may still judge it to be low risk of bias, since it can be inferred that predictors were measured a long time before the outcome occurred. When judging risk of bias for a particular domain, reviewers thus need to use their judgement to determine whether or not they think that any issues identified by the signalling questions are likely to have introduced bias into the model development or validation. Further information on how to answer the signalling questions and how to make an overall judgement for each domain on the risk of bias and concerns for applicability, are given in the specific sections for each domain.
To improve the transparency of the assessment process, PROBAST includes two types of text boxes for each domain. The first, the “support for judgement” box, allows reviewers to record information that was used to answer the signalling questions for that domain. Text can either be copied and pasted directly from the article being assessed, or summarised. The second text box is the “rationale for rating” allowing reviewers to record the reason for judging the model at high, low or unclear risk of bias or having high, low or unclear concerns for applicability, respectivel
y. For example, if a domain is judged at high risk of bias, the reviewers can summarise which study features led to the rating. Or, if a domain is rated as low risk of bias despite one or more signalling questions being rated as “no”, “probably no” or “no information”, then this box can be used to explain why issues identified by the signalling questions are not likely to have introduced bias into the study.
 
Assessing concerns for applicability.
The first three bias domains are also assessed for Aconcerns for the applicability of a primary study to match the review question is assessed for the first three domains using information reported in Table 5 and Tables 7 to 9. The analysis domain relates to limitations with the data or how the analysis was performed, which are not related to the review question, and so has no applicability assessment. The degree of applicability is rated as “low”, “high” or “unclear” concern. The “unclear” category should only be used when insufficient information is reported. of the model to the review question. Applicability is only relevant to the three domains  that contribute to the review question (participant selection, predictors used in modelling, and outcome) as these affect the similarity of the data to the review question defined in step 1 (see Table 5 for an example). Domain 4 on analysis relates to limitations with the data or how the analysis was performed, which are not related to the review question. Therefore, this domain does not have applicability concerns.
When assessing applicability, reviewers should refer back to the structured summary of the review question in step 1. If there is a good match between the review question and the primary study, there are likely to be to below concerns for concerning applicability of the model to the review question. Often, a review may address a focused question but study inclusion criteria are initiallyset broader. The degree of mismatch between inclusion criteria and review question are rated as “low”, “high” or “unclear” concern for applicability. Again, the “unclear” category should only be used when insufficient information is reported.A text box is included to record the rationale for the applicability assessment. 
To improve the transparency and the assessment process, PROBAST includes for each domain a “support for judgement” box, to record information to address the signalling questions and a “rationale of rating” box, to record the reviewers’ reasons underlying the domain ratings on risk of bias and applicability. Further guidance and examples on how to assess applicability isare provided in the relevant domain specific sections as well as Tables 7 to 10.
Domain 1: Participant selection
This domain covers potential sources of bias and applicability concerns related to how participants were selected for enrolment into the study and the data sources used. 
In the support for judgement box, reviewers should describe the sources of data that were used, for example from a cohort study, randomised study, or routine care registry, and the described criteria for participant selection in the primary study.
Risk of bias
There are two signalling questions to facilitate a risk of bias judgment for this domain (Table 67).
1.1	Were appropriate data sources used, e.g. cohort, RCT or nested case-control study data?
Numerous data sources or study designs can be used in to develop or validate a prediction model studies.
Prognostic model studies
Prognostic model studies are at a low risk of bias when based on a prospective longitudinal cohort design, where methods tend to be defined and consistently applied for participant inclusion and exclusion criteria, predictor assessment and for outcome determination across a predefined follow up.(1) The use ofUsing pre-specified and consistent methods ensures that the participants and related data are systematically and validly recorded.
The potential for risk of bias in model development and validation studies is increased when participant data are from existing data sources, such as existing cohort studies or routine care registries, are used. In such instances, This is because data are often not collected using a protocol that was designed specifically for prediction model purposes but for some other purpose.participants are often included using other criteria than would be applied in a study specifically designed for developing or validating a prediction model. For routine care registries, participant data on relating to inclusion and exclusion criteria are often inconsistently measured and recorded.(19, 43) For example, in relation to the Clinical Practice Research Datalink (CPRD), Herrett et al. state that “the quality of primary care data is variable because data are entered by GPs during routine consultations, not for the purpose of research. Researchers must therefore undertake comprehensive data quality checks before undertaking a study”.(43)
Data from one or more arms of randomised intervention trials can also be used for prognostic model development or validation. One or more arms of the trial can provide the necessary data. However, the randomised treatments may need to be included as separate predictors to account for any treatment effects, as effective treatments are themselves predictors of the outcome risk.(44, 45) RCTs also usually have more restricted inclusion criteria typically leading to smaller distributions of the predictors (so-called smaller case-mix). It has been shown that models developed or validated using data with smaller predictor distribution (smaller case mix) tend to show a lower discriminative ability than models developed or validated from data sources where the predictors have a broader distribution.(46-49) This is because in the former the range of a model’s predicted probability is smaller and therefore the discriminative ability of the model is smaller as well. 
Case-cohort or nested case-control studies, in which participants with the outcome (cases) and without the outcome (non-cases or controls) are sampled from a pre-existing, well described cohorts or routine care registries of known size, can be considered at low risk of bias provided researchers appropriately adjust for the original cohort or registry outcome frequency in the analysis (see signalling question 4.6).(32, 50-53)   If they do not, the study is at high risk of bias. For example, for logistic prediction models, reweighting the controls and cases by the inverse sampling fraction (from the original cohort or registry) allows correct estimation of baseline risk, allowing corrected absolute predicted probabilities and model calibration measures to be obtained.(50-53) Case-control studies in which cases and controls are not sampled from a pre-specified and well defined cohort or registry, are at high risk of bias. This is because the definition and number of the selected cases and controls relative to the source population is unclear. Accordingly, baseline risks or hazards and absolute outcome probabilities cannot be correctly adjusted for.(32) 
Diagnostic model studies
Diagnostic models predict the presence or absence of an outcome (target disease) at the same time point as the index tests or predictors are measured (Box 2). Accordingly, the design with lowest risk of bias for diagnostic model studies is a cross-sectional study where a group (cohort) of participants is selected based on having certain symptoms or signs that makes them ‘suspected of having the target condition of interest’. Subsequently, the predictors (index tests) and outcome (disease presence or absence) according to the reference standard are measured in all participants.(54-57) Diagnostic studies where the presence of disease cannot be determined cross-sectionally by the reference standard in all patients (for example no lesion on X-rays which can be biopsied) require follow-up of these participants over time. In such studies follow-up is needed to capture the change in symptoms or signs that indicate  to establish whether the target condition was present at the timewhen the diagnostic index tests were performed.
As with prognostic models, a diagnostic model using a nested-case-control design can only be at low risk of bias if researchers adjust the case and control samples by the inverse sampling fractions (see signalling question 4.6) to obtain correct estimate of the outcome prevalence in the original cohort.(58-62) Similarly, if a non-nested case control design is used, where advanced cases and healthy controls are over-represented, this will lead to incorrect estimates of disease prevalence and overestimated diagnostic model performance.(59-62)
	Example:
In Perel 2012, data for the development of the prognostic model came from a randomised trial (CRASH‑2), combining the data from the two treatment arms.(63) As the authors included the allocated treatment as a predictor in the prediction model development, this signalling question should be answered as Y.
Aslibekyan 2011 used a non-nested case-control study but the authors did not adjust their analyses by weighting the cases and controls by the inverse of the sampling fractions.(64) Accordingly, this signalling question for this study should be answered as N.



1.2	Were all inclusions and exclusions of participants appropriate?
Studies that make inappropriate inclusions or exclusions of study participants may result in biased estimates of model predictive performance as the model is based on a selected subgroup of participants that may not be representative of the intended target population.
Inappropriate inclusion could results from including participants already known to have the outcome at the time of predictor measurement. For example, in a study developing a model to predict the future development of type II diabetes, some participants may already have type II diabetes if study inclusion criteria were based on participants without diabetes, solely using self-reported criteria. When Including participants who already have diabetes are included in a study cohort used for development of a model to predict future risk of developing diabetes, this will most likely result in a model an with overestimated opredictive f model performance.
Similarly, for a diagnostic model that aims to detect the presence or absence of pulmonary embolism in symptomatic patients, the exclusion of patients with pre-existing lung disease could be considered an example of an inappropriate exclusion. Patients with pre-existing lung disease may be harder to diagnose with pulmonary embolism than those without pre-existing lung disease; exclusion of these patients may then lead toresulting in an overestimatione of the diagnostic accuracy of a model to beif the model is used in all patients suspected of pulmonary embolism. Authors should then explicitly state that the developed model is only applicable to suspected lung embolism patients , i.e. without  no pre-existing lung disease.
Note that this signalling question is not asking about loss to follow up of participants after inclusion in the primary study (i.e. is not about inappropriate exclusions during the study); this is dealt with in domain 4. This signalling question is about participants who were inappropriately included or excluded from the study. Further, iIt is important to distinguish between a selection bias imposed on a study population by restrictions in inclusion criteria, compared to a study population with different characteristics that may limit the applicability of the study to the review question (see below under applicability). Very specific participant exclusion criteria that are applied in a primary study with the intent of improving the predictive accuracy of the model are a potential source of bias.
	Example:
Aslibekyan eet al. excluded all participants with a fatal myocardial infarction (MI) because they used a case-control design.(64) Participants who had died of fatal-MI were excluded as retrospective self-reported data could not be collected from these patients. The prediction model for non-fatal MI was thus based on selected healthier participants, including only those who survived an MI or did not develop a MI (controls). This is likely to have introduced bias as the study participants represent a selected ‘lower-risk-sample’ of the original ‘at risk of MI population’. Stating that the developed prediction model only predicts non-fatal MI does not solve the issue since at the moment of prediction it is not possible to identify participants who will develop fatal-MI, i.e. this signalling question should be answered as PN.


Rating the risk of bias for domain 1
Table 6 7 shows presents an overview of how the signalling questions should be answered and an overall judgement for domain 1 reached.
Applicability
Applicability for this domain considers the extent to which the population included in the primary study matches the participants specified in the systematic review question (step 1, Table 5). Consider a review with the aim of identifying all model development and validation studies to diagnose bacterial conjunctivitis in symptomatic children. The review could specify inclusion criteria such that prediction model studies with both, adults and children, were eligible. Studies that included only children would be likely to receive a rating of low concern for applicability, whereas studies conducted in adults and children may be rated as at high concern for applicability.
The generalisability and thus applicability of prediction model studies based on randomised trial data needs careful consideration. Randomised trials tend to apply strict inclusion and exclusion criteria, may measure fewer predictors and outcomes, thus reducing the applicability of a model developed or validated from trial datain normal healthcare. In contrast, distribution of study characteristics, predictors and outcomes, and thus the generalisability of prediction model studies tends to be may be high when data from routine care or health care registries are used for model development or validation. 

It is often challenging to identify when certain issues relating to a primary study are likely to introduce risk of bias or whether these are concerns for applicability. Applicability assessment is entirely dependent on the systematic review question. Consider the hypothetical pulmonary embolism example in signalling question 1.2 where reviewers might restrict the intended target population of their review, to ‘patients suspected of having pulmonary embolism without pre-existing lung disease’. For this target population, a primary study including patients with pre-existing lung disease would constitute an applicability concern and not necessarily a risk of bias. Similarly, consider a diagnostic model development study that included patients with a broad age range (18 to 90 years). This may not have introduced any bias into the primary study but it may limit the applicability of the model if the systematic review question focuses on young adults only (18 to 30 years).
Finally, in a review and meta-analysis of a specific single model, risk of bias and applicability assessments should be supplemented with an investigation of heterogeneity in the reported predictive performance of the model across the included primary studies on that model. The Similar to efficacy of a treatment and accuracy of a diagnostic test, the predictive performance of a specific model validated in other studies, is expected to be different, due to differenceswhen validated in other data sets, will differ simply due to differences between the development study and validation study, such as in participant age range range, healthcare setting, geographical location or calendar time periods. This does not mean there is risk of bias within the primary validation study or that some validation studies areconcerns about not applicablapplicabilitye to the review question; it merely reflects expected variation in predictive model performance of a specific model due to differences in study characteristics that need to be understood and reportedinvestigation through including covariates in meta-analysis.(18, 19) A stratified presentation or meta-analysis of the model performance may be indicated. 
Time period is another important consideration. Validating a previously developed model in data obtained from a very different time period, will likely influence the performance of a model, for example due to changes in population health or improvements in health care such as decreasing mortality following surgery.
Also note that sometimes studies validate a model that was developed in a specific group of participants, i.e. in participant data that were (for the researchers) intentionally different from the development study. For example, models developed from a healthy general population to predict cardiovascular outcomes, have been validated in patients diagnosed with type II diabetes mellitus.(65) Another example is validating the diagnostic performance of a model to diagnose deep vein thrombosis that was developed in an emergency secondary care setting in a primary care setting.(42) In both cases, heterogeneity in model performance between the development study and the validation studies should be expected.
Domain 2: Predictors
This domain covers potential sources of bias and applicability concerns related to the definition and measurement of the predictors. Predictors are the variables evaluated for their association with the outcome of interest.
In the support for judgement box reviewers may are asked to list and describe how the predictors were defined, , the time point of their at which they were assessment ed, and whether other information was available when assessing the to those recording the predictors.
Note that for systematic reviews focusing on a specific single prediction model, it is sufficient to list and describe only the predictors in the model being validated.
Risk of bias
There are three signalling questions to facilitate a risk of bias judgment for this domain (Table 78).
2.1	Were predictors defined and assessed in a similar way for all participants?
Predictors should be defined and assessed in the same way for all study participants to reduce risk of bias. If different definitions and measurements across study participants are used for the same predictors, then differences in their associations with the outcome can be expected. For example, active lower digestive tract bleeding may be included as a possible predictor in a diagnostic model developed to detect colorectal cancer. This predictor ‘blood in faeces’ could be assessed in some study participants based on visible blood in the stool and in other participants using faecal occult blood testing. However, if these methods with different minimum detection levels are used interchangeably as a single predictor, ‘blood in faeces’ has the potential to introduce bias, especially if the choice of measurement method was based on prior tests or symptoms.
The potential for this bias is higher for predictors that involve subjective judgement, such as imaging test results. Here there is a risk of studying the predictive ability of the observer rather than that of the predictors.(1, 66-69) Where special skill or training is required, it may also be important to specify who assessed the predictor, for example, experienced consultant versus inexperienced trainee.
	Example:
Perel et al. assessed the following predictors, all of which were recorded on the entry form for the CRASH‑2 randomised trial: demographic characteristics (age and sex), characteristics of the injury (type of injury and time since injury), and physiological variables (Glasgow coma score, systolic blood pressure, heart rate, respiratory rate, central capillary refill time).(63) As the data used for the development of the prediction model came from a sub-study of a randomised trial and predictors were taken from the study entry form, it is likely – although not specifically described in the paper - that all predictors were defined and assessed in the same way for all participants. This signalling question would therefore be rated as PY. If data were derived from multiple sources such as in routine care data registries, where it is likely that different versions of the Glasgow coma scale were used or different definitions of injury type were used, then this signalling question would be answered as PN.


2.2	Were predictor assessments made without knowledge of outcome data? 
Risk of bias is low when predictor assessments are made without knowledge of the outcome status. Assessing predictors without knowledge of outcome data can be often referred to as “blinding” or “masking”. Blinding predictor assessment to outcome data is particularly important for predictors that involve subjective interpretation or judgment, such as predictors based on imaging, histology, history or physical examination. Knowing the outcome status of a study participant while assessing predictors,Lack of blinding increases the risk of incorporating the outcome information into the predictor assessments. Such contamination is which  likely to artificially increases their association between the predictor and outcome leading to biased, inflated estimates of model performance.(1, 66-74)
Blinding predictor assessors to outcome information occurs naturally in prognostic studies using a prospective cohort design in whichwhen prognostic predictors are assessed before the outcome has occursred. This Potential bias in predictor assessment iis more likely in studies using retrospective reporting of predictors (vulnerable to recall bias) or cross-sectional studies, such as diagnostic model studies, where predictors and outcomes are assessed within a similar time frame. As diagnostic model studies typically use a cross-sectional design, these might be more vulnerable to predictors being assessed with knowledge of the outcome.(1, 66-75)
Most prediction model studies do not report information on blinding of predictors to outcome data.(76, 77) In prognostic studies, this signalling question should then be scored rated as NI if no specific information is reported on blinding of predictor assessment to outcome data(Table 8). However, the domain can still be rated as low risk of bias in the overall risk of bias assessment, because if if predictors were measured and reported a long time before the outcome occurred  it can be inferred as ‘blinded to the outcome’. and so were blinded to the outcome. Note that even in prognostic studies predictors may sometimes still be assessed retrospectively after the outcome information has been collected, for instance predictors collected from re-interpretation of stored imaging information or when using a retrospective follow-up design. An example is the re-use of frozen tissue or tumour samples to measure novel predictors (biomarkers); such samples will already be linked to participant follow-up information, and thus measurement of the novel predictors may happen after the outcome has occurred and may not be blinded to outcome information.
	Example:
Oudega et al. stated that “after informed consent was obtained, the primary care physician systematically documented information on the patient’s history and physical examination by using a standard form on which the items and possible answers were specified. Patient history included sex, presence of previous DVT, family history of DVT, history of cancer (active cancer in the past 6 months), immobilization for more than 3 days, recent surgery (within the past 4 weeks), and duration of the 3 main symptoms (a painful, red, or swollen leg). Physical examination included the presence of tenderness along the deep venous system, distention of collateral superficial (nonvaricose) veins, pitting edema, swelling of the affected limb, and a difference between the circumference of the 2 calves (…) After history taking and physical examination, all patients were referred to the hospital for D-dimer testing and leg ultrasonography”.(42)
Since it was reported that all participants had their history and clinical information, i.e. the predictors, collected prior to the D-dimer testing and were therefore also blind to the outcome, this signalling question should be answered as Y.


2.3	Are all predictors available at the time the model is intended to be used?
For a prediction model to be usable in a real-world setting, all predictors included in that model need to be available at the point in time where the model is intended to be applied, i.e. at the moment of prediction (Table 2). This sounds so straightforward and logical that it should always happen. Unfortunately, some models include predictors or predictor information that could not be known at the time when the model would be used.
For example, when developing a prognostic model to be used pre-operatively to predict the risk of nausea and vomiting within 24 hours after surgery, the model should not include predictors such as intra-operative medication, unless this medication is pre-set and unchanged during surgery. Inappropriate inclusion of predictors not available at the time when the model would be used makes a model unusable and also inflates apparent model performance, by inclusion of predictors measured closer in time to the outcome assessment which are likely to be more strongly associated with the outcome. For predictors that are stable over time (e.g. gender and genetic factors), these aspects are not an issue.
In studies that aim to externally validate an existing prediction model, the study has high risk of bias when the model is validated while not having the data of each of the predictors (in that model) but validation is done anyhow using the model simply omitting these missing predictors. This is a common flaw in validation studies and effectively produces validation results for another model, rather than a validation of the intended original developed model. In these situations, this signalling question should be answered as N.
	Example:
Rietveld 2004 aimed to develop and validate a prediction model for the diagnosis of a bacterial origin of acute conjunctivitis in children presenting in primary care with symptoms of this disease to decide on the administration of antibiotics.(78) All predictors should be available to the general practitioner during the initial consultation. The predictors in this study were indeed all obtained during history taking and the physical exam. The study should therefore be answered as Y for this signalling question. If the study had included laboratory testing (e.g. microscopy) amongst the predictors assessed, then this signalling question would be likely to be answered as N. This is due to the time delay involved in obtaining microscopy results, making it unlikely that the GP would have the results available during the initial consultation.


Rating the risk of bias for domain 2
Table 7 8 showspresents an overview of how the signalling questions should be answered and an overall judgement for domain 2 reached.
Applicability
The applicability question for this domain considers the extent to which the predictors in the model match the review question. Common reasons for concerns for the applicability in this domain are that definition, assessment or timing of predictors are not consistent with the review question. Predictors should be measured using methods potentially applicable to the daily setting daily practice(Table 5) that is addressed by the review.  Primary studies that used as specialised measurement techniques for predictors may yield optimistic predictions for the targeted setting of the review. For example, if a model should be used in a health setting with limited access to imaging, a study that developed a model including results of positron emission tomography (PET) might not be applicable, and so may be rated as high concern.
As for domain 1, there can be a subtle distinction between risk of bias and applicability assessment in this domain. Consider the example of active lower digestive tract bleeding as a predictor for colorectal cancer presence considered in signalling question 2.1. Such bleeding could be assessed based on visible blood in the stool or using faecal occult blood testing. Reviewers might focus their review to include diagnostic models that used only the ‘visible assessment’ as a predictor of colorectal cancer. With a systematic review focus on using a ‘visible assessment’ test, a primary study using a faecal occult blood test would raise applicability concerns.
Similarly, as for domain 1, in reviews that aim to estimate the average predictive performance of a single specific model, heterogeneity in the observed performance of that model across the development study and validation studies is expected due to differences in definition and measurement of the predictors. If different definitions or assessment methods are used, the risk increases that some validation studies might will find different predictive performance than others and should be judged as a concern for applicability. Sometimes researchers intentionally applied different definitions or measurement methods of predictors, for example using point of care rather than laboratory testing methods for certain blood values. Again, this might not be a problem if the explicit aim of the systematic review was to include all validations of a certain model, regardless of the definition and measurement method of the predictors in that model.

The ability of systematic reviews to evaluate potential reasons for different model performance across validation studies, relies on clear and full reporting of primary studies descriptions of any differences in definition, timing and measurement as compared to the development study.(7, 8)
Domain 3: Outcome
This Domain 3: Outcome
This domain covers potential sources of bias and applicability concerns related to the definition and determination of the outcome predicted by the model under review. The ideal outcome determination procedure leads to error-free outcome would classify the outcome without errorication in all study participants.
In diagnostic model studies, the outcome is the outcome of interest is the presence or absence of the target condition condition. Outcome determination, or verification, is . The outcome in diagnostic studies is measured using a reference standard (Box 2) to determine presence of the target condition. The reference standard may be a single test, a combination of tests (composite outcome), or a consensus of experts and may require follow-up of participants over time. The outcome determination in diagnostic studies is also known as verification (Box 2).
For prognostic model studies, the predicted outcomes occur in the future, after the moment of prediction. For both diagnostic and prognostic models, the reference standard or outcome determination may include a single test or procedure, a combination of tests (composite outcome), or a consensus by experts.
The outcome determination method can consist of a single test or procedure, a combination of tests, consensus of experts or by an outcome adjudication panel.
TIn the support for judgement box enables reviewers are asked to describe how the outcome was defined and determined with, the time pointinterval at which it was determined, and the information available to the personwhen determining the outcome in the study participants.
Risk of bias
There are six signalling questions to facilitate a risk of bias judgment for this domain (Table 89).

3.1	Was the outcome determined appropriately?
The rationale for this signalling question is to detect potential for bias due to outcome misclassification in the outcome bebecause suboptimal or inferior methods have beenwere used to determine the outcome. Errors in the outcome classification can lead to biased regression coefficients, biased estimates of the intercept (logistic regression and parametric survival models models) or baseline hazard (Cox regression model), and thus biased performance measures of the prediction model.
When pPrediction model studies useing data from routine care registries or from existing studies originally designed and conducted to answer a different research question, a careful appraisal is needed to determine appropriateness of methods for determining outcomes to determine participant outcomes. In routine care registries outcome data might not be recorded at all, or recorded data require careful appraisal of whether the outcome may have been missed or misclassifyied the outcomeby the reported reference standard or not recorded at all. In diagnostic studies, problems and bias due to misclassification of the target condition by suboptimal reference standard methods have been extensively studied.(67, 71, 79-83)
Both, diagnostic and prognostic prediction model studies, often use data from existing studies originally designed and conducted to answer a different research question. This requires a careful appraisal of whether the methods used to determine the outcome were appropriate, sometimes using details from earlier publications about that study.
As applies toSimilar to the measurement of predictors (signalling question 2.1), the potential for bias is higher for outcomes that involve subjective judgement, such as imaging, surgical or even pathology procedures. Where special skill or training is required, it may also be important to specify who determined the outcome, for example, experienced consultant versus inexperienced trainee.
	Example:
In Han 2014, “there were two defined outcomes for each of the models: one was mortality at 14 days, and the other was unfavourable outcome at 6 months”, defined by the authors based on the Glasgow Outcome Scale (GOS) as “severe disability, vegetative state, or death”. As the outcomes, mortality and the three categories based on the definition of GOS, use well established, appropriate measures for outcome determination, the signalling question should be answered as Y.
Problems could arise if the Glasgow Outcome Scale had been measured by assessors who are not trained in determining this outcome. Despite the limited number of categories, misclassification is not uncommon for the GOS.(84, 85) The use of inexperienced assessors could lead to a less appropriate (PN or NI) answer for this signalling question.


3.2	Was a pre-specified or standard outcome definition used?
This signalling question aims to detect the potential risk of bias where model performance of a model has been inflated by selecting an outcome definition that produces more favourable results.(86) Authors may have had specific reasons for their choice of definition and may report this, but unless definitions are pre-specified or standard, there is a risk that the choice of definition could have been influenced by a desire to obtain a better model performance.
The risk of bias is low when a pre-specified or standard outcome definition is used, substantiated by a definition from clinical guidelines, previously published studies or a published study protocol. Risk of bias is higher if an atypical threshold on a continuous scale has been used for defining an “outcome being present”. Biased model performance can occur if authors test multiple thresholds to obtain the most favourable outcome definition to achieve the best estimate of model performance. For example, a biased assessment of model performance would result if authors used a continuous scale such as the Glasgow Outcome Scale (GOS) ranging from 3 to 15 and chose a threshold for dichotomised classifying this as “good” andor “poor” outcomes based on achieving the best estimate of model predictive performance, this would be a biased assessment of model performance.
Composite outcomes can also introduce risk of bias.  when non-standard events have been combined as a composite outcome. For example, bias can occur if authors may introduce bias by decide to adjusting a composite outcome definition to favour good better model performance by leaving out typical components or including non-typical events.
For many outcomes, there is consensus on outcome definitions, for including thresholds and preferred composite outcome definitions. The COMET initiative (Core Outcome Measures in Effectiveness Trials, http://www.comet-initiative.org) was set up to facilitate development of agreed standardised sets of outcomes. Determining whether standard or non-standard definitions have been used may require specialist clinical knowledge.
	Example:
In Han 2014, “there were two defined outcomes for each of the models: one was mortality at 14 days, and the other was unfavourable outcome at 6 months, defined by the authors based on the Glasgow Outcome Scale (GOS) as severe disability, vegetative state, or death”. Given that both, mortality and the three categories based on the definition of GOS, are well established outcomes, i.e. standard outcome definitions were used, the signalling question should be answered as Y.
If the authors instead of using a standard definition had amended the categories of the GOS based on their own clinical experience or following internal hospital guidance, clinical judgement should be used to decide whether these changes still constitute a standard outcome determination or whether the signalling question should be answered as PN or N.


3.3	Were predictors excluded from the outcome definition?
Outcomes should ideally be determined without information about the predictors (see signalling question 3.5), but in some cases it is not possible to avoid including predictors. If a predictor in the developed or validated model forms part of the definition of the outcome that the model is intended to predicts, it is likely that the association strength of the relationship between the predictor and the outcome will be overestimated, and estimates of model performance are will be overoptimistic; in diagnostic research this problem is generally referred to as incorporation bias.(57, 66, 70, 72, 74, 87-90)
Where outcomes are difficult to determine by a single procedure (e.g. a single reference test), determination of an outcome presence or absence may be based on multiple components or tests (as in the World Health OrganisationHO criteria for the diagnosis of MImyocardial infarction) or even on all available information including the predictors under study. The latter approach is known as consensus or expert panel outcome measurement and isalso susceptible  often not able to avoid incorporation bias.(91)
	Example:
Aslibekyan 2011 aimed to develop a cardiovascular risk score based on the ability of predictors such as dietary components, physical activity, smoking status, alcohol consumption, socioeconomic status and measures of overweight and obesity to predict non-fatal MI.(64) The study reported that MI was defined according to World Health OrganizationHO criteria. These criteria include cardiac biomarkers, electrocardiogram, imaging, or autopsy confirmation. Since the lifestyle and socioeconomic predictors used for modelling in Aslibekyan 2011 do not form any part of this definition of MI, the study would be rated as Y for this signalling question.
If the study had included a cardiac biomarker (e.g. troponin T at initial hospital presentation) amongst the predictors assessed, then this signalling question would be likely to be rated as N. This is because the initial troponin T measurement may have formed part of the information used to determine the outcome (MI).


3.4	Was the outcome defined and determined in a similar way for all participants?
The outcome predicted by the model should be defined and determined in the same way for all study participants, similar to predictors (signalling question 2.1). Potential risk of bias can arise when groups of participants differ in the way their outcomes are determined, for example due to variation in methods between research sites in a multi-centre study. Outcome definition and measurement should include the same thresholds and categories to define the presence of the outcome across participants. Where a composite outcome measure is used, the results of individual components should always be combined in the same way to establish the outcome presence or absence. When using a consensus or panel-based outcome committee, the same method for establishing the outcome, for example majority vote, should be used.(87, 91, 92)
Risk of bias can arise when participants differ in the way their outcomes are determined, for example due to variation in methods between research sites in a multi-centre study. Risk of bias is also increased when prediction model studies are not based on pre-designed studies, but on data collected for a different purpose, such as routine care registry data, where inherently different outcome definitions and measurements are likely to be applied. 
The rRisk of bias is also higher when different measurement methods have different accuracy for determining the presence of an outcome (differential outcome verification) and the direction of bias is not easy to predict. For example, in a prognostic model study aimed at predicting the future occurrence of diabetes in healthy adults, the presence of diabetes in an individual can be determined in various ways which all may have different ability to determine diabetes presence or absence, e.g. using fasting glucose levels, oral glucose tolerance test or self-reported. The potential for bias is again higher for when outcomes that require more subjective interpretation by the assessor. Similarly, outcomes measured on multiple occasions such as clinic visits are at risk of bias, particularly if the frequency of measurement is different between participants; more measurement occasions increases the likelihood of detecting the outcome.
In diagnostic studies, researchers sometimes explicitly did not or could not apply the same outcome measurement in each individual. For instance, in cancer detection studies, pathology results are likely to be available as a reference standard only for those participants who have some positive result on a preceding index test such as an imaging test. Two situations may then occur: partial verification, when outcome data are completely missing for the subset of participants who tested negative on the index test and for whom there is no reference standard result, and differential verification, when participants who are not referred to the preferred reference standard are assessed using an alternative reference standard of differing, usually lower, accuracy.(59, 66, 72, 74, 87-90, 93) These differences in outcome determination affect the estimated associations of the predictors with the outcome and thus the predictive accuracy of the diagnostic models under study, leading to partial and differential verification bias, for which adjusting methods to account for partial and differential verification have been described.(94-97)
The risk of bias in both diagnostic and prognostic model studies is increased when the prediction model study is not based on a pre-designed study, but rather on a combined data set or routine care registry data, where inherently different outcome definitions and measurements are likely to be applied.
	Example:
Han et al. 2014 validated a model to predict “unfavourable outcome after six months” in patients with severe traumatic brain injury.(98) The outcome was determined using the Glasgow Outcome Scale (GOS; levels 1 to 3 on the 5-point GOS) for all patients included in this single centre study. This should be answered as Y.
If a hospital in the study had used a different instrument to measure the outcome of interest, e.g. the Functional Status Examination (FSE) rather than the GOS, this would constitute a potential risk of bias as these tools are not directly comparable. Then this signalling question would be answered as PN or even N to highlight the potential risk of bias.


3.5	Was the outcome determined without knowledge of predictor information?
The outcome is ideally determined without knowledge of blinded to information about the predictors, similar to signalling question 2.2 (assessment of predictors blinded for the outcome status). This is comparable to intervention trials where the outcome is ideally determined without knowledge of the treatment assignment. Without blinding, Kknowledgeing of predictor results in a participant may influence the outcome determination, which and could lead to a biased estimation of the association between predictors and outcome, and thus to biased predictive accuracy of the model, usually an due to overestimation of the association between predictors and outcome.(66, 70, 72, 74, 88-90) This risk is lower for objective outcomes, such as death from any cause or whether a child birth was natural or by caesarean section, but higher for outcome determinations requiring interpretation, including prognostic outcomes such as cause specific death from a specific cause.
Some outcomes are inherently difficult to determine using a single measurement method or test. As discussed in signalling question 3.3, sometimes  diagnostic and prognostic research cannot avoid the use of a consensus or expert panel diagnosis with predictors being available when determining the outcome. Prognostic research can also use adjudication or end-point committees, where outcome determination includes knowledge of predictor information. If the explicit aim is to assess the incremental value of a particular predictor or when comparing the performance of competing models (e.g. when validating multiple models on the same data set), the importance of blinded outcome determination increases to prevent overestimation of the incremental value of a particular predictor, or to prevent biased preference for one model to another.
RGiven the potential for bias, review authors should carefully determine assess whether predictor information was available to those determining the outcome. If predictor information is present when determining the outcome or when it is unclear, the potential consequences should be judged in the overall judgment of bias of this domain. This overall judgment should be made taking into account the subjectivity of the outcome of interest and the underlying review question. Unfortunately, systematic reviews of prediction studies have frequently identified a lack of information about whether determination of outcomes was blinded to other study information.(40)
	Example:
In the diagnostic prediction model study of Rietveld et al., the outcome of interest was a bacterial infection of the eye established by culture as the reference standard procedure.(78) Reading of the results of the cultures was somewhat subjective. Therefore, the authors of the paper explicitly inform the reader about the degree of blinding in their study: “The general practitioners did not receive the culture results, and the microbiologist who analysed the cultures had no knowledge of the results of the index tests” [read: the candidate predictors of the study]. The signalling question “Was the outcome determined without knowledge of predictor information?” should therefore be answered as Y.


3.6	Was the time interval between predictor assessment and outcome determination appropriate?
This signalling question is to detect situations where the time interval between predictor assessment and outcome determination is inappropriate, . The time interval could be either too long or too short. Such judgement requires clinical knowledge to determine what an appropriate time interval is, and as this will vary considerablyalso  dependsing on the clinical context. scenario and outcome under study.
In diagnostic studies where the model is predicting whether the outcome (i.e. target disease determined by a reference standard)  or outcome is present at the moment of prediction (Box 2), ideally the assessment of predictors (index tests) and the outcome determination should occur at the same point in time. In practice, there may be a time interval between the moment of assessing the predictors  and outcome determination where the diagnos diagnostic outcome classification tic outcome (and thus diagnosis) could change, either improving through administered treatment, natural disease resolution or worsening through disease progression. Sometimes the reference standard used to determining thee outcome presence of disease outcome requires clinical follow up over a time period, so a delay between predictor and outcome assessment is built into the study design, as a critical feature to reduce bias (see the example study of Oudega et al.).
The length of interval potentially leading to a high risk of bias will depend on targeted outcome or condition. A delay between predictor assessment and outcome determination of a few days may not be problematic for chronic conditions, while for acute infectious diseases even a short delay may be problematic. Conversely, when the reference standard involves follow-up, a minimum length may be required to capture the increase in symptoms or signs indicating that the disease was present at the moment when the predictors were assessed. Sometimes biological samples for predictor assessment and outcome determination (reference standard) are taken at the same time point, so the time interval during which the disease status could change is effectively zero even if the reference standard procedure on the sample is completed at a later time point.
In prognostic studies, the time interval between the moment of assessing the predictors and outcome determination may also have been too short or too long to capture the clinical relevant outcome of interest. 
For both diagnostic and prognostic models, there are two ways bias can present. Firstly, bias can result if outcomes are determined too early when clinically relevant outcomes cannot be detected or the number of outcomes is unrepresentative. For example, the detection of metastases can be biased by the time point of follow-up in the reference standard, e.g. in a model diagnosing the presence of metastases at the time of surgical removal of colorectal cancer tumour,  diagnosis where participants have surgical removal of the primary tumour to prevent development of metastases not present at diagnosis. the detection of metastases can be biased by the time point of follow-up in the reference standard. Due to limitations in current methods of detecting metastases, the number of metastasis detected 6 months after removal of the primary tumour may underestimate the total number of metastases, as some metastases may be too small to be detected. Choice of a time point that is too early in this examplecan introduces bias in the number of metastases detected, as due to limitations in current methods, at earlier follow-up times metastases may not have grown to a large enough size for detection..  Secondly, the type of outcome may be different depending on the time interval. For example, the metastases detected at earlier times might be mainly liver metastases, whereas at a 13 year follow-up more bone metastases may be detected. AIn this example, a high risk of bias then occurs if the length of the time interval between predictor assessmentsindex tests to diagnose metastases  and reference standard (outcome determination) results in either determination of a potentially unrepresentative number of outcomes or type of outcomes (i.e. metastatic locations).
The aim of a review may Clinical interest can be specifically in either the short and long-term prognosis of a certain condition, so the time interval between predictor assessment and outcome determination is also relevant to the applicability of a study to the review question.
	Example:
In Rietveld et al. where a diagnostic model is developed to predict bacterial cause in conjunctivitis eye infection, risk of bias in the time interval is minimised as the same clinic visit is used to measure predictors from patient questionnaires and physical examination, and to collect conjunctival samples for determination of the outcome of bacterial infection.(78) Although the reference standard results require culture for more than 48 hours, this is not relevant to bias, as culture results reflect disease at the time of sample collection. This signalling question would be answered as Y indicating a low potential for bias.
In Aslibekyan et al. where a model is developed to predict myocardial infarction, this signalling question should be answered NI due to lack of information on the time interval between predictor measurement and the outcome determination for myocardial infarction.(64) Different time intervals could alter the number of myocardial infarction events that would be detected.


Rating the risk of bias for domain 3
Table 8 9 shows presents an overview of how the signalling questions should be answered and an overall judgement for domain 3 should be reached.
Applicability
The applicability question for this domain considers the extent to which the outcome predicted in the developed or validated model matches the review question, defined in step 1 of PROBAST. If different definitions, timing or determination methods are used, this should be judged a concern for applicability. Typical problems relate to differences in the definition, timing or determination of the outcome in the study compared to the review question. For example, the study might use a composite outcome which consists of components different to the ones included in the outcome definition of the review question.(99)
Similarly, as for domain 1 and 2, iIn reviews that aim to estimate the average average predictive performance of a single specific model across the included validation studies, heterogeneity between studies  in the observed performance of that model across the development study and the validation studies is expected due to differences in definition and measurement of the outcome. If different definitions or determination methods are used, the risk increases that some validation studies will find different predictive performance than others and should be judged a concern for applicability. Sometimes researchers intentionally applied different outcome definitions or measurement methods of outcomes. As applies to domain 2, tThis might not be a problem if it was the explicit aim of the systematic review to include all validations of the a certain model, regardless of the outcome definition and measurement methodof the outcome under study.
Again, to facilitate an informed systematic review of model validation studies, it is important that primary study investigators clearly describe any differences in outcome definitions as well as timing and measurement methods so reviewers can judge potential reasons for different model performance across validation studies.
Domain 4: Analysis
Statistical analysis methods are a critical part of prediction model development and validation studies. The use of inappropriate analysis methods, or the omission of important statistical considerations, increases the potential for bias in the estimated predictive performance of a model. Domain 4 examines whether key statistical considerations were correctly addressed. Some of these aspects require specialist knowledge and we recommend that this domain is assessed by at least one individual with statistical expertise, preferably in prediction model studies. The support for judgement box should list and describe the important aspects needed to address this domain. 
Risk of bias
There are nine signalling questions to facilitate a risk of bias judgment for this domain (Table  910).
4.1	Were there a reasonable number of participants with the outcome? 
As applies for all medical research, the larger the sample size the better, as it leads to more precise results, i.e. smaller standard errors and narrower confidence intervals. For prediction model studies, it is not just the overall sample size that matters but more importantly the number of participants with the outcome. For a binary outcome, the effective sample size is the smaller of the two outcome frequencies, ‘with the outcome’ or ‘without the outcome’, which is almost always the number of participants with the outcome unless the outcome prevalence (in diagnostic model studies) or incidence (in prognostic model studies) is over 50%: than it is the number ‘without the outcome’. For time-to-event outcome, the key driver is the total number of participants with the event by the main time-point of interest for prediction. More importantly, in prediction model studies the number of participants with the outcome not only influences the precision but also affects predictive performance, i.e. is a potential source of bias. What is considered a reasonable number of participants with the outcome (yielding low risk of bias) differs between model development and validation studies.
Model development studies
The performance of any prediction model is to varying extents overestimated when the model is both developed and its performance assessed on the same dataset.(27, 100-102) This overestimation is larger with smaller sample sizes and notably with smaller number of participants with the outcome. Concerns about optimistic or inflated performance are exacerbated when the predictors included in the final model are selected from a large number of candidate predictors, relative to a low number of participants with the outcome, and when predictor selection was based on univariable analysis (see signalling question 4.5). Some suggested a rule-of-thumb of at least 10 participants with the outcome event per candidate predictor or variable studied (so-called EPV).(103, 104) Others have suggested that an EPV the value of 10 is too conservative(105), whilst others have suggested higher EPVs.(106-108) Prediction models developed using machine learning techniques often require substantially higher EPV, with an EPV of at least 200 often needed.(33) HNote that here the word candidate is important as it is not the number of predictors included in the final model but rather the total number of predictors that were considered during any stage of the prediction model process. Furthermore, it is not the number candidate predictors but actually the number degrees of freedom required to represent all the predictors (i.e. the number of regression coefficients that need to be estimated). For example, a predictor with four categories will require three degrees of freedom (three regression coefficients are estimated).
Hence, the smaller the effective sample size and the lower the EPV the higher the risk the final prediction model has included spurious predictors (so-called overfitted models) or failed to include important predictors (underfitting) and will yield biased estimates of the model apparent predictive performance.(27, 28, 100-102, 109) Both overfitting and underfitting result in biased estimates of the predictive performance of the model. Other nuances in the data which simply arise by chance (such as interactions, non-linear trends) may also lead to an overfitted model, especially when sample size is small. With small EPV, authors need to quantify the extent of misover- or underfitting of the developed prediction model, for example by using internal validation techniques. Based on this internal validation, they then must produce optimism-adjusted estimates of model performance and adjust the model (i.e. shrink regression coefficients) to decrease this bias (see signalling question 4.8).
Model validation studies
In a validation study, the aim is to quantify the predictive performance of an existing model using a separate dataset from that used in itsthe model development.(8, 27, 101, 110-112) Emphasis in a validation study is on accurate and precise estimation of model performance so that meaningful conclusions can be drawn. Sample size recommendations for validation studies are that at least 100 participants with the outcome are needed, otherwise the risk of biased estimates of model performance increases.(113-115)
	Example:
Aslibekyan et al. developed two prognostic models (one including only easy to obtain predictors and one extended with various dietary and blood markers) to predict the risk of developing myocardial infarction (MI).(64) Although the authors used a case-control study design and many inclusion and exclusion criteria, they ended up with 839 cases with an MI for developing score 1 and 696 for score 2. The exact number of candidate predictors is not explicitly mentioned but from the methods and supplementary tables 1 and 2 we can estimate that the authors likely used 20 to 30 predictors or rather degrees of freedom as they categorised several continuous predictors into quintiles. This indicates that the EPV is between (taking the smallest number of events) 696/20 (i.e. 35) and 696/30 (i.e. 23). As the EPV in either case is much larger than 10, this signalling question should be answered Y, indicating a low risk of bias.
Oudega et al. validated a diagnostic model for detecting the presence of deep vein thrombosis (DVT) in patients who consulted with their primary care physician about symptoms suggestive of DVT.(42) The total sample size of their validation study was 1295 patients with symptoms of DVT of whom 289 had an DVT (as detected by D-dimer and leg ultrasonography). Since, the number of events is larger than the recommended 100 events needed for validation, the signalling question, for this validation study, should be answered as Y, indicating a low risk of bias. If this number was lower, e.g. 80 or 40 patients with DVT, then the answers for this example would be PN or N, respectively.


4.2	Were continuous and categorical predictors handled appropriately?
It has long been acknowledged that diDichotomisation of continuous predictors, such as age and blood pressure, should be avoided.(116-118) Dichotomisation requires choosing an (often arbitrary) cut-point value, above which participants, for example above which participants, , are classifieded as high (or abnormal) and below which they are classifieded as low (or normal). The usual fallacious argument for the approach is to aid clinical interpretation and maintain simplicity. However, it leads to loss of information and reduced predictive ability of a prediction model including which has dichotomised continuous predictors can be substantial.(116-119)
For example, dichotomising a variable at the median value has been shown to reduce power by about the same amount as discarding a third of the data.(120) Also, the range of model predicted risks across the spectrum of predictor values is lost: individuals just below the cut-point are assumed to have a different risk from those just above the cut-point, even though their predictor values barely differ. Conversely, two individuals with very different values but both above (or both below) the cut-point are assumed to have identical risks. Linear (or non-linear) relationships between the predictor and outcome risk are therefore lost. If When a predictor is categorised using widely accepted cut-points, one must acknowledge thatalthough information has been lost, but one might consider itthere is a as low risk of bias since the predictor will always be coded and used as suchcut-point was pre-defined. An example i
s the use of hypertension as predictor in prognostic models for cardiovascular disease. Instead of using the underlying continuous blood pressure values, one might use the WHO criteria for definition of hypertension.
Model development studies
A developed model  is at a is at low risk of bias when included predictors are kept as continuous. TIn this case, the association between the predictor and outcome risk should still be examined as linear (perhaps after some transformation of the data, such as a log transformation) or ideally as non-linear , for example, by using , for example, restricted cubic splines or fractional polynomials.(27, 101, 121)
A developed model is at high risk of bias when dichotomised continuous predictors are included, especially when (i) cut-points were chosen via data-dredging on the same data set, for example to identify the ‘optimal’ cut-points that maximises predictor effects or minimises associated p-values;(116-119) and (ii) a selection procedure was used to identify the ‘significant thresholds’.(27, 101)
Risk of bias is decreased when the model uses categorisation of continuous predictors into four or more groups, rather than dichotomising, especially when it is based on widely accepted cut-points.(117, 119) However, for classification of low-risk of bias, it should be clear that the number and placement of cut-points of predictors in the developed model was chosen in advance of data analysis. For similar reasons as discussed for signalling question 4.1, an internal validation followed by optimism-adjustment of model performance and prediction model parameters, also decreases the risk of bias (see also signalling question 4.8). For model development studies which have dichotomised continuous predictors after the data analysis and did not adjust for it by applying internal validation and shrinkage techniques, this signalling question should be answered as N.
Model validation studies
In model validation studies, the model as originally fitted in the development data should be evaluated on its predictive accuracy in the validation dataset. This means that the originally reported intercept (or baseline hazards) and regression coefficients are used for exactly the same format of the predictors. For example, if body mass index (BMI) is originally included as dichotomised in the model, then validation studies should use BMI values dichotomised at the same cut-point and not BMI as continuous or dichotomised using a different cut-point. If predictors do not have the same format in the validation as used in the development model, the validation might be considered at high risk of bias since the predictor-outcome association (the regression coefficient) of BMI from the development study was effectively used in the validation study for a different version of the predictor.
	Example:
Oudega et al. validated the Wells rule for identifying individuals with deep vein thrombosis (DVT).(42) However, the authors comment that “the last item of the rule—presence of an alternative diagnosis— has never been unambiguously defined and often causes controversy among users of the rule. In our study, physicians were asked to give their own assessment of the patient’s probability of having DVT by using a score of 1 to indicate high probability of DVT, no alternative diagnosis likely; 2 to indicate moderate probability of DVT, alternative diagnosis possible; or 3 to indicate low probability of DVT, alternative diagnosis certain. To tailor the judgment of the physician on this item, 7 common alternative diagnoses for patients with suspected DVT were provided on the study form. If a low or moderate probability was assigned to a patient, we subtracted 2 points from the Wells score in the analysis”. Since this is not a true deviation from the original definitions, this signalling question should be answered as Y.
Perel et al. developed a prediction model (CRASH-2) for early death in patients with traumatic brain injury, and during model development they take a three category variable ‘type of injury’ (penetrating, blunt, or blunt and penetrating) and analyse it as a two category variable (penetrating versus a combined category of blunt and penetrating), the rationale for this is not given.(63) Nevertheless, continuous variables were analysed as continuous in the model development, and so the collapse from 3 to 2 categories for this variable was probably due to few participants or events being in the ‘blunt’ category. Further, the type of injury was not subsequently included in the final model, and so it is unlikely that reduction in predictor categories was done in order to improve statistical significance for this predictor. Therefore, we would rate the signalling question as Y. When externally validating the CRASH-2 model, the authors “applied the coefficients of the model developed in CRASH-2” and appear to use the same predictors and scale as originally coded, and thus an answer of Y seem appropriate.


4.3	Were all enrolled participants included in the analysis?
As applies to all types of medical studies, All all participants enrolled into the a study should be included in the data analysis, otherwise. When enrolled study participants are not included in the analysis, there is a potential for risk of bias.(24, 66, 122, 123) This signalling question relates to exclusion of participants from the original study sample who met the inclusion criteria. It is not about inappropriate inclusion criteria (which is are addressed in signalling question 1.1) and not about the handling of missing data in predictors or outcomes (which is covered in signalling question 4.4).
Enrolled participants are often excluded due to uninterpretable (unclear) findings, outliers or missing data in predictors or outcomes (due to loss to follow up). Outlier, uninterpretable or missing values occur in all types of medical research. Prediction model studies based on observational data such as routine care databases or registries, where participants are not formally enrolled and data are originally collected for other reasons, are particularly susceptible to this form of bias. In such instances, participant selection for the primary study should be based on clear inclusion criteria and the number of participants who meet the inclusion criteria but are not analysed due to missing data must be clearly reported. We note that in these routine datasets, the extent of potential bias may also be unclear due to unreported data relating to inclusion criteria.
Omitting enrolled participants from analysis can lead to biased predictor-outcome associations and biased predictive performance of the model relative to the full study sample, if the remaining, analysed individuals are not longer a completely random  but rather a selective subsample of the original study sample. (117-127) The relationship between predictors and outcomes is then different for the analysed versus the excluded participants. For example, excluding participants from the study sample in whomwhere predictor values (e.g. imaging or lab test results) were unclear likely yields a study sample with participants in the extremes of the predictor range. This in turn may result in biased (too large)overestimated model discrimination estimates.(123) When only a low percentage of enrolled participants are not included in the analysis, there may only be a low risk of bias. However, a minimal or acceptable percentage is hard to define as it depends on which participants were excludedremoved. The risk of bias increases with an increasing percentage of participants excluded. 
Prediction model studies based on routine care databases or registries, where participants are not formally enrolled in some study and data are originally collected for other reasons, are particularly susceptible to this form of bias. When such data sources are used for model development or validation, participant selection should be based on clear inclusion criteria. We note that in such routine care datasets, the extent of potential bias may sometimes be unclear due to unreported information relating to specific inclusion criteria and reasons for exclusion of included participants.
	Example:
In Han et al., all 300 participants met the inclusion criteria for validation of three versions of the IMPACT models for TBI referred to as core, extended and laboratory IMPACT models.(98) Thirty-six participants (12%) were excluded from validation of the laboratory version of the IMPACT model due to missing data on blood glucose level, however all participants could be included for both the core and extended IMPACT models. For assessment of the core and extended CT models, the signalling question would be answered as Y as all participants are included in the analysis. For the assessment of the laboratory model, the signalling question would be answered as either PN or PY, depending on the concern from exclusion of 36 (12%) of participants from the analysis. This would depend on clinical knowledge and judgement of whether the missing glucose measurements are likely to be associated with the severity of patient TBI.


4.4	Were participants with missing data handled appropriately?
As noted in the previous item, simply excluding enrolled study participants with any missing data from the analysis leads to biased predictor-outcome associations and biased predictive model performance of the model when the analysed individuals are no longert a completely random sample from the original full study sample but rather a selective subsample of the original study sample.(124-134) When there is no mention of missing data in a study report, it is likely that participants with any missing data have simply been omitted from any analyses (so-called available case or complete-case analysis) as statistical packages automatically exclude individuals with any missing value on any of the data analysed unless prompted to handle otherwise. Reviews showed that aAvailable or complete case analysis is therefore by far the most common way to handle missing data in prediction model studies.(34, 135-143)
The most appropriate method for handling missing data is multiple imputation as it leads to the least biased results with correct standard errors and p-values.(124-130, 132-134) In prediction model studies multiple imputation is superior in terms of bias and precision to other  methods, both in model development(130, 133, 144) and  validation studies(133, 145-147). In contrast to uninterpretable or outlier data, the use of a separate category to capture missing data is not an appropriate method for handling participants with missing data. The use of this missing indicator method leads to biased results in prediction model studies and this signalling question should then be rated as N.(129, 134) 
The risk of bias due to missing data increases with increasing percentages of missing data but a minimal acceptable percentage which can be used as a threshold for a low risk of bias is , similar to signalling question 4.3, hard to define.(130) To judge a possible risk of bias, it is useful when authors provide the following: the distributions (percentage, mean or medians) of the predictors and outcomes between both groups (excluded versus analysed participants); or a comparison of the predictor-outcome associations and the model predictive performance with and without inclusion of the participants with missing values. If results are similar with and without participants with missing values, there is a strong indication that the excluded participants were indeed a completely random sample of the original study sample and results of the analysis are less likely to be biased. If such comparison is not presented and investigators have not used an imputation method (see below), we recommend to score rate this signalling question as PN or N, certainly if a relevant proportion of participants are excluded due to missing data.
(122, 127)The most appropriate method for handling missing data is multiple imputation as it leads to the least biased results with correct standard errors and p-values.(117-123, 125) It has been shown that in prediction model studies multiple imputation is superior in terms of bias and precision to missing data methods, both in model development(123, 126, 137) and in model validation studies(126, 138-140).(122, 127)
Sometimes, when a model is validated in other data and a predictor of the model is systematically missing (e.g. not measured), authors validate the model by simply omitting the predictor from the model and validate the original model (i.e. the original predictor weights or regression coefficients) without that predictor. This leads to a high risk of bias and such studies should be rated as N for this question. If the model had originally been fit without the omitted predictor, all the remaining predictor coefficients would be different.
	Example:
Perel et al. developed a prognostic model from a data set with ‘very low amount of missing data and therefore they did a complete case analysis’.(63) The authors showed in the same paper an external validation of this developed model where they applied multiple imputation. It was neither clear from the development study how low the number of participants with missing data was nor was any comparison given between the completely observed and excluded set of participants, making it hard to judge whether there was some risk of bias in the model development. In the validation study the authors used multiple imputation indicating that they know the procedure; if it was needed to multiply impute missing data in the development sample, they likely would have used multiple imputation as well. Accordingly, this signalling question should strictly be answered as NI for the development and Y for the validation part of the paper, although PY for the development part would also be possible.
In Aslibekyan et al., the authors state that for their model development complete case analysis, with 10% of participants being excluded, was used. No information was provided to confirm that complete case analysis was a valid approach, i.e. that the included and excluded participants were similar, or that the included participants approximated to a completely random subset of the original study sample.(64) Accordingly this signalling question should be scored rated N for the development part. For the model validation, there was no mention of missing data or handling of missing data. Accordingly, the answer for this signalling question for the model validation should strictly be NI, but perhaps even PN as all clinical studies tend to have some missing data.


4.5	Was selection of predictors based on univariable analysis avoided? (Model development studies only)
Many Often many pieces of informationfeatures measured onare available in a dataset study participants that could be used are commonly used as  candidate predictorsin development of a prediction model, and in many studies researchers want to reduce the number of predictors during model development to produce a simpler model.
In a univariable analysis, individual predictors are tested for their association with the outcome. Often researchers select the predictors with a statistically significant univariable association (e.g. at p-value < 0.05) for inclusion in the development of a final prediction model. This method can lead to incorrect predictor selection for developing the model as predictors are selected based on their statistical significance as a single predictor rather than in their context with other predictors.(27, 101, 148) Bias occurs when univariable modelling results in omission of variables from the model because some predictors are only important after adjustment for other predictors, known from previous research to be important, did not reach statistical significance in the particular development set, for example due to small sample size. Also, predictors may be selected in univariable selection based on spurious (accidental) association with the outcome in the development set.
AA better approach is to use non-statistical methods to decide on omitting, combining or including the candidate predictors in the multivariable modelling is to use non-statistical methods in a multivariable modelling approach, i.e. without any statistical univariable pre-testing of the associations of the predictors with the outcome. Better methods include those based on . The decision which to include as candidate predictors for model development should take into account predictors already established based on eexisting knowledge of yet established predictors and literature in combination with the reliability, consistency, applicability, availability and costs of predictor measurement relevant to the targeted setting and country. It is recommended that predictors with clinical credibility and those already well established in the literature are included and retained in a prediction model regardless of any statistical significance at any stage of modelling.(27, 101, 149) Alternatively, some statistical methods, that are not based on prior statistical tests between the predictor and the outcome, can be used to reduce the number of modelled predictors, for example principal components analysis (PCA).
During modelling, predictor selection strategies may be used to omit predictors (e.g. backwards selection procedures) and to fit a smaller, simpler final model.(27, 101, 149) However, the effects of using such multivariable predictor selection strategies on the potential overfitting of the prediction model to the development data at hand should be tested using internal validation and optimism-adjustment strategies which are discussed in signalling question 4.8.
When the model development correctly avoids univariable selection or there is no evidence of univariable selection for predictions prior to the multivariable modelling, studies should be rated as Y or PY. When predictors are selected based on univariable analysis prior to multivariable modelling, the signalling question for these studies should be answered as N.
	Example:
In Perel et al., before developing the model, potential users of the model were consulted to identify candidate predictors and interactions based on known importance and convenience to the clinical settings of pre-hospital, battlefield and emergency departments.(63) The researchers then included all so defined candidate predictors in the multivariable analysis. Decisions on which predictors were eventually retained in the final prediction model were based on clinical reasoning, availability of predictor measurement at the time the model would be used, and practicalities of collecting predictors using equipment in the clinical settings. Although there is a possibility that other predictors could have been considered important, the choice of predictors was not based on potentially biased univariable selection of predictors. The study would therefore be answered as Y for this signalling question.
In Rietveld et al., predictor selection based on univariable analysis (p value of ≤ 0.10) was used to select predictors for the multivariable model.(78) This study would be therefore answered as N for this signalling question. If all predictors had been entered into multivariable analysis without the prior univariable selection, an answer of Y would have been given.


4.6	Were complexities in the data (e.g. censoring, competing risks, sampling of controls) accounted for appropriately?
The development and validation of prediction models must ensure that the statistical methods used and their underlying assumptions are appropriate for the study design and type of outcome data data analysed. Here, we draw attention to some key considerations related to complexities in the data that can lead to risk of bias of the estimated predictive performance of the model if not appropriately accounted for in the analyses. 
The analysis method, such as choice of statistical model, must be suitable to the study design and to the type of outcome data. As discussed under signalling question 1.1, if a case-cohort or a nested case-control design was used for a prediction model then the analysis method must account for the sampling fractions (from the original cohort) to allow for proper estimation of the absolute outcome probabilities.(50, 52, 58, 62) For example, in a diagnostic prediction model (development or validation) study that used a nested case-control design where a fraction of all the controls were sampled from the original cohort, a logistic regression in which the controls are weighted by the inverse of their sampling fraction needs to be applied instead of a standard logistic regression, otherwise the predicted risks by the model will be biased. These issues apply to both development and validation models. When Hence, such appropriate adjustments for sampling fractions in the analysis of prediction model studies that used a nested case-control or case-cohort designare made, they , alleviate the risk of bias concerns due to the issue raised in signalling question 1.1.. If not done, Studies that develop a prediction model using such sampling designs and do not adjust for the sampling fraction in the analysis,one  should score be given an N only once to either signalling question 1.1 or this signalling question. 
For prognostic models to predict long term outcomes in which censoring occurs, it is important that a time-to-event analysis such as a Cox regression is used to include censored individuals up to the end of their participant follow-up. It is inappropriate to use logistic regression models that simply exclude censored participants with incomplete follow-up and no outcome.. Using a flawed logistic regression approach leads to a selected dataset with fewer individuals without the outcome which biases predicted risks as individuals with outcome are overrepresented. TCorrect time-to-event analysis correctly deals with includes these censored individuals using an unbiased method..
SWimilarly, when there are prominent competing risks these should also be accounted for in the time-to-event analysis when developing a prognostic model. An example of competing risks would be in a model for occurrence of a second hip replacement where death in elderly patients with a first hip replacement may occur before the second hip replacement. If competing risk is not correctly accounted for then absolute risk predictions will be overestimated and biased as patients with the competing event are simply censored.(150)
Also, correct modelling methods are needed where multiple events per individual can occur, such as in a model of epilepsy seizure, where some individuals experience more than two seizures. Multi-level or random effects (logistic or survival) modelling methods would be needed to avoid underestimation and bias in predictor effects.(151-154)
The above topics are examples of complexities that can be present in datasets. Statistical expertise will be required to identify these and potentially other issues in specific studies. The issues we have highlighted here will typically be the most important to be aware of in prediction modelling studies. If it is deemed that key statistical complexities are being ignored in a study, then the model development or validation exercisethere may be a strong indication of a high risk of bias in this domain on this signalling question..
	Example:
In Aslibekyan et al., a conditional logistic regression model was used to develop a prognostic prediction model for MI.(64) Included participants provided data between 1994 and 2004, however, it is unclear whether all individuals had predictor values recorded at the start of the period, or whether they could enter post-1994 and thus have a shorter follow-up. If all individuals entered with predictor values at 1994, then the model would predict risk of MI by 10 years (i.e. by 2004) and be interpretable. However, if some individuals entered after 1994, then the interpretation and bias of the logistic model is a concern because predictions are not specific to a particular time-period and the length of follow-up is being ignored. If participants had different times of follow up, it would be better for a survival analysis model to be fitted to allow risk predictions over time and delayed entry of participants. Further, it is not clear how prevalent the competing risk of death due to other non-MI conditions was, even though the included population went up to an age of 86 years. Such issues may be a consequence of the case-control (rather than cohort) nature of the study. Thus, risk of bias was not avoided (PN) due to these statistical complexities.
In Rietveld et al., the development of a diagnostic model using standard logistic regression was relatively straightforward as the developed model aimed to predict risk of having a bacterial conjunctivitis using a full cohort approach (without sampling) and therefore did not involve follow-up, censoring or competing events.(78) In this case, the signalling question should be answered as Y.


4.7	Were relevant model performance measures evaluated appropriately?
Box 4 provides an overview of the various performance measures of a multivariable prediction model. As stated, PROBAST is designed to assess studies on multivariable models that are developed or validated to make predictions in individuals, i.e. individualised predictions (Box 1). Accordingly, to fully gauge the predictive performance of a model, both model calibration and discrimination (such as the c-index) both addressing the entire range of the model predicted probabilities, need to be assessed.(7, 8) If calibration and discrimination are not assessed, the study is at risk of bias as the ability or performance of the model to provide accurate individual probabilities is not completely known (Box 4).
When calibration plots or tables are observed with smalller numbers of groups (e.g. possibly due to a small sample size with too few events), judgment of the plot is required to rate this signalling question properly. In the absence of a calibration plot or table comparing predicted versus observed outcome probabilities, studies reporting only a statistical test of calibration should be rated N for this signalling question.
Additionally, tThe methods used to assess model calibration and discrimination should also be appropriate for the outcome the model is predicting.  In particular, aApproaches used to assess calibration and discrimination for models predicting a binary outcome developed using logistic regression will not be suitable for models predicting survival outcome (e.g. such as 5-year mortality) using Cox regression as censoring needs to be accounted for. F. Failure to account for censoring when assessing prognostic model calibration and discrimination – either in a development or validation study meanswill distort estimation, leading to misleading results (see also signalling question 4.6 and Box 4). Therefore, the potential for risk of bias based on failure to account for censoring applies only in those studies evaluating the performance of prognostic models predicting survival outcomes. If such a study has not accounted for censoring, the study should be answered as N or PN for this signalling question.
Some studies additionally provide classification measures such as sensitivity, specificity, and predictive values or reclassification measures, such as the net reclassification index (NRI), to indicate a model predictive performance, sometimes without providing the model calibration and c-index (Box 4). Classification measures are most commonly provided in diagnostic model studies. Estimation of classification, as well as reclassification, parameters requires the introduction of one (or more) thresholds in the range of the model predicted probabilities. Using thresholds allows the reporting of model predictive performance at potentially clinically relevant probability thresholds, as opposed to entire range of the model predicted probabilitiesacross all potential thresholds. Nevertheless, the use of probability thresholds typically leads to loss of information, since the entire range of predicted probabilities of the model is not fully utilised, and choice of thresholds can be data driven rather than pre-specified based on clinical grounds (see also signalling question 4.2). This practice can cause substantial bias in the estimated (re)classification measures, certainly when thresholds are chosen to maximise apparent performance.(155, 156) When the choice of threshold is not pre-specified, these methods are subject to risk of bias and this signalling question should be answered N. Also, when classification and reclassification measures are reported without model calibration, this signalling question should be answered as N. Before categorising model predicted probabilities, calibration is needed to understand whether the predicted probabilities are correct (Box 4).
	Example:
In the study by Rietveld et al., the authors assessed the calibration by calculating the Hosmer-Lemeshow test, which resulted in a p-value of 0.117; this was interpreted that the model was well calibrated.(78) If this was the only measure to assess calibration of the model this signalling question would be rated as N as such p-value does neither indicate whether there was any miscalibration nor the magnitude of any miscalibration. However, in Table 4 the authors present the mean predicted probabilities with confidence intervals across subgroups and the corresponding observed outcome frequencies. This calibration table gives an indication of the model calibration, such that the answer to the signalling question for this study would be PY.
In the validation of their model for predicting early death in patients with traumatic bleeding, Perel and colleagues evaluated calibration by presenting calibration plot of observed risks against predicted risks grouping by tenth of predicted risk.(63) Presenting calibration in this format allows the reader to judge the accuracy of the model over the entire probability range. The plot could be enhanced by overlaying the figure with a non-parametric (lowess) smoother. The authors also reported a c-index, enabling readers to judge the discrimination ability of the model although there was no 95% confidence interval to indicate the uncertainty of the estimate. This study would be at low risk of bias and answered as Y for this signalling question.


4.8	Was model overfitting and optimism in model performance accounted for? (Model development studies only)
As discussed under signalling questions 4.1, 4.2 and 4.5, quantifying the predictive performance of a model on the same data from which the model was developed (termed aapparent performance) tends to give optimistic estimates of performance . This optimism is due to overfitting, i.e. meaning that tthe model is too much tuned adapted to the development data set. This optimism is higher when any of the following are present: total number of outcome events is small; too few outcome events relative to the number of candidate predictors is present (small EPV); dichotomisation of continuous predictors; predictor selection strategies based on univariable analyses are used; or traditional stepwise predictor selection strategies (e.g. forwards or backwards selection) in multivariable analysis in small data sets (small EPV) are used.(27, 101)
Therefore, studies developing prediction models should always include some form of internal validation, such as bootstrapping and cross-validation. Internal validation is important to quantify overfitting of the developed model and optimism in its predictive performance, except when sample size and notably EPV are extremely large, for example when using CPRD to develop prediction models.(7, 8). I Internal validation means that only the data of the original sample are used, i.e. validation is based on the same participant data. If there is optimism then an important further step is to adjust or shrink the model predictive performance estimates (such as c-index) as well as the predictor effects in the final model. Unfortunately, this is rarely done. The use of regression coefficients which have not been shrunk or adjusted for optimism will lead to biased (commonly too extreme) predictions when the unshrunk model is used in other individuals. For example, a uniform (linear) shrinkage factor, as can be obtained from a bootstrap procedure, might be applied to all estimated predictor effects. Penalised regression approaches are also becoming popular, such as ridge regression and Lasso regression, which allow each predictor effect to be shrunk differently and even allow exclusion of some predictors entirely.(157) Some authors suggest there is not much difference across different shrinkage methods,(158, 159) but others argue in favour of penalised approaches.(27, 157)
When developing a prediction model, the need to adjust for model overfitting and optimism is thus greater for studies with a small sample size, low EPV and studies using stepwise predictor selection strategies. When internal validation and shrinkage techniques have been used, this signalling question should be classed as Y.  as the developed model is subsequently at low risk of bias for overfitting. In other words, aAppropriate adjustments for overfitting may actually alleviate the risk of bias concerns due to the issues of low EPV (signalling question 4.1), dichotomisation of continuous predictors (signalling question 4.2), and predictor selection procedures (signalling question 4.5). Studies that develop a prediction model but do not examine or ignore misoverfitted models ing (or underfitting) should be rated N for in regard to this signalling question, certainly in presence of small samples, low EPV, categorisation of continuous predictors and when predictor selection strategies have been used. An exception would be extremely large development studies with high EPV where overfitting is of limitedis less of a concern.
SNote also that some studies may examine or adjust for optimism but use an inappropriate method. Two common concerns are as follows. Firstly, Rresearchers often randomly split a dataset at the participant level in two (one for model development and one for internal validation) which has been shown to be an inadequate way to measure optimism.(109, 160) Secondly, researchers often apply bootstrapping and cross-validation techniques to examine optimism but fail to replicate the exact same model development procedure (e.g. predictor selection procedures, both in univariable analysis and multivariable analysis) and thus may underestimate the actual optimism for their model.(161, 162) Such inappropriate methods would lead to an N for this signalling question.
	Example:
Perel et al. examine the impact of overfitting in their model development by using bootstrapping.(63) The authors state: “We drew 200 samples with replacement from the original data, with the same size as the original derivation data. In each bootstrap sample, we repeated the entire modelling process, including variable selection. We averaged the c-statistics of those 200 models in the bootstrap samples. We then estimated the average c-statistic when each of the 200 models was applied in the original sample. The difference between the two average c-statistics indicated the “optimism” of the c statistic in our prognostic model.” However, although the optimism in the c-statistic was examined, there was no consideration of the optimism in absolute risk predictions, and thus no shrinkage factor was applied to the predictor coefficients. Nevertheless, the reported optimism in the c-statistic was very small (0.001), i.e. the signalling question should be answered as PY or Y.
In contrast, Rietveld et al. should be answered as PN or N as statistical methods to address overfitting were not used.(78) The authors used a predictor selection procedure based first on univariable p-values and then on multivariable p-values, and additionally considered interactions between included predictors; thus, there is large potential for overfitting. However, no examination of overfitting was made, and no attempt to shrink due to optimism was reported. The authors do report using bootstrapping. However, this appears to be used as a check on the impact of outliers and estimating confidence intervals, rather than to examine overfitting and optimism in discrimination and calibration performance.


4.9	Do predictors and their assigned weights in the final model correspond to the results from the reported multivariable analysis? (Model development studies only)
The aim of a prediction model development study is to report a multivariable model given the available predictors, the final model. PPredictors and coefficients of the final developed model, including intercept or baseline components, should be fully reported to allow others to correctly apply it to other individuals. A mismatch between the presented final model and the reported results from the multivariable analysis (e.g. the intercept and predictor coefficients) is frequent. A review of prediction models in cancer in 2010 identified only 13 out of 38 (34%) of final prediction model equations used the same predictors and coefficients of the final presented multivariable analysesmodel, 8 used the same predictors but with different coefficients, 11 used neither the same coefficients nor predictors, and in 6 the method to derive the final prediction model from the presented results of the multivariable analysis was unclear.(76)
Bias can arise when there is a mismatch between the presented final model and the results reported from the multivariable analysis. One way in which this can occur is the problem of dropping non-significant predictors from a larger model to arrive at a final presented model but using the predictor coefficients from the larger model which are no longer correct. WThe correct approach when dropping predictors from a larger model it is important is to perform a new regression analysis limited to predictors in the small model, i.e. to re-estimate all predictor coefficients of in the smaller model as this has become the final model. These newly estimated predictor cCoefficients from predictors in the smaller model are likely different to change even if non-significant or non-relevant predictors from the larger model are dropped. 
Note that this signalling question is not about detecting improper methods of selecting predictors for the final model; methods of selecting predictors is addressed in signalling question 4.5.
When the study reports the final model (either as an equation or as output from a multivariable regression model) where both the predictors and the regression coefficients correspond to the reported results of the multivariable regression modelanalysis of this identical final model, then this should be answered as Y. If the final model presented is only based on a selection of some predictors from the reported multivariable regression model analysis of a larger model without refitting the smaller modelregression coefficients, then this should be answered as N or PN. When there is no information on the multivariable modelmodelling where that the predictors and regression coefficients are derived from, then this should be answered as NI.
This signalling question is not about detecting improper methods of selecting predictors during the modelling development which is addressed in signalling question 4.5.

	Example:
Perel et al. report the final model with odds ratios for each predictor and interaction term, and the model formula with predictor coefficients. The full model would be rated as PY or Y as all predictors from the final multivariable analysis are included with coefficients derived from the multivariable analysis. Perel et al. also include a simplified model that was separately developed and validated, with the coefficient terms refitted in the simplified model. If instead the simplified model had not been refitted to correct coefficients for this simplified model with fewer predictors, the paper would have been answered as N for this signalling question.
In Rietveld et al., all predictors in the final model were included in the simplified clinical score but this simplified clinical score used whole number scores, presumably to facilitate its usability. However, these rounded number scores no longer weighted the predictors based on the final model, as seen for the predictor “two glued eyes” where the coefficient of 2.707 was rounded to 5 (multiplied by 1.84), whereas -0.61 was rounded to -1 (multiplied by 1.64). The signalling question would be answered N as the assigned weights of the predictors do not correspond to the results in the final multivariable analysis.


Rating the risk of bias for domain 4
Table 9 10 shows presents an overview of how the signalling questions should be answered and an overall judgement for domain 4 should be reached.
Tailoring PROBAST with additional signalling questions
We encourage researchers to use PROBAST also for appraising prediction models using other outcome types than binary or time-to-event outcome (e.g. ordinal, nominal or continuous) and using alternative analysis methods to regression-based techniques (e.g. tree based techniques, machine and artificial learning techniques). Reviewers may tailor PROBAST by adding additional signalling questions to address bias  related to these other types of outcomes or modelling techniques. For example, when addressing models for prediction of continuous outcomes, the signalling question that addresses the number of events per studied predictor (Domain 4) may be tailored to address the total number of study participants per studied predictor.(27) 
Also, when investigating studies on the added predictive value of a specific predictor to an existing model, a signalling question can be added that focuses on the methods used for quantifying added value, for example net reclassification index (NRI) or decision curve analysis.(163, 164) Similarly, when investigating studies that focus on recalibration or updating an existing model to another setting, a question on the method of recalibration or updating could be added, for example recalibrating the baseline risk or hazard, updating the original regression coefficients, or refitting the entire model. 
When studies based on machine or artificial learning techniques are used, most if not all of the signalling questions will still apply. Additional questions may need to be added, as these techniques use  different predictor selection strategies, predictor-outcome  estimations and methods to adjust for overfitting. Future extensions to (notably domain 4 of) PROBAST will  need to be developed for these types of prediction model studies. 
Whenever reviewers decide to tailor or add signalling questions, these need to be phrased such that the answer “yes” indicates a low risk of bias, to facilitate coherence with current signalling questions. Specific guidance on how to assess each added signalling question specific for a review should also be produced. 
We do not recommend removing signalling questions from the tool unless they are clearly not relevant to a review question. If all studies would rate “yes” or “no” for a particular question, then it is still helpful to leave it in the tool. This shows whether a particular source of bias or concern for applicability is a potential problem for that review.

Step 4 – Overall judgement
Table 10 11 shows how an overall judgement on the risk of bias and applicability of a prediction model evaluation can be made. If a prediction model evaluation is judged as “low” on all domains relating to bias or applicability, then it is appropriate to haveit is appropriate to have an overall judgment of “low risk of bias” or “low concern for applicability”. If an evaluation is judged “high” for at least one domain, then it should be judged “at “high risk of bias” or as having having “high concerns for applicability.” If the prediction model evaluation is “unclear” in one1 or more domains and was rated as “low” in the remaining domains, then it may be judged at “at unclear risk of bias” or as having having “unclear concerns for applicability”.”
This includes examples when this domain can still be considered “low risk of bias”, even when one or more signalling questions are answered as N or PN.
PWe emphasise that PROBAST should not be used to generate a summary “quality score” for a study because of the well-known problems associated with such scores.(165, 166) Rather than striving for a summary score, the impact of problems within each domain should be judged and discussed.
[bookmark: _Toc401065143]Presentation and use of PROBAST assessment into the review
Presentation of the risk of bias and applicability assessment is an important aspect of communicating the strength of evidence in a review. All reviews should include a narrative summary of risk of bias and applicability concerns, linked to how this affects interpretation of findings and strength of inferences. In addition, a table showing the results of the assessments of risk of bias and applicability concerns of all included assessments should be presented. Table 11 12 presents a tabular presentation of the results of the PROBAST assessment. This table is an example to facilitates identification of key issues across all included studiesmodels or models. A quick way to summarise across all studies is using a graphical summary presenting the percentage of studies rated by level of concern risk of bias and applicability for each domain (see Figure 1). This is in line with item 22 of the PRISMA statement of how to report systematic reviews and meta-analyses of studies that evaluate health care interventions (PRISMA).(167, 168) In many reviews, these RoB assessments will motivate recommendations for improving future studies. However, Iit should be noted that these summaries are not sufficient on their own, i.e. without an accompanying discussion of what any observed patterns mean for the evidence base in relation to the review question.
Further incorporation of risk of bias and concerns for applicability may be specified in the review planning stage or in the systematic review protocol. Findings can be included in the analysis by planning sensitivity analyses limited to studies with low concerns for risk of bias or applicability either overall or for particular domains, or investigation of heterogeneity between studies using subgroups based on ratings of concern.(18)
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PROBAST is the first rigorously developed tool designed specifically to assess the risk of bias and concerns for applicability of primary studies on development, validation or updating (e.g. extension) of prediction models to be used for individualised predictions. PROBAST covers both diagnostic and prognostic models, regardless of the medical domain, type of outcome, predictors or statistical technique used.
PROBAST is the first rigorously developed tool designed specifically to assess the risk of bias and concerns for applicability of primary studies on development, validation or updating (e.g. extension) of prediction models to be used for individualised predictions. PROBAST covers both diagnostic and prognostic models, regardless of the medical domain, type of outcome, predictors or statistical technique used.
We adopted a domain-based structure similar to that used in other recently developed risk of bias assessment tools such as QUADAS-2 for diagnostic accuracy studies,(28) ROBINS-I for non-randomised intervention studies,(47) ROBIS for systematic reviews,(27) and the revised Cochrane risk of bias tool for randomised intervention studies(26). All stages of PROBAST development have included a wide range of stakeholders with piloting of early versions of the tool allowing feedback to be incorporated into the final tool.[REF Paper 1] We feel that these two features have resulted in a tool that is both methodologically sound and user-friendly.
We stress that the use of PROBAST requires expertise and knowledge of prediction model researchers as well as clinicians. Guidance on methods for prediction model research is still at an early stage,(7, 8) compared to guidance on methods and interpretation of, for example, primary randomised intervention studies and diagnostic test accuracy studies. Accordingly, tThis E&E paper provides explicit guidance on how to use PROBAST (REF M18-1376), including how to interpret each signalling question,  and how to grade the risk of bias per domain and overall,  per study. We also consider and how to present and incorporate PROBAST assessments in a systematic review, all accompanied with generic guidance on diagnostic and prognostic prediction model research. . For each signalling question, we have provided the rationale and included illustrative examples of the use and interpretation.Six worked-out examples of PROBAST assessments, covering development studies, validation studies, a combination of both and addressing both diagnostic and prognostic models can be found at our website www.probast.org. 
The use of PROBAST requires expertise and knowledge of prediction model researchers as well as clinicians. Guidance on methods for prediction model research is still at an early stage(7, 8) compared to guidance on methods and interpretation of primary randomised intervention studies and diagnostic test accuracy studies. We recognise that currently necessary information for assessment of bias and applicability is often not reported, and hope that adherence of both journals and authors to the TRIPOD reporting guideline (7, 8) will reduce this problem. 

Six worked-out examples of PROBAST assessments, covering development studies, validation studies, a combination of both and addressing both diagnostic and prognostic models can be found at our website www.probast.org. Also, before using PROBAST we advice to go to the website to ensure use of the latest version, where any remaining errors or additions to the tool occurring after this publication are immediately added.’ 
Furthermore, we have included several boxes to provide additional discussion on key issues in systematic reviews of prediction model studies and provided general references on methodological aspects. We hope users of PROBAST will, besides reading this paper, read such generic guidance papers on prediction model studies to become more familiar with prediction research. To ensure the use of the latest version download from the website www.probast.org.

We encourage researchers to use PROBAST also for appraising prediction models using other outcome types than binary or time-to-event outcome (e.g. ordinal, nominal or continuous) and using alternative analysis methods to regression-based techniques (e.g.  machine learning techniques). In some situations, reviewers may tailor signalling questions to explicitly address review specific biases or by adding additional signalling questions. For example, when addressing models for prediction of continuous outcomes, the signalling question that addresses the number of events per studied predictor (Domain 4) may be tailored to address the total number of study participants per studied predictor.(94) Also, when investigating studies on the added predictive value of a specific predictor to an existing model, a signalling question can be added that focuses on the methods used for quantifying added value, for example net reclassification index (NRI) or decision curve analysis.(156, 157) Similarly, when investigating studies that focus on recalibration or updating an existing model to another setting, a question on the method of recalibration or updating could be added, for example recalibrating the baseline risk or hazard, updating the original regression coefficients, or refitting the entire model. If reviewers decide to tailor or add signalling questions, these need to be phrased to answer “yes” to indicate a low risk of bias, to facilitate coherence with other PROBAST signalling questions. We recommend limiting the number of additional signalling questions to avoid complicating the tool. Review specific guidance on how to assess each PROBAST signalling question specific for your review should also be produced. We do not recommend removing signalling questions from the tool unless they are clearly not relevant to a review question. If all studies would rate “yes” or “no” for a particular question, then it is still helpful to leave these in the tool. This shows that a particular source of bias or concern for applicability is or is not a potential problem for that review.
A full appraisal of prediction model studies is only possible when key information is completely and accurately reported.(162-166) In 2015, the TRIPOD reporting guideline was published.(7, 8) TRIPOD aims to ensure that key details of studies developing, validating or updating a prediction model
As with other risk of bias and reporting guidelines in medical research, PROBAST should be viewed as an evolving guidance that is likely to require updating, as methodology for prediction model studies continues to evolve. This detailed explanation and elaboration for PROBAST will enable a focussed and transparent approach to assessing the risk of bias and applicability of studies developing, validating or updating of prediction models for individualised predictions. We recommend downloading the latest version of PROBAST from the website (www.probast.org).

 are clearly reported to enable readers and reviewers to use PROBAST to critically appraise the risk of bias and applicability or usefulness of such studies.
As with other risk of bias and reporting guidelines in medical research, PROBAST should also be viewed as an evolving guidance that is likely to require updating, as methodology for prediction model studies continues to evolve. We would welcome feedback on any issues where more detailed explanation or additions to PROBAST are needed. Feedback on this or other issues related to PROBAST can be provided via our website (www.probast.org). Updated versions of the tool will be made available via the website and we recommend reviewers check the website for the current version of the tool. We encourage translations of PROBAST and making these available on the website.
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Appendix – The PROBAST tool
To ensure the use of the latest version download from the website www.probast.org.
[bookmark: _Toc339291769]PROBAST
(Prediction model study Risk Of Bias Assessment Tool)
	What does PROBAST assess?
PROBAST assesses both the risk of bias and concerns for applicability of a study that evaluates (develops, validates or adjusts) a multivariable diagnostic or prognostic prediction model. It is designed to assess primary studies included in a systematic review.

[bookmark: _Hlk503430040]Bias occurs if systematic flaws or limitations in the design, conduct or analysis of a primary study distort the results. For the purpose of prediction modelling studies, we define risk of bias to occur when shortcomings in the study design, conduct or analysis lead to systematically distorted estimates of model predictive performance or to an inadequate model to address the research question. Model predictive performance is typically evaluated using calibration and discrimination, and sometimes (notably in diagnostic model studies) classification measures, and these are likely inaccurately estimated in studies with high risk of bias. Applicability refers to the extent to which the prediction model from the primary study matches your systematic review question, for example in terms of the participants, predictors or outcome of interest.

A primary study may include the development, validation or adjustment of more than one prediction model. A PROBAST assessment should be completed for each distinct model that is developed, validated or adjusted in a study, so there may be more than one PROBAST assessment for a primary study. Assessors are advised to focus only on the prediction models included in a study that are of interest for the systematic review question. Where a publication assesses multiple prediction models, only complete a PROBAST assessment for those models that meet the inclusion criteria for your systematic review. Please note that subsequent use of the term “model” includes derivatives of models, such as simplified risk scores, nomograms, or recalibrations of models.

PROBAST can be used to assess any type of diagnostic or prognostic prediction model examining individualised predictions, regardless of the predictors used, outcomes being predicted, or method to develop, validate or adjust the model.

PROBAST includes four steps.
	Step
	Task
	When to complete

	1
	Specify your systematic review question(s)
	Once per systematic review

	2
	Classify the type of prediction model evaluation
	Once for each model of interest in each publication being assessed, for each relevant outcome

	3
	Assess risk of bias and applicability (per domain)
	Once for each development and validation of each distinct prediction model in a publication

	4
	Overall judgment of risk of bias and applicability
	Once for each development and validation of each distinct prediction model in a publication



If this is your first time using PROBAST, we strongly recommend reading the detailed explanation and elaboration (E&E) paper and to check the examples on www.probast.org.




Step 1: Specify your systematic review question
	State your systematic review question to facilitate the assessment of the applicability of the evaluated models to your question. The following table should be completed once per systematic review.



	Criteria
	Specify your systematic review question

	Intended use of model: 
	

	Participants including selection criteria and setting:
	

	Predictors (used in modelling) including (1) types of predictors (e.g. history, clinical examination, biochemical markers, imaging tests), (2) time of measurement, (3) specific measurement issues (e.g. any requirements/ prohibitions for specialised equipment):
	

	Outcome to be predicted: 
	




Step 2: Classify the type of prediction model evaluation
	Use the following table to classify the evaluation as model development, model validation, or combination. Different signalling questions apply for different types of prediction model evaluation. 
When a publication focuses on adding one or more new predictors to established predictors then use “development only”. When a publication focuses on validation of an existing model in other data though followed by adjusting (updating) or extending of the model such that in fact a new model is being developed, then use “development and validation in the same publication”.
If the evaluation does not fit one of these classifications then PROBAST should not be used.



	Classify the evaluation based on its aim 

	Type of model evaluation
	Tick as appropriate
	PROBAST classification

	Prediction model development without testing its predictive performance in other individuals, i.e. no external validation. Model development should ideally include internal validation, such as bootstrapping or cross-validation.
	
	Development (Dev) only

	Prediction model development as well as testing of predictive performance in other individuals (external validation), both in the same publication.
	
	Development (Dev) and external validation (Val)

	Evaluating the predictive performance of a previously developed prediction model in other individuals (external validation).
	
	External validation (Val) only



	This table should be completed once for each publication being assessed and for each relevant outcome in your review.

	Publication reference
	

	Models of interest
	

	Outcome of interest
	




Step 3: Assess risk of bias and applicability
	PROBAST is structured as four key domains. Each domain is judged for risk of bias (low, high or unclear) and includes signalling questions to help make judgements. Signalling questions are rated as yes (Y), probably yes (PY), probably no (PN), no (N) or no information (NI). All signalling questions are phrased so that “yes” indicates absence of bias. Any signalling question rated as “no” or “probably no” flags the potential for bias; you will need to use your judgement to determine whether the domain should be rated as “high”, “low” or “unclear” risk of bias. The guidance document contains further instructions and examples on rating signalling questions and risk of bias for each domain.
The first three domains are also rated for concerns for applicability (low/ high/ unclear) to your review question defined above. 
Complete all domains separately for each evaluation of a distinct model. Shaded boxes indicate where signalling questions do not apply and should not be answered.




	DOMAIN 1: Participant selection 

	A. Risk of Bias

	Describe the sources of data and criteria for participant selection:



	
	Dev
	Val

	1.1 Were appropriate data sources used, e.g. cohort, RCT or nested case-control study data?
	
	

	1.2 Were all inclusions and exclusions of participants appropriate?
	
	

	Risk of bias introduced by selection of participants 

	RISK:
(low/ high/ unclear)
	
	

	Rationale of bias rating:

	


	B. Applicability

	Describe included participants, setting and dates: 




	Concern that the included participants and setting do not match the review question 
	CONCERN:
(low/ high/ unclear)
	
	

	Rationale of applicability rating:

	





	DOMAIN 2: Predictors 

	A. Risk of Bias

	List and describe predictors included in the final model, e.g. definition and timing of assessment:




	
	Dev
	Val

	2.1 Were predictors defined and assessed in a similar way for all participants?
	
	

	2.2 Were predictor assessments made without knowledge of outcome data? 
	
	

	2.3 Are all predictors available at the time the model is intended to be used?
	
	

	Risk of bias introduced by predictors or their assessment
	RISK:
(low/ high/ unclear)
	
	

	Rationale of bias rating:



	B. Applicability

	Concern that the definition, assessment or timing of predictors in the model do not match the review question 
	CONCERN:
(low/ high/ unclear)
	
	

	Rationale of applicability rating:






	DOMAIN 3: Outcome

	A. Risk of Bias

	Describe the outcome, how it was defined and determined, and the time interval between predictor assessment and outcome determination:





	
	Dev
	Val

	3.1 Was the outcome determined appropriately?
	
	

	3.2 Was a pre-specified or standard outcome definition used?
	
	

	3.3 Were predictors excluded from the outcome definition?
	
	

	3.4 Was the outcome defined and determined in a similar way for all participants?
	
	

	3.5 Was the outcome determined without knowledge of predictor information?
	
	

	3.6 Was the time interval between predictor assessment and outcome determination appropriate?
	
	

	
Risk of bias introduced by the outcome or its determination		
	RISK:
(low/ high/ unclear)
	
	

	Rationale of bias rating:



	B. Applicability

	At what time point was the outcome determined:


If a composite outcome was used, describe the relative frequency/distribution of each contributing outcome:



	Concern that the outcome, its definition, timing or determination do not match the review question
	CONCERN:
(low/ high/ unclear)
	
	

	Rationale of applicability rating:






	DOMAIN 4: Analysis

	Risk of Bias

	Describe numbers of participants, number of candidate predictors (for DEV only), outcome events and events per candidate predictor (for DEV only):



	Describe how the model was developed (predictor selection, optimism, risk groups, model performance):



	Describe whether and how the model was validated, either internally (e.g. bootstrapping, cross validation, random split sample) or externally (e.g. temporal validation, geographical validation, different setting, different type of participants):



	Describe the performance measures of the model, e.g. (re)calibration, discrimination, (re)classification, net benefit:



	Describe any participants who were excluded from the analysis:



	Describe missing data on predictors and outcomes as well as methods used for missing data:



	
	Dev
	Val

	4.1 Were there a reasonable number of participants with the outcome?
	
	

	4.2 Were continuous and categorical predictors handled appropriately?
	
	

	4.3 Were all enrolled participants included in the analysis?
	
	

	4.4 Were participants with missing data handled appropriately?
	
	

	4.5 Was selection of predictors based on univariable analysis avoided? 
	
	

	4.6 Were complexities in the data (e.g. censoring, competing risks, sampling of controls) accounted for appropriately?
	
	

	4.7 Were relevant model performance measures evaluated appropriately?
	
	

	4.8 Was model overfitting and optimism in model performance accounted for?
	
	

	4.9 Do predictors and their assigned weights in the final model correspond to the results from the reported multivariable analysis? 
	
	

	Risk of bias introduced by the analysis 
	RISK:
(low/ high/ unclear)
	
	

	Rationale of bias rating:






Step 4: Overall assessment
	Use the following tables to reach overall judgements about risk of bias and concerns for applicability of the prediction model evaluation (development and/or validation) across all assessed domains.
Complete for each evaluation of a distinct model.

	Reaching an overall judgement about risk of bias of the prediction model evaluation

	Low risk of bias 
	If all domains were rated low risk of bias.
If a prediction model was developed without any external validation, and it was rated as low risk of bias for all domains, consider downgrading to high risk of bias. Such a model can only be considered as low risk of bias, if the development was based on a very large data set and included some form of internal validation.

	High risk of bias 
	If at least one domain is judged to be at high risk of bias. 

	Unclear risk of bias
	If an unclear risk of bias was noted in at least one domain and it was low risk for all other domains. 



	Reaching an overall judgement about applicability of the prediction model evaluation

	Low concerns for applicability 
	If low concerns for applicability for all domains, the prediction model evaluation is judged to have low concerns for applicability.

	High concerns for applicability 
	If high concerns for applicability for at least one domain, the prediction model evaluation is judged to have high concerns for applicability.

	Unclear concerns for applicability 
	If unclear concerns (but no “high concern”) for applicability for at least one domain, the prediction model evaluation is judged to have unclear concerns for applicability overall.






	Overall judgement about risk of bias and applicability of the prediction model evaluation

	Overall judgement of risk of bias
	RISK:
(low/ high/ unclear)
	

	Summary of sources of potential bias:



	Overall judgement of applicability
	CONCERN:
(low/ high/ unclear)
	

	Summary of applicability concerns:
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Table 1. Guidance on conducting systematic reviews of prediction model studies
	Task
	Guidance

	Reporting of primary study
	Transparent reporting of prediction models for prognosis and diagnosis (TRIPOD)(7, 8)

	Defining review question and developing criteria for including studies* 
	Guidance for defining review question and design of the review of prognosis studies , see Table 4 (CHARMS)(17) (18)
Guidance for protocol for diagnostic test accuracy (DTA) reviews(169, 170)

	Searching for studies*
	Search filters for prediction studies(16)
https://sites.google.com/a/york.ac.uk/issg-search-filters-resource/filters-to-identify-studies-about-prognosis
Search for DTA studies(171)

	Selecting studies and extracting data* 
	Guidance and checklist for data extraction and critical appraisal of prognosis studies (CHARMS)(17). Guidance for DTA studies(170, 172)

	Assessing risk of bias and applicability in included studies* 
	Prediction model Risk Of Bias Assessment Tool (PROBAST)[REF Paper 1]

	Analysing data and undertaking meta-analyses* 
	Meta-analysis of prediction models(18, 173-176); Meta-analysis of diagnostic test accuracy studies(177-184)

	Interpreting results and drawing conclusions*
	PROBAST [paper 1]
Guidance for interpretation of results(18, 173-175)
Guidance for interpretation of diagnostic test accuracy studies(170)

	Reporting of systematic reviews
	Transparent reporting of systematic reviews and meta-analysis (PRISMA)(167, 168, 185)

	Assessing risk of bias of systematic reviews
	Risk of bias in systematic reviews (ROBIS)(23)

	* Step in line with the general methods for Cochrane Reviews(186)




Table 2. Four steps in PROBAST
	Step
	Task
	When to complete

	1
	Specify your systematic review question(s)
	Once per systematic review

	2
	Classify the type of prediction model evaluation
	Once for each model of interest in each publication being assessed, for each relevant outcome

	3
	Assess risk of bias and applicability (per domain)
	Once for each development and validation of each distinct prediction model in a publication

	4
	Overall judgment of risk of bias and applicability
	Once for each development and validation of each distinct prediction model in a publication




Table 2. Six key items to guide the framing of the review aim, search strategy, and study in and exclusion criteria, abbreviated as PICOTS, as modification of the traditional PICO system used in systematic reviews of therapeutic intervention studies, by additionally considering Timing (the time point of usin gthe prediction model and time period of the prediction) and medical setting(17, 18)
	Item
	Comments 

	1. Population
	Define the target population in which the prediction model(s) under review will be used.

	2. Index model(s) 
	Define the prediction model(s) under review. 

	3. Comparator
	If applicable, define whether other prediction models may be  reviewed.

	4. Outcome(s)
	Define the outcome(s) of interest for the model(s) under review.

	5. Timing
	Define at what moment or time-point (e.g. in the patient work-up) the prediction model(s) under review are to be used in the targeted population, and over what time period the outcome(s) are predicted (the latter in case of prognostic models). 

	6. Setting 
	Define the intended  setting of the prediction model(s) under review, as the predictive ability of prediction models often change across settings. 
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Table 3. Four steps in PROBAST
	Step
	Task
	When to complete

	1
	Specify your systematic review question(s)
	Once per systematic review

	2
	Classify the type of prediction model evaluation
	Once for each model of interest in each publication being assessed, for each relevant outcome

	3
	Assess risk of bias and applicability (per domain)
	Once for each development and validation of each distinct prediction model in a publication

	4
	Overall judgment of risk of bias and applicability
	Once for each development and validation of each distinct prediction model in a publication




Table 34. Example papers
	Author (Year)
	Topic area
	Type of prediction model
	Data source
	Study population
	Type of predictors
	Outcome
	Sample size (N outcome events)
	Performance

	
	
	Dev/Val
	Diag/Prog
	
	
	
	
	
	Discr.
	Cal.

	Aslibekyan 2011(64)
	 Myocardial infarction
	Dev+Val
	Prog
	Non-nested case-control study, population of central valley in Costa Rica (1994-2004)
	First non-fatal acute MI
	History taking, physical examination
	Fist non-fatal MI
	4547 (1984)
	Yes
	No

	Han 2014(98)
	Severe traumatic brain injury
	Val
	Prog
	Cohort study, 1 hospital in Singapore (02/2006-12/2009)
	Severe TBI (GCS≤8)
	History taking, physical examination, laboratory parameters, CT
	Mortality (14 day, 6 months), unfavourable events (6 months)
	300 (143/ 162/ 213)
	Yes
	Yes

	Oudega 2005(42)
	Deep vein thrombosis
	Val
	Diag
	Prospective cross-sectional study, 110 primary care practices in the Netherlands (Val: 01/2002 – 03/2003) 
	Symptomatic DVT
	History taking, physical examination
	DVT
	Val: 1295 (289)
	No
	No

	Perel 2012(63)
	Traumatic bleeding
	Dev+Val
	Prog
	Dev: Randomised controlled trial, 274 hospitals in 40 countries (no dates reported)
	Trauma or risk of significant bleeding
	History taking, type of injury, physiological examination
	Mortality
	Dev: 20127
	Yes
	Yes

	
	
	
	
	Val: Registry, 60% of trauma hospitals in England and Wales (2000-2008)
	Blood loss ≥20%
	
	
	Val: 14220
	Yes
	Yes

	Rietveld 2004(78)
	Infectious conjunctivitis
	Dev
	Diag
	Cohort study, 25 care centres in NL (09/1999-12/2002)
	Red eye + (muco‑) purulent discharge or glued eyelid
	History taking, physical examination
	Positive bacterial culture
	184 (57)
	Yes
	Yes

	Cal = Calibration; Dev = Development; Diag = Diagnostic; DVT = deep vein thrombosis; GCS = Glasgow Coma Scale; MI = Myocardial infarction; NL = The Netherlands; Prog = Prognostic; Ref = Refinement; TBI = Traumatic brain injury; Val = Validation




Table 4. Six key items to guide the framing of the review aim, search strategy, and study in and exclusion criteria, abbreviated as PICOTS, based on the CHARMS checklist(19, 20)
	Item
	Comments 

	1. Population
	Define the target population in which the prediction model(s) under review will be used.

	2. Index model(s) 
	Define the prediction model(s) under review. 

	3. Comparator
	If applicable, one can review more than one model for the target population and outcome under review.

	4. Outcome(s) to be predicted
	Define the outcome(s) of interest for the model(s) under review.

	5. Timing
	Define when the prediction model(s) under review is intended to be used and over what time period (notably for prognostic prediction models) the outcome(s) is predicted. 

	6. Setting 
	Define the intended role or setting of the prediction model(s) under review. 





	
	
	

	
	
	

	
	
	

	
	
	

	
	
	



Table 5. Example Step 1 applied to the Perel example study(63)
	Criteria
	Specify your systematic review question: 

	Intended use of model: 
	Prognosis; At presentation at hospital accident and emergency

	Participants including selection criteria and setting:
	Trauma patients presenting at accident and emergency.

	Predictors (used in modelling) including (1) types of predictors (e.g. history, clinical examination, biochemical markers, imaging tests), (2) time of measurement, (3) specific measurement issues (e.g. any requirements/ prohibitions for specialised equipment):
	Patients’ demographics; Physiological variables; Injury characteristics; Time from injury -- all measured at presentation to A&E. 
Imaging with results available within 4 hours of admission
Key predictors to include: type of injury

	Outcome to be predicted: 
	Death within 4 weeks of injury





Table 6. Example Step 2 applied to the Perel example study(63)
	Type of prediction model study
	Tick as appropriate
	PROBAST boxes to complete

	Prediction model development without external validation. These studies may include internal validation methods such as bootstrapping and cross-validation techniques
	
	Development (Dev) only

	Prediction model development combined with external validation in other participants in the same article
	
	Development (Dev) and validation (Val)

	External validation of existing (previously developed) model in other participants 
	
	Validation (Val) only




Table 67. Participant selection domain: guidance notes for rating risk of bias and applicability
	Domain 1: Participant selection

	Risk of bias assessment

	Background: 
The overall aim for prediction models is to generate absolute risk predictions that are correct in new individuals. Certain data sources or designs are not suited to generate absolute probabilities. Problems may also arise if a study inappropriately includes or excludes participant groups from entering the study.

	1.1 Were appropriate data sources used, e.g. cohort, RCT or nested case-control study data?
Yes/ Probably yes	If a cohort design (including RCT or proper registry data) or a nested case-control or 	case-cohort design (with proper adjustment of the baseline risk/hazard in the 	analysis) has been used.
No/ Probably no	If a non-nested case-control design has been used.
No information	If the method of participant sampling is unclear.

	1.2 Were all inclusions and exclusions of participants appropriate?
Yes/ Probably yes	If inclusion and exclusion of participants was appropriate, so participants 	correspond to unselected participants of interest.
No/ Probably no	If participants are included who would already have been identified as having the 	outcome by prior tests and so are no longer participants at suspicion of disease 	(diagnostic studies) or at risk of developing outcome (prognostic studies)
	or if specific subgroups are excluded that may have altered the performance of the 	model for the intended target population.
No information	When there is no information on whether inappropriate in- or exclusions took place. 

	Risk of bias introduced by participants or data sources:
Low risk of bias	If the answer to all signalling questions is “Yes” or “Probably Yes” then risk of bias 	can be considered low.
	If one or more of the answers is “No” or “Probably no”, the judgement could still 	be 	“Low risk of bias” but specific reasons should be provided why the risk of bias 	can be considered low.
High risk of bias	If the answer to any of the signalling questions is “No” or “Probably no” there is a 	potential for bias, except if defined at low risk of bias above.
Unclear risk of bias	If relevant information is missing for some of the signalling questions and none of 	the signalling questions is judged to put this domain at high risk of bias.

	Concerns for applicability

	Background: 
Included participants, the selection criteria used as well as the setting used in the primary study should be relevant to the review question.

	Concern that included participants or the setting do not match the review question:
Low concern 	Included participants and clinical setting match the review question.
for applicability
High concern	Included participants and clinical setting were different from the review question.
for applicability	
Unclear concern	If relevant information about the participants is not reported.
for applicability




Table 78. Predictors domain: guidance notes for rating risk of bias and applicability
	Domain 2: Predictors

	Risk of bias assessment

	Background: 
Bias in model performance can occur when the definition and measurement of predictors is flawed. Predictors are the variables evaluated for their association with the outcome of interest. Bias can occur, for example when predictors are not defined in a similar way for all participants or knowledge of the outcome influences predictor assessments.

	2.1 Were predictors defined and assessed in a similar way for all participants?
Yes/ Probably yes	If definitions of predictors and their assessment were similar for all participants.
No/ Probably no	If different definitions were used for the same predictor or if predictors requiring 	subjective interpretation were assessed by differently experienced assessors.
No information	If there is no information on how predictors were defined or assessed.

	2.2 Were predictor assessments made without knowledge of outcome data?
Yes/ Probably yes	If outcome information was stated as not used during predictor assessment or was 	clearly not available to those assessing predictors.
No/ Probably no	If it is clear that outcome information was used when assessing predictors.
No information	No information on whether predictors were assessed without knowledge of 	outcome information.

	2.3 Are all predictors available at the time the model is intended to be used?
Yes/ Probably yes	All included predictors would be available at the time the model would be used for 	prediction.
No/ Probably no	Predictors would not be available at the time the model would be used for 	prediction.
No information	No information on whether predictors would be available at the time the model is 	intended to be used.

	Risk of bias introduced by predictors or their assessment:
Low risk of bias	If the answer to all signalling questions is “Yes” or “Probably Yes” then risk of bias 	can be considered low.
	If one or more of the answers is “No” or “Probably no”, the judgement could still 	be 	“Low risk of bias” but specific reasons should be provided why the risk of bias 	can be considered low, e.g. use of objective predictors not requiring subjective 	interpretation.
High risk of bias	If the answer to any of the signalling questions is “No” or “Probably no” there is a 	potential for bias.
Unclear risk of bias	If relevant information is missing for some of the signalling questions and none of 	the signalling questions is judged to put the domain at high risk of bias.

	Concerns for applicability

	Background: 
The definition, assessment and timing of predictors in the primary study should be relevant to the review question, for example predictors should be measured using methods potentially applicable to the daily practice that is addressed by the review.

	Concern that the definition, assessment or timing of predictors in the model do not match the review question:
Low concern 	Definition, assessment and timing of predictors match the review question.
for applicability
High concern	Definition, assessment or timing of predictors was different from the review
for applicability	question.
Unclear concern	If relevant information about the predictors is not reported.
for applicability




Table 89. Outcome domain: guidance notes for rating risk of bias and applicability
	Domain 3: Outcome

	Risk of bias assessment

	Background: 
Bias in model performance can occur when methods used to determine outcomes incorrectly classify participants with or without the outcome. Bias in methods of outcome determination can result from use of suboptimal methods, tests or criteria that lead to unacceptably high levels of errors in outcome determination, when methods are inconsistently applied across participants, and when knowledge of predictors influence outcome determination. Incorrect timing of outcome determination can also result in bias. 

	3.1 Was the outcome determined appropriately?
Yes/ Probably yes	If a method of outcome determination has been used which is considered 	optimal or acceptable by guidelines or previous publications on the topic. 
	Note: This is about level of measurement error within the method of determining 	outcome (see concerns for applicability about whether the definition of the 	outcome method is appropriate).
No/ Probably no	If a clearly suboptimal method has been used that causes unacceptable error in determining outcome status in participants.
No information	No information on how outcome was determined.

	3.2 Was a pre-specified or standard outcome definition used?
Yes/ Probably yes	If the method of outcome determination is objective 	or if a standard outcome definition is used or if pre-specified categories are used to group outcomes.
No/ Probably no	If the outcome definition was not standard and not pre-specified.
No information	No information on whether the outcome definition was pre-specified or standard.

	3.3 Were predictors excluded from the outcome definition?
Yes/ Probably yes	If none of the predictors are included in the outcome definition.
No/ Probably no	If one or more of the predictors forms part of the outcome definition.
No information	No information on whether predictors are excluded from the outcome definition.

	3.4 Was the outcome defined and determined in a similar way for all participants?
Yes/ Probably yes	If outcomes were defined and determined in a similar way for all participants.
No/ Probably no	If outcomes were clearly defined and determined in a different way for some participants.
No information	No information on whether outcomes were defined or determined in a similar way. 	for all participants.

	3.5 Was the outcome determined without knowledge of predictor information?
Yes/ Probably yes	If predictor information was not known when determining the outcome status,
	or outcome status determination is clearly reported as determined without knowledge of 	predictor information.
No/ Probably no	If it is clear that predictor information was used when determining the 	outcome status.
No information	No information on whether outcome was determined without knowledge of 	predictor information.

	3.6 Was the time interval between predictor assessment and outcome determination appropriate?
Yes/ Probably yes	If the time interval between predictor assessment and outcome determination 	was appropriate to enable the correct type and representative number of relevant 	outcomes to be recorded, or if no information on the time interval is required to 	allow a representative number of the relevant outcome occur or if predictor 	assessment and outcome determination were from samples or information taken 	within an appropriate time interval.
No/ Probably no	If the time interval between predictor assessment and outcome determination is 	too short or too long to enable the correct type and representative number of relevant 	outcomes to be recorded.
No information	If no information was provided on the time interval between predictor 	assessment and outcome determination.

	Risk of bias introduced by predictors or their assessment:
Low risk of bias	If the answer to all signalling questions is “Yes” or “Probably yes” then risk of bias 	can be considered low.
	If one or more of the answers is “No” or “Probably no”, the judgement could still 	be 	low risk of bias, but specific reasons should be provided why the risk of bias 	can be considered low, e.g. when the outcome was determined with knowledge 	of predictor information but the outcome assessment did not require much 	interpretation by the assessor (e.g. death regardless of cause).
High risk of bias	If the answer to any of the signalling questions is “No” or “Probably no” there is a 	potential for bias.
Unclear risk of bias	If relevant information about the outcome is missing for some of the signalling 	questions and none of the signalling questions is judged to put this domain at 	high risk of bias.

	Concerns for applicability

	Background: 
The definition of outcome in the primary study should be relevant for the outcome definition in the review question. 

	Concern that the outcome definition, timing or determination do not match the review question:
Low concern 	Outcome definition, timing and method of determination defines the outcome
for applicability	as intended by the review question.
High concern	Choice of outcome definition, timing and method or determination defines another 	  for applicability	another outcome as intended by the review question.
Unclear concern	If relevant information about the outcome, timing and method of determination for applicability	is not reported.




Table 910. Analysis domain: guidance notes for rating risk of bias
	Domain 4: Analysis

	Risk of bias assessment

	Background: 
Statistical analysis is a critical part of prediction model development and validation. The use of inappropriate statistical analysis methods increases the potential for bias in reported model performance measures. Model development studies include many steps where flawed methods can distort results. 

	4.1 Were there a reasonable number of participants with the outcome?
Yes/ Probably yes	For model development studies, if the number of participants with the outcome 	relative to the number of candidate predictors is 10 or more (EPV ≥ 10).
	For model validation studies, if the number of participants with the outcome is 	100 or more.
No/ Probably no	For model development studies, the number of participants with the outcome 	relative to the number of candidate predictors is less than 10 (EPV < 10).
	For model validation studies, if the number of participants with the outcome is 	less than 100.
No information	For model development studies, no information on the number of candidate 	predictors or number of participants with the outcome, such that the EPV 	cannot be calculated.
	For model validation studies, no information on the number of participants with 	the outcome.

	4.2 Were continuous and categorical predictors handled appropriately?	
Yes/ Probably yes	If continuous predictors are not converted into two or more categories when 		included in the model (i.e. dichotomised or categorised), 
	or if continuous predictors are examined for nonlinearity using, for example, 	fractional polynomials or restricted cubic splines 
	or if categorical predictor groups are defined using a pre-specified method.
No/ Probably no	If categorical predictor groups definitions do not use a pre-specified method.
	For model development studies, if continuous predictors are converted into two 	or more categories when included in the model.
	For model validation studies, if continuous predictors or categorical variables are 	categorised using different cut-points compared to the development study.
No information	No information on whether continuous predictors are examined for non-linearity.
	No information on how categorical predictor groups are defined, 
	or no information on whether the same cut-points are used in the validation as 	compared to the development study.

	4.3 Were all enrolled participants included in the analysis?	
Yes/ Probably yes	If all participants enrolled in the study are included in the data analysis.
No/ Probably no	If some or a subgroup of participants are inappropriately excluded from the 	analysis
No information	No information on whether all enrolled participants are included in the analysis.

	4.4 Were participants with missing data handled appropriately?	
Yes/ Probably yes	If there are no missing values of predictors or outcomes and the study explicitly 	reports that participants are not excluded on the basis of missing data,
	or if missing values are handled using multiple imputation.
No/ Probably no	If participants with missing data are omitted from the analysis,
	or if the method of handling missing data is clearly flawed e.g. missing indicator method or inappropriate use of last value carried forward,
	or if the study had no explicit mention of methods to handle missing data.
No information	If there is insufficient information to determine if the method of handling missing 	data is appropriate.

	4.5 Was selection of predictors based on univariable analysis avoided?	[Development only]
Yes/ Probably yes	If the predictors are not selected based on univariable analysis prior to multivariable modelling. 
No/ Probably no	If the predictors are selected based on univariable analysis prior to multivariable modelling. 
No information	If there is insufficient information to indicate that univariable selection is avoided.

	4.6 Were complexities in the data (e.g. censoring, competing risks, sampling of controls) accounted for appropriately?
Yes/ Probably yes	If any complexities in the data are accounted for appropriately,
	or if it is clear that any potential data complexities have been identified 	appropriately as unimportant.
No/ Probably no	If complexities in the data that could affect model performance are ignored.
No information	No information is provided on whether complexities in the data are present or 	accounted for appropriately if present.

	4.7 Were relevant model performance measures evaluated appropriately?
Yes/ Probably yes	If both calibration and discrimination are evaluated appropriately (including 	relevant measures tailored for models predicting survival outcomes)
No/ Probably no	If both calibration and discrimination are not evaluated,
	or if only goodness-of-fit tests, such as the Hosmer-Lemeshow test are used to 	evaluate calibration,
	or if for models predicting survival outcomes performance measures accounting 	for censoring are not used,
	or if classification measures (like sensitivity, specificity or predictive values) were 	presented using predicted probability thresholds derived from the dataset at hand.
No information	Either calibration or discrimination are not reported,
	or no information is provided as to whether appropriate performance measures 	for survival outcomes are used (e.g. references to relevant literature or specific 	mention of methods such as using Kaplan-Meier estimates) 
	or no information on thresholds for estimating classification measures is given.

	4.8 Was model overfitting and optimism in model performance accounted for?	[Development only]
Yes/ Probably yes	If internal validation techniques, such as bootstrapping and cross-validation have 	been used to account for any optimism in model fitting, and subsequent adjustment 	of the prediction model performance and presented model parameters have been 	applied.
No/ Probably no	If no internal validation has been performed,
	or if internal validation consists only of a single random split-sample of participant 	data, 
	or if the bootstrapping or cross-validation did not include all model development 	procedures including any variable selection 
No information	No information is provided on whether all model development procedures are 	included in the internal validation techniques.

	4.9 Do predictors and their assigned weights in the final model correspond to the results from the reported multivariable analysis?	[Development only]
Yes/ Probably yes	If the predictors and regression coefficients in the final model correspond to 	reported results from multivariable analysis.
No/ Probably no	If the predictors and regression coefficients in the final model do not correspond 	to reported results from multivariable analysis.
No information	If it is unclear whether the regression coefficients in the final model correspond to 	reported results from multivariable analysis.

	Risk of bias introduced by the analysis:
Low risk of bias	If the answer to all signalling questions is “Yes” or “Probably yes” then risk of bias 	can be considered low.
	If one or more of the answers is “No” or “Probably no”, the judgement could still 	be low risk of bias, but specific reasons should be provided why the risk of bias 	can be considered low. 
High risk of bias	If the answer to any of the signalling questions is “No” or “Probably no” there is a 	potential for bias.
Unclear risk of bias	If relevant information about the analysis is missing for some of the signalling 	questions but none of the signalling question answers is judged to put the 	analysis at high risk of bias.




Table 1011. Overall assessment of risk of bias and concerns for applicability
	Reaching an overall judgement of risk of bias of the prediction model evaluation

	Low risk of bias 
	If all domains were rated low risk of bias.
If a prediction model was developed without any external validation, and it was rated as low risk of bias for all domains, consider downgrading to high risk of bias. Such a model evaluation can only be considered as low risk of bias, if the development was based on a very large data set and included some form of internal validation.

	High risk of bias 
	If at least one domain is judged to be at high risk of bias. 

	Unclear risk of bias
	If an unclear risk of bias was noted in at least one domain and it was low risk for all other domains. 



	Reaching an overall judgement of concerns for applicability of the prediction model evaluation

	Low concerns for applicability 
	If low concerns for applicability for all domains, the prediction model evaluation is judged to have low concerns for applicability.

	High concerns for applicability 
	If high concerns for applicability for at least one domain, the prediction model evaluation is judged to have high concerns for applicability.

	Unclear concerns for applicability 
	If unclear concerns (but no “high concern”) for applicability for at least one domain, the prediction model evaluation is judged to have unclear concerns for applicability overall.




Table 1112. Suggested Tabular Presentation for PROBAST Results
	Study
	Risk of bias
	Applicability
	Overall

	
	Participant selection
	Predictors
	Outcome
	Analysis
	Participant selection
	Predictors
	Outcome
	Risk of bias
	Applicability

	Study 1
	+
	-
	?
	+
	+
	+
	+
	-
	+

	Study 2
	+
	+
	+
	+
	+
	+
	+
	+
	+

	Study 3
	+
	+
	+
	?
	-
	+
	+
	?
	-

	Study 4
	-
	?
	?
	-
	+
	+
	-
	-
	-

	Study 5
	+
	+
	+
	+
	+
	?
	+
	+
	?

	Study 6
	+
	+
	+
	+
	?
	+
	?
	+
	?

	Study 7
	?
	?
	+
	?
	+
	+
	+
	?
	+

	Study 8
	+
	+
	+
	+
	+
	+
	+
	+
	+




Figure
Figure 1. Suggested Graphical Presentation for PROBAST Results




Boxes
Box 1. Types of diagnostic and prognostic modelling studies or reports addressed by PROBAST
(adopted from the TRIPOD and CHARMS guidance(8, 17))
	Prediction model development without (external) validation
These studies aim to develop one or more prognostic or diagnostic prediction models from a specific development data set. They aim to identify the important predictors of the outcome under study, assign weights (e.g. regression coefficients) to each predictor using some form of multivariable analysis, develop a prediction model to be used for individualised predictions, and quantify the predictive performance of that model in the development set. Sometimes, model development studies may also focus on adding one or more new predictors to established predictors. In any prediction model study, overfitting may occur, particularly in small data sets. Hence, development studies should ideally include some form of resampling or "internal validation” (internal because no data other than the development sample are used), such as bootstrapping or cross-validation. These methods quantify any optimism (bias) in the predictive performance of the developed model.

Prediction model development with (external) validation
Studies that have the same aim as the previous type, but the development of the model is followed by quantifying the model predictive performance in data external to the development sample. This may be data collected by the same investigators, commonly using the same predictor and outcome definitions and measurements, but sampled from a later time period (temporal validation); by other investigators in another hospital or country, sometimes using different definitions and measurements (geographic validation); in similar participants, but from an intentionally chosen different setting (e.g. model developed in secondary care and tested in similar participants from primary care); or even in other types of participants (e.g. model developed in adults and tested in children). Randomly splitting a single data set into a development and a validation data set is often erroneously referred to as a form of external validation, but actually is an inefficient form of "internal" validation, because the two so created data sets only differ by chance and sample size of model development is reduced.

Prediction model (external) validation
These studies aim to assess the predictive performance of one or more existing prediction models by using other participant data that were not used (i.e. external to) in the development of the model. When a model predicts poorly when validated in other data, a model validation can be followed by adjusting (or updating the existing model (e.g. by recalibration of the baseline risk or hazard or adjusting the weights of the predictors in the model) to the validation data set at hand, and even by extending the model by adding new predictors to the existing model. In both situations in fact a new model is being developed after the external validation of the existing model.




Box 2. Differences between diagnostic and prognostic prediction model studies. (3, 14)
	Diagnostic prediction models aim to estimate the probability that a target condition measured using a reference standard (referred to as outcome in PROBAST) is currently present or absent within an individual. In diagnostic prediction model studies, the prediction is for an outcome already present so the preferred design is a cross-sectional study although sometimes follow-up is used as part of the reference test to determine the target condition presence at the moment of prediction. 

Prognostic prediction models estimate whether an individual will experience a specific event or outcome within a certain time period, ranging from minutes to hours, days, weeks, months or years: always a longitudinal relationship. 

Despite the different timing of the predicted outcome, there are many similarities between diagnostic and prognostic prediction models, including: 
· Type of outcome is often binary (target condition or disease presence (yes/no) or future occurrence of an outcome event (yes/no). 
· Key interest is to estimate the probability of an outcome being present or occurring in the future based on multiple predictors with the purpose of informing individuals and guiding decision-making.
· Same challenges when developing or validating a multivariable prediction model. The same measures for assessing predictive performance of the model can be used although diagnostic models more commonly extend assessment of predictive performance to focus on thresholds of clinical relevance.

There are also various differences in terminology between diagnostic and prognostic model studies: 

	Diagnostic prediction model study
	Prognostic prediction model study

	Predictors

	Diagnostic tests or index tests
	Prognostic factors or prognostic indicators

	Outcome

	Reference standard used to assess or verify presence/absence of target condition
	Event (future occurrence yes or no)
Event measurement

	Missing outcome assessment

	Partial verification, lost to follow-up
	Lost to follow-up and censoring







Box 3. Examples of systematic review questions for which PROBAST is suitable
	There are various different questions or foci that systematic reviews of prediction models may address and for which PROBAST is suitable. The following are examples of different types of review in which PROBAST can be applied.

A specific target population 
· Review of all models developed or validated for predicting the risk of incident type 2 diabetes in the general population.(187)
· Review of all prognostic models developed or validated for use in patients diagnosed with acute stroke.(188)

A specific outcome
· Review of all diagnostic models developed or validated for detecting venous thromboembolism regardless the type of patients.(189)
· Review of all prognostic models developed or validated for predicting loss of daily activity, regardless the type of patients.(190)
 
A particular clinical field:
· Review of all prognostic models developed or validated in reproductive medicine.(191)
· Review of all prognostic models developed or validated in acute care of traumatic brain injury.(192)

A specific prediction model: 
· Review of the predictive performance of the EuroSCORE (a model to predict operative mortality following cardiac surgery) as found across external validation studies.(193)
· Review to compare the predictive performance of various prognostic models for developing cardiovascular disease in middle aged individuals in the general populations, across validation studies.(194)

A specific predictor: 
· Meta-analysis of the added predictive value of C-reactive protein CRP when added to the Framingham risk model.(195)
· Meta-analysis of the added predictive value of carotid artery imaging to an existing cardiovascular risk prediction model.(196)




Box 4. Prediction model performance measures
	Calibration reflects the agreement between predictions from the model and observed outcomes. Calibration is preferably reported graphically, with observed risks plotted on the y-axis against predicted risks on the x-axis. This plot is commonly done by tenths of the predicted risk and is preferably augmented by a smoothed (lowess) line over the entire predicted probability range. This is possible both for prediction models developed by logistic regression(27, 114, 197) and by survival modelling(113, 198). The calibration plot displays the direction and magnitude of any model miscalibration across the entire predicted probability range, which can be combined with estimates of the calibration slope and intercept.(198, 199) Calibration is frequently assessed by calculating the Hosmer-Lemeshow goodness-of-fit test, however, this test has limited suitability to evaluate poor calibration and is sensitive to the numbers of groups and sample size: the test is often non-significant for small datasets and nearly always significant for large datasets. Studies reporting only the Hosmer-Lemeshow test with no calibration plot or a table comparing the predicted versus observed outcome frequencies provide no useful information on the accuracy of the predicted risks (see signalling question 4.7).
Discrimination refers to the ability of a prediction model to distinguish between individuals who do or do not experience the outcome event. The most general and widely reported measure of discrimination, for both logistic and survival models, is the concordance index (c-index), which is equivalent to the area under the receiver operating characteristic curve for logistic regression models. 
Calibration and discrimination measures should take into account the type of outcome being predicted. For survival models, researchers should appropriately account for time-to-event and censoring, e.g. Harrell’s c-index, D statistic.(101, 200, 201) 

Many other model predictive performance measures are available including measures to express model classification abilities such as sensitivity, specificity and reclassification (e.g. the Net Reclassification Index) parameters.(199) These measures can be estimated after introducing one (or more) thresholds in the range of the model estimated probabilities. Classification measures are frequently used in diagnostic test accuracy studies but less in prediction model studies. Categorization of the predicted probabilities in two or more probability categories for estimation of classification measures can lead to loss of information, since the entire range of predicted probabilities of the model is not fully utilised. Using thresholds can allow discrimination to be reported at potentially clinically relevant thresholds as opposed to across all potential thresholds which may not be clinically important. However, introducing probability thresholds implies that the chosen threshold is relevant to clinical practice which often is not the case since these thresholds are often data driven yielding biased classification parameters.(156) Authors should rather assess these measures based on the general principles of pre-specifying (probability) thresholds (see also signalling question 4.2) to avoid multiple testing of thresholds and potential selective reporting of thresholds based on the data itself. 

There are many other measures of performance measure including net benefit measures and decision curve analysis.(164) Many of these measures provide a link between probability thresholds and false-positive and false-negative results to obtain the model net benefit at a particular threshold. Net benefit measures are not commonly reported for prediction modelling studies.

All the above model performance measures, when estimated on the development data, are often optimistic due to overfitting or choosing optimal thresholds, and should therefore be estimated using bootstrapping or cross-validation methods (see signalling question 4.8).



Low	1. Participant selection	2. Predictors	3. Outcome	4. Analysis	RISK OF BIAS	6	5	6	5	4	High	1. Participant selection	2. Predictors	3. Outcome	4. Analysis	RISK OF BIAS	1	1	0	1	2	Unclear	1. Participant selection	2. Predictors	3. Outcome	4. Analysis	RISK OF BIAS	1	2	2	2	2	Low	1. Participant selection	2. Predictors	3. Outcome	APPLICABILITY	6	7	6	4	High	1. Participant selection	2. Predictors	3. Outcome	APPLICABILITY	1	0	1	2	Unclear	1. Participant selection	2. Predictors	3. Outcome	APPLICABILITY	1	1	1	2	