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Abstract This article studies one of the important human tubular organs, the
trachea, under deformation caused by the disease angioedema. This pathology
can suddenly increase the volume of the trachea and cause serious breathing
difficulty. The swelling theory and morphoelasticity theory, which generalize
classical hyperelasticity to study material deformation under internal volume
change, are integrated in one single model to study tracheal angioedema. Com-
putational modeling results from various combinations of swelling and mor-
phoelasticity are compared to exhibit the difference and similarity of the two
theories in modeling tracheal angioedema. Nonlinear behaviors of the tubular
radius change are also illustrated to show how the trachea luminal size alter-
ation depends on the swelling/growth parameters and their effect on modify-
ing tissue stiffness. The possibility of complete tracheal channel closure is also
studied to understand if it is possible for the angioedema to close the airway.
This article serves as an exemplary study on nonlinear deformation behaviors
of human tubular organs sharing similar structures and physiological functions.
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1 Introduction

The human body incorporates numerous tubular organs (TOs) responsible for
transporting fluids, nutrients and waste products throughout the body. Typical
TOs include blood vessels, lymphatic vessels, the colon, trachea and esophagus
etc. They are mainly composed of soft tissues, and commonly exhibit nonlinear
behaviors in size change [1,31], morphology [2,3], stress distribution [4] etc.
This article uses the trachea under angioedema as an example to illustrate such
behaviors. In particular, we model trachea angioedema (TA) using generalized
hyperelasticity to see how size change and stress distribution demonstrate
nonintuitive nonlinear behaviors.

The trachea is a TO closely adjacent to the esophagus. It provides a duct
for air flow between the ambient environment and the two lungs. Structurally
similar to many other TOs, it has multi-layers, and two distinct layers have
been observed in it [5]. The inner layer consists of mucous/submucous soft
tissue. A longitudinal fiber family is also shown in this layer [9]. The outer
layer includes numerous incomplete C-shaped hyaline cartilage rings stacking
one over another, where the unclosed part of the C-rings are just behind the
esophagus [5].

TA refers to a disease under which the inner layer of the trachea accu-
mulates fluid from blood vessel leakage through the difference of hydrostatic
and osmotic pressures [10,21,22] and increases its volume rapidly [12]. Such
volume increment is also accompanied by mass addition such as vasoactive
mediators or histamine to the tracheal tissue [11]. This disease is mainly cate-
gorized into two types [11]: acquired angioedema and hereditary angioedema.
The first kind is caused by a deficiency of acquired c1-inhibitor c1-INH, and the
second one is an autosomal dominantly inherited blood disorder [14]. Regard-
less of which type, a rapid occurrence of volume increment on the airway soft
tissue may quickly narrow the opening passage for normal breathing and in-
duce an unexpected emergency [15,16,17]. The pathophysiological principle of
TA has been studied via lab experiments [11] or mathematical simulations[18,
19]. The volume increment of the trachea is a complicated process. Some re-
searchers applied mass conservation [23], transport theory [6], fluid mechanics
[7] etc. to model such process. However, these methods are inadequate for
more accurately describing the luminal area change and stress distribution
from a nonlinear continuum mechanics perspective, which are key factors for
evaluation of how TA may generate breathing difficulty and hurt the internal
tissue.

Soft tissues exhibit behaviors including anisotropy, nonhomogeneity, strain-
rate dependence etc. [20]. When subject to physiological loads, soft tissues can
be approximated as elastic materials and are broadly modeled by hyperelastic-
ity [13]. Presently, two theories are noticeably employed to model hyperelastic
material under volume increment. The first one is the swelling theory (see
e.g., [36,37,38,39]). This theory assumes swelling occurs isotropically in all
the directions of the material body, and the classical hyperelasticity is gener-
alized to incorporate the swelling effect with a localized swelling parameter.
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The modified strain energy density function takes zero value on the deformed
configuration after free swelling when the material body is subjected to no ex-
ternal constraint. The second hyperelastic theory called morphoelasticity [26]
also bears the capability of modeling material volume change, and is widely
applied in modeling growth of biological tissues [40,41,42,43]. The total de-
formation gradient tensor is decomposed to include an elastic tensor and a
growth tensor. The elastic tensor is employed as the deformation gradient in
the strain energy function to generate stress distribution, and its determinant
is identical to one when the material is modeled by incompressibility. All the
volume change caused by growth is prescribed in the growth tensor. Unlike
the swelling theory, the strain energy density function is not modified in any
extent. Via the growth tensor, the morphoelasticity theory is also capable of
modeling anisotropic volume change.

In [24,29], Gou and Pence modeled TA employing the swelling theory. In
[24], the trachea is idealized as a closed two-layered cylinder. The top and
bottom ends are taken to be force-freei, and the inner and outer boundary are
taken to be traction-free. Such boundary conditions assume that the deforma-
tion is merely caused by internal swelling instead of any external constraint.
Angioedema generates residual stress over the tracheal body, and demonstrates
high stress concentration near the interface of the inner and outer layers. In
another article [29], more realistic tracheal geometries were considered that
included the back-side trachealis muscle and two bronchi. Stress distribution
from all levels of modeling are very similar, which justifies that idealized mod-
eling and more practical modeling may mutually complement each other to
more deeply understand geometrical change and mechanical effect brought by
TA.

In this article, the swelling theory and morphoelasticity theory are inte-
grated in one model. The new model called swelling-morphoelasticity is re-
flective of both swelling and morphoelasticity characteristics, and thus more
flexible in modeling tissue volume-change behavior according to different com-
positions of swelling and growth amount. This model can also be easily reduced
to either pure swelling or pure morphoelasticity. We aim at understanding the
difference and similarity of the computational outcomes given by the two theo-
ries from a modeling perspective. For convenience of analysis and comparison,
we idealize the trachea as a two-layered cylindrical tube following [24]. For TA,
another issue deserving great attention is whether the angioedema-incurred ex-
pansion of the trachea can close the internal channel to completely prevent air
flow. By intuition, large expansion may finally shrink the opening until it is
totally closed. However, reality may be different especially for models using
nonlinear continuum mechanics. We analyze such possibility from a perspec-
tive of mathematical rigor following the modeling part.

The structure of the article is as follows. In Section 2, we briefly intro-
duce the generalized hyperelasticity for both swelling and morphoelasticity.

i Force free boundary conditions are different from traction-free boundary conditions. The
force-free boundary condition means the integration of traction over the related boundary
is annihilated.
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We also construct the new swelling-morphoelasticity theory and analyze its
characteristics. In Sec. 3, we set up models for TA, which occurs in the inner
submucous layer of the two-layered cylindrical geometry. The computational
results are demonstrated in Sec. 4, where we compare modeling results from
several parameter sets showing different swelling and growth amount. In Sec.5,
we illustrate the non-monotonic change of the luminal radius under volume
increment of the trachea, and make an analysis for possibility of complete
lumen closure under the swelling-morphoelasticity model. Then finally a sum-
mary discussion is given in Sec. 6 about the nonlinear TO behaviors of the
trachea under angioedema.

2 Preliminaries

The undeformed and deformed configurations are denoted by Ω0 and Ω, re-
spectively. Let X be any generic point in Ω0, and it is mapped to another
point x in Ω via a mapping x = χ(X). The deformation gradient tensor is
given by F = ∂χ(X)/∂X. The right Cauchy-Green deformation tensor is then

C = FTF, (2.1)

with the principal invariants

I1 = trC, I2 = I3tr(C−1), I3 = detC. (2.2)

Under any strain energy function W , the Cauchy stress tensor T is derived
via

T = −pI + 2F
∂W

∂C
FT, (2.3)

where p is a constraint parameter and I is the identity tensor. T satisfies the
equilibrium equation

divT = 0. (2.4)

Soft tissues are usually light, so we ignore the body forces from gravity and
other effects. Below we briefly review theories of swelling and morphoelasticity
and form an integrated new theory based on them.

2.1 Swelling theory

The swelling theory is mainly applied to study fluid-filled expansion of a body.
It is characteristic of 3-D isotropic volume change, and employed in areas like
gel expansion and soft tissue edema [8,29]. The local swelling parameter ν
depicts the ratio of the local volume in Ω0 and Ω. For inhomogeneous swelling,
ν depends on the position vector X. In this article, for simplicity we take ν to
be homogeneous and thus a constant throughout the material body. Via the
deformation gradient, one has

detF = ν. (2.5)
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The right Cauchy-Green deformation tensor is defined by (2.1), and its in-
variants are given by (2.2). This theory can be applied in the context of both
incompressibility and compressibility. In the fist case, we also call it volume-
specified swelling theory. With ν ≡ 1, we recover the classical incompressible
hyperelastic theory.

Under a natural free swelling, i.e. boundaries of a material body are traction
free, there is no elastic energy stored inside the body, and then F = ν1/3I. Any
strain energy density function W under this state arrives at a zero energy state.
The energy function is generalized to reflect this result. We use neo-Hookean
model as an example to show how such generalization is performed. The neo-
Hookean model is originally given by

W =
µ

2
(I1 − 3), (2.6)

where µ is the shear modulus of the material. To incorporate swelling, it is
generalized to

W =
1

2
µνq−2/3(I1 − 3ν2/3), (2.7)

where q is a parameter to show how swelling impacts on stiffness of the ma-
terial, and the defaulted value q = 2/3 means the swelling keeps stiffness
unchanged. Other strain energy models can be generalized in a similar way to
incorporate swelling.

Under a natural free swelling, the material body is stress free. The gener-
alized relation between the Cauchy stress tensor T and the energy function
W for the volume-specified modeling is [28]

T = −pI +
2

ν
F
∂W

∂C
FT. (2.8)

2.2 Morphoelasticity

Morphoelasticity mainly studies growth of a body through mass addition
to change its volume. The growth process causes stress redistribution in-
side the body, and such stress and growth also demonstrate a complicated
inter-connected relationship. Continuum mechanics plays a fundamental role
in studying growth and its stress effect. Rodriguez et al. [25] proposed that
the deformation of a body is caused by both the growth and elastic response,
and they decomposed the deformation gradient F into two parts. One part is
the growth tensor showing how mass is added into the body, and the other
one is the elastic tensor, a natural response to the external mechanical stimuli
and the growth to keep the body in an equilibrium state. More specifically,

F = FeFg, (2.9)

where Fe is the elastic tensor and Fg is the growth tensor. The right Cauchy-
Green deformation tensor is defined to be on Fe only, i.e.,

Ce = FT
e Fe. (2.10)
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One can also define the three invariants of Ce according to (2.2).
All the volume change is incorporated in the growth tensor. The material

is taken to be incompressible after growth, and then

detFe = 1. (2.11)

The Cauchy stress is only caused by the elastic deformation part. Denote the
invariants of Ce by Ie1 , Ie2 and Ie3 , respectively. The classical strain energy func-
tions need not to be updated, but the invariants used in the energy functions
are from Ce now. Particularly, the neo-Hookean model becomes

W =
µ

2
(Ie1 − 3). (2.12)

Under any strain energy function W , the Cauchy stress tensor is derived as

T = −pI + 2Fe
∂W

∂Ce
FT
e . (2.13)

If Fg = εI, where ε is a growth parameter, the growth is isotropic. Other-
wise, we call it anisotropic growth. Partial or planar isotropic growth can also
be defined. Under the cylindrical coordinate system with three coordinates (r,
θ, z), if the growth over the radial and angular directions are identical, we call
it r-θ isotropic growth. Similarly, we can have θ-z or r-z isotropic growth.

2.3 Swelling-morphoelasticity

Swelling and morphoelasticity can also be incorporated in one single model.
The deformation includes both the growth part Fg and elastic part Fe as in
(2.9). In this new model, however, the volume change contribution is from
both the growth and elastic parts. The growth part is for the volume change
caused purely from growth, while the elastic part is responsible for the volume
change caused by swelling satisfying

detFe = ν. (2.14)

A deformation cartoon is shown in Fig. 1 to show such structure. The Cauchy-
Green tensor is identical to that defined in (2.10). The corresponding strain
energy function is modified to include swelling represented by (2.14). When
the neo-Hookean model is used, the updated one is

W =
1

2
µνq−2/3(Ie1 − 3ν2/3). (2.15)

The Cauchy stress tensor is derived via

T = −pI +
2

ν
Fe

∂W

∂Ce
FT
e . (2.16)

We call such integration the swelling-morphoelasticity theory. This theory can
easily reduce to either pure swelling hyperelastic theory via Fg = I or mor-
phoelasticity via ν = 1.
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Fig. 1: Deformation cartoon for swelling-morphoelasticity. The original configuration is Ω0.
Then after growth with the growth tensor Fg , we get a visual growth configuration Ωg . An
elastic deformation Fe is imposed on Ωg to generate the final configuration Ω. Swelling is
also incorporated in this step, and detFe = ν. The deformation gradient F from Ω0 to Ω
satisfies F = FeFg .

3 TA modeling via swelling-morphoelasticity

The trachea is idealized to be a two-layered cylinder (Fig. 2). We work in a
cylindrical coordinate system with the z−axis being the longitudinal direc-
tion of the trachea and the origin being the center of any of its horizontal
cross section. The radii of the undeformed inner boundary, interface and outer
boundary towards the central axis are denoted by Ri, Rm and Ro, respectively.
Denote the three unit basis vectors of this coordinate system by eR, eΘ and
eZ for the undeformed configuration. Any point X in the undeformed config-
uration is denoted by (R, Θ, Z). We take the same set of basis vectors for the
deformed configuration due to axisymmetry of the geometry and deformation.
The point X is mapped into another point x on the deformed configuration
via an axisymmetric deformation function χ

x = χ(X) = r(R)eR + ZλzeZ , (3.1)

where r(R) is the radial function and λz is the axial stretch parameter, respec-
tively. The radii of the deformed inner boundary, interface and outer boundary
are ri = r(Ri), rm = r(Rm) and ro = r(Ro), respectively. The deformation
gradient tensor is thus

F = r′(R)eR ⊗ eR +
r

R
eΘ ⊗ eΘ + λzeZ ⊗ eZ . (3.2)
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Fig. 2: An idealized two-layered trachea geometry. The inner thin layer is for submucous
tissue where angioedema occurs. The red dots represent the vertically aligned collagen fibers
in this layer in support of the stability of the tracheal structure. The outer thicker layer is
the cartilaginous layer. This layer is mainly composed of a stack of harder cartilage rings
and does not supply angioedema occurrence.

3.1 Inner layer

The growth tensor is taken to be in the three principal directions as

Fg = greR ⊗ eR + gθeΘ ⊗ eΘ + gzeZ ⊗ eZ , (3.3)

where gr, gθ and gz are growth parameters in the three principal directions,
respectively.

By (2.9), (2.14) and (3.2)

Fe =
1

α
eR ⊗ eR +

νgz
λz

αeΘ ⊗ eΘ +
λz
gz

eZ ⊗ eZ , (3.4)

where,

α =
gr
r′
,

νgz
λz

gθα =
r

R
. (3.5)

It then follows from (2.14) that

(r2)′ =
2νgrgθgzR

λz
, (3.6)

and so

r =

[∫ R

Ri

2νgrgθgzR

λz
dR+ r2

i

]1/2

, Ri ≤ R ≤ Rm, (3.7)

where ri = r(Ri). The parameters such as ν and gr may be functions of R
instead of constants, and thus (3.7) can not be further simplified at this step.
By (3.7), we can also derive the relation between rm and ri

r2
m = r2

i +

∫ Rm

Ri

2νgrgθgzR

λz
dR, (3.8)
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which further generates another identical formula to (3.7)

r =

[
r2
m −

∫ Rm

R

2νgrgθgzR

λz
dR

]1/2

, Ri ≤ R ≤ Rm. (3.9)

The strain energy density function of the inner layer is taken to be the
addition of the generalized neo-Hookean strain energy and longitudinal fiber
energy as

Wi =
µiν

q−2/3

2
(I1 − 3ν2/3)︸ ︷︷ ︸

neo-Hookean energy

+
γ

2
(I4 − 1)2︸ ︷︷ ︸

fiber energy

, (3.10)

where µi is the shear modulus of the inner submucous layer, γ is the fiber
elastic modulus, and I1 is the first variant of Ce. In (3.10), I4 is defined as a
qseudo-invariant as

I4 = Nfib ·CeNfib, (3.11)

where Nfib = eZ is the unit direction of the longitudinal fibers embedded in
the submucous layer of the trachea. By (2.16), the Cauchy stress tensor is

Ti = −piI + µiν
q−5/3Be +

2γ

ν
(I4 − 1)EeeZ ⊗EeeZ , (3.12)

where Be = FeFe
T is the left Cauchy-Green tensor, and pi is the incompress-

ibility constraint parameter dependent on R. Detailed computation gives the
Cauchy stress in its component-wise form to be

T irr = −pi +
µiν

q−5/3

α2
, Ri ≤ R ≤ Rm, (3.13)

T iθθ = −pi +
µig

2
zν
q+1/3α2

λ2
z

, Ri ≤ R ≤ Rm, (3.14)

T izz = −pi +
µiλ

2
zν
q−5/3

g2
z

+
2γλ2

z

νg2
z

(
λ2
z

g2
z

− 1), Ri ≤ R ≤ Rm. (3.15)

The three equilibrium equations in (2.4) for this axisymmetric model reduces
to only one equation in the radial direction

∂T irr
∂r

+
1

r
(T irr − T iθθ) = 0. (3.16)

By (3.13), (3.14) and (3.16), one has

pi(R) = pi(Ri)+

µi

∫ R

Ri

νq−5/3
( (q − 5/3)ν−1

α2

dν

dR
− 2α−3 dα

dR
+

1

r
(

1

α2
− g2

zν
2α2

λ2
z

)
dr

dR

)
dR.

(3.17)
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3.2 Outer layer

There is no growth or swelling in the outer cartilaginous layer. Thus Fg = I
and ν = 1. By the incompressibility constraint detF = 1, via (3.2)

r′rλz
R

= 1. (3.18)

Integration of (3.18) from R to Ro gives

r =

√
r2
o −

1

λz
(R2

o −R2), Rm ≤ R ≤ Ro. (3.19)

By (3.19), we can obtain the relation between rm and ro as

r2
m = r2

o −
1

λz
(R2

o −R2
m), (3.20)

which gives another formula for r as

r =

√
r2
m +

1

λz
(R2 −R2

m), Rm ≤ R ≤ Ro. (3.21)

The strain energy density function is taken to be the original neo-Hookean
model

Wo =
µo
2

(I1 − 3), (3.22)

where µo is the shear modulus of the outer cartilaginous layer. The Cauchy
stress tensor To for this layer is derived via Wo as

To = −poI + 2F
∂Wo

∂C
FT = −poI + µoB, (3.23)

where B = FFT is the left Cauchy-Green tensor for the outer layer, and po is
a constraint parameter for this layer. Detailed computation gives the Cauchy
stress in its component-wise form to be

T orr = −po + µo(r
′)2, Rm ≤ R ≤ Ro, (3.24)

T oθθ = −po + µor
2/R2, Rm ≤ R ≤ Ro, (3.25)

T ozz = −po + µoλ
2
z, Rm ≤ R ≤ Ro. (3.26)

As in (3.16), we get one equilibrium equation in the radial direction

∂T orr
∂r

+
1

r
(T orr − T oθθ) = 0. (3.27)

By virtue of (3.24), (3.25) and (3.27), we get

po(R) = po(Ro)− µo
∫ Ro

R

r′
(

2r′′ + r−1
(
(r′)2 − r2

R2

))
dR. (3.28)
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3.3 Boundary conditions and solution procedure

The inner boundary of the tracheal tube is subject to aerial flow to and from
the two lungs. The pressure is close to the atmospheric pressure which can be
balanced by the pressure inside the tracheal tissue. We thus ignore the effect
on the inner boundary of the trachea exerted by the air flow inside the lumen,
and take the inner boundary of the trachea tube to be traction free. The outer
boundary of the trachea tube is surrounded by light soft tissue, and taken to be
traction free. We also take a traction-free inner and outer boundary conditions
giving {

T irr(ri) = 0 (traction-free inner boundary),

T orr(ro) = 0 (traction-free outer boundary).
(3.29)

By (3.13) and (3.29)1, we get

pi(Ri) =
µiν

q−5/3

α2


R=Ri

, (3.30)

and by (3.24) and (3.29)2, we have

po(Ro) = µo(r
′)2|R=Ro . (3.31)

At the interface, the traction is taken to be continuous, which gives

T irr(rm) = T orr(rm) (traction continuous at the interface), (3.32)

or by (3.13) and (3.24)

− pi(Rm) +
µiν

q−5/3

α2

∣∣∣
R=Rm

= −po(Rm) + µo(r
′)2
∣∣
R=Rm

. (3.33)

The radial function r(R) is also continuous throughout the interface in the
domain [Ri, Ro] automatically by our formulation. Namely, r(R) in (3.9) for
the inner submucous layer and r(R) in (3.21) for the outer cartilaginous layer
are equal when both estimated at R = Rm. Using (3.9) and (3.21), (3.33) is
an equation for the unknown rm. This nonlinear equation can be solved by
numerical techniques. With the value of rm, we can obtain the Cauchy stress
distribution T and radial function r(R) for the two layers.

4 Modeling results and comparison

The radius values for Ri, Rm and Ro are taken from [24,29] as shown in
Table 1. The material stiffness values are illustrated in Table 2 ii. We use the
defaulted value q = 2/3 for the computation in this section, i.e., the volume
increment shall not change the stiffness of the tissue. The product of all growth
and swelling parameters ν, gr, gθ and gz is fixed for convenience of comparison.

ii These values were calculated from experimental data via justified mathematical formu-
las. See [24].



12 Kun Gou et al.

Radius values (unit:mm)
Notation Inner boundary Interface Outer boundary

Original size: R Ri=8.85 Rm=9.15 Ro=11.45
After deformation: r ri rm ro

Table 1: Radius values before and after deformation caused by angioedema. The radius
values before deformation for the inner boundary, interface and outer boundary are taken
from [24,29]. The corresponding boundary radii after deformation are unknowns and their
values are calculated from the present model.

Tracheal stiffness parameters (unit: MPa)
Inner layer shear modulus Outer layer shear modulus Fiber stiffness

µi=0.0429 µo=0.58 γ=0.0429

Table 2: Tracheal tissue stiffness values used in the model. These value are kept to be
identical to those used in [24,29] for consistency.

This makes the total volume change under the collective effect of growth and
swelling of the submucous layer after TA identical. The product νgrgθgz = 4.
Because the swelling theory is for volume change in 3-D, first we consider 3-D
isotropic growth in the swelling-morphoelasticity model and then 2-D isotropic
growth.

4.1 3-D isotropic growth

Isotropic growth means growth in the three principal directions er, eθ and
ez are identical, i.e., g1 = g2 = g3 = g, where g is a constant. Here we take
g3ν = 4. We use four sets of parameters as a demonstration:

S1 : {g = 1, ν = 4}, S2 : {g = 3
√

4/3, ν = 3},

S3 : {g =
3
√

2, ν = 2}, S4 : {g =
3
√

4, ν = 1}.

Set S1 shows only swelling without growth (g = 1), and Set S4 shows only
growth without swelling (ν = 1). They are the two extreme ends of the
swelling-morphoelasticity modeling. The other two sets are mix of both swelling
and growth.

Figure 3 illustrates the results under an axial stretch λz = 1. First we give
a summary for the general patterns of all curves. Due to the volume increment
of the inner submucous layer from TA, Figure 3a shows that the inner radius ri
is reduced and the outer radius ro is increased for the parameter set choice. We
also remark that in this panel the curves over the inner layer or outer layer are
almost straight, but they are nonlinear curves. Figure 3b shows that the radial
stress Trr is compressive, and reaches its maximum at the interface, which
makes the tissue more vulnerable at this location. The curves also show cusps
indicating non-smoothness at the interface because only traction continuity
condition is prescribed at this location. Figures 3c and 3d for Tθθ and Tzz vs.
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Fig. 3: Radius change and stress distribution as functions of R for various combinations of

swelling and 3-D isotropic growth parameters ν, gr, gθ, and gz satisfying gr = gθ = gz = g.

Here R is normalized by Ri, and stress is normalized by µi. The product of all growth and

swelling parameters is kept to be a constant 4, i.e., g3ν = 4. There is no stretch in the

axial direction (λz = 1), and the defaulted value q = 2/3 is used. The plots illustrate that

increased g or decreased ν generates increased ri (decreased trachea opening constriction)

and increased stress magnitude at each fixed R.

R, respectively, show compressive stress in the inner layer and tensile stress in
the outer layer, and discontinuities are generated at the interface.

Then we compare the curves in each subfigure for the four sets S1-S4.
Figure 3a shows that Set S1 for pure swelling gives the lowest r vs. R curve,
while Set S4 gives the highest, or more generally, more growth or less swelling
makes the curve higher. Therefore, under the same volume change, modeling
TA using more swelling produces more inner opening shrinkage. In Figures3b-
3d, at a fixed R location Set S1 generates the smallest stress magnitude and Set
S4 generates the largest, or more generally, more growth generates larger stress
magnitude. One possible explanation for this phenomenon is that more growth
makes the trachea expand more outward, and thus the inner submucous layer
pushes the outer cartilaginous layer more outward resulting in bigger stress
production. More growth hence may more seriously hurt the tracheal tissue
bearing stronger stress.

Computation for λz = 1.3 is also taken. For each set of parameters, the
inner opening is more constrained, and smaller stress intensity is produced.



14 Kun Gou et al.

1 1.05 1.1 1.15 1.2 1.25 1.3
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

(a) r/Ri vs. R/Ri

1 1.05 1.1 1.15 1.2 1.25 1.3
-0.5

-0.4

-0.3

-0.2

-0.1

0

(b) Trr vs. R/Ri

1 1.05 1.1 1.15 1.2 1.25 1.3
-5

-4

-3

-2

-1

0

1

2

3

(c) Tθθ vs. R/Ri

1 1.05 1.1 1.15 1.2 1.25 1.3
-5

-4

-3

-2

-1

0

1

(d) Tzz vs. R/Ri

Fig. 4: Radius change and stress distribution of various combinations of swelling and 2-D

isotropic growth (gr = gθ, gz = 1), where the growth is constrained to be on the radial

and angular directions. The product of all growth and swelling parameters is kept to be a

constant 4, i.e., grgθgzν = 4. Here λz = 1 and q = 2/3. The graphs show that the four

sets generate the same results for radius change and Trr and Tθθ distributions, and Tzz is

identical only in the outer layer.

However, the results show no different pattern compared with Fig. 3, and the
graph is thus skipped.

4.2 2-D isotropic growth

We study how the results will differ when the isotropic growth is constrained
in 2-D. Three types are studied: isotropic r-θ growth, isotropic r-z growth,
Isotropic θ-z growth.

4.2.1 Isotropic r-θ growth

We consider planar isotropic growth over the radial and angular directions.
Here we take gr = gθ, gz = 1, g2

rν = 4, and λz = 1. Four sets of parameters
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are used as follows:

S5 : {gr = gθ = 1, gz = 1, ν = 4}, S6 : {gr = gθ = 2
√

1/3, gz = 1, ν = 3},

S7 : {gr = gθ =
√

2, gz = 1, ν = 2}, S8 : {gr = gθ = 2, gz = 1, ν = 1}.

The general pattern of the results for these four parameter sets shown in
Fig. 4 are similar to that in Fig. 3. For all four sets, Figure 4 demonstrates iden-
tical curves for r(R), Trr(R) or Tθθ(R). For the axial stress Tzz, all four curves
are the same over the outer cartilaginous layer and disagree over the inner
submucous layer (Set 8 for pure growth with ν = 1 generates the least Tzz in-
tensity over the inner layer). Therefore, in the swelling-morphoelasticity model,
computational results are identical regardless of how swelling and growth are
mixed. Nonzero Tzz values also suggest that planar r-θ growth is not com-
pletely constrained in the r-θ plane, and also generates stress effect in the
axial direction outside of the r-θ plane.

In order to test how different axial stretch can affect the deformation, we
also used λz = 1.3 in the computation for the four sets S5 to S8. The same
pattern is maintained as in Fig. 4, and hence the graphs are not displayed
here for the sake of brevity. It is also found that large λz may generate all
tensile stress over the two layers instead of being compressive over the inner
layer and tensile over the outer layer for smaller λz. Larger λz also produces
smaller ri giving more constrained inner opening and causing more difficulty
for breathing.

4.2.2 Isotropic r-z and θ-z growth

The computational results of isotropic r-z or θ-z growth do not show a nice
overlap for different combinations of swelling and growth as those for isotropic
r-θ growth. Generally the plots are similar to Fig. 3 and therefore not shown
here for the sake of brevity.

5 Luminal shrinkage

When the trachea is under angioedema, the volume of the inner layer expands.
Quantitative and qualitative understanding of the expansion is necessary for
accurate description of severity of the disease. Based on the model setup in
Sec. 3, we graphically obtain relations between inner radius change and volume
increment amount. Then we study when it is possible for the angioedema to
totally close the luminal area to obstruct air flow.

5.1 Relation of ri and volume increment

The idealized modeling for the tracheal geometry allows quantifying the lu-
minal area by the deformed inner radius ri. We study the relation between ri
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Fig. 5: Graph of how ri(normalized by Ri) changes based on total volume increment for
various q values indicating how volume increment alters stiffness of the material. The label
for the horizontal axis “volume increment ratio” (vir) means the pointwise volume ratio after
and before angioedema satisfying vir = detF = detFedetFg . Isotropic r-θ growth is used in
the swelling-morphoelasticity model with growth parameters satisfying gz = 1 and gr = gθ.
For each value of vir, the contributions from swelling (with swelling parameter ν) and total
growth are the same, i.e., ν =

√
vir and grgθ =

√
vir. Each curve is non-monotonic. The

function ri(vir) decreases and then increases.

and the volume increment from both swelling and growth so that we can
indirectly know how luminal area changes. From Sec. 4, we see that the
swelling-morphoelasticity model with r-θ isotropic growth shows almost iden-
tical modeling results regardless of how much volume change contribution is
from swelling or growth. Such 2-D r-θ isotropic growth also closely matches
the axisymmetric deformation formulation in (3.1). We also use such isotropic
growth in this section for convenience of analysis. Figure 5 shows several curves
of ri (normalized by Ri) vs. volume increment ratio for several q values, which
indicate how volume change alters the shear modulus of the tissue. For each
curve, it shows the inner radius first decreases and then increases. This implies
that the lumen does not always shrink but can also expand when ri reaches a
minimum value. Larger q makes the minimum value larger.

5.2 Further anticavitation analysis

We analyze if it is possible for the outer cartilaginous layer to push the in-
ner submucous layer using only finite force such that the inner opening is
completely collapsed under TA, which we call anticavitation (Fig. 6). Similar
problems have been examined by other researchers. Abeyaratne and Hou stud-
ied void collapse for an incompressible spherical elastic solid [33], and Moulton
and Goriely studied anticavitation and differential growth in elastic shells by
morphoelasticity [34]. The present work takes swelling and growth together to
study the possibility of tubular collapse. For this purpose, we only consider the
deformation of the inner layer, and the effect of the outer layer is to impose
a traction on the inner layer. Denote the traction imposed by the outer layer
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Fig. 6: Anticavitation cartoon for the inner submucous layer with completely closed luminal
area under pressure from the outer cartilaginous layer.

through the interface to the inner layer by

− Ptr = T irr|R=Rm , (5.1)

where Ptr > 0.
For any strain energy function W (not only the neo-Hookean model), con-

sider it depends on the three principal stretches Λr, Λθ and Λz associated
with the elastic tensor Fe as W (Λr, Λθ, Λz). We remark that usually energy
function is considered to depend on the invariants I1, I2 and I3 etc., and such
stretch dependence on the energy function is solely for convenience of the
present analysis. Under the theory of swelling-morphoelasticity in Sec. 2.3 and
the axisymmetric deformation in (3.1)

Fe = ΛreR ⊗ eR + ΛθeΘ ⊗ eΘ + ΛzeZ ⊗ eZ , (5.2)

and by virtue of (3.4),

Λr =
1

α
, Λθ =

νgzα

λz
, Λz =

λz
gz
. (5.3)

By (2.14),

Λr =
νgz
λzΛθ

,
dΛr
dΛθ

= − gzν

λzΛ2
θ

. (5.4)

We consider Ptr as a function of Λθ, and analyze under what condition

lim
Λiθ→0

Ptr <∞,

where Λiθ = Λθ|r=ri .
Generalizing the function W to include swelling with an amount ν for the

inner layer generates

Wi = νqW (ν−1/3Λr, ν
−1/3Λθ, ν

−1/3Λz). (5.5)
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Notice that if W is of the neo-Hookean model incorporating the fiber energy,
then (5.5) gives (3.10), the generalized neo-Hookean model. Under (2.16),

T irr = −pi +
2

ν
Λ2
r

dWi

dCerr
, (5.6)

T iθθ = −pi +
2

ν
Λ2
θ

dWi

dCeθθ
, (5.7)

where Cerr and Ceθθ are the first two principal components of Ce. By the chain
rule and the identity Cerr = Λ2

r,

dWi

dCerr
= νq

∂W

∂(ν−1/3Λr)

d(ν−1/3Λr)

dΛr

dΛr
dCerr

=
νq−1/3

2Λr

∂W

∂(ν−1/3Λr)
. (5.8)

Similarly by Ceθθ = Λ2
θ,

dWi

dCeθθ
= νq

∂W

∂(ν−1/3Λθ)

d(ν−1/3Λθ)

dΛθ

dΛθ
dCeθθ

=
νq−1/3

2Λθ

∂W

∂(ν−1/3Λθ)
. (5.9)

By (5.8) and (5.9), Equations (5.6) and (5.7) yield

T irr − T iθθ = −Λθ
ν

(
− ∂W

∂(ν−1/3Λr)

νq+2/3gz
λzΛ2

θ

+
∂W

∂(ν−1/3Λθ)
νq−1/3

)
= −Λθ

ν

dWi

dΛθ
. (5.10)

By the equilibrium equation (3.16) and (5.10),

dT irr
dr

= −1

r
(T irr − T iθθ)

=
Λθ
rν

dWi

dΛθ
. (5.11)

Integrating (5.11) with respect to r from ri to rm produces∫ rm

ri

dT irr
dr

dr =
1

ν

∫ rm

ri

Λθ
r

dWi

dΛθ
dr. (5.12)

Traction free inner boundary T irr|r=ri = 0 and (5.1)applied to (5.12) give

Ptr = −1

ν

∫ rm

ri

Λθ
r

dWi

dΛθ
dr. (5.13)
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Employing variable change to turn the integration with respect to Λθ from
Λiθ = Λθ|r=ri to Λmθ = Λθ|r=rm yields

Ptr = −1

ν

∫ Λmθ

Λiθ

Λθ
dWi

dΛθ

d(lnr)

dΛθ
dΛθ. (5.14)

By (3.7) with constant ν, gr, gθ, gz and λz, we get

r =
(νgrgθgz

λz
(R2 −R2

i ) + r2
i

)1/2

or R =
(λz(r2 − r2

i )

νgrgθgz
+R2

i

)1/2

. (5.15)

Then by (3.5)2, (5.3)2 and (5.15),

Λθ =
r

gθR
= rg−1

θ

(λz(r2 − r2
i )

νgrgθgz
+R2

i

)−1/2

. (5.16)

Solving for r from (5.16) generates

r = Λθ

(gθ(λzr2
i −R2

i νgrgθgz)

Λ2
θgθλz − νgrgz

)1/2

. (5.17)

By (5.17),

d(lnr)

dΛθ
=

−νgrgz
Λθ
(
Λθ
√
gθλz +

√
νgrgz

)(
Λθ
√
gθλz −

√
νgrgz

) . (5.18)

Plugging (5.18) into (5.14) brings

Ptr =

∫ Λmθ

Λiθ

dWi

dΛθ

grgz(
Λθ
√
gθλz +

√
νgrgz

)(
Λθ
√
gθλz −

√
νgrgz

)dΛθ. (5.19)

Lemma 1 For a r-θ isotropic (isotropy over the r-θ plane) one-layered TO
under swelling (with the swelling ratio ν) and isotropic growth (with three
principal growth parameters gr, gθ and gz satisfying gr = gθ), the following
inequality holds

dWi

dΛθ

(
Λθ
√
gθλz −

√
νgrgz

)
> 0. (5.20)

Proof For a planar r-θ isotropic material under r-θ isotropic growth and
swelling, the Baker-Ericksen inequality [35] holds due to the strong ellipticity
of rank one convexity:

(T irr − T iθθ)(λr − λθ) > 0, (5.21)

where λr and λθ are two principal stretches of F in the r and θ directions,
respectively, satisfying λr = Λrgr and λθ = Λθgθ. By the definition of Λr and
Λθ in (5.3) and Eq. (3.4), one has α = Λθλz

νgz
. Accordingly,

λr − λθ =
gr
α
− νgzαgθ

λz

=

(√
grgzν − Λθ

√
gθλz

)(√
grgzν + Λθ

√
gθλz

)
Λθλz

. (5.22)

By (5.10) for T irr − T iθθ and Eq. (5.22), one thus obtains (5.20) for the lemma.
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Lemma 2 For Λiθ ≤ Λθ ≤ Λmθ , Λθ
√
gθλz −

√
νgrgz < 0 as ri approaches 0

and is small enough.

Proof By (5.3)2 and (3.5)1,

Λθ
√
gθλz −

√
νgrgz =

√
gθλz

νgz
λz

α−√νgrgz

=
√
gθλz

νgz
λz

gr(
dr

dR
)−1 −√νgrgz

=

√
λzr√
gθR

−√νgrgz. (5.23)

By the volume relation between the reference configuration and the deformed
configuration,

(R2
m −R2

i )νgrgθgz = (r2
m − r2

i )λz, (5.24)

we can obtain

rm =

√
(R2

m −R2
i )νgrgθgz
λz

+ r2
i . (5.25)

By (5.23) and (5.25),

lim
ri→0

(Λθ
√
gθλz −

√
νgrgz)

∣∣∣
r=rm

=
√
νgrgz

(√
1− R2

i

R2
m

− 1
)
< 0. (5.26)

Therefore, as ri → 0 and is small enough, Λθ
√
gθλz −

√
νgrgz < 0 for all

Λiθ ≤ Λθ ≤ Λmθ .

By Lemmas 1 and 2 applied on (5.19), one has

0 < Ptr <

√
grgz
ν

∫ Λmθ

Λiθ

dWi

dΛθ

dΛθ

Λθ
√
gθλz −

√
νgrgz

<

√
grgz
ν

1

Λmθ
√
gθλz −

√
νgrgz

∫ Λmθ

Λiθ

dWi

dΛθ
dΛθ

=

√
grgz
ν

1

Λmθ
√
gθλz −

√
νgrgz

(
Wi|Λθ=Λmθ

−Wi|Λθ=Λiθ

)
= K

(
Wi|Λθ=Λiθ

−Wi|Λθ=Λmθ

)
, (5.27)

where K =
√

grgz
ν

1√
νgrgz−Λmθ

√
gθλz

> 0.

Theorem 3 The inner submucous layer can be completely collapsed under
finite pressure from the outer cartilaginous layer if and only if the following is
true

lim
Λiθ→0

Wi|Λθ=Λiθ
= L <∞, (5.28)

where L is any positive finite number.
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Proof If (5.28) holds, then by (5.27), Ptr|Λiθ=0 is bounded, and finite pressure
is possible to totally collapse the lumen of the trachea.

Instead, if Ptr|Λiθ=0 is bounded, we show (5.28) is true. By Lemma 2,

0 > − 1
√
νgrgz

>
1

Λθ
√
gθλz −

√
νgrgz

, (5.29)

for Λiθ ≤ Λθ ≤ Λmθ . Thus by (5.19)

Ptr > −
1

√
νgrgz

∫ Λmθ

Λiθ

dWi

dΛθ

grgz(
Λθ
√
gθλz +

√
νgrgz

)dΛθ

>
−√grgz√

ν
(
Λmθ
√
gθλz +

√
νgrgz

) ∫ Λmθ

Λiθ

dWi

dΛθ
dΛθ

=

√
grgz√

ν
(
Λmθ
√
gθλz +

√
νgrgz

)(Wi|Λθ=Λiθ
−Wi|Λmθ

)
, (5.30)

where we also used dWi

dΛθ
< 0 obtained from Lemmas 1 and 2. Since Wi as an

energy function is always non-negative and lim
Λiθ→0

Ptr is bounded, we get

∞ > lim
Λiθ→0

Wi|Λθ=Λiθ
≥ 0, (5.31)

which gives (5.28).

Corollary 1 For the generalized neo-Hookean model (2.7) incorporating swelling,
the anticavitation of the inner submucous layer can not occur under finite pres-
sure from the outer cartilaginous layer.

Proof By (5.2) and (5.3), I1 = trCe = Λ2
r + Λ2

θ + Λ2
z and I4 = Λ2

z (fiber
direction parallel to the ez direction). And then (2.14) gives Λr = ν

ΛθΛz
. The

generalized neo-Hookean model (3.10) becomes

Wi =
µiν

q−2/3

2

(
(

ν

ΛθΛz
)2 + Λ2

θ + Λ2
z − 3ν2/3

)
+
γ

2
(Λ2

z − 1)2, (5.32)

which easily shows that

lim
Λiθ→0

Wi|Λθ=Λiθ
=∞. (5.33)

Therefore, by Theorem 3, the present generalized neo-Hookean model is inca-
pable of closing the inner channel through finite pressure imposed on the inner
submucous layer by the outer cartilaginous layer.

The neo-Hookean model coefficient µiν
q−2/3

2 in (3.10) under the limit q →
−∞ means that the shear modulus of the tissue is annihilated due to swelling,
and thus

lim
Λiθ→0

(Wi|q→−∞,Λθ=Λiθ
) = 0.

So by Theorem 3 the total collapse is possible with finite pressure from the
outer layer under this extreme case.
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6 Summary and discussion

The trachea is an important human tubular organ. When angioedema occurs
in this organ, the normal size of the inner lumen may be changed, which
can cause serious breathing difficulty. Trachea is idealized to be a two-layered
cylinder. Angioedema is taken to occur in the inner softer layer, and the outer
cartilaginous layer is modeled as being incompressible. Inner and outer bound-
aries of the trachea is taken to be traction free to neglect the canal air flow
and outer skin influence over the trachea configuration.

TA is modeled employing a new nonlinear swelling-morphoelasticity the-
ory formed based on the swelling theory and morphoelasticity theory. Both
theories are generalized hyperelasticity to model volume change behavior of a
continuum body. However, they are designed from different perspectives. For
the first one, the deformation gradient from the undeformed to the final de-
formed configuration is used in the updated strain energy functions to derive
the stress distribution, and volume change is used to constrain the determi-
nant of the deformation gradient tensor. For the second one, such deformation
gradient is decomposed to be a growth tensor and an elastic tensor, and only
the elastic tensor is employed to generated the stress distribution. The volume
change is included in the growth tensor part. The newly created swelling-
morphoelasticity theory combines the two theories in one model, and is more
flexible to model deformation under volume change by distributing it between
the swelling part and the growth part according to different physiological re-
sults. Such theory can also be employed in compressible models for convenience
of finite-element generation of the computational results based on [27]. This
new theory is advantageous to model TA, because its volume change is also
from such two parts with the swelling part caused by fluid leakage from blood
vessels and the solid growth part caused by mass addition to the tracheal tissue
[11].

Computational results are given for the deformed radius r vs. the unde-
formed radius R, and the three principal Cauchy stress components Trr, Tθθ,
and Tzz vs. R. The results are reflective of the prescribed boundary condi-
tions, and show nonlinear variation through the domain. More particularly,
the graphs of Trr vs. R show residual stress concentration near the interface of
the two layers. Graphs for Tθθ vs. R and Tzz vs. R are discontinuous through
the interface, being compressive in the inner layer and tensile in the outer
layer. Theories of morphoelasticity and swelling are structurally different, but
it is found that the computational results for the swelling theory, morphoelas-
ticity theory and their mix are qualitatively similar to each other with slight
quantitative difference. Though swelling theory is three dimensional in default,
the results from 3-D isotropic growth for morphoelasticity do not match those
from the swelling theory. Instead the results from 2-D r-θ isotropic growth of
morphoelasticity is nearly identical to those from swelling theory, regardless of
how the volume change contribution is from growth or swelling. A summary
of the computational results in Sec. 4 is demonstrated in Table 3. A further
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r |Trr| |Tθθ| |Tzz |
3-D i.g.: Growth dom. Growth dom. Growth dom. Growth dom.
r-θ i.g.: The same The same The same The same over [Rm, Ro]
r-z i.g.: Swelling dom. Swelling dom. Swelling dom. Swelling dom.
θ-z i.g.: Growth dom. Growth dom. Growth dom. Growth dom.

Table 3: Summary of computational results comparison for the swelling-morphoelasticity
model. The same amount of volume increment caused by a combination of swelling and
growth is used for all the comparisons. Here “i.g.” stands for isotropic growth, and “dom.”
is the abbreviation of “dominate”. The symbol | • | means the absolute value of the quantity
inside. For the row of 3-D isotropic growth, “Growth dom.” means more growth and less
swelling generate larger material radius change and magnitude of Trr, Tθθ, and Tzz under
the same R location. So does the row for θ-z isotropic growth. For the r-z isotropic growth,
the trend is the opposite. For the r-θ isotropic growth row, the results are always the same
(except Tzz) regardless of how combination of swelling and growth contribution to the
volume increment is made.

theoretical exploration is needed to identify the connection of swelling theory
and morphoelasticity theory based on these results.

Non-monotonic inner boundary radius change is also shown. The deformed
inner radius ri decreases as inner layer volume becomes large in the beginning,
but after the volume increment reaches some point depending on how such
increment affects the stiffness, ri unexpectedly increases generating a larger
lumen. This nonlinear characteristics is also exhibited in other TOs. For ex-
ample, Glagov et al.[32] experimentally discovered that the coronary arteries
with atherosclerotic plaques along the inner arterial wall started to increase
their luminal area in the beginning, and later as the stenosis grew larger,
the luminal area decreased. Fok [30] employed the morphoelasticity theory to
model such plaque growth and successfully captured similar phenomena. He
also found that such nonlinear growth behavior also depended on in vivo or ex
vivo environment of the vessels. The nonlinearity patterns of the inner radius
change for the trachea and arteries are distinct, which may be caused by other
detailed structural difference of the two organs.

To further explore the nonlinear inner radius change and check possibility
of complete lumen closure, an anticavitation analysis is made based on general
strain energy density functions for the swelling-morphoelasticity theory. The
theoretical analysis is based on the inner layer, where the outer layer imposes
an inward pressure on the boundary of it. We rigorously showed that the
lumen can be completely closed with finite force from the outer layer if and
only if the strain energy remains finite as the angular stretch goes to zero.
The commonly used neo-Hookean model does not satisfy this requirement.
Therefore in angioedema, it is theoretically impossible to completely close off
a neo-Hookean trachea no matter how much growth or swelling occurs.

When under volume increment from either growth or swelling, the inner
wall of the soft tissues may demonstrate asymmetric buckling behaviors [2,3,
38,44]. One can study these instabilities for an axisymmetric base state, and
finite element approaches need to be employed for more general geometries.
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Even in the axisymmetric setting, it would be interesting to see how the classi-
cal buckling analysis changes under our new swelling-morphoelasticity theory.

Although the present work focuses on a particular organ (the trachea),
our results are indicative of multi-layer TOs modeled using hyperelasticity.
Because different layers have different stiffness parameters, thickness or fiber
family embedding, the computed size change and stress distribution may be
non-smooth, discontinuous, or non-monotonic. Stresses may concentrate near
the interface between layers, making the tissue there more vulnerable to dam-
age or dislocation. We predict that TOs will not close their lumens completely
when their inner layers experience growth and/or swelling. These nonlinear
results can assist us to understand other TO deformation behaviors for corre-
sponding physiological problems.
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