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A B S T R A C T

The occurrence of a natural and unmodified highly sulfated chondroitin sulfate from Litopenaeus vannamei heads
(sCS) is herein reported. Its partial digestion by Chondroitinases AC and ABC together with its electrophoretic
migration profile revealed it as a highly sulfated chondroitin sulfate despite its average molecular weight being
similar to CSA. Using orthogonal 1D/2D NMR experiments, the anomeric signals (δ 4.62/106.0) corresponding
to unusual 2,3-di-O-Sulfo-GlcA (∼36%), U33S (δ 4.42/84.1, ∼63%) and U22S (4.12/80.1, ∼50%) substitutions
were confirmed. In addition, non-sulfated GlcA (δ 4.5/106.3) linked to 4-O- (A14S, 36%) or 6-O-Sulfo (A16S,
28%) GalNAc (δ 4.64/103.5) was observed. Although the biological role of sCS in shrimp is unknown, its in-
fluence on hemostasis was also demonstrated. The sCS identification brings to light new questions about the
hierarchical model of GAGs biosynthesis and contributes to the better understanding of the subtle relationship
between GAGs structure and function.

1. Introduction

Chondroitin sulfate (CS) is a sulfated polysaccharide, part of a class
of natural and highly complex biomolecules known as glycosami-
noglycans (GAGs). These molecules are widely distributed throughout
the cell surface and all extracellular matrix of connective tissues and are
covalently attached to a protein core forming proteoglycans (CSPGs)
(Schiller et al., 2015; Wang, Sugahara, & Li, 2016). CS is composed by
repeating disaccharide units which occur along the polysaccharide
chain linked by β(1→ 4) bonds, where each disaccharide is formed by
D-glucuronic acid (GlcA) β(1→ 3) linked to N-acetyl-D-galactosamine
(GalNAc) (Lamari & Karamanos, 2006; Prabhakar & Sasisekharan,
2006; Tomatsu et al., 2015). The variations of the O-sulfation pattern
observed for both GalNAc and GlcA generate different combinations of
distinct disaccharide units that characterize the several types of CS.
GalNAc residues are often sulfated at the C-4 and/or C-6 positions
which can give rise to CS-A [GlcA-GalNAc(4S)], CS-C [GlcA-GalNAc
(6S)] and CS-E [GlcA–GalNAc(4S,6S)] units. On the other hand, GlcA

residues may exhibit O-sulfation at C-2 and more rarely at C-3 positions
giving rise to CS-D [GlcA(2S)-GalNAc(6S)] and CS-K [GlcA(3S)-GalNAc
(4S)] units, respectively (Malavaki, Mizumoto, Karamanos, & Sugahara,
2008; Nandini & Sugahara, 2006; Pavão, Vilela-Silva, & Mourão, 2006).

The position and degree of sulfation, size and number of CS chains
inserted into the CSPGs, make CS a highly complex and heterogeneous
molecule that exert multifaceted functions (Mikami & Kitagawa, 2013;
Volpi, 2011). Among the many functions attributed to CS chains, there
are some important biological processes such as inflammation, cell
proliferation, differentiation, migration, tissue morphogenesis, orga-
nogenesis, infections and wound repair (Canning, Brelsford, & Lovett,
2016; Sugahara et al., 2003; Tomatsu et al., 2015; Yamada & Sugahara,
2008). In addition, a significant chemical and structural diversity of CS
chains can also be observed according to the animal tissue- and species-
source. Consequently, these structural variations lead to different bio-
logical and pharmacological properties (Maccari, Ferrarini, & Volpi,
2010; Malavaki et al., 2008). Evidence shows that in invertebrates
species such structural heterogeneity is even more pronounced
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(Malavaki et al., 2008), as in the case of the Echinodermata sea cu-
cumber, which has a CS O-substituted at C-3 position on GlcA residues
with sulfated α-L-fucopyranosyl branches. Such fucosylated CS pre-
sented different biological functions when compared to its defucosy-
lated counterpart, as anticoagulant and antithrombotic activities
(Fonseca & Mourão, 2006; Wu et al., 2015).

Within this context and given the great structural and functional
complexity of CS molecules from different species, here we report the
occurrence of a natural and structurally peculiar CS. This compound
was isolated from the cephalothorax (head) of Pacific white shrimp,
Litopenaeus vannamei, the major farmed shrimp specie in the Northeast
of Brazil and in the world (Cahú et al., 2012).

2. Experimental

2.1. General experimental procedures

Sodium heparin from porcine mucosa was obtained from Laboratory
Derivati Organici (Trino Vercellese, Italy). Synthetic heparin penta-
saccharide was obtained from GSK (Rio de Janeiro, Brazil).
Chondroitinase ABC from Proteus vulgaris (EC 4.2.2.4), specific activity
of 50–250 units/mg, and chondroitinase AC from Flavobacterium he-
parinum (EC 4.2.2.5), specific activity of 0.5–1.5 units/mg; 1,3-diami-
nopropane (PDA); bovine serum albumin (BSA) and heparin cofactor II
from Sigma-Aldrich Co. (St. Louis, USA). Agarose low-Mr from Bio-rad
(Richmond, USA). Chondroitin 4-sulfate (CS-4) and chondroitin 6-sul-
fate (CS-6), extracted from whale cartilage, and dermatan sulfate (DS)
extracted from pig skin, were from Miles Laboratories (Elhart, USA).
aPTT and PT kits were obtained from Wiener Lab. (Rosario, Argentina).
Anti-Xa and anti-IIa kits and chromogenic substrates for thrombin (D-
Phe-Pip-Arg-pNa) were purchased from Hyphen BioMed (Neuville-sur-
Oise, France). Carrier free [35S]-inorganic sulfate was purchased from
Instituto de Pesquisas Nucleares (São Paulo, Brazil).

2.2. Cell cultures

Endothelial cells derived from rabbit aorta were grown in F12
medium (Invitrogen, San Diego, USA) containing 10% fetal bovine
serum (FBS) (Cultilab, Campinas, Brazil) and 20mM sodium bicarbo-
nate at 37 °C in a humidified atmosphere with 5% CO2. All cultures
were performed on Falcon culture plates (BD Falcon, San Jose, USA).

2.3. Animals

Male Wistar rats weighing between 300 and 400 g, obtained from
the animal house of Departamento de Bioquímica – Universidade
Federal do Rio Grande do Norte, Natal, Brazil, were used for in vivo
experiments. Animals were housed in cages with free access to food and
water. Animals were treated according to the ethical principles for
animal experimentation. All experiments were approved by the uni-
versity Ethics Committee (number 053/2011).

The shrimp heads (Litopenaeus vannamei) were kindly provided by
ENSEG Indústria Alimentícia LTDA, Macaíba, Brazil. The fresh material
was stored on ice until processing.

2.4. Extraction and purification of the sCS

The GAGs were isolated and purified from L. vannamei heads
(∼14 kg) after proteolysis and acetone fractionation as previously de-
scribed (Brito et al., 2008, 2014) with some modifications. Briefly, the
fractions obtained after treatment with acetone (F-0.5, F-0.7 and F-1.0)
were individually submitted to ion-exchange chromatography in Dowex
50W-X8 Na+ -form (Aldrich). F-0.7 was further fractioned by ion-ex-
change chromatography in DEAE-Sephacel (Pharmacia) and desalted
using Sephadex G-25 gel filtration. The final product was dried and
submitted to further analysis.

2.5. Electrophoresis

GAGs identification was done by agarose gel electrophoresis using
0.05M 1,3-diaminopropane acetate (PDA) buffer system, pH 9.0
(Dietrich & Dietrich, 1976) or discontinuous buffer 0.04M barium
acetate, pH 5.8/0.05 M 1,3-diaminopropane acetate, pH 9.0 (Ba/PDA)
(Bianchini et al., 1980). Aliquots of the compounds (5–10 μL) were
applied to a 0.5% agarose gel and ran for 1 h at 100 V. The GAGs were
fixed with 0.1% cetyltrimethylammonium bromide solution. After 2 h,
the gels were dried and stained for 15min with 0.1% toluidine blue in
1% acetic acid in 50% ethanol. The gels were then destained with the
same solution without the dye.

2.6. Molecular weight determination

The molecular weight (MW) of sCS was determined by gel per-
meation chromatography on a high-pressure liquid chromatography
(GPC-HPLC) system using a 300× 7.8mm BioSep SECTM S-2000 LC
Column (Phenomenex, Torrance, USA). 20 μL aliquots of a sample so-
lution (10mg/mL in 0.3M sodium sulfate) were applied into the GPC-
HPLC system at a flow rate of 1mL/min. UV detection was performed at
205 nm at room temperature. The column was previously calibrated
with polysaccharides of known molecular weights (1.7, 4, 10, 16, 20,
26 and 67 KDa).

2.7. Structural characterization

For NMR experiments, the purified sCS were deuterium exchanged
by repeated dissolution in D2O and freeze-drying. Spectra were ob-
tained in D2O in a shigemmi (200 μL) tube at 30 °C or 70 °C, using
TMSPd4 as standard (δ=0). 2D-MNR [COSY, TOCSY (mixing time,
100ms) and NOESY (mixing time, 400ms)] spectra were obtained with
a Bruker 600MHz AVANCE III NMR spectrometer with a 5mm inverse
gradient probe (QXI). HSQC and HSQC-TOCSY (mixing time, 60ms)
with spectral widths of 7211 Hz (1H) and 12,073 Hz (13C) were re-
corded for quadrature detection in the indirect dimension, using 64 or
128 scans per series of 2 K x 256 and a width data points with zero
filling in F1 (2 K) prior to Fourier transformation (Sassaki et al., 2013).
All signal assignments were performed using TopSpin program. 1D
TOCSY experiments were carried out using a standard Bruker pulse
program (selmlgp). A shaped pulse length of 80ms for selective ex-
citation was used, followed by a MLEV-17. Selective pulses of different
mixing times varying from 5 to 100ms using 256 scans were used.

Disaccharide composition of the sCS was assessed as described by
Yamagata, Saito, Habuchi, and Suzuki (1968) with some modification.
Purified sCS (∼100 μg) was incubated with 25mIU of chondroitinase
AC or ABC. The products obtained were analyzed by agarose gel in PDA
buffer and HPLC in a 150×4.6mm Phenosphere SAX column (Phe-
nomenex, Torrance, USA) using a NaCl gradient of 0.01–2M with at a
flow of 1ml/min and UV detection at 232 nm.

2.8. In vitro anticoagulants assays

Anticoagulant activity of the sCS was evaluated by different assays
according to the kits manufacturer's recommendation. The activated
partial thromboplastin time and prothrombin time were measured
using the Quick Timer Coagulometer (Drake Electronica Commerce
Ltd., São Paulo, Brazil). Initially, 90 μL of fresh human citrated plasma
was incubated with 10 μL of mammalian heparin or purified sCS at
different concentrations or saline as control. After 3min of incubation
at 37 °C, cephalin and later calcium chloride (for APTT) or a mixture of
thromboplastin, calcium chloride and sodium chloride (for PT), were
then added and the clotting time assessed. All assays were performed in
triplicate.
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2.9. Chromogenic assays

The sCS had also its anti-Xa and anti-IIa activities assessed through
the chromogenic assays. Briefly, antithrombin (for anti-Xa assay) or
thrombin (for anti-IIa assay) was incubated with mammalian heparin or
purified sCS in different concentrations at 37 °C for 2min. After in-
cubation, purified bovine Xa or IIa factors was added, mixed and in-
cubated at 37 °C for 2min. Next, the chromogenic substrate for Xa or IIa
factors was added and the mixture incubated again for 2min at 37 °C.
Then, to stop the reaction, 30% acetic acid was added and absorbance
measured at 405 nm against a corresponding blank using a microplate
reader (BioTek Epoch, Winooski, USA). The inhibition of thrombin by
heparin cofactor II was carried out as follows: using 96-well micro-
plates, mammalian heparin or purified sCS (0–100 μg/ml) was in-
cubated with 70 nM heparin cofactor II and 15 nM thrombin (Seikisui
Diagnostics, Stamford, USA) in 25 μl of 0.02M Tris/HCl, 0.15M NaCl,
and 1.0 mg/ml polyethylene glycol, pH 7.4 (TS/PEG buffer). Thrombin
was added last to initiate the reaction. After 60 s of incubation at room
temperature, 25 μL of 100 μM thrombin chromogenic substrate in TS/
PEG buffer was added, and the absorbance at 405 nm was recorded at
10 s intervals for 100 s. The rate of change of absorbance was propor-
tional to the thrombin activity remaining in the incubation and the
results were expressed by percentage of thrombin inhibition. All assays
were performed in triplicate.

2.10. Differential scanning fluorimetry (DSF)

DSF experiments were performed using a 7500 Real Time PCR
System (Applied Biosystems, Warrington, U.K.) as described previously
(Uniewicz et al., 2010). Briefly, antithrombin solution (1mg/mL),
mammalian heparin, sCS solution (1mg/mL) or PBS without CaCl2/
MgCl2 (Gibco-Europe, Paisley, U.K.) (70% v/v) were added to a Fast
Optical 96 Well Reaction Plate (Applied Biosystems) maintained on ice.
Then, freshly prepared 100 x water based dilution of Sypro Orange
5000 x (Invitrogen, Paisley, U.K.) was added as 10% v/v. The dye has
an excitation wavelength of 300 or 470 nm, and emits at 570 nm when
bound to hydrophobic residues. The protein was subjected to a step-
wise temperature gradient, from 32 °C to 85 °C in 0.5 °C steps. There
was an initial 2 min incubation period at 31 °C and 5 s between each
temperature increase to equilibrate. Data were collected for 30 s at each
temperature.

2.11. Antithrombotic activity in vivo

Rats had the inferior vena cava exposed and a ligature was per-
formed with cotton thread, 5min after intravenous injection of mam-
malian heparin or sCS in 0.2mL of saline. The abdominal cavity was
then closed. After 2 h, the vein was exposed again and the eventual
thrombi formed were removed, washed, blotted with filter paper, dried
under vacuum for 24 h and weighed. At each dose, six measurements
were performed (Reyers, Mussoni, Donati, & de Gaetano, 1980; Rocha
et al., 2005).

2.12. Effect of sCS on glycosaminoglycans synthesis by endothelial cells

Endothelial cells was exposed to mammalian heparin or sCS and
carrier free [35S]-sulfate (150 μCi/mL) at 37 °C in a humidified in-
cubator at 5% CO2. After 24 h of incubation, the culture medium was
removed and the cells washed twice with serum-free F12 medium.
Protein-free heparan sulfate and chondroitin sulfate chains were ob-
tained from the cell extract and culture medium by incubating the
sample with 0.1mg of superase (proteolytic enzyme from Sporobacillus,
Chas & Pfizer, USA) for 4 h at 60 °C. At the end of the incubation, the
mixture was heated for 7min at 100 °C to inactivate the protease, and
the radiolabeled glycosaminoglycans were precipitated with two vo-
lumes of methanol in the presence of carrier heparan sulfate and

chondroitin sulfate (5 μg/μL). The heparan sulfate and chondroitin
sulfate synthesized by these cells and secreted to the medium were
quantified and characterized by their electrophoretic mobility in
agarose gel. The radiolabelled compounds were visualized by exposure
of the gel after drying and staining to a Kodak blue X-rayfilm. The
radioactive bands were scrapped from the gel and counted in a liquid
scintillation counter using Ultima Gold (Packard Instruments Co,
Groningen, Holland). All experiments were performed in triplicate.

2.13. Bleeding effect

The residual hemorrhagic effect of sCS was analyzed by a modified
model of topical scarification in rat tail (Cruz & Dietrich, 1967). A
scarification was made with a surgical blade in the tail distal portion of
rats. Next, the scarified tail was dipped vertically in physiological saline
solution, and the blood flow was stimulated with a scraped and dipped
again in fresh saline to observe bleeding. Then, the tail was dipped in a
solution containing sCS or heparin at different concentrations during
2min and washed extensively with saline solution. The treated tail was
immersed in new saline solutions during 40min, and the amount of
protein from the lesion was determined by Bradford method (Bradford,
1976). The results were expressed as the sum of the protein values of
each tube minus the amount of protein present before the exposure to
the test substance.

2.14. Statistical analysis

Results were analyzed by two-way ANOVA and Bonferroni posttest.
Values of p < 0.05 were considered indicative of statistical sig-
nificance.

3. Results and discussion

3.1. Identification and structural characterization of sCS

The GAGs isolated from L. vannamei shrimp heads (∼960mg) were
treated with increasing volumes of acetone and the resulting fraction of
treatment with 0.7 volumes of acetone (F-0.7, ∼233mg) was subjected
to ion exchange chromatography on DEAE-Sephacel, from which the
shrimp CS-like compound (sCS) was purified (∼105mg, Fig. S1,
Supporting information). Its molecular weight was determined by GPC
and it was estimated as 26 kDa, the same average molecular weight
found for bovine tracheal CS (Lamari & Karamanos, 2006).

The structural characterization of sCS was achieved using homo-
nuclear (selective 1D-TOCSY, COSY, TOCSY and NOESY) and hetero-
nuclear (HSQC and HSQC-TOCSY) NMR spectroscopy. Following these
procedures, it was possible to assign the hydrogen and carbon re-
sonances and a chemical shift map of 1H/13C atoms (2D 1H/13C HSQC),
shown in the Fig. 1. As noted in the HSQC spectrum, the anomeric
signals identified at δ 4.62/106.0, which corresponds to 2-O- (U12S) and
3-O-Sulfo GlcA (U13S) and non-sulfated GlcA at δ 4.5/106.3, U1 linked
to 4-O- (A14S) or 6-O-Sulfo (A16S) GalNAc residues at δ 4.64/103.5
(Gargiulo, Lanzetta, Parrilli, & De Castro, 2009; Gomes et al., 2010;
Kinoshita-Toyoda et al., 2004; Mucci, Schenetti, & Volpi, 2000). No
signals corresponding to iduronic acid (IdoA) were found, which
characterizes the occurrence of typical CS molecule backbone in the
shrimp heads.

In order to further characterize the sCS structure and confirm the
2,3-di-O-Sulfo GlcA units, selective 1D-TOCSY experiments were per-
formed with different mixing times (Fig. 1, green and red spectrum).
From the overlap of the 1D-TOCSY and 2D 1H/13C HSQC spectra, the 3-
O-sulfation J-coupling within the GlcA spin system was observed. The
chemical shift at δ 4.42/84.1 corresponding to U33S was the selected
spin for magnetic excitation, then the spectra were collected with 20ms
(green spectrum) and 100ms (red spectrum) mixing times. With short
mixing time (20ms) the protons signals represented by b and c peaks
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were observed as the closest to the selected peak (a), respectively, due
the vicinal scalar coupling. Owing to this fact, it is possible to confirm
the 2,3-di-O-Sulfo GlcA residues occurrence in the sCS chains, besides
the 2-O-, 3-O-Sulfo and non O-Sulfo GlcA residues as previously men-
tioned.

2D COSY experiments were employed to corroborate such results
and identify vicinal couplings, mainly H1-H2 and H2-H3/H4 re-
sonances belonging to the non O-Sulfo glucuronyl units. The same ap-
proach led to the identification of the hydrogen units from 4/6-O-
GalNAc and the unusual O-sulfation in the glucuronyl units of sCS (Figs.
S2–S4, Supporting information).

2D TOCSY analyses with mixing time of 100ms confirmed the
connectivity of the monosaccharides from the sCS and supported the
previous assignments from COSY cross peaks (Fig. S5, Supporting in-
formation). In order to complete the hydrogen assignment by homo-
nuclear experiments, 2D heteronuclear HSQC and HSQC-TOCSY were
used to resolve some peak superimposition (Fig. S6, Supporting in-
formation). The data set obtained enabled the chemical shift assign-
ments of sCS and are shown in table S1 (Supporting information).

The natural occurrence of 2,3-di-O-Sulfo GlcA residues in CS chains
is unusual and hitherto unknown [although has been related to pro-
ducts derived from semi-synthetic routes and/or those associated with
the heparin contamination crisis (Bedini et al., 2012; Guerrini et al.,
2008; Li et al., 2009; Zhang et al., 2008)], and the description of such
sulfation pattern in sCS chains may explain its resistance to chon-
droitinases action (Linhardt, 2001; Maruyama, Toida, Imanari, Yu, &
Linhardt, 1998). As result, unsaturated disaccharide formation was not
observed even after exhaustive treatment of sCS with specific lyases
(data not shown).

It is important to note that 3-O-Sulfo GlcA residues was observed in
the linkage region of CS chains and also in some glycoproteins and
glycolipids saccharide sequence in mammals (Ariga et al., 1987; Ilyas,
Dalakas, Brady, & Quarles, 1986; Nakagawa, Izumikawa, Kitagawa, &
Oka, 2011; Voshol, van Zuylen, Orberger, Vliegenthart, & Schachner,
1996). In both cases it has been shown that 3-O-sulfation reactions
share the same 3-O-sulfotransferase (Hashiguchi et al., 2011; Nakagawa
et al., 2011). On the other hand, although 3-O-Sulfo GlcA residues have
been identified in CS chains of marine invertebrate sources (Kinoshita
et al., 1997, 2001; Kinoshita-Toyoda et al., 2004; Kitagawa et al., 1997;
Sugahara et al., 1996), no 3-O-sulfotransferase responsible for such
process has been characterized, and its biosynthetic mechanisms cannot
be encapsulated within the hierarchical model for GAG biosynthesis.

Fig. 1. ¹H/¹³C HSQC and 1D TOCSY RMN spectra of sCS. Spectra were obtained at 600MHz from solutions in D2O at 30 °C, using TMSPd4 as standard. 1D TOCSY spectra were collected at
20ms (green spectrum) and 100ms (red spectrum) mixing times. Proton signal selected to magnetic excitation (a) and closest correlated signals (b and c); Galactosamine (A); Glucuronic
acid (U). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Proposed structure for the peculiar disaccharide unit found in sCS.
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The lack of information regarding the identification of unusual 2,3-
di-O-Sulfo GlcA residue in CS chains from animal tissues, led us to
propose a novel disaccharide unit classification for this molecule. Full
interpretation of HSQC spectrum also provides the possibility to in-
tegrate the cross peak volumes of selected glycosyl units. The later gave
rise to 36% of 2,3-di-O-Sulfo GlcA residues in sCS, being observed at δ
4.62/103.0. The sulfation pattern from the galactosamine units showed
A14S at δ 4.65/103.0 (36%) and A16S at δ 4.62/103.5 (28%). The total
sulfation of U33S (δ 4.42/84.1) and U22S (δ 4.12/80.1) had a percentage
of 63% and 50%, respectively. Therefore, in recognition of its obtaining
source (Shrimp), the unit S classification is proposed to all disaccharide
from CS containing the unusual GlcA residue, regardless of their ad-
jacent galactosamine (Fig. 2). Thus, CS chains where the unit S is found
may be recognized as CS-S.

3.2. Anticlotting activities and sCS effect on antithrombin thermal
stabilization

As previously noted, the structural variations observed in CS chains
from different tissues/species – especially in marine organisms – may
result in very different biological and/or pharmacological effects
(Maccari et al., 2010; Malavaki et al., 2008). It has been reported, for
example, that the sulfation pattern plays an important role in the an-
ticoagulant activity of CS (Maruyama et al., 1998). Thus, the occur-
rence of highly sulfated units in sCS led us to investigate its effect on
coagulation.

The anticoagulant activity of sCS was performed by different assays
and compared to porcine heparin action – standard anticoagulant drug.
Briefly, activated partial thromboplastin time (aPTT) and prothrombin
time (PT) evaluate the components involved in the intrinsic and ex-
trinsic coagulation cascade pathway, respectively. As seen in Fig. 3A
and B, unlike porcine heparin, sCS was unable to change the clotting

Fig. 3. Anticoagulant assays of sCS. aPTT (A) and PT
(B) were performed using citrated normal human
plasma, and the clotting time measured in coagul-
ometer. Anti-Xa (C), anti-IIa (D) and HCII (E) activ-
ities were performed using specific chromogenic
substrates as described in methods. All assays were
performed in triplicate and the values are expressed
as the mean. sCS (white circle) and heparin (black
circle).
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time. A specific analysis for factor Xa (FXa) and thrombin (FIIa) in-
hibition were performed using chromogenic assays (Fig. 3C and D) and
showed that sCS has no effect on factor Xa inhibition (28% of inhibition
versus 98% for heparin). On the other hand, both heparin and sCS
showed a significant FIIa inhibition of ∼94%, even at low concentra-
tion (1.0 μg/mL).

In order to investigate the mechanisms by which sCS is able to
promote the FII inhibition, experiments involving differential scanning
fluorimetry (DSF) and heparin cofactor II (HCII) assay were carried out.
As seen in Fig. 4, when compared to heparin or pentasaccharide (he-
parin saccharide sequence responsible for binding to antithrombin –
AT), the compound isolated from shrimp do not alters the AT melting
temperature, indicating that sCS is unable to promote the AT stabili-
zation. It was previously reported that there is a close relationship
between AT thermal stabilization and anticoagulant activity of poly-
saccharides (Lima et al., 2013). Thus, the inability to stabilize AT ex-
plains the lack of anti-Xa effect and anticoagulant activity via aPTT and
PT by sCS. On the other hand, as seen in the Fig. 3E, sCS reached∼80%
of thrombin inhibition HCII-mediated, explaining, therefore, its potent

anti-IIa effect.
Some evidences have shown that the anticoagulant activity of GAGs

may be affected not only by saccharide sequence of AT binding site or
sulfation pattern. Instead, a combination of different factors has played
a key role in anticoagulant activity, such as environmental factors,
substitution patterns, glycosylation type, stabilization of carbohydrate-

Fig. 4. Effect of sCS on thermo-stabilization of antithrombin evaluated by
differential scanning fluorimetry. Melting curve profile of 30 nM antith-
rombin in the presence or absence of different ligands. Dotted vertical
lines indicate the average melting temperature of antithrombin.
Antithrombin (black dashed line); antithrombin+ sCS (red solid line);
antithrombin+heparin (green solid line); antithrombin+penta-
saccharide (brown dotted line). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. In vivo antithrombotic effect of sCS (white circle) and heparin (black circle) es-
timated by venous thrombosis-induced model in rats. The asterisks represent statistically
significant points (P < 0.01*; P < 0.01** and P < 0.001***) compared to control
(0 mg/kg) according to ANOVA (two-way) test and Bonferroni post-test. The bars indicate
the standard error of the measurements.

Fig. 6. Effect of sCS and heparin on glycosaminoglycans synthesis by endothelial cells,
attached to cell surface (A) and released in the medium (B). Black bars (heparan sulfate);
white bars (chondroitin sulfate). The asterisks represent statistically significant points
(P < 0.01*; and P < 0.01**) compared to control (0 μg/kg) according to ANOVA (two-
way) test and Bonferroni post-test. The bars indicate the standard error of the measure-
ments.
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protein complex, dynamics and conformation (Chavante et al., 2014;
Lima et al., 2013; Pomin & Mourao, 2014). In this sense, the con-
formational changes could also help us to understand the anticoagulant
activity of sCS. In their study involving fully O-sulfonated chondroitin
sulfate, Maruyama et al. showed that 2,3-di-O-Sulfo GlcA residues at
30 °C assume the 1C4 conformation, resembling the 2-O-sulfo IdoA re-
sidue found in heparin. Similarly as occurs with heparin, this con-
formation strongly favors anti-IIa activity (Maruyama et al., 1998).
However, the anti-Xa activity of sCS is remarkably lower than in-
hibitory capacity of heparin, probably due to inability of sCS to stabilize
AT. All these findings corroborate to clarify the complex multifactor
relationships that trigger the anticoagulant activity of sCS and others
GAGs.

3.3. Antithrombotic activities of sCS

Since FIIa inhibition plays an important role in different hemostasis
events, the antithrombotic effect and bleeding potential of sCS were
posteriorly analyzed.

The in vivo sCS antithrombotic effect was evaluated using an in-
duced venous thrombosis model in rats, as described in methods. The
control group only received saline solution and demonstrated 100% of
thrombus formation with an average weight of 6.6 ± 0.7mg (Fig. 5).
In contrast, treatment with sCS and heparin resulted in a significant
decrease in the thrombus weight and the maximum effect achieved
using doses 1.2mg/kg (∼70% of decrease) of both agents.

Based on previous results, the antithrombotic effect in vivo observed
by sCS may be related to its HCII-mediated anti-IIa activity.
Furthermore, the conformational flexibility of 2,3-di-O-Sulfo GlcA re-
sidues in the sCS chain (Li et al., 2009; Maruyama et al., 1998; Zhang
et al., 2008), resembling to IdoA residues, appears to have a relation-
ship with the observed antithrombotic activity (Linhardt et al., 1991). It
has also been shown that endothelial cells are target of antithrombotic
drugs action, such as heparin and correlated compounds (Boucas et al.,
2012; Nader et al., 2001; Nader, Buonassisi, Colburn, & Dietrich, 1989;
Nader, Dietrich, Buonassisi, & Colburn, 1987; Rocha et al., 2005;
Trindade et al., 2008). When exposed to such compounds, endothelial
cells are stimulated to synthesize and release a peculiar heparan sulfate
with antithrombotic action. sCS was also able to stimulate the synthesis
of such heparan sulfate (Fig. 6A and B) in a dose-dependent manner, in
both cellular fraction and secreted to the medium. This, therefore, could
be another mechanism by which chondroitin plays antithrombotic

effect in vivo.

3.4. Hemorrhagic effect

The sCS residual hemorrhagic effect was evaluated after tissue in-
jury induction in rat’s tail as described in methods. From the animal
model used, when compared to heparin, it was evident that sCS had a
lower bleeding potential (Fig. 7). Up to four minutes after contact with
the sample, sCS and heparin had the same bleeding potential. Overtime,
animals treated with sCS presented less protein content, which re-
presents a lower residual bleeding activity. The high bleeding potential
of heparin in the applied methodology is mainly associated to its
binding to myosin ATPase molecule in tissue injury region, promoting
inhibition of local muscle contractility (Cruz & Dietrich, 1967). Thus, it
is possible speculate that sCS is unable to bind to myosin ATPase mo-
lecule with the same affinity of mammalian heparin. Other possible
mechanism for sCS hemorrhagic effect may be attributed to its higher
sulfation degree, which would be responsible to induce the fibrinolytic
system through tissue plasminogen activation (Carranza, Durand-
Rougley, & Doctor, 2008). Bearing in mind that the animal model used
in this study does not favour the contact of sCS with the systemic cir-
culation, the idea that plasminogen may also be activated by sCS locally
cannot be discarded.

Although marine invertebrates are devoid of coagulation system
similar to those of mammalians, the structural similarities of their GAGs
with mammalian heparin (or in this case, oversulfated chondroitin
sulfate – OSCS) allows us to observe how GAGs are capable of inter-
acting with proteases from coagulation system and influencing he-
mostasis events.

A wide range of GAGs with complex and varied saccharidic struc-
tures and a very diversified sulfation pattern has been characterized in
several marine organisms, including other L. vannamei GAGs (Brito
et al., 2008, 2014; Chavante et al., 2014). Despite this, the implications
that such structural modifications have on the biological role of these
marine organisms is not yet fully understood. However, it has been
suggested that adverse conditions caused by salinity in the marine en-
vironment have influenced the structure of GAGs causing, for example,
the increase of the sulfation degree of these molecules. Such mod-
ifications would be required to favor interactions with target molecules
(Vilela-Silva, Werneck, Valente, Vacquier, & Mourao, 2001).

4. Conclusion

The pharmacological activities attributed to sCS hitherto detached
cannot likewise be observed in CS molecules from terrestrial animals.
These differences seem to be directly related to the structural peculia-
rities of sCS, mainly due to the presence of unusual 2,3-di-O-Sulfo GlcA
residue. Because of similarity between sCS molecules and OSCS found
in specific lots of heparin the anticoagulant and antithrombotic effects
and the low hemorrhagic potential of sCS should be viewed with cau-
tion. However, we must emphasize that the experimental models used
in this work as well as the source of sCS molecules are different.
Therefore, its ability to exert the same adverse reactions observed for
synthetic OSCS cannot be inferred. In another perspective, the in-
formation provided here brings to light new questions about the routes
capable of explaining how such unusual disulfated residues are syn-
thesized in terms of GAG natural biosynthesis. Furthermore, for both
economical and environmental reasons, the identification of a molecule
from a low market value sources may provide an attractive waste
management in the shrimp farming and carrying out further studies
with this GAG.

Supplementary data associated with this article can be found in the
online version.

Fig. 7. Hemorrhagic activity in a rat-tail scarification model. 100 μg/mL of sCS (white
circle) or heparin (black circle) was applied topically and the bleeding potency measured
after 2min following up to 40min. The bars indicate the standard error of the mea-
surements.
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