
The lowest vibration spectra of multi-component
structures with contrast material properties

J. Kaplunov∗, D.A. Prikazchikov, L.A. Prikazchikova, O. Sergushova

School of Computing and Mathematics, Keele University,
Keele, Staffordshire, ST5 5BG, UK

Abstract

The paper is concerned with the lowest vibration modes of multi-component

rods and cylinders with alternating high contrast material properties of the

components. It is demonstrated that these modes correspond to almost rigid

body motions of the ”stiffer” components. A general perturbation scheme is

developed. At leading order polynomial frequency equations are derived, along

with linear algebraic equations for the associated eigenforms. In addition, for

multi-component rods, higher order corrections are also obtained. Examples of

three- and five-component structures are presented, illustrating the efficiency of

the proposed approach.
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1. Introduction

Composite materials with high-contrast properties find numerous applica-

tions in modern engineering, including in particular sandwich structures as pho-

tovoltaic panels [1] and laminated glass [2], energy scavenging devices [3], smart

periodic structures [4], and acoustic metamaterial components [5]. In addition,5

we mention [6], reporting on the recent state of art within the area of laminated

plates and sandwich structures.
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There are two main methodologies for theoretical analysis of high-contrast

composite materials. The first one deals with asymptotic homogenisation of

high-contrast periodic media at various level of mathematical rigour, see e.g.10

[7], [8], [9], and [10]. Another research strand is oriented mainly towards two-

or three-component structures. For example, in [11], the low-frequency vibra-

tions of a three-component elastic rod are studied, revealing the conditions on

material parameters resulting in the so-called ”global” low-frequency regime,

associated with polynomial eigenforms, along with the ”local” low-frequency15

regime, for which the displacements of certain components demonstrate oscilla-

tory behaviour. Vibrations of a two-component string on an elastic foundation

over the near-cut-off frequency range are analysed in [12]. The current contri-

bution aims at composite structures involving arbitrary number of components

with high contrast properties, in a sense bridging the gap between the afore-20

mentioned setups. We also mention here the analogy between the asymptotic

procedures for periodic media and layered thin structures, addressed in [13].

The proposed approach relies on the concept of ”almost rigid body motion”,

see e.g. [11]. In this case the stiffer components, subject to free ends boundary

conditions, perform rigid body motion at leading order. At the same time the25

softer parts, subject to fixed ends boundary conditions, undergo quasi-static

deformation, which is almost homogeneous for a rod. The observations in [11]

are also relevant for imposing conditions on material parameters of a three-

layered strongly inhomogeneous plate, leading to the first shear cut-off tending

to zero and thus justifying two-mode low-frequency approximations, see [14],30

and [15].

In the present paper we study multi-component structures with arbitrary

number of components. More specifically, we focus on longitudinal deforma-

tions of rods and axisymmetric antiplane motions of cylinders. The related

exact solutions are rather involved, especially for multi-layered cylinders, with35

a lengthy transcendental frequency equation containing Bessel functions, hence,

motivating an asymptotic consideration.

A perturbation procedure is established. At leading order, we observe rigid
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body motion of the stiffer components along with static deformation of softer

parts. It is remarkable that for a rod softer parts undergo almost homogeneous40

deformation, whereas for a cylinder a logarithmic behaviour for displacement is

observed due to the effect of curvature. At next order, we establish a polyno-

mial frequency equation, with the polynomial order being equal to the number

of stiffer components. Simultaneously, we derive linear algebraic equations for

the sought for eigenforms. In addition, for rods, proceeding to higher orders,45

we derive refined two-term expansions for the eigenfrequencies and eigenforms.

Illustrative examples for three- and five- component rods and cylinders are pre-

sented.

2. Perturbation scheme for a multi-component rod

Consider an n-component rod composed of alternating stiff and soft parts of

arbitrary lengths li, i = 1, ...n, see Figure 1. Assume that the Young’s modulus

of the stiffer parts, E1, is much greater than that of the softer components, E2,

i.e.

ε =
E2

E1
� 1

is a small parameter. For the sake of simplicity, we also assume that the densities50

of stiffer and softer components, ρ1 and ρ2 are related as ρ2/ρ1 ∼ ε.

x
l1 l2 l3 l4 l5 ... ln−2 ln−1 ln0

Figure 1: A multi-component piecewise-homogeneous rod.

The equations of motion of the components are given by

d2ui
dx2

+
ω2

c2m
ui = 0, i = 1, 2, ..., n; m = 1, 2, (1)

where ui are displacements, x is longitudinal coordinate, ω is vibration fre-

quency, cm = c1 or cm = c2 for the stiff and soft components, respectively, with

cm =
√
Em/ρm, denoting longitudinal wave speeds.
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Let us define local dimensionless coordinates and frequencies by

Xi =
x

li
, and Ωi =

ωli
cm

. (2)

In addition, the relation

Ωi = Li
jΩj , (3)

is used for the stiff components, where Li
j = li/lj . Also, we introduce dimen-

sionless quantities

bi =
1

li

i−1∑
n=0

ln, i = 1, 2, ..., n, (4)

such that

bi ≤ Xi ≤ bi + 1. (5)

In this section we set l0 = 0, while in Section 4 below we will have l0 > 0. The

equations of motion (1) rewritten in dimensionless form become

d2ui
dX2

i

+ Ω2
iui = 0. (6)

The continuity conditions at the interfaces are given by

ui|Xi=bi+1 = ui+1|Xi+1=bi+1 , (7)

and
dui
dXi

∣∣∣∣
Xi=bi+1

= εjLi
i+1

dui+1

dXi+1

∣∣∣∣
Xi+1=bi+1

, (8)

where j = 1 if the i-th component is stiff, and j = −1 if it is soft.55

For the sake of definiteness, in this section we restrict ourselves to the case

in which the ends of the outer stiffer components (i = 1 and i = n) are traction-

free, i.e.
du1
dX1

∣∣∣∣
X1=0

=
dun
dXn

∣∣∣∣
Xn=bn+1

= 0. (9)

Thus, the overall number of components n is an odd number, and n ≥ 3.

The objective of the paper is to tackle the frequency range Ω2
1 ∼ Ω2

2 ∼ . . . ∼

Ω2
n ∼ ε, which has been referred to in [11] as the global low-frequency one.

Let us expand frequency parameters Ωi and displacements ui in the asymptotic

series

Ω2
i = ε

(
Ω2

i0 + εΩ2
i1 + . . .

)
, (10)
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and

ui = ui0 + εui1 + . . . (11)

First, we deduce the leading order displacements for all of the n1 =
n+ 1

2
stiff inner components by substituting (10) and (11) into (6) and (8). Then, we

obtain boundary value problems for the equations

d2ui0
dX2

i

= 0, (12)

with i = 2p−1, p = 1, 2, ..., n1, subject to the homogeneous Neumann boundary

conditions
dui0
dXi

∣∣∣∣
Xi=bi

=
dui0
dXi

∣∣∣∣
Xi=bi+1

= 0. (13)

Therefore, for the displacements of the stiff components we have uniform

static variations, corresponding to the rigid body motions, i.e.

ui0 = Ci,0 = const. (14)

The leading order boundary value problems for the n2 =
n− 1

2
soft com-

ponents follow from the substitution of (10) and (11) into (6) and (7). Then,

taking into account the solution (14), we obtain the inhomogeneous Dirichlet

boundary conditions

ui0|Xi=bi = Ci−1,0, ui0|Xi=bi+1 = Ci+1,0 (15)

for the same equation (12), with i = 2p, p = 1, 2, ..., n2, governing now the

equilibrium of the soft components. As a result, we arrive at the following

linear displacement variations of the soft components

ui0 = Ci−1,0 + (Ci+1,0 − Ci−1,0)(Xi − bi), (16)

corresponding to their homogeneous deformations.

Let us now proceed to the next order problems for the stiff components,

having the equations

d2ui1
dX2

i

+ Ω2
i0ui0 = 0, i = 2p− 1, p = 1, 2, ..., n1, (17)
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with the Neumann boundary conditions for the inner parts given by

dui1
dXi

∣∣∣∣
Xi=bi

= Li
i−1(Ci,0 − Ci−2,0),

dui1
dXi

∣∣∣∣
Xi=bi+1

= Li
i+1(Ci+2,0 − Ci,0).

(18)

For the outer parts boundary conditions are written as

du11
dX1

∣∣∣∣
X1=0

= 0,
du11
dX1

∣∣∣∣
X1=1

= L1
2(C3,0 − C1,0), (19)

and

dun1
dXn

∣∣∣∣
Xn=bn

= Ln
n−1(Cn,0 − Cn−2,0),

dun1
dXn

∣∣∣∣
Xn=bn+1

= 0. (20)

We integrate equations (17) over Xi (bi ≤ Xi ≤ bi + 1), taking into account

(14), resulting in

dui1
dXi

∣∣∣∣bi+1

bi

= −Ω2
i0Ci,0. (21)

Next, combining the formulae (18)-(21), we obtain for each of the stiffer com-

ponents

C1,0Ω2
10 = L1

2 (C1,0 − C3,0) ,

...

Ci,0Ω2
i0 = (Li

i−1 + Li
i+1)Ci,0 − Li

i−1Ci−2,0 − Li
i+1Ci+2,0,

...

Cn,0Ω2
n0 = Ln

n−1 (Cn,0 − Cn−2,0) ,

(22)

where i = 2p − 1, p = 1, 2, ..., n1, and the frequency parameters are related to

each other by (3). The derived relations result in the frequency equation in the

form of a polynomial of order n1 in one of the frequency parameters above, e.g.60

Ω2
10, see also examples below. Note that in the special case Ci,0 = 0 the system

(22) degenerates, see the example in subsection 3.2.

The eigenforms for the stiff components then come from linear equations

(22), namely

ui1 = Ai,1X
2
i +Bi,1Xi + Ci,1, i = 2p− 1, p = 1, 2, ..., n1, (23)
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where the constants are defined as

Ai,1 = −1

2
Ω2

i0ui0, (24)

and

B1,1 = 0,

...

Bj,1 = Lj
j+1(Cj+2,0 − Cj,0) + Ω2

j0uj0(bj + 1),

...

Bn,1 = Ω2
n0un0(bn + 1),

(25)

j = 2p − 1, p = 2, ..., n1 − 1. Unknown constants Ci,1 in (23) are to be found

from the next order problem.

Consider the Dirichlet boundary value problem for the soft components of

the rod
d2ui1
dX2

i

+ Ω2
i0ui0 = 0, i = 2p, p = 1, 2, ..., n2, (26)

subject to the boundary conditions

ui1|Xi=bi
= Ai−1,1 (bi−1 + 1)

2
+Bi−1,1 (bi−1 + 1) + Ci−1,1,

ui1|Xi=bi+1 = Ai+1,1b
2
i+1 +Bi+1,1bi+1 + Ci+1,1.

(27)

Solving this problem we obtain for the soft components

ui1 = Ni,1X
3
i + Fi,1X

2
i + (Gi,1 + Ci+1,1 − Ci−1,1)Xi +Hi,1, (28)

where

Ni,1 = −1

6
Ω2

i0 (Ci+1,0 − Ci−1,0) ,

Fi,1 = −1

2
Ω2

i0 (Ci−1,0 − (Ci+1,0 − Ci−1,0)bi) ,

Gi,1 = Ai+1,1b
2
i+1 −Ai−1,1(bi−1 + 1)2 +Bi+1,1bi+1 −Bi−1,1(bi−1 + 1)

−Ni,1(3b2i + 3bi + 1)− Fi,1(2bi + 1),

Hi,1 = Ai+1,1b
2
i+1 +Bi+1,1bi+1 + Ci+1,1 −Ni,1(bi + 1)3 − Fi,1(bi + 1)2

− (Gi,1 + Ci+1,1 − Ci−1,1) (bi + 1),

(29)
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In order to determine unknown constants Ci,1, we have to proceed to the next

order problem for the stiff components, namely

d2ui2
dX2

i

+ Ω2
i0ui1 + Ω2

i1ui0 = 0, i = 2p− 1, p = 1, 2, ..., n1 (30)

subject to the Neumann boundary conditions for the inner components

dui2
dXi

∣∣∣∣
Xi=bi

= Li
i−1

(
3Ni−1,1 (bi−1 + 1)

2
+ 2Fi−1,1 (bi−1 + 1) +Gi−1,1

)
,

dui2
dXi

∣∣∣∣
Xi=bi+1

= Li
i+1

(
3Ni+1,1b

2
i+1 + 2Fi+1,1bi+1 +Gi+1,1

)
,

and for the outer components

du12
dX1

∣∣∣∣
X1=0

= 0,

du12
dX1

∣∣∣∣
X1=1

= L1
2

(
3N2,1b

2
2 + 2F2,1b2 +G2,1

)
,

and

dun2
dXn

∣∣∣∣
Xn=bn

= Ln
n−1

(
3Nn−1,1 (bn−1 + 1)

2
+ 2Fn−1,1 (bn−1 + 1) +Gn−1,1 + Cn,1 − Cn−2,1

)
,

dun2
dXn

∣∣∣∣
Xn=bn+1

= 0.
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Integrating (30), we arrive at simultaneous equations similar to (22). They are

C1,0Ω2
11 = −L1

2

(
3N2,1b

2
2 + 2F2,1b2 +G2,1 + C3,1

)
− 1

3
A1,1Ω2

10,

...

Ci,0Ω2
i1 = −Li

i+1

{
(Ai+2,1b

2
i+2 −Ai,1(bi + 1)2 +Bi+2,1bi+2 −Bi,1(bi + 1)

−Ni+1,1(3bi+1 + 1)− Fi+1,1 + Ci+2,1 − Ci,1}

+ Li
i−1

{
Ai,1b

2
i −Ai−2,1(bi−2 + 1)2 +Bi,1bi −Bi−2,1(bi−2 + 1)

+Ni−1,1(3bi−1 + 2) + Fi−1,1 + Ci,1 − Ci−2,1}

− Ω2
i0

(
1

3
Ai,1(3b2i + 3bi + 1) +

1

2
Bi,1(2bi + 1) + Ci,1

)
,

...

Cn,0Ω2
n1 = Ln

n−1

{
3Nn−1,1(bn−1 + 1)2 + 2Fn−1,1(bn−1 + 1)

+Gn−1,1 + Cn,1 − Cn−2,1}

− Ω2
n0

(
1

3
An,1(3b2n + 3bn + 1) +

1

2
Bn,1(2bn + 1) + Cn,1

)
,

(31)

where i = 2p − 1, p = 1, 2, ..., n1, and frequency components are again related65

through (3).

Setting, for example, C1,1 = 0 we can find the rest of the constants Ci,1 from

(31) together with the correction to the frequency parameter, say, expressed in

terms of Ω2
11.

3. Three- and five-component rods70

3.1. Three-component rod

x
l1 l2 l30

Figure 2: A three-component piecewise-homogeneous rod.

As an example, consider first a three-component rod with two stiff and one

soft components (n1 = 2, n2 = 1), shown in Figure 2. In this case we have from
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(22) and also (3) for the stiff parts

C1,0Ω2
10 = L1

2(C1,0 − C3,0), (32)

C3,0Ω2
30 = L3

2(C3,0 − C1,0), (33)

together with

Ω10 = L1
3Ω30. (34)

These lead to a bi-quadratic frequency equation given by

Ω2
10

(
Ω2

10 − L1
2

(
1 + L1

3

) )
= 0. (35)

Its solution can be written as

Ω2
10 = kL1

2, (36)

where k = 0 or k = 1 + L1
3. The last result coincides with that in [11]. We also

have the relation

C3,0 = (1− k)C1,0. (37)

Using (14) and (16) with (36) we can determine the displacement profiles in

terms of one constant only, e.g. C1,0. Then, the eigenforms become

u10 = C1,0,

u20 = C1,0

(
1− k (X2 − b2)

)
,

u30 = C1,0 (1− k) .

(38)

Clearly, the last expressions are exact at k = 0 and correspond to rigid body

motion with zero frequency. Proceeding with the next order approximation at

k = 1 +L1
3, see (31), we arrive at a correction to the sought for eigenfrequencies

given by

Ω2
11 =

L1
2

6

{
k2L1

2 + 3kL1
2

(
−1 + b3(b3 + 2)(k − 1)

(
L3
1

)2)
+ c2L2

1k(k − 3)− 6C3,1

}
,

(39)
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where c = c1/c2 and the related eigenforms are expressed through a single

constant as

u11 = A1,1X
2
1 ,

u21 = N2,1X
3
2 + F2,1X

2
2 + (G2,1 + C3,1)X2 +H2,1,

u31 = A3,1X
2
3 +B3,1X3 + C3,1,

(40)

where

A1,1 = −1

2
Ω2

10C1,0,

A3,1 = −1

2
(1− k)Ω2

30C1,0,

B3,1 = (1− k)(b3 + 1) Ω2
30C1,0,

N2,1 =
1

6
kΩ2

20C1,0,

F2,1 = −1

2
(1 + kb2) Ω2

20C1,0,

G2,1 = A3,1b
2
3 −A1,1(b1 + 1)2 +B3,1b3 −N2,1(3b22 + 3b2 + 1)− F2,1(2b2 + 1),

H2,1 = A3,1b
2
3 +B3,1b3 − C3,1b2 −N2,1(b2 + 1)3 − F2,1(b2 + 1)2 −G2,1(b2 + 1),

and C3,1 is given in Appendix A.

For a regular three-component rod li = l, i = 1, 2, 3, we have the two-term

expansions (k = 2)

Ω2
1 = 2ε− ε2

3

(
c2 + 4

)
+ . . . (41)

with

u1 = 1− εX2
1 + . . . ,

u2 = (3− 2X2)− ε

3
(3− 2X2)

(
c2(X2 − 1)(X2 − 2) + 3

)
+ . . . ,

u3 = −1 + ε(X3 − 3)2 + . . . ,

(42)

where c =
c1
c2

=

√
E1ρ2
E2ρ1

∼ 1. This coefficient appearing only at higher order

incorporates the effect of the inertia of the soft component and the elastic prop-

erties of the stiff components. In fact, the dimensional leading order frequency75

ω2 ∼ 2E2/l
2
1ρ1 in (41) depends only upon the density of the stiff component and
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the elastic properties of the soft component as in the approximate spring-mass

model presented in the Appendix B.

The eigenforms (42) are shown in Figure 3 at ε = 0 (solid line) and ε = 0.1,

c = 1 (dashed line). In this figure u = u1 for 0 6 x/l 6 1, u = u2 for 1 6 x/l 6 2,80

and u = u3 for 2 6 x/l 6 3.

It is worth noting that the leading order solution ε = 0 associated with

rigid body motion of stiff components and homogeneous deformation of soft

components, justifies an elementary spring-mass model exposed in Appendix B.

The correction to the leading order solution derived in this section reveals the85

deviation in the low-frequency behaviour of a continuous rod from the afore-

mentioned discrete scheme. This observation is certainly true not only for a

three-component rod.

u/C1,0

x/l

Figure 3: Asymptotic expansions (42) of the eigenform of a regular three-component rod at

ε = 0 (solid line) and ε = 0.1, c = 1 (dashed line).

3.2. Five-component rod

x
l1 l2 l3 l4 l50

Figure 4: A five-component piecewise-homogeneous rod.
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Next, let us consider a five-component rod with three stiff and two soft

components (n1 = 3, n2 = 2), see Figure 4. Then, we get from (31)

C1,0Ω2
10 = L1

2(C1,0 − C3,0),

C3,0Ω2
30 = (L3

2 + L3
4)C3,0 − L3

2C1,0 − L3
4C5,0,

C5,0Ω2
50 = L5

4(C5,0 − C3,0),

(43)

with

Ω10 = L1
3Ω30 = L1

5Ω50. (44)

The formulae (43) together with relations (44), under the assumption C3,0 6= 0

implies the following bi-cubic frequency equation

Ω2
10

{
Ω4

10 − Ω2
10

(
L1
2 + L1

2L
1
3 + L1

3L
1
4 + L1

4L
1
5

)
+ L1

2L
1
4

(
L1
3 + L1

3L
1
5 + L1

5

)}
= 0,

(45)

resulting in (36) where k = 0, or

k =
L1
5L

2
4 + L1

3 + L1
3L

2
4 + 1

2

±
√

(L1
5L

2
4 + L1

3 + L1
3L

2
4 + 1)2 − 4L2

4(L1
5 + L1

3 + L1
3L

1
5)

2
. (46)

In addition, we deduce

C3,0 = (1− k)C1,0, C5,0 =
1− k

1− L4
2L

5
1k
C1,0, k 6= 1. (47)

The associated eigenforms are

u10 = C1,0,

u20 = C1,0

(
1− k(X2 − b2)

)
,

u30 = C1,0(1− k),

u40 = C1,0(1− k)

(
1 +

L4
2L

5
1k

1− L4
2L

5
1k

(X4 − b4)

)
,

u50 = C1,0(1− k)
1

1− L4
2L

5
1k
.

(48)

As for a three-component rod, these formulae are exact at k = 0 corresponding90

to global rigid body motion.
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At next order, for k given by (46), we obtain corrections to the eigenfrequen-

cies

Ω2
11 =− 1

6

{
3k(1− k)b23

(
L3
2

)2
+ k(3− k)

(
c2 +

(
L1
2

)2)
+ 6L1

2

(
C3,1 − kb3L3

2

)}
,

(49)

together with the formulae

u11 = A1,1X
2
1 ,

u21 = N2,1X
3
2 + F2,1X

2
2 + (G2,1 + C3,1)X2 +H2,1,

u31 = A3,1X
2
3 +B3,1X3 + C3,1,

u41 = N4,1X
3
4 + F4,1X

2
4 + (G4,1 + C5,1 − C3,1)X4 +H4,1,

u51 = A5,1X
2
5 +B5,1X5 + C5,1,

(50)

where all the constants, apart from C3,1 and C5,1 can be determined from (24),

(25), and (29). Rather cumbersome expressions for C3,1 and C5,1, following

from (31), are given in Appendix A.

In the particular case C3,0 = 0, studied in greater detail below in this section

for a regular five-component rod, we have Ω2
10 = L1

2 and necessarily the identity

L5
1L

5
2 = L5

4 must be satisfied. In this case eigenforms at leading order become

u10 = C1,0,

u20 = C1,0

(
1− (X2 − b2)

)
,

u30 = 0,

u40 = −C1,0L
4
2(X4 − b4),

u50 = −C1,0L
4
2.

(51)

Setting C3,0 = 0 and k = 1 in (49) and (50), and taking into account L5
1L

5
2 = L5

4,95

we can obtain the next order frequency and displacements for this particular

case.

The eigenmodes for a regular five-component elastic rod (li = l, i = 1, 2, ..., 5)

for k = 1 and k = 3 are respectively given by

Ω2
1 = ε− ε2

3

(
c2 +

5

2

)
+ . . . , (52)

14



with

u1 = 1− ε

2
X2

1 + . . . ,

u2 = (2−X2) + ε

(
1

6
c2X3

2 − c2X2
2 +

11

6
c2X2 +X2 − c2 −

3

2

)
+ . . . ,

u3 = ε

(
5

2
−X3

)
+ . . . ,

u4 = 3−X4

+ ε

(
1

6
c2X3

4 −
3

2
c2X2

4 +
13

3
c2X4 +X4 − 4c2 − 7

2

)
+ . . . ,

u5 = −1 +
ε

2
(X5 − 5)2 + . . . ,

(53)

and

Ω2
1 = 3ε− ε2

2
(2c2 + 3) + . . . , (54)

with

u1 = 1− ε3

2
X2

1 + . . . ,

u2 = 4− 3X2

+ ε

(
3

2
c2X3

2 − 6c2X2
2 +

17

2
c2X2 − 4c2 + 3X2 −

9

2

)
+ . . . ,

u3 = −2 + ε

(
c2 + 3X2

3 − 15X3 +
39

2

)
+ . . . ,

u4 = 3X4 − 11

− ε

2

(
3c2X3

4 − 33c2X2
4 + 122c2X4 − 152c2 + 6X4 − 21

)
+ . . . ,

u5 = 1− ε3

2
(X5 − 5)2 + . . .

(55)

The eigenforms (53) and (55) are displayed in Figure 5 for c = 1.
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u/C1,0

x/l

(a) k = 1

u/C1,0

x/l

(b) k = 3

Figure 5: Asymptotic expansions (53) (a) and (55) (b) of the eigenforms of a regular five-

component rod at ε = 0 (solid line) and ε = 0.1, c = 1 (dashed line)

4. Perturbation scheme for a multi-layered cylinder

Consider a multi-layered hollow cylinder with high-contrast properties of100

its layers. The cross-section shown in Figure 6, contains a hole of radius l0,

surrounded by a finite number n of soft and stiff concentric annular layers of

widths li, i = 1, 2, ..., n. Let us specify the small parameter ε =
µ1

µ2
� 1, where

µ1 and µ2 are shear moduli in soft and stiff layers, respectively. Similarly to the

previous consideration for a rod, we also assume that ρ1/ρ2 ∼ ε.105
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r0 l0 l1 l2 l3 ... ln−2 ln−1 ln

Figure 6: Cross-section of a hollow multi-layered circular cylinder.

The equations of anti-plane motion are written as

r2
d2ui
dr2

+ r
dui
dr

+
ω2r2

c2m
ui = 0, i = 1, 2, ...n, m = 1, 2, (56)

where ui denote out-of-plane displacements, r is polar radius, and cm =

√
µm

ρm
are shear wave speeds.

First, we rewrite the equations (56) in dimensionless form as

Ri
d2ui
dR2

i

+
dui
dRi

+ Ω2
iRiui = 0, (57)

with

Ri =
r

li
and Ωi =

ωli
cm

.

The continuity conditions at interfaces are given by

ui|Ri=bi+1 = ui+1|Ri+1=bi+1
, (58)
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and
dui
dRi

∣∣∣∣
Ri=bi+1

= εjLi
i+1

dui+1

dRi+1

∣∣∣∣
Ri+1=bi+1

, (59)

where bi are defined by (5), and j = 1 if the i-th component is stiff, and j = −1

if it is a soft one.

In contrast to Section 2 for a rod, we restrict ourselves to fixed contours of

the soft inner and outer layers of the cylinder, i.e.

u1|R1=b1 = un|Rn=bn+1 = 0. (60)

Thus, we have now n1 =
n− 1

2
stiff layers and n2 =

n+ 1

2
soft ones.110

As before, we adapt the asymptotic series (10) and (11) over the global

low-frequency range, i.e. Ω2
1 ∼ Ω2

2 ∼ . . . ∼ Ω2
n ∼ ε.

At leading order, we get for the stiff layers the static equations

Ri
d2ui0
dR2

i

+
dui0
dRi

= 0, i = 2p, p = 1, 2, .., n1, (61)

subject to the Neumann boundary conditions

dui0
dRi

∣∣∣∣
Ri=bi

=
dui0
dRi

∣∣∣∣
Ri=bi+1

= 0. (62)

The solutions of the formulated boundary value problems

ui0 = Ci,0, (63)

correspond to rigid body motions.

For the soft layers we now have the same equations (61) with i = 2p−1, p =

1, 2, ..., n2. These should be subject to a set of Dirichlet boundary conditions

given by

ui0|Ri=bi = Ci−1,0 , ui0|Ri=bi+1 = Ci+1,0 ,

u10|R1=b1 = 0 , u10|R1=b1+1 = C2,0 ,

un0|Rn=bn = Cn−1,0 , un0|Rn=bn+1 = 0 .

(64)

The solution to the equations (61) with the boundary conditions (64) gives for

18



the soft layers

u10 = C2,0 δ1 ln

(
R1

b1

)
,

...

ui0 = Ci−1,0 + (Ci+1,0 − Ci−1,0)δi ln

(
Ri

bi

)
,

...

un0 = Cn−1,0

(
1− δn ln

(
Rn

bn

))
,

(65)

where

δi =
1

ln
(
1 + b−1

i

) . (66)

At next order, we write down for the stiff layers

Ri
d2ui1
dR2

i

+
dui1
dRi

+ Ω2
i0Riui0 = 0, i = 2p, p = 1, 2, ..., n1, (67)

and

dui1
dRi

∣∣∣∣
Ri=bi

=
Li
i−1 (Ci,0 − Ci−2,0) δi−1

(bi−1 + 1)
,

dui1
dRi

∣∣∣∣
Ri=bi+1

=
Li
i+1(Ci+2,0 − Ci,0)δi+1

bi+1
.

(68)

Integrating (67), we deduce

Ri
dui1
dRi

∣∣∣∣
Ri=bi+1

− Ri
dui1
dRi

∣∣∣∣
Ri=bi

= −Ci,0Ω2
i0

2bi + 1

2
. (69)

Finally, using (68) and (69), we arrive at (n > 3)

C2,0Ω2
20 =

2

2b2 + 1

(
C2,0δ1 + (C2,0 − C4,0) δ3

)
,

...

Ci,0Ω2
i0 =

2

2bi + 1

(
(Ci,0 − Ci−2,0) δi−1 + (Ci,0 − Ci+2,0) δi+1

)
,

...

Cn−1,0Ω2
(n−1)0 =

2

2bn−1 + 1

(
(Cn−1,0 − Cn−3,0) δn−2 + Cn−1,0 δn

)
,

(70)
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where the frequency parameters are related to each other by the formulae (3).

Similarly to Section 2, the relations (70) lead to a polynomial frequency equation115

of order n1 =
n− 1

2
in any of the frequency parameters Ω2

i0. They also enable

calculation of eigenforms together with the formulae (65) for the soft layers.

5. Three- and five-layered cylinders

r0 l0 l1 l2 l3

(a)

r0 l0 l1 l2 l3 l4 l5

(b)

Figure 7: Cross-sections of a) three-layered and b) five-layered hollow circular cylinders.

Now, we can implement the formulae above to find the lowest eigenfrequen-

cies and the associated eigenforms for anti-plane motion of a three-layered hollow

circular cylinder, see Figure 7(a). Using (70), we can write down for the stiff

layer

Ω2
20 =

2 (δ1 + δ3)

2b2 + 1
. (71)
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Hence, we have the following expressions for the leading order eigenforms

u10 = C2,0 δ1 ln

(
R1

b1

)
,

u20 = C2,0 ,

u30 = C2,0 δ3 ln

(
b3 + 1

R3

)
,

(72)

demonstrated in Figure 8 for li = l, i = 0, . . . , 3 with b1 = 1, b3 = 3, δ1 ≈ 1.44,

δ3 ≈ 3.48.120

u/C2,0

(a) 3D displacement profile

u/C2,0

r/l

(b) 2D cross-section

Figure 8: Leading order approximation (72) of the eigenform of a three-layered cylinder with

li = l, i = 0, . . . , 3 and b1 = 1, b3 = 3, δ1 ≈ 1.44, δ3 ≈ 3.48, (a) 3D profile and (b) 2D

cross-section.

Next, for a five-component cylinder, see Figure 7(b), we get from (70) and

(3)

Ω2
20 =

2

2b2 + 1

(
δ1 +

(C2,0 − C4,0)δ3
C2,0

)
,

Ω2
40 =

2

2b4 + 1

(
δ5 +

(C4,0 − C2,0)δ3
C4,0

)
,

(73)

together with the relation

Ω20 = L2
4Ω40. (74)

Using the equations above, we can obtain the bi-quadratic frequency equa-
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tion

Ω4
20(L4

2)2(2b2 + 1)(2b4 + 1)

− 2Ω2
20

(
(2b2 + 1)(δ3 + δ5) +

(
L4
2

)2
(2b4 + 1)(δ1 + δ3)

)
+ 4(δ1δ3 + δ3δ5 + δ1δ5) = 0,

(75)

resulting in

Ω2
20 =

2

2b2 + 1
(δ1 + (1− k)δ3) , (76)

where the solutions for k are

k =
1

2δ3

{(
(δ1 + δ3)− γ (δ3 + δ5)

(
L2
4

)2)
±
√(

(δ1 + δ3)− γ (δ3 + δ5) (L2
4)

2
)2

+ 4γ δ23 (L2
4)

2
}
,

with

γ =
2b2 + 1

2b4 + 1
.

As a result, the leading order eigenforms are

u10 = C2,0 δ1 ln

(
R1

b1

)
,

u20 = C2,0 ,

u30 = C2,0 δ3

{
k ln

(
R3

b3

)
− ln

(
R3

b3 + 1

)}
,

u40 = C2,0k,

u50 = C2,0k δ5 ln

(
b5 + 1

R5

)
.

(77)

It is clear that in the considered case of two stiffer layers, there are two options

for uniformly varying leading order displacements u20 and u40, being either of

the same or opposite sign. The associated numerical illustrations are presented

in Figure 9 for k ≈ 0.74 and in Figure 10 for k ≈ −0.75 with li = l, i = 0, ..., 5,

b1 = 1, b3 = 3, b5 = 5, δ1 ≈ 1.44, δ3 ≈ 3.48, δ5 ≈ 5.48.125
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u/C2,0

(a) 3D displacement profile

u/C2,0

r/l

(b) 2D cross-section

Figure 9: Leading order approximation (77) of the eigenform of a five-layered cylinder with

k ≈ 0.74 and li = l, i = 0, ..., 5, b1 = 1, b3 = 3, b5 = 5, δ1 ≈ 1.44, δ3 ≈ 3.48, δ5 ≈ 5.48, (a) 3D

profile and (b) 2D cross-section.

u/C2,0

(a) 3D displacement profile

u/C2,0

r/l

(b) 2D cross-section

Figure 10: Leading order approximation (77) of the eigenform of a five-layered cylinder with

k ≈ −0.75 and li = l, i = 0, ..., 5, b1 = 1, b3 = 3, b5 = 5, δ1 ≈ 1.44, δ3 ≈ 3.48, δ5 ≈ 5.48, (a)

3D profile and (b) 2D cross-section.

Concluding remarks

The leading order approximations for the eigenfrequencies and eigenforms

of multi-component strongly inhomogeneous rods and cylinders are established,

see (22) and (70), respectively, as well as the first order corrections (31) in case

of rods.130
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The example of a three-component rod in subsection 3.1 justifies at leading

order the validity of the elementary mass-spring scheme, exposed in Appendix B.

The deviation of the discrete formulation from the continuous model is observed

at next order, when the elastic properties of the stiff components and inertia of

the soft ones, neglected within the above mentioned discrete setup, are taken135

into account.

The developed approach may be extended to multi-parametric problems, e.g.

strong variation in linear sizes of components, leading to local low-frequency

regimes, as in [11], characterized by oscillatory behaviour of softer components.

More elaborate systems involving beams and plates can also be tackled, for140

which, in addition to translational almost rigid body motion studied in this

paper, rotational ones occur.

It should be emphasized that within the exact formulation of the problem

the frequency equation is always given by a nontrivial transcendental relation

involving oscillating trigonometric functions and Bessel functions for rods and145

cylinders, respectively.

The obtained results are of interest for low-frequency analysis in multi-

layered elastic plates and shells [14], [15], [16], and also for investigation of

buckling phenomena in multi-span engineering structures, e.g. see [17], due to

the well-known similarity of the eigenvalue problems in vibration and stability150

theories. The presented methodology may be implemented to a more general

layout as well as other types of boundary conditions at the ends of the multi-

component structures. This may also be exploited in scalar 2D, 3D, and vector

problems. Finally, we note potential applications to robotics, especially in view

of the recent developments of soft robots [18] and hybrid systems [19]. In this155

case, analysis of the lowest vibration modes caused by the presence of soft com-

ponents bringing additional degrees of freedom seems to be relevant.
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Appendix A

The constant C3,1 for a three-component rod is given by

C3,1 =
2

L3
2 − Ω2

30 + L3
1L

3
2 (1− k)

(
3
(
Ω2

30P3 − L3
2Q2

)
− (1− k)L3

1

(
3L3

2P2 +A1,1Ω2
10L

3
1

))
.

For a five-component rod the constants C3,1 and C5,1 take the form

C3,1 =
(1− L4

2L
5
1k)C1,0

P1

(
6Ω2

50

(
L3
2Q2 − Ω2

30P3 + L3
4(P5 − P4)

)
− 6L5

4

(
L3
2Q2 + L3

4S4 − Ω2
30P3

)
+ 2(1− k)

{
L3
1

(
Ω2

50 − L5
4

) (
3L3

2P2 +A1,1L
3
1Ω2

10

)
− L5

1L
3
4

1− L4
2L

5
1k

(
3L5

2P2 +A1,1L
5
1Ω2

10

)})
,

and

C5,1 =
(1− L4

2L
5
1k)C1,0

P1

(
L5
4

(
6Ω2

30(Q4 + P3)− 6L3
2 (Q4 + P2 + S2)− 6L3

4S4

)
+ 6P5Ω2

50(L3
2 + L3

4 − Ω2
30)− 2(1− k)L3

1

(
L5
4

(
3L3

2(Q4 + P2) +A1,1L
3
1Ω2

10

)
− 3L3

2Ω2
50P5

)
− 2(1− k)L5

1

1− L4
2L

5
1k

(
L3
2

(
A1,1L

5
1Ω2

10 − 3L5
2S2

)
− Ω2

30

(
A1,1L

5
1Ω2

10 + 3L5
2(P2 − P3)

)
+ L3

4

(
A1,1L

5
1Ω2

10 + 3L5
2(P2 + P4)

)))
.
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In the above

P1 =6 C1,0

{(
1− L4

2L
5
1k
) (
L5
4

(
L3
2 − Ω2

30

)
− Ω2

50

(
L3
2 + L3

4 − Ω2
30

) )
+ (1− k)

(
1− L4

2L
5
1k
) (
L3
1L

3
2L

5
4 − L3

1L
3
2Ω2

50

)
+ (1− k)L5

1L
5
2L

3
4

}
,

Pi =3Ni,1b
2
i + 2Fi,1bi +Gi,1, i = 2, 4,

Pj =Aj,1

(
b2j + bj +

1

3

)
+Bj,1

(
bj +

1

2

)
, j = 3, 5,

Qi =3Ni,1 (bi + 1)
2

+ 2Fi,1(bi + 1) +Gi,1, i = 2, 4,

Si =3Ni,1(2bi + 1) + 2Fi,1, i = 2, 4,

and all the constants Ai,1, Bi,1, Ni,1, Fi,1, Gi,1, and Hi,1 are defined from (24),

(25), and (29).

Appendix B165

Consider a mass-spring system, see Figure 11, with two masses m1 and m2,

connected by an elastic spring of stiffness c, as an approximate discrete model

for a three-component rod treated in subsection 3.1, see Figure 2.

m1 c m2

Figure 11: Mass-sping system

In this case we suppose

m1 = ρ1l1A, m2 = ρ1l3A, c =
E2A

l2
, (B.1)

where A is the rod’s cross-section, see e.g. [20].

Let the coordinates of the centres of masses be z1 and z2. Then, the equations

of time-harmonic motion are

(c−m1ω
2)z1 − cz2 = 0,

cz1 − (c−m2ω
2)z2 = 0,

(B.2)
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from which the eigenfrequency ω is either zero, or

ω2 =
m1 +m2

m1m2
c, (B.3)

and the related eigenform is

z1 = α, z2 = −m1

m2
α, (B.4)

where α is an arbitrary constant.170

In terms of the parameters of the rod (B.1) the formulae (B.3) and (B.4)

become

ω2 =
(l1 + l3)E2

ρ1l1l2l3
, (B.5)

and

z1 = α, z2 = − l1
l3
α, (B.6)

respectively.

It may be easily verified that the leading order approximation Ω2
10, see (36),

expressed in dimensional form by using (2) and (10), is identical to (B.5). Also,

the leading order approximation for the eigenform for a three-component rod

(38) may be interpreted using the formula (38) by setting in the former C1,0 = α,175

and k = 1 + L1
3.

Finally, we mention that the presented mass-spring model does not incorpo-

rate the effect of the elastic properties of the stiff components of the rod, and

inertia of the soft ones. The latter appear at the next order approximation,

deduced in section 3.1.180
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