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Abstract 

 
Carnivores frequently come into conflict with humans in agricultural and livestock producing 

areas around the world. Understanding their fidelity and dispersal patterns in response to  

food availability is therefore important given the effort invested in conflict mitigation 

strategies. In this study, we investigated the influence of clumped and abundant sources of 

carrion on the genetic diversity of the black-backed jackal (Canis mesomelas)  within  six  

private game farms in the North West and Gauteng provinces of South Africa. It is predicted 

that clumped and abundant sources of carrion will increase immigration and thus genetic 

diversity in the local subpopulation. By quantifying the variability of microsatellite loci in black-

backed jackals subjected to artificially increased carrion availability, and  comparing  them with 

individuals from control sites, we were able to describe patterns of historic gene flow within 

the total sampled population. The results of this investigation indicate that clumped and 

abundant sources of carrion promote genetic structuring (FST = 0.0302) which implies a lack of 

gene flow and a degree of isolation. Genetic artefacts of three populations could be identified 

through Bayesian clustering analysis of individuals based on their genetic identity. Individuals 

sampled from the two supplementary feeding sites could be assigned to one of two ancestral 

populations with an average population assignment of 69% and 82%, while individuals from 

the remaining four control sites, originate from  a  third  population  with percentage 

assignments of 63%, 46%, 53% and 42%. It is therefore likely that clumped  and abundant 

sources of carrion in the agricultural landscape of South Africa can affect the population 

dynamics of the black-backed jackal and result in subpopulations with limited migration and 

dispersal when compared with the total   population. 
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Introduction 

 
It is generally recognised that carnivores play a fundamental role in the structure  and  

function of an ecosystem (Ripple, et al., 2014; Ripple  &  Beschta, 2004).  However, factors  

such as disease transmission and livestock depredation frequently promote conflict in areas 

where humans and carnivores exist in close proximity (Woodroffe, et al.,  2005).  

Understanding the ecological factors that drive the spatial organisation of free-ranging 

carnivores is therefore important when considering both conservation and management of 

species in the human-modified landscape. Thus this study follows a microsatellite-based 

approach to investigate the short term historic effects of four  years  of  supplementary  

feeding on the genetic diversity of black-backed jackals (Canis mesomelas) at private game 

farms in South Africa. 

 
 

 
Following the expectations of the resource dispersion hypothesis (Macdonald, 1983), an 

increase in localised food availability will often result in a  breakdown in territorial stability   

and subsequently lead to an increase in local density (Johnson, et al., 2002; Johnson, et al., 

2001). Indeed, anthropogenically derived sources of food, synonymous with agricultural and 

human modified landscapes, have been shown to strongly influence the spatial organisation   

of many omnivorous canids including the golden jackal  (Canis  aureus  Rotem, et al., 2011),  

red fox (Vulpes vulpes Contesse, et al., 2004) coyote (Canis latrans Fedriani, et al., 2001) and 

dingo (Canis lupus dingo Newsome, et al., 2013). Furthermore, studies in both Namibia and 

South Africa have recorded the black-backed jackal at far greater abundances than expected 

in areas  where  scavenging  opportunities  are  high  and carrion availability  is clumped, stable 
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rabies and canine distemper (Bellan, et al., 2012; Zulu, et al., 2009), and an opportunistic 95 

96 hunter  of  small  game  and  livestock  (Estes,  1991),  the  black-backed  jackal  is     frequently 
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and abundant (Yarnell, et al., 2014; Jenner, et al., 2001; Hiscocks  & Perrin, 1988). Studies  

using both radio-telemetry and behavioural observations in the Cape Cross Seal  Reserve 

(CCSR) have also concluded that territorial boundaries of the black-backed jackal  often  

overlap in close proximity to clumped, abundant resources such as seal colonies (Hiscocks & 

Perrin, 1988), and that home range sizes significantly increase with distance from the colony 

itself (Jenner, et al., 2001). As the social structure of the black-backed jackal is commonly 

reported to consist of a monogamous breeding pair, which holds and aggressively defends 

territory from transient individuals and neighbouring residents (Estes, 1991; Ferguson, et al., 

1983), it is clear that an increase in local abundance of food can dramatically affect both the 

territorial behaviour and spatial organisation of this species. However, what remains unclear 

from contemporary observations is the effect that increased food availability has on  the 

fidelity and dispersal of such subpopulations over time. Therefore by examining the genetic 

diversity of black-backed jackals in the game farms of South Africa, this study aims  to  

elucidate the genetic consequences of clumped and abundant sources of food on the  

dispersal of a free-ranging canid within a human-modified   landscape. 

 
 

 
The black-backed jackal is a medium sized canid (5-15 kg) with two discrete distributions      

that span the majority of the Southern African sub-region, and parts of Eastern  Africa  

(Skinner & Chimimba, 2005; Estes, 1991). This study focuses on the southern African 

subspecies  (C.  m.  mesomelas),  henceforth  “black-backed  jackal”,  due  to  the  high  rate  of 

human-carnivore  conflict  associated  with  this  region  (Thorn,  et  al.,  2012).  As  a  vector of 
 1 
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controlled as a pest species throughout its range  (Thorn,  et  al.,  2012;  Ginsberg  & 

Macdonald, 2004). With an omnivorous diet consisting of small mammals, livestock, forage  

and carrion (Klare, et al., 2010), this species is considered a generalist carnivore that is able     

to undertake diet switching in response to changes in local food availability (Kamler, et al., 

2012; van der Merwe, et al., 2009; Rowe-Rowe, 1983; Fourie, et al., 2015; Humphries, et al., 

2016). Therefore, to further investigate the effect of food availability on the population 

dynamics of the black-backed jackal, this study used carrion stations, known as vulture 

restaurants, to measure the historic effect of artificially increasing  scavenging  material  on  

the gene flow and variation in genetic diversity within and between local subpopulations. 

Vulture restaurants were originally introduced in participating game farms and nature  

reserves across South Africa with an aim to supply declining vulture species with a safe and 

consistent source of carrion which originates from hunted or slaughtered livestock destined  

for  the  human  food  chain.  Subsequent  analysis  has  shown  that  the  regular  deposition of 
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carcasses at these sites has resulted in an unintentional increase in the local abundance of 

many scavenging carnivores, including the black-backed jackal (Yarnell, et al., 2014). As the 

abundance of black-backed jackals residing in close proximity to  vulture feeding sites are  

often far in excess of those in the surrounding area (pers. obs.), it is predicted that clumped 

and abundant sources of carrion will have resulted in an increase in genetic diversity within 

local   subpopulations   as   it   is   hypothesised   that   increased   food   availability    increases 
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138 

To  sample  faecal  deposits  for  genetic  source  material,  driven  transects  of  5  km       were 139 

140 undertaken  along  the  road  networks  within  each  site.  Transect  routes  were  chosen     to 

maximise an even coverage of area and habitat types. Transect width was standardised at 141 

2m  from  the  edge  of  the  road  to  minimise  the  variation  in  detection       probability.   All 142 
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This study was undertaken in the North-West and Gauteng provinces of South Africa.  

Individual black-backed jackals (n = 65) were sampled for genetic material from six game 

breeding farms (Fig. 1) between March 2011 and September 2012 for an analysis  of  

population structure. Two game farms, Site VR1 and Site VR2, had active vulture restaurants 

initiated approximately four years prior to sampling (n = 27 and 19 jackal DNA samples, 

respectively). The remaining four game farms, Site C1, C2, C3 and C4, acted as control sites 

with no additional scavenging material provided (n = 6, 6, 3 and 4). Carrion, consisting of 

recently deceased ungulates, was  placed at each vulture restaurant on a regular basis  with   

an average of 797 kg a  month being recorded between 2008  and 2011 at site  VR1  (Yarnell,  

et al., 2013). A non-invasive genetic recovery protocol was used to acquire genetic material 

from 63 recently deposited faecal samples along with two tissue biopsies opportunistically 

collected from the ear lobe of deceased individuals. The non-invasive genetic recovery 

protocol used in this investigation was specifically designed for use with this species and had 

 

 
38 135 

40 
41 
42 136 
43 
44 
45 137 
46 

previously been tested for adequate recovery of host DNA prior to undertaking analysis 

(James, et al., 2015). Tissue samples were placed in 1.5 ml of absolute ethanol (EtOH) after 

collection and stored at -20oC prior to transport to the UK for further    analysis. 

 
 

Figure 1 approximately  here. 
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analysis.  These  markers  were  used  to  estimate  the  population  structure  and   inbreeding 161 

coefficients of  the black-backed jackal.  Individual  multilocus genotype  profiles that matched 162 

were  considered  to  derive  from  the  same  source  and  were  hence  removed  prior  to  the 163 

analysis. Results were pooled by site for an analysis of population   structure. 164 
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transects were undertaken by two experienced observers and were driven at a speed 

maintained between 5 and 10 km/h to maintain sampling effort. Sampling effort was 

maintained between sites at 1.4 km of transect driven per 1 km2 of reserve area. Upon 

discovery of fresh faecal material, the outer most layers of the faecal sample were collected 

using a sterile razor blade and stored in a biologically inert buffer (Roche diagnostics S.T.A.R. 

buffer cat no: 03335208001). Samples were then stored at – 20oC prior to DNA extraction     

and purification. Scat identification was aided with field guides and expert advice where 

necessary, and the spatial location of each faecal sample was recorded using a Garmin  

GPSmap 62  (supplementary material). 

 
 

 
Microsatellite loci 

 
Previous research has successfully used domestic dog (Canis lupus familiaris) microsatellite 

markers to describe the genetic structure and dispersal of jackal populations  (e.g. Jenner, 

2007; Minnie 2016). However, the markers used for the current study were specifically 

characterised for the black-backed jackal (Table 1; James, et al., 2015) and examined for 

selective neutrality before estimates of  population  structure  were  undertaken.  

Furthermore,  the   predictive   power,  resolution   and  allelic   drop-out  rate   and   null allele 

estimates were evaluated for this marker set and were shown to be suitable for use in this 
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A  chloroform  extraction  protocol  was  used  in  conjunction  with  a   Qiagen  DNeasy      spin 175 

column method  to isolate  and  purify  DNA templates  from  faecal samples collected in     the 176 

field. Faecal samples stored in S.T.A.R. buffer were defrosted in batches at 4oC prior to DNA 177 

extraction.  Individual  samples  were  homogenised  by  shaking,  then  10  ml  of  sample  was 178 

transferred to a sterile collection tube. One millilitre of ≥ 99.8 % chloroform-EtOH (GC) was 179 

8 

 

 

 
 

1 
2 
3 165 
4 
5 166 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 168 
30 
31 
32 169 
33 
34 170 
35 
36 
37 171 
38 
39 172 
40 
41 173 
42 
43 
44 

45 174 
46 

 
 
 

Table 1. Microsatellite loci, 5’ modification, forward (F) and reverse (R) primer sequences (5’-

3’), Tm and NCBI accession numbers  (AN). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample processing and PCR  conditions 
 

Approximately 25 mg of black-backed jackal tissue, fixed in absolute EtOH, underwent DNA 

extraction using the Qiagen DNeasy blood and Tissue Kit (cat No: 69504), following the 

manufacturer-based spin column tissue extraction protocol. Dermal  and  epidermal  cells  

were isolated manually from cartilaginous tissue before proteinase K digestion at 56oC. DNA 

was then eluted using 150 μl of manufacturer-supplied PCR-compatible    buffer. 

 Locus 5’ 
mod 

F primer Tm 
oC 

R Primer Tm 
oC 

AN 

cme144 FAM aactttaagccacacttctgca 57.9 acttgcctctggcttttaagc 58.4 KU050829 

cme136 FAM aactggccaaacataaacacg 58.5 ttcattaaccctttgccctg 58.5 KU050830 

cme206 HEX cgagagcaacataggcatga 58.4 caaagtgctgtggcaggtc 58.8 KU050831 

cme196 HEX aggaggacagaaagacagaagg 57.5 atggatgtattgtgagggtgg 58.0 KU050832 

cme193 FAM gagctcctgatggaagagctta 58.6 catcctgtccgtgacttcaa 58.0 KU050833 

cme210 HEX cttgtgcaatcatcatcttga 57.2 cccgaggtacctatggct 57.5 KU050834 

167        
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Statistical analysis 197 

198 The  probability  for  exact  Hardy-Weinberg  proportions,  F-statistics  and  estimates  of  allele 

frequencies   between   the   six   sampled   subpopulations   and   each   STRUCTURE-identified 199 

200 cluster were calculated using the program GENEPOP v. 4.2.1 (Rousset & Raymond , 1995; 
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then mixed with the sample solution and vortexed to form an emulsion. Emulsified samples 

then underwent centrifugation at 1,000 x g for 3 min and the subsequent supernatant was 

removed for further processing. A Qiagen blood and tissue extraction protocol was followed   

to recover DNA from the supernatant. Spin columns were centrifuged at 1400 x g for 3 min 

prior to elution, to remove excess EtOH and chloroform from the silica membrane, and were 

stood to dry at room temperature for 5 min. DNA elution was undertaken using 75 μl of 

warmed elution buffer at 54o C (James, et al.,  2015). 

 
 
 

PCR reactions were undertaken in 25 μl volumes containing approximately 40 ng of DNA 

template, estimated in triplicate using a nanodrop 2000 spectrophotometer, 1 × Invitrogen 

PCR buffer, 1.5 mM MgCl2, 1 unit of Invitrogen hot start PlatinumTaq DNA polymerase 

(Invitrogen cat No: 10966-018), 1  unit of  Qiagen Q-solution, 0.5 μl/ng  BSA, 0.2 mM dNTP    

mix and 0.2 μM primer mix. Amplification conditions used on a Techne TC-4000  thermal  

cycler consisted of an initial denaturation at 94°C for 2 min, followed by 35 cycles of 94°C for   

1 min, 55°C for 45 s and 72°C for 1 min finishing  with a final extension stage of 72°C for 5   

min. 
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218 limited  sample  sizes  (Pritchard  et  al.,  2000).  This  analysis  employs  a  Bayesian   clustering 

algorithm   to  correlate  microsatellite  allele  frequency  dissimilarities  between     individuals 219 

with  prior  knowledge  of  sample  location.  The  inclusion  of  sample  location  is   specifically 220 

recommended  when  determining  low  levels  of  population  structuring  under  small spatial 221 

scales,  where   a  significant value   has  been   determined  (Hubisz,  et  al.,  2009).    This FST 222 
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Rousset, 2008). Population differentiation between sites was examined using the exact  G  

test. 

 
 

 
Evidence for genetic isolation by distance was assessed by plotting a  pairwise  genetic  

distance matrix (FST) against a pairwise spatial distance matrix. A Mantel test for dissimilarity 

was performed against the two matrices using R v. 3.0.2 (R Development Core Team, 2008) 

(permutation = 999 model = strata). Significance values were ascertained using the Monte- 

Carlo Markov Chain algorithm (Dememorisation = 1,000, batches = 100, iterations/batch = 

1000). Pairwise FST significance values and Bonferroni p-value corrections for multiple 

comparisons were undertaken using the program GENEPOP v. 4.2.1 (Raymond & Rousset, 

1995; Rousset, 2008) and R v. 3.0.2 (R Core Team, 2013). The significance of the correlation 

between genetic and geographic distances at the individual level was ascertained by Monte- 

Carlo simulation (based on 999 replicates) using the R package adegenet v 2.0 (Jombart ,  

2008). 

 

 

The program STRUCTURE v2.3.4 (Pritchard, et al., 2000) was used to estimate rate  of  

migration   and   degree   of   isolation   between   subpopulations   assuming   unbalanced  and 
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241 from known localities  may  result in  the  identification of  spurious  clusters by  the    program 

STRUCTURE  (Puechmaille, 2016),  which  is  likely  to  result  in  an  underestimation of  K using 242 

243 the  delta  K  method  outlined  in  Evanno  (2005).  As  resampling  a  subset  of  genotypes   to 

correct for unbalanced sample sizes is not appropriate in this case due to the small sample 244 

245 size,  the   approach  of   identifying   a   true  value   for  K  using   the   estimators    MedMeaK, 
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approach assigns individuals to the most relevant deme based on genetic dissimilarity 

between individuals and groups. The admixture model used in this analysis accounts for the 

possibility of admixture within clusters, as opposed to pure distributions of genotypes, while 

remaining robust to the absence of admixture. This method was employed to detect any 

indication of subtle population structure using the  genotype data in this study. The number   

of subpopulations, K, was estimated to be between 1 and 6 using a burn-in of 10,000 runs; 

Markov Chain Monte Carlo simulation (MCMC) run length of 100,000 with 10 iterations per 

simulation. Pairwise FST values between  STRUCTURE-identified  clusters  were  calculated  

using the program GENEPOP v. 4.2.1 (Rousset & Raymond , 1995; Rousset, 2008) and  

examined for significance using the exact G  test. 

 
 

 
Identification of the number of distinct and genetically consistent groups within the sampled 

population was estimated using the rate of change in the log probability  of  the  data  

between successive estimates of the number of populations, termed delta  K (ΔK) (Evanno,     

et al., 2005). The estimation of K was undertaken using  the  program  Structure  Harvester 

(Earl & von Holdt, 2012). The programs CLUMPP V1.1 (Jakobsson & Rosenberg, 2007) and 

DISTRUCT v1.1 (Rosenberg, 2004) were then used to produce graphical representations of 

the  structure  analysis.  However,  resent  research  suggests  that  unbalanced  sample    sizes 
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MaxMeaK, MedMedK and MaxMedK over 20 repeats per estimation of K was used 

(Puechmaille, 2016). The maximum  value of K was interpreted by the number of clusters     

that contained at least one sampling locality at membership coefficient threshold of 0.5. The   

R package Kestimator (Puechmaille, 2016) was used to    calculate the estimators listed above. 

 
 

 
We used a cut off assignment to test for the number of potential migrants within each 

structure-identified cluster (Sacks, et al., 2004). An arbitrary cut off assignment of 70% was 

selected due to the limited sample size, local spatial arrangement and cluster assignment 

probability.  A  chi2   test  was  used  to  assess  the  difference  in  the  proportion  of   migrants 
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The statistical power to reject the null hypothesis of genetic homogeneity  in  this  

investigation was assessed by undertaking a power test using the program POWSIM (Ryman   

& Palm, 2006) at FST values of 0.001, 0.0025, 0.01, 0.03 and 0.05. Effective population  size  

(Ne), when simulated populations drifted apart, was maintained at 4000 and the number of 

simulations  per run was  set to  1000.  It is generally  regarded that  power scores should     be 

greater than 0.8 to be confident of adequate   power. 
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Genotype frequencies across all loci were found to be in general alignment with Hardy- 

Weinberg proportions at the total population level (X2 = 73.4136, d.f. = 72, p = 0.432). When 

examined by locus, three of the 36 tests were shown to deviate significantly from Hardy- 

Weinberg proportions across the six sampling localities (p < 0.05). However, the exact Hardy-

Weinberg test by population indicated that the majority of this deviation was partitioned to 

Site VR1 (X2 = 33.4919, d.f. = 12, p< 0.05), showing a heterozygote excess at locus  cme136  

(Weir  and  Cockeram  FIS   =  -0.2203,  p  <  0.05).  Weir  &  Cockerham   fixation 

statistics indicated that a degree of sub-structuring was apparent in the total population as 

highlighted by the multi-locus FST estimate of 0.0302 (Table 2). Significant genetic 

differentiation  was apparent  between  sample  sites when  examining  the  variation  in  allele 

2 
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frequencies between sites using the exact G test (X   = 49.8182, df = 12, p   <0.05). 
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Table 2. Weir & Cockerham fixation statistics for individual and combined loci across all 

localities. 

 

   Locus FIS FST FIT  
 

cme144 0.0819 -0.0080 0.0746 
cme136 -0.1783 0.0067 -0.1705 
cme206 -0.0024 0.0834 0.0812 
cme196 0.0875 -0.0019 0.0858 
cme193 0.0223 0.0062 0.0284 
cme210 -0.1823 0.1146 -0.0468 

  All: -0.0272 0.0302 0.0039  
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302 VR2, being  consistently  dissimilar  to each other and the  remaining  four  sites  in    individual 

population assignment. Individuals from the remaining four control sites (C1, C2, C3 and C4) 303 

showed   variable   population   assignment   probabilities,   thus   a   high   degree   of   genetic 304 
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1  
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3 284 Isolation by distance 
4   
5   
6 285 Analysis  of  the  entire  microsatellite  data  set  found  no  statistical  correlation  between 
7   
8 
9 286 Euclidian distance and pairwise FST  values at the population level (r = -0.1836, p = 0.75833). 
10   
11 287 Furthermore,  no  evidence  of  isolation  by  distance  could  be  ascertained  at  the  individual 
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level when the correlation between distance matrices was compared to simulated values 

under the absence of spatial autocorrelation (simulated p-value: 0.707, Fig.    2). 

 
 
 

Figure 2 approximately  here. 
 
 
 
 

Analysis of population  structure 
 

The analysis of genetic variation within and between individuals and sites using the Evanno 

method (2005) indicated that the number of ancestral populations genetically represented     

in the contemporary data set can be inferred as K = 3 (Fig.   3). 

 
 

 
Figure 3 approximately  here. 

 
 
 

STRUCTURE analysis indicated that the population structuring, highlighted by the inbreeding 

coefficient  (FST  ≈  0.03), was  largely  partitioned  between  feeding  site  VR1  and  feeding site 
 1 
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admixture was inferred across these sites. The analysis of MedMeaK, MaxMeaK, MedMedK 

and MaxMedK indicates that the true value of K =   3. 
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Allelic richness, observed and expected heterozygosity, FIS and the Hardy-Weinberg test for 

heterozygote excess and the proportion of potential migrants for each STRUCTRE-identified 

cluster are shown in Table 3. Contrary to our predictions a greater proportion of migrants  

were found in the STRUCTURE-identified cluster  that included the  four control sites    (Cluster 

3) when compared with the two supplementary feeding sites (X2  = 13.091, df = 2, p    <0.05). 
 
 

Table 3. Genetic diversity estimators and proportion of migrants for each STRUCTURE- 

identified cluster. 

32    
33 Cluster Site N Ar HO HE Overall 
34 FIS 

HWE (p- 
value) 

Migrants 
(%) 
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47 319 
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50 320 
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1 VR1 27 47 103 105.2368 0.0217 0.7322 25.9 
2 VR2 19 36 65 64.3377 -0.0103 0.6633 36.8 
3 C1,C2,C3,C4 19 43 91 82.8843 -0.1009 0.3053 57.8 

 

 
 
 

All pairwise FST values for each STRUCTURE-identified cluster (Table 4) were shown to be 

significantly different (p <  0.05). 

 
 

 
Table 4. Pairwise FST values for each STRUCTURE-identified   cluster. 

 
 

Clusters Sites Pairwise FST 
1 + 2 VR1 + VR2 0.0329 
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than   their   rural  counterparts  due   to   the   overabundance   of  anthropogenically   derived 340 

sources  of  food  (Bino,  et  al.,  2010).  However,  the  underlying  mechanisms  by  which such 341 

populations are formed and maintained have been heavily veiled by their complexity. In this 342 
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3 321 Analysis of statistical  power 
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6 322 Power   analysis   undertaken   using   the   program   POWSIM   indicated   that   the   suite    of 
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microsatellite loci used in this investigation were suitable for differentiating population 

structure at FST values of 0.03 and above, with a Fisher’s exact test statistic > 0.8. Power 

analysis  with  FST  values  of  0.001, 0.0025,  0.01,  0.03,  and  0.05  were  computed  as 0.0760, 

0.1660, 0.7580, 0.9980 and 1.000  respectively. 
 
 
 

 
Discussion 

 
Carnivore spatial organisation is rarely, if ever, homogeneous in space and time. Resource- 

based explanations of spatial organisation are able to describe  such variation by  exploring  

the relationship between the availability of resources (e.g. food) and the fitness cost 

associated with territorial defence (Johnson, et al., 2001; Johnson, et al., 2002). Theoretical 

models that link resource dispersion with spatial organisation describe plasticity in territory 

size and stability when the distribution of food is heterogeneous across the environment 

(Macdonald, 1983; Johnson, et al., 2002). Thus, traditional explanations of the resource 

dispersion hypothesis place emphasis on the selective advantage gained by  reducing  

territorial defence when the availability of food exceeds the requirements of the individual  

and group. For example,  studies have concluded  that  populations of free-ranging red    foxes 

residing in close proximity to human settlements are more likely to exist at higher densities 
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363 Competitive   exclusion   offers   an   attractive   explanation   for   the   degree   of   population 

structuring  seen  in  this  study.  Once  the  carrying  capacity  of  the  environment  has    been 364 

365 reached,  it  is  intuitive  that  a  relative  increase  in  competition  for  food  would  prompt 
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study we found evidence for a small degree of genetic structuring within the population as a 

whole (Table 2). Furthermore, a Bayesian analysis of population structure showed that black-

backed jackals at supplementary feeding sites were genetically distinct relative to the total 

population (Fig. 3). However, contrary to our predictions, individuals  from  the  remaining four 

control sites could not be accurately assigned to a single population of origin based upon their 

genetic identity alone, and showed a far greater number of potential migrants relative to the 

supplementary feeding sites (Table 3), which suggests a degree of historic gene flow between 

these sampling locations. In addition, no evidence of spatial auto-correlation could be 

detected across the total population (Fig. 2), providing further evidence of a discontinuous 

population across the sampled area. We believe, therefore, that the results of this study show 

that far from increasing migration as predicted; clumped, abundant and stable sources of 

carrion can cause population structuring in the black-backed jackal by  reducing gene flow 

between these  sites.  However, it should be  noted    that,  while 
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41 359 
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43 360 
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46 361 
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the identification of population sub-structuring is highly indicative of barriers to gene flow 

within the sampled population, evidence of slight outbreeding (Table 2) suggests that the 

genetic composition of the total breeding population has not been captured in its entirety. 

Despite this shortfall, the result of this study provides an informative estimation of the 

parameters of a population in flux and describes the genetic consequences of a population 

responding to increased food availability in the resource rich agricultural    landscape. 
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(Moehlman, 1987; Ferguson, et al., 1983; Minnie, et al., 2016). Therefore offspring that have 387 

failed  to  disperse  from  their  natal  range,  in  combination  with  an  increase  in    dispersing 388 

offspring following disturbance from persecution at the control sites (Minnie, et al., 2016), 389 
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territorial behaviour and limit or reduce migration and gene flow. Furthermore, due to the 

large diversity of alternate sources of prey available to the black-backed jackal within the 

agricultural landscape of South Africa (Kamler, et al., 2012), long distance commuting 

behaviour, as observed at the CCSR (Jenner, et al., 2001), may not be  a  cost  effective  

strategy in this system. Furthermore, investigations into movement patterns of the dingo, 

which reside at resource-rich refuse sites in central Australia, have shown that individuals do 

not always remain at refuse sites indefinitely. This indicates that further selective pressures 

above those predicted by the resource dispersion hypothesis, such as group hunting, may   

play an important role in the social structure of the Canidae (Newsome, et al., 2013).  

However, given that approximately 24-33% of offspring of territory-holding black-backed 

jackals have been recorded as delaying dispersal to provide alloparental care to subsequent  

kin (Ferguson, et al., 1983; Moehlman, 1983; Moehlman, 1986; Moehlman, 1987;  Estes,  

1991),  a more likely explanation for the results of this study is that following a substantial 
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increase in local food availability the offspring of individuals in close proximity to 

supplementary feeding sites have reduced dispersal rates, due to  the  high carrying capacity  

of the environment and reduced competition  for  resources  between  siblings,  resulting  in 

the formation of genetically distinct clusters of individuals. Previous studies have shown that 

pup survival rate is positively correlated to both food  availability  and  alloparental  care  

(Estes, 1991; Moehlman, 1987). Furthermore, the mechanisms dictating  whether  an  

individual chooses to disperse from its natal range or to remain and act as a helper has been 

correlated   to   food   availability,   competition   for   available   resources   and      persecution 
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Many  previous  studies  have  shown  that excess  food availability  can dramatically affect the 408 

409 population dynamics of carnivores (Hiscocks & Perrin, 1988; Fedriani, et al., 2001; Jenner, et 

al.,  2001;  Johnson,  et  al.,  2001;  Bino,  et  al.,  2010;  Rotem,  et  al.,  2011;  Newsome,  et al., 410 

411 2013;   Yarnell,   et   al.,   2014).    An   increase   in   the   abundance   and    density    of     local 
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would explain, at least in part, the degree of population structuring seen in this study. 

However, although previous studies have suggested that a breakdown in territorial stability 

can result from clumped and abundant sources of food (Hiscocks & Perrin, 1988; Johnson, et 

al., 2002; Bino, et al., 2010), by sampling faeces for genetic material, a prominent territorial 

marker in many mammalian species, it is possible that transient individuals may have eluded 

genetic identification and potentially induced a sampling artefact to  the  analysis. 

Furthermore, the limited number of microsatellite loci used in this investigation has the 

potential to induce a type-two statistical error in this analysis as statistical power is often 

reduced when both sample size and microsatellite loci are limited  in number.  To date, only  

six microsatellite markers have been published for the black-black Jackal, which is relatively 

few by current standards. However, despite the limited resolution these markers offer for 

population structure analysis, they appear to be sufficient  for  identifying  weak  

differentiation  (FST=0.03),  which  we  regard  as  still  biologically  meaningful.  It  is  therefore 
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recommended that future studies focus on the characterisation of further microsatellite loci 
 

with the aim of undertaking pedigree analysis using high quality tissue samples to accurately 

infer relatedness between individuals at supplementary feeding   sites. 
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429 the black-backed jackal in game farm environments. Furthermore, we would like to thank D. 
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subpopulations is therefore expected following a substantial increase in carrion availability. 

The results of this study indicate that anthropogenically provisioned resources (e.g. carrion) 

results in genetically identifiable groups of black-backed jackals that show a  degree  of  

historic isolation from the surrounding population. Whether through kin selection or the 

principles of competitive exclusion, the formation of a structured population in response to 

excess carrion is not unexpected given the assumed territorial breakdown described by the 

resource dispersion hypothesis. However the degree of genetic admixture at site  VR1  

suggests that immigration may play  a substantial role in the formation of this cluster. Yet     

the ability to identify genetically distinct groups, in response to a vastly increased local  

carrying capacity, provides additional insight into the group dynamics of a monogamous and 

territorial carnivore in the human-modified   landscape. 
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Figures 

 
Figure 1. A map depicting the six study sites and the three subpopulations of black-backed 

jackals sampled in this investigation. Subpopulations are denoted by black    circles. 

Figure 2. Genetic distance as a function of geographic distance between individual black- 

backed jackals showing the initial correlation (dot) and the distribution of simulated data  

under the absence of Isolation by  distance. 

Figure 3. A graphical representation of population structure. Individual black-backed jackals  

are represented by vertical lines, with the population assignment represented in grayscale, k 

= 3. 
 
 

Supplementary material A. Maps depicting the spatial arrangement of faeces collected for 

genetic analysis within each game farm site. Faecal deposits of the black-backed jackal are 

denoted by black circles and carrion stations are represented by white   circles. 

Supplementary material B. Individual black-backed jackal population assignment values for 

each structure identified  cluster. 
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