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Abstract

The fibrocartilagenous plantar plates of the forefoot are biomechanically important,

forming the primary distal attachment for the plantar aponeurosis. They are integral

to the function of the windlass mechanism in supporting the arches of the foot in gait.

Dissection of the cadaveric hallux revealed an organised sagittal thickening of the

dorsal side of the Flexor Hallucis Longus (FHL) sheath, which attached the

interphalangeal plantar plate to the metatarsophalangeal (MTP) plantar plate. A

description of a similar structure was made by McCarthy et al. in 1984 when it was

termed the Flexor Hallucis Capsularis Interphalangeus (FHCI) – however, it has not

been researched since, and we aim to study it further and identify its characteristics.

Methods

Eight specimens were dissected from four cadavers. Two were stained and

examined under microscope and both polarized and non polarized light. The

remaining 6 were subjected to micrometer testing of their tensile properties.

Results

Both the histological features and mechanical properties were consistent with tendon

like substance, with cross sectional area, ultimate tensile strength and stiffness

varying between specimens.

Conclusions
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Based on its location and properties, the FHCI tendon may be involved in limiting

dorsiflexion of the first MTP joint and could have clinical relevance in pathological

processes around both the first and second MTP joints.

Introduction

Whilst injuries of the plantar plates of the forefoot have been well discussed

and there have been recent articles detailing relevant biomechanics and

pathophysiology (Bolgla and Malone, 2004; Carlson et al., 2000; Frimenko et al.,

2012; Myerson and Badekas, 2000; Sarrafian, 1987; Shereff et al., 1986), the

anatomy of the plantar plates of the hallux has not been subject to recent review.

Several articles concentrate on the plantar plates of the lesser digits (Deland et al.,

1995; Johnston et al., 1994). The plantar plates of the forefoot are part of the joint

capsule of the metatarsophalangeal (MTP) and interphalangeal (IP) joints. Whilst of

a similar nature to the volar plates of the hand, the fibrocartilaginous plantar plates

are subject to far greater compressive and tensile forces (Johnston et al., 1994).

Their form reflects this, being robust with a strong distal insertion (Deland et al.,

1995). The MTP plantar plates have several noteworthy attachments. These are to

each other via the deep transverse metatarsal ligament; to the flexor sheath and joint

capsule with which they are continuous; and to the plantar aponeurosis via strong

vertically oriented fibers (Deland et al., 1995; Stainsby, 1997). This last attachment is

recognized as forming the most biomechanically relevant distal attachment of the

plantar aponeurosis (Stainsby, 1997). The first MTP plantar plate differs in that it is

associated with two sesamoid bones, and its flexor tendon sheath encases only the
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tendon of flexor hallucis longus (FHL). The two sesamoid bones form the distal

attachment of flexor hallucis brevis (FHB).

Originally described in Hicks’ seminal work of 1954, the windlass mechanism

places the aponeurosis in the role of a tie-bar with the medial longitudinal arch of the

foot as the truss’ arch (Hicks, 1954). When the foot is loaded whilst standing, the

aponeurosis acts as a tension band and flattens slightly as the arch takes weight.

(Lapidus, 1963) However, in the last stages of the stance phase of gait; namely heel

rise, push off and toe off, the windlass mechanism approaches maximum activation.

Dorsiflexion of the first MTP joint leads to the 1st MTP joint plantar plate being pulled

forward around the metatarsal head (Sarrafian, 1987). This was described by

Kelikian as a dynamic acetabulum or ‘hammock’ (Kelikian, 1966) with several

centres of motion (Hetherington et al., 1989). In turn, this exerts force on the vertical

fibers of the aponeurosis, recruiting the windlass mechanism (Caravaggi et al., 2009;

Carlson et al., 2000). The tension across the aponeurosis is increased, and this

actively heightens and compresses the arch to make it a more stable weight-bearing

platform. The lesser toes fulfil the same function, but most of the force is transmitted

through the hallux (Hicks, 1954); if there is a lack of active plantar flexion  of the

hallux MTP joint during take-off, forward motion is less efficient (Stefanyshyn and

Nigg, 1997). The strong distal attachment for the hallux MTP joint plantar plate has

been described as being solely into the proximal phalanx. The authors have found

no mention of the IP plantar plate of the hallux playing a role in the windlass

mechanism. Clinically, there are several relevant conditions related to pathology

around the 1st MTP joint. These include sprains (‘turf toe’), hallux valgus and hallux

rigidus (Myerson and Badekas, 2000).
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During dissection, a structure was encountered within the flexor sheath of FHL,

between the MTP and IP plantar plates of the hallux, formed of a thickening of the

flexor sheath immediately deep to the tendon of flexor hallucis longus (Figure 1,

Figure 2). This affixed the MTP plantar plate to the IP plantar plate. The appearance

was consistent with a sagittally oriented band of tendon-like tissue, which was

qualitatively able to withstand significant longitudinal tensile forces (Figure 3, Figure

4). This was not seen in the lesser MTP joints. A literature search was performed

using the MeSH terms ‘hallux’, ‘anatomy’, ‘biomechanics’, and ‘plantar plate’ in a

MEDLINE search using PubMed. There was no mention of such a structure in recent

radiological anatomy reviews (Schein et al., 2015) but it seems an original

description can be ascribed to McCarthy et al. in the Journal of the American

Podiatric Medical Association who suggested the name ‘Flexor Hallucis Capsularis

Interphalangeus’ (FHCI) (McCarthy et al., 1986). This was included in McGlamry’s

(McGlamry et al., 1992), but no quantitive study of its nature has been performed.

The objective of this study was therefore to assess the nature and biomechanical

properties of this structure, answering three questions.

1. What are its structural properties?

2. What is its purpose and what are the biomechanical implications?

3. Is this clinically relevant?

Materials and Methods
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Using anonymized fresh frozen cadaveric specimens, eight feet from four

cadavers were dissected. The sagittal slips were identified and isolated. These were

then removed from their proximal and distal attachments for testing.

The cross sectional areas ware calculated from the specimens’ width and

height measuring using digital Vernier calipers (M11015DDL, Moore & Wright,

Sheffield, UK) Calipers were used in order to avoid specimen deformation

encountered with area micrometry (Woo et al., 1990). One specimen was discarded

at this stage as unsuitable. The specimens were then stored as frozen specimens

once again in order to preserve their characteristics as much as possible (Fessel et

al., 2011; Viidik and Lewin, 1966).

The remaining seven specimens were then individually fixed onto an

electromechanical universal testing machine (100-Q-225-6, TestResources Inc,

Shacopee, MN, USA) using sandpaper and hand-tightened clamps. We aimed for a

starting distance (zero-length) of 10 mm between the clamps. All tests were recorded

on video and analyzed afterwards to determine the actual zero-length of each

specimen and to look for signs of tissue slippage from the clamps during testing.

Preconditioning was then conducted by applying 10 displacement cycles to 0.5 mm

at a rate of 0.1 mm/sec to improve the quality of subsequent testing (Schatzmann et

al., 1998).

Immediately following the cyclical preconditioning, the specimens were

subjected to a quasi-static test by applying displacement at a rate of 0.1mm/sec until

failure. Strain was calculated from the deformation of the specimen as measured by

the testing machine in relation to the zero-length. The stress values were calculated
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using the pre-testing cross sectional area of each specimen. Stress-strain graphs

were then plotted to assess the Young’s modulus of each specimen as the slope of

the linear part of the stress-strain curve. The ultimate tensile stress (UTS) was

determined as the maximum stress before failure.

Two specimens, one 50mm in length and one 55mm in length, were used for a

histological investigation. They were embedded in wax, sectioned and stained with

hematoxylin and eosin. The stained sections were viewed under polarized and non-

polarized light at x6.3 and x25 magnification (Figure 5).

Results

Quasistatic Testing:

The mean cross-sectional area was 2.00 mm2 (SD 1.86, range 0.64 to 5.66;

see Table for details). The mean maximum load during quasistatic testing was 50.6

N (SD 22.5, range 21.9 to 80.2). The mean UTS was 36.6 MPa (SD 23.9, range 11.8

to 71.2). The mean Young’s modulus was 206 MPa (SD 136, range 50 to 403). The

results from one sample were discarded due to clamp failure. These results are

demonstrated in Table 1.

Histology:

The specimens had longitudinally arranged parallel collagenous fibers. A layer

of tendon sheath was apparent, consistent with the intimacy to the FHL tendon
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sheath. Scattered fibroblasts were seen. Overall, microscopy of these two samples

confirmed the appearance of the tissue as consistent with tendon, with a parallel

array of collagen fibers and an inner layer of tendon sheath apparent.

Discussion

The purpose of this study was to further describe the FHCI tendon and to

answer the three questions delineated in the introduction. We have identified that

histologically and biomechanically the slip is consistent with tendon, and that there is

a great degree of variability between individuals within this small sample size. The

stress testing results showed a large amount of variation within the data sets, which

did not have a clear correlation with the dimensions of the samples which we tested.

What are its structural properties?

The mechanical characteristics (mean Young’s modulus 206 MPa, mean

tensile strength 36.6 MPa) were consistent with those found for tendons (Ethier and

Simmons, 2007; Martin et al., 1998). The stress-strain curves derived from the data

demonstrated a wide variability of characteristics between the specimens (Figure 9).

Such wide variations, even between specimens from the left and right foot, have also

been found in other studies, for example a study of ankle ligaments (Louis-Ugbo et

al., 2004; Siegler et al., 1988) or Achilles tendons (Louis-Ugbo et al., 2004; Siegler et

al., 1988). Tendons and ligaments differ throughout the body in their elasticity and

tensile strength according to their collagen content, elastin content and calcification

(Ethier and Simmons, 2007; Landis and Silver, 2002; Martin et al., 1998). The
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difference we found between the specimens may reflect the differences in the

demographics of our cadavers. However, it cannot be excluded that imperfections in

our dissection and clamping technique may have further increased the variability. As

a consequence, it is difficult to draw epidemiological conclusions regarding the

strength of the slip from this data set.

What is its biomechanical purpose?

Relating the windlass mechanism to the sagittal slip, several possibilities can

be considered. The IP joint of the hallux has been quoted as having a passive range

of motion of approximately 31 degrees (Salleh et al., 2005). It is possible that FHCI is

an accessory structure which allows force to be transmitted more efficiently through

the hallux by reinforcing it in a sagittal plane during MCPJ dorsiflexion. There are no

muscular attachments to FHCI. This implies that the FHCI tendon, the insertion of

the PP into the proximal phalanx and FHL act in concert with the windlass

mechanism to prevent hyperextension of the 1st MTP joint. The insertion of the MTP

plantar plates into the proximal phalanges is the strongest distal attachment of the

windlass mechanism (Deland et al., 1995). It has been postulated that the first MTPJ

is more involved in the windlass mechanism than the others (Hicks, 1954); if so,

FHCI may only be present in the hallux due to the increased forces placed across

the hallux during dorsiflexion. Variety in the composition and tensile properties of

FHCI may be determined by fibroblastic activity in response to loading (Nawoczenski

et al., 1999).

There have been few studies related to the premorbid degree of 1st MTP joint

laxity in relation to the incidence rate of injuries in the area, although it has been
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discussed that excess dorsiflexion around the 1st MTP joint can cause a

hypermobile first ray (Bouche and Heit, 2008). This has further implications, implying

that excessive dorsiflexion around the 1st MTP joint could predispose to a variety of

conditions in the area. Hypermobility of the first ray itself has also been associated

with many conditions, including hallux valgus and metatarsus primus varus (Rush et

al., 2000), with laxity around the 1st MTP joint increasing the relevance in relation to

the FHCI tendon (Myerson and Badekas, 2000; Roukis et al., 1996).

Further possibilities can be considered in regard to the increased laxity in

dorsiflexion around the 1st MTP joint. Relevant conditions include 1st MTP joint

sprain (‘turf toe’) and hallux rigidus, which has been linked to 1st ray hypermobility

(Kunnasegaran and Thevendran, 2015), among other pathologies (Lucas and Hunt,

2015; Shereff and Baumhauer, 1998). If the wider biomechanical implications of first

ray hypermobility are considered, other conditions become relevant; such as injuries

to the second metatarsal head, rupture of the 2nd metatarsal plantar plate and

Freiberg’s disease. However, study of these processes would incorporate many

variables and would be difficult to preform.

Hallux valgus has been linked with first ray hypermobility (Wong et al., 2014)

although it is a matter of contention which of the two is the causative pathology (Doty

and Coughlin, 2013); it is probable that this is multifactorial in combination with other

biomechanical abnormalities (Perera et al., 2011). There is ongoing discussion

regarding the aetiology of hallux valgus, contradicting Morton and Lapidus’ original

works (Glasoe and Coughlin, 2006; Hansen, 1996; Lapidus, 1963), and

hypothesizing secondary biomechanical effects would be conjecture.

Is this clinically relevant?
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First MTP joint pathology

Athletes are the highest risk group for MTP joint sprain or ‘turf toe’; in these

injuries the mechanism is hyperextension at the first MTPJ in up to 85%, causing

disruption of the plantar plate and its sesamoids (Bowers and Martin, 1976; Rodeo et

al., 1990). Even in mild cases this injury can be debilitating for the athlete, as

dorsiflexion is painful during the recovery period (Kubitz, 2003; McCormick and

Anderson, 2010b). Injury to the FHCI may be a feature of MTP joint sprain. There

are chronic sequelae associated with the injury, including an increased risk of

recurrence, incomplete recovery and long-term stiffness (McCormick and Anderson,

2010a). An injury at this site can reduce an athlete’s acceleration and mobility in the

long term, due to impairment of biomechanical efficiency (Brophy et al., 2009;

Coughlin et al., 2010; Frimenko et al., 2012).

There is little scope for operative intervention in mild ‘turf toe’ injuries, but in

severe or chronic injuries this can be an option (Coughlin et al., 2010; McCormick

and Anderson, 2009). Conservative management for ‘turf toe’ currently depends on

the severity of the injury, but early physical therapy and mobilization is sometimes

advised in milder forms (Coker et al., 1978; McCormick and Anderson, 2010b). It is

difficult to recommend a change in practice based on the findings of this study.

Second MTP joint pathology

Metatarsalgia of the second MTPJ is a common presentation and has several

differentials, including plantar plate rupture and Freiberg’s infarction (Shane et al.,
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2013). Pathology around the second metatarsal head has been ascribed to

increased pressure in this area during gait (Cho et al., 2013; Klein et al., 2013;

Shane et al., 2013). It rarely occurs in seclusion and is often linked with other

biomechanical abnormalities, including a hypermobile first ray and hallux valgus

(Ahn et al., 2016; Coughlin, 1993; Lee et al., 2014). Repetitive trauma and perfusion

abnormalities have also been implicated (Katcherian, 1994), and hypermobile

dorsiflexion of the 1st MTPJ leading to increased pressure on the second metatarsal

could be a predisposing factor.

Limitations

This study suffered from several limitations. Firstly, our testing of the central

part of the slip does not assess the nature of the whole structure. During specimen

collection, the FCHI tendons were dissected out from their attachments to the plantar

plates. As a consequence, we could assess their biomechanical properties only

through clamping the ends of the specimens. A more accurate assessment of in vivo

function would have been to include bone and use this to hold the specimens while

applying forces. Secondly, the cross-sectional area was determined using calipers,

however when measuring tendons discrepancies have been reported between

testing methods (Woo et al., 1990). Thirdly, it would be useful to determine the

histological nature of FHCI insertion into the plantar plates, in addition to those of the

central material. One sample was rendered unsuitable for testing by the collection

process and another slipped through the clamps. The number of samples and the

age range of the subjects was not sufficient to study the influence of age or other

demographic factors on the structure or mechanical properties of the slip. The
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difference between the results of specimens from the same cadaver may indicate a

true difference but could also be due to shortcomings in our methodology.

Conclusion

Our findings are consistent with the FHCI tendon having variability in its

properties between individuals, but that it is robust enough to have real

biomechanical implications. Histological assessment confirms that the FHCI is

functional tendon, with assessment of tensile strength and elasticity supporting this.

The function of FHCI may be related to gait, in particular dorsiflexion around the

hallucal MTP joint. It is possible that this may predispose to 1st ray hypermobility

with the attendant pathological correlations. We believe there are several conditions

that could be affected by dysfunction of this structure, but that it is difficult to

recommend a change to practice based on our current findings.
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Figure captions

Figure 1 – The FHCI tendon is identified deep to flexor hallucis longus

Figure 2 – The tendon is discrete from the joint capsule

Figure 3 – FHCI appears robust in this specimen

Figure 4 – FHCI appears able to withstand tensile forces

Figure 5 – Histological assessment revealed tendon with an inner layer of tendon

sheath.

Table 1 – Mechanical characteristics of dissected ligamentous structure

Specimen

X-sectional
area

(mm2)

QS max
Load
(N)

UTS
(MPa)

Young’s
Modulus

(MPa)

140066L 1.85 21.9 11.8 47.2.5

140066R 0.64 45.6 71.8 275.6

140148L 1.06 63.6 57.7 403.4

140148R 1.83 63.6 34.7 232.8

140062R 5.66 80.2 14.2 58.9.7

140156R 0.98 28.9 29.6 179.9

Mean
(SD) 2.00 (1.86) 50.6 (22.5)

36.6
(23.9) 199 (135)
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Table 2 – Stress - strain relationships for specimens
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