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Abstract. Multi-parametric asymptotic analysis of dynamic phenomena in  lightweight three-

layered structures is performed. The presence of high contrast in densities of skin and core 

layers may lead to the  small value of the lowest shear thickness resonance  frequency, 

allowing  a two-mode long wave low-frequency approximation of the exact dispersion relation. 

The  range of uniform asymptotic validity of the two-mode approximation  with respect to 

relative thickness and  density are established. The theoretical predictions are illustrated 

numerically. 

Introduction 

Multi-layered structures with a strong vertical heterogeneity are of major importance for numerous 

high-tech domains in aerospace, automotive and civil engineering, see e.g. [1, 2] and references 

therein. Specific applications include, in particular, photovoltaic panels and laminated glass, see [3, 4, 

5]. Another important example originating from automotive industry, is concerned with design of a 

new generation of environment-friendly lightweight vehicles, see [6, 7]. This inspires modelling of 

composite structural elements, containing lightweight components.  

Multi-parametric asymptotic analysis of dispersion of elastic plates with high contrast in material and 

geometric parameters of the layers was studied in [8], see also a more recent contribution [9]. The key 

message of the cited papers is that due to contrast the lowest shear mode may be excited over the low 

frequency range, requiring substantial amendments to the established structural theories. In particular, 

instead of the classical Kirchhoff theory governing the fundamental vibration mode of a thin plate, a 

variety of two-mode approximations, strongly affected by the contrast parameters were discovered in 

[8]. The latter, in addition to the fundamental mode, also include the first low-frequency harmonic.  

In this presentation we attempt to specify the approach in [8] for three-layered structures with a 

lightweight core component. In this case, we adapt a multi-parametric scheme assuming that the ratio 

of thickness of the skin and core component layers is expressed as a power of the main small 

parameter, defined as the relative core density.  

The two-mode approximations of the full Rayleigh-Lamb-type dispersion relation, both uniformly and 

non-uniformly valid, are derived. The accuracy of the latter are tested by comparison with the exact 

solution. The obtained results address peculiarities of the vibration spectra characteristic of lightweight 

layered structures.  
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Statement of the problem 

 
 

Figure 1. A lightweight sandwich plate.  

 

Consider a sandwich symmetric plate with a light core, see Fig. 1, assuming that the ratio of densities 

of the core and skin layers 

 
𝜌 =

𝜌𝑐

𝜌𝑠
≪ 1    (1) 

is a small parameter. In this case the inverse ratio of their thickness is expressed as  

 
ℎ =

ℎ𝑠

ℎ𝑐
∼ 𝜌𝑎 , (2) 

where 0 ≤ 𝑎 < 1. In addition, for the sake of simplicity we assume for the ratio of shear moduli 

 
𝜇 =

𝜇𝑐

𝜇𝑠
∼ 𝜌. (3) 

Then, the lowest shear resonant frequency  

 

Ω𝑠ℎ ≈ (
𝜌

ℎ
)

1/2

∼ 𝜌(1−𝑎)/2 ≪ 1,  (4) 

belongs to the low-frequency range, see also an earlier contribution [10] for a three-component rod.  

The consideration below deals with a multi-parametric analysis (in 𝜌 and 𝑎) of the full dispersion 

relation of the sandwich structure of interest at the long-wave low-frequency limit, when  

 

𝐾 = 𝑘ℎ𝑐 ≪ 1, Ω = 𝜔ℎ𝑐√
𝜌𝑐

𝜇𝑐
≪ 1,                                             (5) 

where 𝜔 and 𝑘 are angular frequency and wave number, respectively.  

Asymptotic analysis 

First, expand the dispersion relation in [8] over range (5) under the assumptions on the problem 

parameters adapted in the previous section. As a result, we arrive at the polynomial expression  

 

𝛾1Ω2 + 𝛾2𝐾4 + 𝛾3𝐾2Ω2 + 𝛾4𝐾6 + 𝛾5Ω4 + ⋯ = 0, (6) 

where 

𝛾1 = −𝜇(ℎ𝜇0 + 𝜇), 

𝛾2 = −
4

3
𝜇(ℎ(ℎ2 + 3ℎ + 3)(𝜘𝑠

2 − 1) + 𝜇(𝜘𝑐
2 − 1)), 

𝛾3 =
2

3
(𝜇𝜇0ℎ3(2𝜘𝑠

2 − 3) + 3ℎ2((𝜘𝑠
2 − 1)(𝜇2 + 2𝜇0) − 𝜇0𝜇𝜘𝑠

2) − 3𝜇ℎ(−2𝜘𝑠
2 + 𝜇0 + 2)      

+ 𝜇2(2𝜘𝑐
2 − 3)), 

𝛾4 =
4

15
(𝜇ℎ(1 − 𝜘𝑠

2)(10ℎ𝜘𝑐
2(1 − 𝜇) + 5ℎ3𝜘𝑠

2 + 10ℎ2 + 10𝜇ℎ + 5 + ℎ4) + 5ℎ4𝜘𝑠
2(𝜘𝑠

2 − 2)

+ 𝜇2(1 − 𝜘𝑐
2) + 5ℎ4), 
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𝛾5 =
1

6
(𝜇2(3𝜇0(𝜘𝑠

2 + 1)ℎ2 + 𝜘𝑐
2 + 3) + 𝜇ℎ𝜇0(ℎ2𝜇0(𝜘𝑠

2 + 3) + 3𝜘𝑐
2 + 9) + 6ℎ2𝜇0

2). 

 

In the formulae above  

𝜇0 =
𝜇

𝜌
     and   𝜘𝑞 =

𝑐2𝑞

𝑐1𝑞
, 

with 

𝑐1𝑞
2 =

𝜆𝑞 + 2𝜇𝑞

𝜌𝑞
,     𝑐2𝑞

2 =
𝜇𝑞

𝜌𝑞
,    𝑞 = 𝑐, 𝑠. 

The leading order asymptotic approximation of (6) corresponding to the fundamental mode, can be 

written as  

 

𝜌1−𝑎𝐺1Ω2 + 𝜌1−𝑎𝐺2𝐾4 + 𝐺3𝐾2Ω2 +
1

3
𝜌2𝑎𝐺2𝐾6 = 0, (7) 

where 𝐺𝑖 ∼ 1, 𝑖 = 1,2,3  are expressed as 

 

             𝐺1 = −ℎ0𝜇0
2,        𝐺2 = −4ℎ0𝜇0(𝜘𝑠

2 − 1),        𝐺3 = 4ℎ0
2𝜇0(𝜘𝑠

2 − 1), 
with ℎ0 = ℎ/𝜌𝑎. 
The shortened forms of (7) are 

 

𝐺1Ω2 + 𝐺2𝐾4 = 0,      at     Ω ≪ 𝜌1−𝑎, (0 ≤ 𝑎 < 1), (8) 

 
  𝜌1−𝑎𝐺2𝐾2 + 𝐺3Ω2 = 0,        at     𝜌1−𝑎 ≪ Ω ≪ 𝜌1−2𝑎 ,   (𝑎 ≤

1

3
), 

                    or     𝜌1−𝑎 ≪ Ω ≪ 𝜌
1−𝑎

2 , (
1

3
< 𝑎 < 1), 

 

(9) 

and 

 

 𝐺3Ω2 +
1

3
𝜌2𝑎𝐺2𝐾4 = 0, at      𝜌1−2𝑎 ≪ Ω ≪ 𝜌𝑎 , (𝑎 <

1

3
).  (10) 

 

The leading order asymptotic behavior of the first harmonic with the cut-off frequency (4)  takes the 

form 

 
𝜌1−𝑎𝐺1 + 𝐺3𝐾2 + 𝐺5Ω2 = 0, at   Ω − Ω𝑠ℎ ≪ 1 (0 ≤ 𝑎 < 1), 

 (11) 

where for 𝐺5 ∼ 1 we have 𝐺5 = ℎ0
2𝜇0

2. 

The derived formulae can be easily justified using the entries in Tables 1 and 2 below.  

 

Table 1. Asymptotic behavior for the fundamental mode. 

 

Order of 𝛾𝑖 Terms Fundamental mode 
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Ω2~𝐾4   

Ω ≪ 𝜌1−𝑎, 0 ≤ 𝑎 < 1 

Ω2~𝜌1−𝑎𝐾2   

𝜌1−𝑎 ≪ Ω ≪ 𝜌1−2𝑎, 𝑎 ≤
1

3
 

𝜌1−𝑎 ≪ Ω ≪ 𝜌
1−𝑎

2 ,
1

3
< 𝑎 < 1 

Ω2~𝜌2𝑎𝐾2 

𝜌1−2𝑎 ≪ Ω ≪ 𝜌𝑎, 𝑎 <
1

3
 

𝛾1~𝜌1−𝑎 𝛾1Ω2 𝜌1−𝑎𝐾4 𝜌2−2𝑎𝐾2 𝜌1+𝑎𝐾4 

𝛾2~𝜌1−𝑎 𝛾2K4 𝜌1−𝑎𝐾4 𝜌1−𝑎𝐾4 𝜌1−𝑎𝐾4 

𝛾3~1 𝛾3K2Ω2 𝐾6 𝜌1−𝑎𝐾4 𝜌2𝑎𝐾4 

𝛾4~𝜌2𝑎 + 𝜌1−𝑎 𝛾4K6 (𝜌2𝑎 + 𝜌1−𝑎)𝐾6 (𝜌2𝑎 + 𝜌1−𝑎)𝐾6 𝜌2𝑎𝐾6 

𝛾5~1 𝛾5Ω4 𝐾8 𝜌2−2𝑎𝐾4 𝜌4𝑎𝐾8 

 

Table 2. Asymptotic behavior for the lowest harmonic. 

 

 

Order of 𝛾𝑖 

 

Terms 

Harmonic 

Ω2 − Ω𝑠ℎ
2 ~𝐾2   

Ω − Ω𝑠ℎ ≪ 1   

𝛾1~𝜌1−𝑎 𝛾1Ω2 𝜌1−𝑎(𝐾2 + 𝜌1−𝑎) 

𝛾2~𝜌1−𝑎 𝛾2K4 𝜌1−𝑎𝐾4 

𝛾3~1 𝛾3K2Ω2 𝐾2(𝐾2 + 𝜌1−𝑎) 

𝛾4~𝜌2𝑎 + 𝜌1−𝑎 𝛾4K6 (𝜌2𝑎 + 𝜌1−𝑎)𝐾6 

𝛾5~1 𝛾5Ω4 (𝐾2 + 𝜌1−𝑎)2 

 

It is remarkable that as it follows from the Table 1 and also formulae (8)-(10), only at  0 ≤ 𝑎 ≤
1

3
  the 

cut-off frequency belongs to the range of validity of the long-wave approximation (7) for the 

fundamental mode. 

Thus, combining the expressions (7)-(11), we arrive at the uniformly valid two- mode approximation  

 

𝜌1−𝑎𝐺1Ω2 + 𝜌1−𝑎𝐺2𝐾4 + 𝐺3𝐾2Ω2 +
1

3
𝜌2𝑎𝐺2𝐾6 + 𝐺5Ω4 = 0,        0 ≤ 𝑎 ≤

1

3
. (12) 

At the same time, at  
1

3
< 𝑎 <  1, the cut-off frequency (4) is outside the range of validity of (7), see 

Table 1 and formulae (8)-(10). Consequently, the corresponding two-mode expansion   

 

𝜌1−𝑎𝐺1Ω2 + 𝜌1−𝑎𝐺2𝐾4 + 𝐺3𝐾2Ω2 + 𝐺5Ω4 = 0,
1

3
< 𝑎 < 1, (13) 

is no more uniformly valid.  

Numerical results 

Let us illustrate the obtained results. Figs. 2 and 3 below are plotted for the values  𝜌 = 0.01, 𝜇 =
0.01, and 𝜘𝑠 = 0.59.The two-mode asymptotic approximation (12) along with the exact dispersion 

curves for 𝑎 =
1

9
, ℎ = 0.6  and 𝑎 =

1

3
, ℎ = 0.23  are shown in Figs. 2(a) and 2(b), respectively. It is 
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clear from Fig. 2(a) that the presented approximation is uniform, reaching its bound at 𝑎 =
1

3
  in Fig. 

2(b), see (12). Indeed, the vertical dotted lines, originating from the cutoff frequencies intersect the 

fundamental modes at 𝐾 < 1. 

 

        
(a)                                                                            (b) 

Figure 2. Comparison of two-mode approximations (12) (dashed lines) and the exact dispersion 

curves (solid lines) for 𝜌 = 0.01, 𝜇 = 0.01, 𝜘𝑠 = 0.59 with (a) 𝑎 =
1

9
, ℎ = 0.6; (b) 𝑎 =

1

3
, ℎ = 0.23. 

 

 
Figure 3. Comparison of two-mode composite approximation (13) (dashed lines) and the exact 

dispersion curves (solid lines) for 𝑎 =
2

3
, 𝜌 = 0.01, 𝜇 = 0.01, ℎ = 0.05, 𝜘𝑠 = 0.59. 

The composite expansion (13) versus the exact solution is shown in Fig. 3 for 𝑎 =
2

3
 and  ℎ = 0.05. 

The non-uniform nature of (13), associated with a gap in frequency between the two vertical dotted 

lines can be clearly observed. Indeed, within this gap the long wave assumption (𝐾 ≪ 1) is violated. 

Concluding remarks 

The developed approach is aimed at analysis and optimization of low-frequency vibration spectra of 

lightweight laminates. In particular, the consideration above revealed the range of parameters 

satisfying  

 ℎ𝑠

ℎ𝑐
= (

𝜌𝑐

𝜌𝑠
)

𝑎

, 0 ≤ 𝑎 ≤
1

3
, (14) 

for which the asymptotic approximation (12) is uniform, whereas for the remaining region 
1

3
< 𝑎 < 1 

the formula (13) provides only a composite approximation. 
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For plate bending, the shift of the first thickness shear resonance to the low frequency band results in 

its interaction with the fundamental mode. This makes the implementation of direct finite element 

computations more challenging, see e.g. [11], motivating a more elaborative theoretical insight.  

The presented methodology is not restricted to the setup of a three-layered symmetric plate. It can be 

extended to other types of lightweight laminates. In addition, extra problem parameters, including a 

strong contrast in the wave speed for core and skin layers, may be taken into consideration. We also 

mention the generalizations to shell-type structures with thermo-viscoelastic core layers.  

The derived two-mode expansions of the dispersion relation are an important preliminary step for 

establishing general models for lightweight multi-layered structures, including differential equations 

of motion along with properly justified boundary conditions.  
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