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Abstract
I survey Brouwer’s weak counterexamples to classical theorems, with a view to dis-
covering (i) what useful mathematical work is done by weak counterexamples; (ii)
whether they are rigorous mathematical proofs or just plausibility arguments; (iii)
the role of Brouwer’s notion of the creative subject in them, and whether the cre-
ative subject is really necessary for them; (iv) what axioms for the creative subject
are needed; (v) what relation there is between these arguments and Brouwer’s theory
of choice sequences. I refute one of Brouwer’s claims with a weak counterexample
of my own. I also examine Brouwer’s 1927 proof of the negative continuity theorem,
which appears to be a weak counterexample reliant on both the creative subject and
the concept of choice sequence; I argue that it provides a good justification for the
weak continuity principle, but it is not a weak counterexample and it does not depend
essentially on the creative subject.

Keywords Brouwer · Intuitionistic analysis · Intuitionistic logic ·
Weak counterexamples · Creative subject · Choice sequences

1 Introduction

Between 1923 and 1955 Brouwer published a series of arguments, known as weak
counterexamples, intended to show that certain classical theorems are not provable
intuitionistically. (He also gave strong counterexamples, from 1928 onwards [9], but
these are outside the scope of my study.) Here is a typical example. We choose a
fleeing property P , that is, a decidable property P of natural numbers for which we
lack a proof of ∃n P (n) or ¬∃n P (n). (His first examples [5, 6] used a property P

based on occurrence of the digit sequence 0123456789 in the decimal expansion of
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π ; he later generalised to an arbitrary fleeing property.) Using P we construct a real
number x and show that

x = 0 ∨ x < 0 ∨ x > 0⇒ ∃n P (n) ∨ ¬∃n P (n).

If we could prove x = 0 ∨ x < 0 ∨ x > 0 then we could thereby prove ∃n P (n) ∨
¬∃n P (n) — which by hypothesis we cannot. Hence we cannot prove x = 0 ∨
x < 0 ∨ x > 0. This is a weak counterexample to the classical theorem ∀x ∈
R (x = 0 ∨ x < 0 ∨ x > 0). It is called ‘weak’ because it depends on the
accidental and possibly temporary fact that we lack a proof of ∃n P (n) or ¬∃n P (n).
We may discover such a proof tomorrow; but in that case we can always choose
another fleeing property P ′ and construct a new x′ for which we cannot prove x′ =
0 ∨ x′ < 0 ∨ x′ > 0. We shall never run out of fleeing properties, since we shall
never solve all �1 problems, so we shall always have a counterexample.

What is the status of such arguments? Are they genuine mathematical proofs or
merely plausibility arguments (as van Atten [39] calls them)? Has anything really
been proved? It is disconcerting to see a ‘proof’ that is dependent on a contingent and
continually changeable choice of fleeing property. A property may be fleeing from
one person’s point of view but not from another person’s, if the latter possesses a
proof of ∃n P (n) or ¬∃n P (n).

I shall argue that these arguments are nevertheless rigorous proofs of precise theo-
rems, which are a permanent and objective addition to our mathematical knowledge.
To this end I shall reformulate them slightly to make them apply to all decidable
properties of natural numbers, not just fleeing ones (see §4).

A second kind of weak counterexample, first introduced in Brouwer’s Berlin lec-
tures of 1927 [42], uses the theory of the creative (or creating) subject. Choose a
proposition A that is not judgeable (i.e., we cannot at present prove A or ¬A). Using
A we construct a real number x and show that, e.g.,

x = 0 ∨ x < 0 ∨ x > 0⇒ A ∨ ¬A.

If we could prove x = 0 ∨ x < 0 ∨ x > 0 then we could thereby prove A ∨ ¬A

— which by hypothesis we cannot. Hence we cannot prove x = 0 ∨ x < 0 ∨ x >

0.
Sometimes Brouwer begins instead with a proposition that is not testable (i.e., we

cannot at present prove ¬A ∨ ¬¬A) and constructs x such that, e.g.,

x = 0 ∨ x < 0 ∨ x > 0⇒ ¬A ∨ ¬¬A.

Such weak counterexamples only work as long as A remains unjudgeable (or
untestable). As soon as we obtain a proof of A ∨ ¬A (or ¬A ∨ ¬¬A), x ceases
to be a counterexample and we must choose another A, giving another x. We shall
never run out of unjudgeable (or untestable) propositions, so we shall always have a
counterexample.

Again, I claim that these arguments are genuine mathematical theorems, though
I shall reformulate them to apply to all propositions, rather than to unjudgeable or
untestable ones (see §4); here, however, the arguments are dependent on accepting
the theory of the creative subject. This involves reasoning about one’s own future
proving activity; the creative subject is oneself, viewed under certain idealisations. In
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Brouwer’s arguments the creative subject is imagined to be choosing the terms of an
infinite sequence while simultaneously proving various theorems; any theorem that
is proved between the choice of the (n − 1)th and nth terms is said (by Brouwer’s
commentators) to be proved at stage n. We write �n A to mean that the creative
subject will possess a proof of a proposition A at stage n. It is usually asserted that A
holds iff there exists n such that �n A (or that A is false iff there is no such n; see §3).

The theory of the creative subject is considered philosophically dubious by most
intuitionists because

(i) it makes mathematics dependent upon time and the person who is the creative
subject;

(ii) it makes mathematics dependent on contingent factors;
(iii) there is an obvious risk of self-referential paradoxes in defining constructions

that depend on one’s own future constructive activity (e.g., Troelstra’s paradox
[36]);

(iv) if one assumes that only finitely many propositions are proved at each stage
then all the provable propositions can be enumerated, yet the species of
provable propositions is surely an example of what Brouwer [3] called a
denumerably unfinished set.

I shall not discuss the merits of the creative subject but shall simply consider how
it is used. I shall examine Brouwer’s weak counterexamples, and one due to Heyting
[27], stating each one with and without the creative subject, in order to isolate the
contribution that the creative subject makes.

A very odd feature of the theory of the creative subject is the fact that it has devel-
oped separately from Brouwer’s theory of choice sequences, which is the basis for
intuitionistic analysis. Both theories draw on the same idea: an infinite sequence of
possibly constrained choices, viewed as a single intensional process. There was no
distinction between them in Brouwer’s mind. Nevertheless, they diverged in the work
of later intuitionists. As Niekus remarks,

No connection has been made between the standard theories of choice
sequences and the TCS [the theory of the creative subject]; the two theories
have been developed completely separately. In the intuitionistic handbooks, a
considerable amount of space is reserved for the theories on choice sequences,
while the method of the creating subject is treated in the last few pages. See for
example Dummett 1977 [26] and van Dalen and Troelstra 1988 [32, 38].

For Niekus the so-called theory of the creative subject is simply the application
of particular choice sequences, as opposed to the theory of choice sequences in gen-
eral. There are two reasons why the two theories have developed separately. One
is that the theory of the creative subject ‘appears constantly to tremble on the edge
of absurdity or paradox’ [26, p359], and it has been felt to be prudent to insulate
choice sequences and intuitionistic analysis from its obscurities; the other is that the
two theories need different axioms and naturally pull in different directions. There
is one place in Brouwer’s writings where the two theories seem to overlap: this is
his 1927 proof that all functions are negatively continuous. There is also a ‘condi-
tional checking-number’ argument in 1954, which van Atten [39, appendix B] sees



P. Fletcher

as resembling the negative continuity proof. Both arguments are therefore of special
interest and I shall examine them in §9. I shall show that the 1927 negative conti-
nuity argument can be understood in terms of the creative subject, but it can also be
understood in an atemporal way in terms of Appleby’s [1] concept of ‘knowledge
states’, which provides an alternative view of the foundations of intuitionistic anal-
ysis. The ‘conditional checking-number’ claim of 1954 I shall refute, using a weak
counterexample argument of my own.

The general tendency of this paper is to show that time, subjectivity and contin-
gency play a much less essential role in intuitionistic mathematics than they appear
to. No doubt they played a central role in Brouwer’s thought, but the mathematics
can be restated without them.

2 Preliminaries

• I use ‘x < y’ to denote the positive order relation on real numbers, in accordance
with modern usage (see definition below); Brouwer usually calls it ‘x <◦ y’.

• ‘x ≤ y’ means ¬y < x, as usual.
• I use ‘x //< y’ for the negative order relation, defined by

x //< y ⇔ ¬¬x < y ⇔ x ≤ y ∧ x = y

which Brouwer usually writes simply as ‘x < y’.
• x # y means that x is apart from y, i.e., x < y ∨ y < x.
• Q is the set of rational numbers; x /∈ Q means ¬x ∈ Q; x //∈ Q means ¬¬x ∈ Q.

When I need to use a specific representation of the real numbers I shall consider a
real number as defined by a nested infinite sequence of binary intervals

[
x0−1
20

,
x0+1
20

]
⊃

[
x1−1
21

, x1+1
21

]
⊃

[
x2−1
22

, x2+1
22

]
⊃

[
x3−1
23

,
x3+1
23

]
⊃ · · ·

Formally, a real is defined as an infinite sequence x of integers such that
∀n |xn+1 − 2xn| ≤ 1, with order relations

x < y ⇔ ∃n xn < yn − 2

x # y ⇔ ∃n |xn − yn| > 2

x ≤ y ⇔ ∀n xn ≤ yn + 2

x = y ⇔ ∀n |xn − yn| ≤ 2.

I call this the binary representation. Formally this represents R as a spread on inte-
gers. A spread on integers is a decidable predicate s of finite sequences of integers
such that s(〈 〉) and ∀u (s(u) ⇔ ∃z s(u ∗ 〈z〉)), where 〈 〉 is the empty sequence and
u ∗ 〈z〉 is the sequence u extended by the integer z. An infinite sequence x of integers
is said to be a member of s iff ∀n s(〈x0, . . . xn−1〉). In the present case the spread R

is defined by

R(〈x0, . . . xn−1〉) ⇔ ∀i < n− 1 |xi+1 − 2xi | ≤ 1.
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Defn. For any decidable property P of natural numbers, the derivative P ′ of P is the
decidable property of natural numbers defined by

∀n (P ′(n) ⇔ P(n) ∧ ∀r < n ¬P(r)).

When I say that P is ‘decidable’ I simply mean ∀n (P (n) ∨ ¬P(n)). P may be
lawlike or may be defined by a sequence of free choices or a physical process such
as coin-tossing, anything that gives a truth-value P(n) for any desired n.

If P ′(n) then Brouwer calls n the critical number of P .

Theorem 1 For any decidable property P of natural numbers,

(i) ∃n P (n) ⇔ ∃n P ′(n)

(ii) ∃≤1n P ′(n)

(iii) ¬¬∃n P ′(2n)⇒ ¬∃n P ′(2n+ 1) and ¬¬∃n P ′(2n+ 1)⇒ ¬∃n P ′(2n).

3 Axioms for the Creative Subject

We choose an infinite increasing sequence of times, called stages; this sequence is
called a schedule. �n A means that the creative subject has a proof of A at stage n;
�n A means ¬ �n A. I shall abbreviate ∃n �n A to ��A.

Here are some possible axiom schemata, mostly dating back to Kreisel [29].

0. �n A ∨ �n A

1. ��A⇒ A

1′. ¬A⇒ ¬��A

2. A⇒ ��A

2′. ¬��A⇒ ¬A

3. ¬(��A ∧ ��¬A)

Kreisel himself adopted axioms 0, 1 and 2′ (and generalised the theory to allow for
more than one creative subject). I have added axiom 3 for use alongside axiom 2 or
2′, for someone who does not accept axiom 1 or 1′. Two other axiom schemata are
commonly proposed [30]:

�n A⇒�n+m A

if �n A and B is an immediate consequence of A then �n B

I shall have no need for these.

Theorem 2 The following relationships exist between the axiom schemata.

(i) 1⇒ 1′ ⇒ 3
(ii) 2⇒ 2′
(iii) 2′ ∧ 3⇒ 1′

I shall assume axiom 0 tacitly all the time; I shall explicitly mark all uses of the
others in square brackets.
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Theorem 3 For any proposition A,

(i) ��¬A⇒ ¬��A and ��A⇒ ¬��¬A [axiom 3]
(ii) ¬¬(��A ∨ ��¬A) [axiom 2′]
(iii) ��¬A⇒ ¬A [axiom 1′]
(iv) ��A ∨ ��¬A⇒ A ∨ ¬A [axiom 1]
(v) ��A ∨ ��¬A⇒ ¬¬A ∨ ¬A [axiom 1′]
(vi) ��A ∨ ¬��A⇒ A ∨ ¬A [axioms 1, 2′]
(vii) ��A ∨ ¬��A⇒ ¬¬A ∨ ¬A [axioms 1′, 2′]
(viii) ¬��A ∨ ¬¬��A⇒ ¬A ∨ ¬¬A [axioms 1′, 2′]
(ix) ¬��A ∨ ¬��¬A⇒ ¬A ∨ ¬¬A [axiom 2′]

4 The General form of aWeak Counterexample

Brouwer stated his weak counterexamples by starting with a fleeing property or an
unjudgeable or untestable proposition, assuming a hypothesis, and deriving a con-
tradiction. I prefer to rephrase them by starting with any decidable property, or any
proposition, assuming the hypothesis, and deriving the principle of excluded middle
or something else constructively invalid.

Defn. A weak counterexample (without creative subject) to a general proposition
∀x B(x) is a theorem of the form

∀P ∃x (B(x)⇒ I (P )),

which implies
∀x B(x)⇒ ∀P I (P ),

where x may range over any set, P ranges over all decidable properties of nat-
ural numbers, and I (P ) is a formula that is logically valid classically but not
constructively, such as

(i) ∃n P (n) ∨ ¬∃n P (n),
(ii) ¬∃n P (n) ∨ ¬¬∃n P (n),
(iii) ¬¬∃n P (n)⇒ ∃n P (n),
(iv) ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1),
(v) ¬¬∃n P (n)⇒ ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).

This way of formulating weak counterexamples follows Bridges & Richman [2,
§1.1] and Troelstra & van Dalen [38, §1.3.5]; the schema (i) as known as the limited
principle of omniscience, (ii) is the weak limited principle of omniscience, (iii) is
Markov’s principle, (iv) is essentially the lesser limited principle of omniscience; the
schemata (iv) and (v) have equivalent versions,

(iv) ¬(∃n P (n) ∧ ∃n Q(n))⇒ ¬∃n P (n) ∨ ¬∃n Q(n),
(v) ¬¬(∃n P (n) ∨ ∃n Q(n)) ∧ ¬(∃n P (n) ∧ ∃n Q(n)) ⇒ ¬∃n P (n) ∨

¬∃n Q(n),

for decidable P, Q. The logical relations between these schemata are: (i)⇒ (ii)⇒
(iv)⇒ (v) and (i)⇒ (iii)⇒ (v). Constructivists of the ‘Russian’ school [2] accept
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Markov’s principle as valid, but only for recursive P , not for all P decidable in the
very broad sense I am using here. Schemata (i), (ii) and (iv) are considered invalid by
all constructivists.

In weak counterexamples in [41, p. 42, pp. 55-6] Brouwer uses a generalisation
of (v), in which even and odd numbers are replaced by two arbitrary decidable com-
plementary subspecies of N, called β(A) and γ (A); but this generalisation does not
seem fruitful, and I shall stick to even and odd numbers.

In some cases the converse, ∀P I (P ) ⇒ ∀x B(x), also holds, though Brouwer
did not discuss this.

Occasionally a stronger form of weak counterexample appears, ∀P ∀x (B(x) ⇒
I (P )) or ∃x B(x) ⇒ ∀P I (P ); see theorems 15a and 19a below. This is used to
show the non-existence of an x such that B(x).

Defn. A weak counterexample (with creative subject) to a general proposition
∀x B(x) is a theorem of the form

∀A ∃x (B(x)⇒ I (A)),

which implies
∀x B(x)⇒ ∀A I (A),

where A ranges over all propositions and I (A) is a formula that is logically valid
classically but not constructively, such as

A ∨ ¬A,

¬A ∨ ¬¬A,

¬¬A⇒ A.

Every weak counterexample with the creative subject can be derived from a
corresponding version without the creative subject, using the following terminology.

Defn. Given any proposition A, define three decidable properties of natural numbers
as follows:

(i) the conditional property P of A is defined by

∀n (P (n) ⇔ �n A);
(ii) the direct property P of A is defined by

∀n (P (n) ⇔ �n A ∨ �n ¬A);
(iii) the oscillatory property P of A is defined by

∀n (P (2n) ⇔ �n A)

∀n (P (2n+ 1) ⇔ �n ¬A).

It is immediate that, for any proposition A, having conditional property P , we
have ∃n P (n) ⇔ ��A.

Theorem 4 For any proposition A, having direct property P ,

(i) ∃n P (n) ⇔ ��A ∨ ��¬A

(ii) ¬¬∃n P (n). [axiom 2′]
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Theorem 5 For any proposition A, having oscillatory property P ,

(i) ∃n P (n) ⇔ ��A ∨ ��¬A

(ii) ¬¬∃n P (n) [axiom 2′]
(iii) ��A⇒ ∃n P ′(2n) [axiom 3], and ∃n P ′(2n)⇒ ��A

(iv) ��¬A⇒ ∃n P ′(2n+ 1) [axiom 3], and ∃n P ′(2n+ 1)⇒ ��¬A.

5 TheWeak Counterexamples

I shall give each weak counterexample in two versions; e.g., theorem 7a is the version
without the creative subject and theorem 7b is the version with the creative subject.
(Theorem 11 has three versions.)

I shall just give the constructions and brief details of proofs where they are inter-
esting. Proofs will be written in a natural deduction style, using indented lines to
indicate the scope of hypotheses or universal quantifiers. Indentation increases after a
hypothesis or universal quantifier is introduced, and decreases when it is discharged.
Here is a simple example of the format:

Consider any x∈R.
Then x2 − 4x + 4 = (x − 2)2 ≥ 0,
so x2 + 4 ≥ 4x.

This shows that ∀x∈R x2 + 4 ≥ 4x.

5.1 Weak Counterexamples Involving Real Numbers

Theorem 6a (binary approximation number). For any decidable property P of
natural numbers, there exists a unique x∈R such that

(i) x # 0⇒ ∃n P (n)

(ii) ∀n (P ′(n)⇒ x = 2−n);

and this x also satisfies

(iii) x ≥ 0
(iv) x > 0 ⇔ ∃n x = 2−n ⇔ ∃n P (n)

(v) x = 0 ⇔ ¬∃n P (n)

(vi) x ∈ Q ⇔ x # 0 ∨ x = 0 ⇔ x > 0 ∨ x ≤ 0 ⇔ ∃n P (n) ∨ ¬∃n P (n)

(vii) x //∈ Q

(viii) x = 0 ∨ x = 0 ⇔ x = 0 ∨ x //> 0 ⇔ x ≤ 0 ∨ x ≤ 0 ⇔ ¬∃n P (n) ∨
¬¬∃n P (n).

(Brouwer uses parts (iii,viii) to refute ∀x (x ≥ 0⇒ x = 0 ∨ x //> 0) [41, p. 41].
Conversely, the schema ∃n P (n) ∨ ¬∃n P (n) immediately implies ∀x (x # 0 ∨
x = 0) and ∀x (x > 0 ∨ x ≤ 0); the schema ¬∃n P (n) ∨ ¬¬∃n P (n) implies
∀x (x = 0 ∨ x = 0) and ∀x (x ≤ 0 ∨ x ≤ 0).)

Proof Consider any decidable property P of natural numbers.
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Brouwer gives two equivalent constructions for x.
(Construction 1 [41, p. 41])
Define a rational sequence a by

∀n an =
{
0 if ∀i ≤ n ¬P(i)

2−r if r ≤ n and P ′(r)

This is a Cauchy sequence, so define x = limn→∞ an.
(Construction 2 [10, p. 426], [12, pp. 444-5])
Define a rational sequence b by

∀n bn =
{
2−n if ∀i ≤ n ¬P(i)

2−r if r ≤ n and P ′(r)

This is a Cauchy sequence, so define x = limn→∞ bn.
All the parts of the theorem are easily verified.

Theorem 6b. For any proposition A, there exists x∈R such that

(i) x ≥ 0

(ii) x > 0 ⇔ ∃n x = 2−n ⇔ ��A ∨ ��¬A⇒
{

A ∨ ¬A [axiom 1]
¬¬A ∨ ¬A [axiom 1′]

(iii) x //> 0 [axiom 2′]
(iv) x ∈ Q ⇔ x # 0 ⇔ x > 0 [axiom 2′]
(v) x //∈ Q.

(Brouwer uses parts (ii,iii) to show that x //> 0 does not imply x > 0 [13] [41, p.
50]. He seems to be assuming axiom 1′ rather than 1, since he considers an ‘untestable
assertion’ rather than an ‘unjudgeable assertion’.)

Proof For any proposition A, construct its direct property P and apply theorem 6a.
The theorem then follows with the help of theorem 3 and theorem 4.

Theorem 7a (dual pendulum number, oscillatory binary shrinking number).
For any decidable property P of natural numbers, there exists a unique x ∈R such
that

(i) x # 0⇒ ∃n P (n)

(ii) ∀n (P ′(n)⇒ x = (−2)−n);

and this x also satisfies

(iii) x > 0 ⇔ ∃n P ′(2n)

(iv) x < 0 ⇔ ∃n P ′(2n+ 1)
(v) x # 0 ⇔ ∃n x = (−2)−n ⇔ ∃n P (n)

(vi) x //> 0 ∨ x ≤ 0 ⇔ ¬¬∃n P ′(2n) ∨ ¬∃n P ′(2n)

(vii) x ∈ Q ⇔ x # 0 ∨ x = 0 ⇔ ∃n P (n) ∨ ¬∃n P (n)

(viii) x //∈ Q
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(ix) x = 0 ∨ x = 0 ⇔ ¬∃n P (n) ∨ ¬¬∃n P (n)

(x) x = 0 ∨ x //< 0 ∨ x //> 0 ⇒ x ≤ 0 ∨ x ≥ 0 ⇔ ¬∃n P ′(2n) ∨
¬∃n P ′(2n+ 1)

(xi) (x = 0 ⇒ x //< 0 ∨ x //> 0) ⇒ (¬¬∃n P (n) ⇒ ¬∃n P ′(2n) ∨
¬∃n P ′(2n+ 1)).

(Brouwer uses

• part (vi) to refute ∀x (x //> 0 ∨ x ≤ 0) and ∀x ((x //> 0 ∨ x ≤ 0) ∨ ¬(x //>

0 ∨ x ≤ 0)) [10, p. 425];
• parts (vii,viii) to refute ∀x (x //∈ Q ⇒ x ∈ Q) [41, pp. 6–7] and ∀x (x ∈ Q ∨

x /∈ Q) [10, p. 425] [12, p. 444], and to show that x //∈ Q does not imply x ∈ Q ∨
x /∈ Q [25]; by taking A and B both as x ∈ Q, this refutes ¬(¬A ∨ ¬B) ⇔
A ∧ B and A ∨ B ⇔ ¬(¬A ∧ ¬B) [25];

• part (ix) to refute ∀x (x = 0 ∨ x = 0) [10, p. 425] [11, p. 59] [12, p. 444]
[41, pp. 6–7], and to show that ¬¬x = 0 ⇒ x = 0 (which always holds) does
not imply x = 0 ∨ x = 0 [25];

• part (x) to refute ∀x (x = 0 ∨ x //< 0 ∨ x //> 0) [12, p. 444] [41, p. 41] and
∀x (x ≤ 0 ∨ x ≥ 0) [41, pp. 6–7];

• part (xi) to refute ∀x (x = 0 ⇒ x //< 0 ∨ x //> 0) [41, p. 42]; by taking A as
x ≥ 0 and B as x ≤ 0, this refutes ¬(A ∧ B) ⇔ ¬A ∨ ¬B [25].

He also uses this in other counterexamples [12]; see theorem 20a and theorem 24a
below. This construction is used together with the binary approximation number
in geometric counterexamples [10, p. 426]. Conversely, the schema ¬∃n P ′(2n) ∨
¬∃n P ′(2n + 1) implies ∀x (x ≤ 0 ∨ x ≥ 0); the schema ¬¬∃n P (n) ⇒
¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1) implies ∀x (x = 0⇒ x //< 0 ∨ x //> 0).)

Proof Consider any decidable property P of natural numbers.

Brouwer gives two equivalent constructions for x.
(Construction 1 [41, p. 41])
Define a rational sequence a by

∀n an =
{
0 if ∀i ≤ n ¬P(i)

(−2)−r if r ≤ n and P ′(r)

This is a Cauchy sequence, so define x = limn→∞ an.
(Construction 2 [5, 6], [10, p. 425], [12, p. 444], [25], [41, pp. 6–7])
Define a rational sequence b by

∀n bn =
{

(−2)−n if ∀i ≤ n ¬P(i)

(−2)−r if r ≤ n and P ′(r)

This is a Cauchy sequence, so define x = limn→∞ bn.
All parts of the theorem are easily verified, with the help of theorem 1(iii).
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Theorem 7b. For any proposition A, there exists x∈R such that

(i) x > 0 ⇔ ��A [axiom 3]
(ii) x < 0 ⇔ ��¬A [axiom 3]
(iii) x = 0 [axiom 2′]
(iv) x ∈ Q ⇔ x # 0 ⇔ ��A ∨ ��¬A⇒

{
A ∨ ¬A [axioms 1, 2′]
¬¬A ∨ ¬A [axioms 1′, 2′]

(v) x //∈ Q

(vi) x //< 0 ∨ x //> 0 ⇔ x ≤ 0 ∨ x ≥ 0 ⇔ ¬��A ∨ ¬��¬A⇒ ¬A ∨ ¬¬A

[axioms 2′,3]
(vii) x //< 0 ∨ x //> 0⇒ ¬¬��¬A ∨ ¬¬��A⇒ ¬A ∨ ¬¬A. [axiom 1′]

(Brouwer uses parts (iii,vi) to show that

• //< is not a simple order [42] [11, p. 59] [13] [41, p. 43];
• consequently x # 0 is not equivalent to x = 0 [13].

Part (vii) is an alternative argument to (vi), not used by Brouwer – see discussion
below in §7.2.)

Proof For any proposition A, construct its oscillatory property P and apply theo-
rem 7a. The theorem then follows with the help of theorem 3 and theorem 5.

Note: if x is the oscillatory binary shrinking number then |x| is the binary
approximation number.

Theorem 8a. For any decidable property P of natural numbers, there exist x, y∈R
such that

(i) 0 ≤ x ≤ y

(ii) 0 < y ⇔ ∃n P (n)

(iii) 0 < x ⇔ ∃n P ′(2n)

(iv) x < y ⇔ ∃n P ′(2n+ 1)
(v) (0 //< y ⇒ 0 //< x ∨ x //< y) ⇒ (¬¬∃n P (n) ⇒ ¬∃n P ′(2n + 1) ∨

¬∃n P ′(2n)).

(This is a weak counterexample to ∀x, y (0 //< y ⇒ 0 //< x ∨ x //< y).)

Proof

Consider any decidable property P of natural numbers.

Choose u as the oscillatory binary shrinking number (theorem 7a);
choose x ≡ max(0, u) and y ≡ |u| = max(−u, u).
Then parts (i–v) follow.

Theorem 8b. For any proposition A, there exist x, y∈R such that

(i) 0 ≤ x ≤ y

(ii) 0 < x ⇒ ��A

(iii) x < y ⇒ ��¬A



P. Fletcher

(iv) 0 //< y [axiom 2′]
(v) 0 //< x ∨ x //< y ⇒ ¬¬��A ∨ ¬¬��¬A⇒ ¬¬A ∨ ¬A. [axiom 1′]

(This is a strengthened version of an example by Heyting [27, §8.1.1].)

Proof For any proposition A, construct the oscillatory property P and apply theo-
rem 8a. The theorem then follows with the help of theorem 3 and theorem 5.

We now generalise by replacing powers of 2 and −2 by arbitrary convergent
sequences of reals.

Defn. A drift is a pair (a, u), where a is a real number and u is a sequence of real
numbers such that un → a as n→∞.

(This is defined in [14]. Brouwer imposes the extra conditions that ∀n un # a and
∀m, n (m = n⇒ um # un); but I shall only assume these conditions when necessary.
The latter condition seems unnecessarily strong.)

The following theorem uses the binary representation of real numbers (see §2).

Theorem 9 For any drift (a, u), there exist a function v : N→ N, a real number a′,
and a sequence u′ of real numbers, such that

(i) ∀n v(n+ 1) ≥ v(n) and ∀n v(n) ≥ n

(ii) a′ = a and ∀r u′r = ur

(iii) ∀r, n (v(n) < r ⇒ |u′r,n+1 − 2a′n| ≤ 1).

(Notation: u′ is a sequence of real numbers; u′r is the rth real number in the
sequence; a real number is itself a sequence of integers, so u′r,n+1 is the (n + 1)th
integer of u′r .)

Proof

Consider any drift (a, u).

Choose a function N : N→ N such that ∀i ∀r > N(i) |ur − a| ≤ 2−i .
Define a function v : N→ N by

= N(4)

∀n v(n+ 1) = max(v(n), N(n+ 5), n+ 1).

Then part (i) follows.

(ii) Define a′ ∈R, and, for every r , u′r ∈R by

∀n a′n = round
(an+4

16

)

∀r, n u′rn = round
(ur,n+3

8

)

where round rounds a rational number to the nearest integer, rounding halves
arbitrarily.
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Then a′ = a and ∀r u′r = ur , as required.

(iii) can then be verified.

This proves the theorem for any drift (a, u).

Defn. A checking-number of a drift (a, u) through a decidable property P of natural
numbers is a real number x such that

(a) x # a ⇒ ∃n P (n)

(b) ∀n (P ′(n)⇒ x = un).

Theorem 10a. For any drift (a, u) and any decidable property P of natural numbers,
there exists a unique checking-number x of (a, u) through P , and x satisfies

(i) ¬¬(x = a ∨ ∃n x = un)

(ii) if ∀n un # a then x # a ⇔ ∃n x = un ⇔ ∃n P (n)

(iii) if ∀n un # a and ∀m, n (um = un ⇒ m = n) then ∀n (P ′(n) ⇔ x = un);

if ∀n a < un then

(iv) a ≤ x

(v) a < x ⇔ ∃n un < x ⇔ ∃n un //< x ⇔ ∃n P (n)

(vi) a //< x ⇔ ¬¬∃n P (n).

(Hence the schema ¬¬∃n P (n) ⇒ ∃n P (n) is equivalent to ∀x (a //< x ⇒ a <

x).)

Proof

Consider any drift (a, u) and any decidable property P of natural numbers.

I shall give two equivalent constructions of a checking-number x.
(Construction 1, using the binary representation of real numbers (cf theo-
rem 30 below))
Define a sequence x of integers by

∀n xn =
{

u′rn if r ≤ v(n) and P ′(r)
a′n if ∀i ≤ v(n) ¬P(i)

using v, a′, u′ as supplied by theorem 9.
Then it follows that x ∈ R, and conditions (a) and (b) follow.

(Construction 2, not using any representation of real numbers)
Define a sequence s of real numbers by

∀n sn =
{

ur if r ≤ n and P ′(r)
a if ∀i ≤ n ¬P(i).

Then s is a Cauchy sequence, so define x = limn→∞ sn.
Conditions (a) and (b) can be verified.
Uniqueness of the checking-number and parts (i–vi) follow.



P. Fletcher

Defn. The conditional checking-number of a drift (a, u) through a proposition A is
the checking-number of (a, u) through the conditional property of A. [15]

The direct checking-number of a drift (a, u) through a proposition A is the
checking-number of (a, u) through the direct property of A. [14]

The oscillatory checking-number of a drift (a, u) through a proposition A is the
checking-number of (a, u) through the oscillatory property of A. [14]

Each of these three kinds of checking-number is given by an infinite sequence
whose nth term is determined at stage v(n) or stage n. Therefore these checking-
numbers are dependent on the timing of the stages relative to the timing of the creative
subject’s constructive activity that may lead to a proof of A or ¬A. Let us assume for
now that these timings are fixed; then the conditional, direct or oscillatory checking-
number of a given drift through a given proposition is uniquely determined. (I shall
return to this question of timings in §9.1.)

Theorem 10b. For any drift (a, u) and any proposition A, with direct checking-
number x∈R,
(i) ¬¬(x = a ∨ ∃n x = un);
if ∀n un # a then
(ii) x # a ⇔ ∃n x = un ⇔ ��A ∨ ��¬A

(iii) x = a; [axiom 2′]
if ∀n un # a and ∀m, n (um = un ⇒ m = n) then
(iv) ∀n ((�n A ∨ �n ¬A) ∧ ∀i < n (�i A ∧ �i ¬A) ⇔ x = un);
if ∀n a < un then
(v) a //< x [axiom 2′]
(vi) a < x ⇔ ∃n un < x ⇔ ∃n un //< x ⇔ ��A ∨ ��¬A ⇒{

A ∨ ¬A [axiom 1]
¬¬A ∨ ¬A. [axiom 1’]

(Brouwer uses parts (v,vi)

• to show that a //< x does not imply a < x [14, p. 492]; he seems to assume
axiom 1′;

• to show that a //< x does not imply ∃n un //< x [11, p. 60].)

Proof For any drift (a, u) and any proposition A, construct the direct property of A

and apply theorem 10a. The theorem then follows.

Theorem 11a. For any drift (a, u) such that ∀n un ∈ Q, and any decidable property
P of natural numbers, with checking-number x∈R,
(i) ∃n P (n)⇒ x ∈ Q;
if a /∈ Q then
(ii) x /∈ Q ⇔ ¬∃n P (n)

(iii) x /∈ Q ∨ x //∈ Q ⇔ ¬∃n P (n) ∨ ¬¬∃n P (n);
if ∀q ∈Q a # q then
(iv) x ∈ Q ⇔ ∃n P (n)

(v) x ∈ Q ∨ x /∈ Q ⇔ ∃n P (n) ∨ ¬∃n P (n).
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(This construction

• is a weak counterexample to x /∈ Q ∨ x //∈ Q,
• shows that x //∈ Q does not imply x ∈ Q, and so x /∈ Q ∨ x //∈ Q does not imply

x ∈ Q ∨ x /∈ Q.)

Proof This follows easily from the properties of a checking-number.

Theorem 11b. For any drift (a, u) such that ∀n un ∈ Q, and any proposition A, with
conditional checking-number x∈R,
(i) A⇒ x ∈ Q; [axiom 2]
if a /∈ Q then
(ii) x /∈ Q ⇔ ¬A [axioms 1′, 2′]
(iii) x /∈ Q ∨ x //∈ Q ⇔ ¬A ∨ ¬¬A; [axioms 1′, 2′]
if ∀q ∈Q a # q then
(iv) x ∈ Q ⇔ A [axioms 1,2]
(v) x ∈ Q ∨ x /∈ Q ⇔ A ∨ ¬A. [axioms 1,2]

(Brouwer uses this as a counterexample to x /∈ Q ∨ x //∈ Q [20, p. 525]. He also
makes the stronger claim that a /∈ Q implies x ∈ Q ⇔ A, which I consider unsound;
see §9.1 below. Since he says that A is untestable, rather than unjudgeable, he seems
to be using axiom 1′ rather than 1.)

Proof For any such drift (a, u) and any proposition A, construct the conditional
property of A and apply theorem 11a. The theorem then follows.

Theorem 11c. For any drift (a, u) such that ∀n un ∈ Q, and any proposition A, with
direct checking-number x∈R,
(i) A ∨ ¬A⇒ x ∈ Q; [axiom 2]
(ii) x //∈ Q; [axiom 2′]
if ∀q ∈Q a # q then

(iii) x ∈ Q⇒
{

A ∨ ¬A [axiom 1]
¬¬A ∨ ¬A. [axiom 1’]

(Brouwer claims that x //∈ Q is not equivalent to x ∈ Q and that we have x /∈ Q ∨
x //∈ Q but cannot prove x ∈ Q ∨ x /∈ Q [14, p. 492]; see also [20, p. 525], where he
assumes a /∈ Q; the claims are unjustified because he has not assumed ∀q ∈Q a # q.
See §9.1 for discussion.)

Proof For any such drift (a, u) and any proposition A, construct the direct property
of A and apply theorem 11a. The theorem then follows.

Theorem 12a. For any drift (a, u) such that a ∈ Q and ∀n un /∈ Q, and any
decidable property P of natural numbers, with checking-number x∈R,
(i) ¬¬∃n P (n)⇒ x /∈ Q



P. Fletcher

(ii) ∀q ∈Q x # q ⇒ ∃n P (n)

(iii) (x /∈ Q⇒ ∀q ∈Q x # q)⇒ (¬¬∃n P (n)⇒ ∃n P (n)).

Proof This follows easily from the properties of a checking-number.

Theorem 12b. For any drift (a, u) such that a ∈ Q and ∀n un /∈ Q, and any
proposition A, with direct checking-number x∈R,
(i) x /∈ Q [axiom 2′]
(ii) ∀q ∈Q x # q ⇒ ��A ∨ ��¬A⇒

{
A ∨ ¬A [axiom 1]
¬¬A ∨ ¬A. [axiom 1’]

(This is an example in [14, p. 494]. Brouwer uses it to show that x /∈ Q does not
imply ∀q ∈Q x # q. Since he says that A is untestable, rather than unjudgeable, he
seems to be using axiom 1′ rather than 1.)

Proof For any such drift (a, u) and proposition A, construct the direct property of A

and apply theorem 12a. The theorem then follows.

Theorem 13a. For any drift (a, u) such that such that ∀n (u2n ∈ Q ∧ u2n > a) and
∀n (u2n+1 /∈ Q ∧ u2n+1 < a), and any decidable property P of natural numbers,
with checking-number x∈R,
(i) ∃n P ′(2n)⇒ x ∈ Q ∧ x > a

(ii) ∃n P ′(2n+ 1)⇒ x /∈ Q ∧ x < a

(iii) x /∈ Q ∨ x //∈ Q⇒ ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1)
(iv) x ≤ a ∨ x ≥ a ⇒ ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).

(Conversely, the schema ¬∃n P ′(2n) ∨ ¬∃n P ′(2n + 1) implies ∀x (x ≤ a ∨
x ≥ a).)

Proof This follows easily from the properties of a checking-number.

Theorem 13b. For any drift (a, u) such that ∀n (u2n ∈ Q ∧ u2n > a) and
∀n (u2n+1 /∈ Q ∧ u2n+1 < a), and any proposition A, with oscillatory checking-
number x∈R,
(i) ��A⇒ x ∈ Q ∧ x > a [axiom 3]
(ii) ��¬A⇒ x /∈ Q ∧ x < a [axiom 3]
(iii) x /∈ Q ∨ x //∈ Q⇒ ¬A ∨ ¬¬A [axioms 2′,3]
(iv) x ≤ a ∨ x ≥ a ⇒ ¬A ∨ ¬¬A. [axioms 2′,3]

(This is an example in [14, p. 492]. Brouwer uses it

• as a counterexample to x /∈ Q ∨ x //∈ Q (and hence also to x ∈ Q ∨ x /∈ Q),
• as a counterexample to x ≥ a ∨ x ≤ a.

Brouwer also claims that it shows that x //∈ Q is not equivalent to x ∈ Q, which is
unjustified; see §9.1 for discussion.)
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Proof For any such drift (a, u) and proposition A, construct the oscillatory property
of A and apply theorem 13a. The theorem then follows.

5.2 Weak Counterexamples Involving Orderings in General

From now on I shall not state the ‘b’ forms of the theorems in full, as they can derived
in a completely stereotyped way from the ‘a’ forms.

Defn. A partially ordered set is a triple (A,≡,≺), where A is a set and ≡,≺ are
binary relations on A, such that, for all a, b, c, r, s∈A,

(1) a ≡ a

(2) a ≡ b ⇒ b ≡ a

(3) a ≡ b ∧ b ≡ c ⇒ a ≡ c

(5) a ≡ r ∧ b ≡ s ∧ a ≺ b ⇒ r ≺ s

(6) a ≺ b ∧ b ≺ c ⇒ a ≺ c

(7) a ≺ b ⇒ b ≺ a.

(I omit Brouwer’s axiom (4), a � b ⇔ b ≺ a. I use ≡, ≺ for the negated
relations.)

Defn. A virtually ordered set is a partially ordered set (A,≡,≺) such that, for all
a, b∈A,

(8) a ≡ b ∧ a ≺ b ⇒ b ≺ a

(9) a ≺ b ∧ b ≺ a ⇒ a ≡ b.

Defn. A simply ordered (or quasi-completely ordered) set is a partially ordered set
(A,≡,≺) such that, for all a, b∈A,

(10) a ≡ b ⇒ a ≺ b ∨ b ≺ a.

Theorem 14a.

(i) For any decidable property P of natural numbers, there is a partially ordered
set that is a virtually ordered set iff ¬¬∃n P (n)⇒ ∃n P (n).

(ii) For any proposition A, there is a virtually ordered set that is a simply ordered
set iff ¬A ∨ ¬¬A.

(iii) For any proposition A, there is a simply ordered set that is a virtually ordered
set iff ¬¬A⇒ A.

(These three examples are from [16]. In (i) I have used decidable properties of
natural numbers; Brouwer probably intended a use of the creative subject. In (ii,iii) I
have interpreted Brouwer’s expression ‘l’ensemble de X et Y ’ as X ∧ Y rather than
X ∨ Y ; this is necessary to make the argument work. In English he sometimes uses
‘union’ and ‘combination’ to mean ∧ , e.g., [41, p. 50].)

Proof (i) Consider any decidable property P of natural numbers.

Construct the binary approximation number x, as in theorem 6a.



P. Fletcher

Define sets S = { 2−n | n∈N } and T = S ∪ {x}.
Then ({S, T },=,⊂) is a partially ordered set.
Also, ({S, T },=,⊂) is a virtually ordered set iff ¬¬∃n P (n)⇒ ∃n P (n).

This proves part (i).

(ii) Consider any proposition A.

Choose two objects a, b and define binary relations ≡,≺ on them by

a ≡ a, b ≡ b, a ≡ b, b ≡ a

a ≺ a, b ≺ b, a ≺ b ⇔ ¬A, b ≺ a ⇔ ¬¬A.

Then ({a, b},≡,≺) is a virtually ordered set.
Also, ({a, b},≡,≺) is a simply ordered set iff ¬A ∨ ¬¬A.

This proves part (ii).

(iii) Consider any proposition A.

Choose two objects a, b and define binary relations ≡,≺ on them by

a ≡ a, b ≡ b, a ≡ b ⇔ b ≡ a ⇔ A

a ≺ a, b ≺ b, a ≺ b ⇔ ¬A, b ≺ a.

Then ({a, b},≡,≺) is a simply ordered set.
Also, ({a, b},≡,≺) is a virtually ordered set iff ¬¬A⇒ A.

This proves part (iii).

From this may be derived theorem 14b, the version using the creative subject: for
any proposition A construct its direct property P and apply theorem 14a(i), giving a
partially ordered set that is virtually ordered only if A ∨ ¬A [if axiom 1 is used] or
only if ¬¬A ∨ ¬A [if axiom 1′ is used].

Theorem 15a. For any simple order ≺ on R (with ≡ defined as =), and any
decidable property P of natural numbers, there exists x∈R such that

(i) x ≺ −x ∧ x # 0 ⇔ ∃n P ′(2n)

(ii) −x ≺ x ∧ x # 0 ⇔ ∃n P ′(2n+ 1)
(iii) x # 0 ⇔ ∃n P (n)

(iv) x = 0 ⇔ ¬∃n P (n)

(v) x = 0 ⇔ ¬¬∃n P (n); and hence
(vi) ¬¬∃n P (n)⇒ ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).

(Brouwer uses part (vi) to show the lack of a simple order on the reduced con-
tinuum [41, pp. 55–6]. I am modifying his construction inessentially. There is a
converse: if the schema ¬¬∃n P (n) ⇒ ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1) holds then
(R,=, //<) is a simply ordered set.)

Proof Consider any simple order ≺ on R (with ≡ defined as =), and any decidable
property P of natural numbers.

Since ≺ is simple we have ∀n (2−n ≺ −2−n ∨ −2−n ≺ 2−n).
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Define a sequence a of reals by

∀n an =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if ∀i ≤ n ¬P(i)

2−2r if 2r ≤ n and P ′(2r) and 2−2r ≺ −2−2r
−2−2r if 2r ≤ n and P ′(2r) and − 2−2r ≺ 2−2r
−2−2r−1 if 2r + 1 ≤ n and P ′(2r + 1) and 2−2r−1 ≺ −2−2r−1
2−2r−1 if 2r + 1 ≤ n and P ′(2r + 1) and − 2−2r−1 ≺ 2−2r−1

This is a Cauchy sequence, so define x = limn→∞ an.
Parts (i–vi) now follow. I shall just give the argument for (vi).
Suppose ¬¬∃n P (n).

By part (v) x = 0,
so −x = x,
so −x ≺ x ∨ x ≺ −x,
so ¬(x ≺ −x) ∨ ¬(−x ≺ x),
so by parts (i,ii) ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).

This shows that ¬¬∃n P (n)⇒ ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).
This proves the theorem.

The ‘b’ version of this theorem [17], [41, pp. 54–5] uses the oscillatory property
of an arbitrary proposition A to give the conclusion in part (vi) ¬A ∨ ¬¬A [using
axioms 2′, 3]. This shows the lack of a simple order on the full continuum.

5.3 Weak Counterexamples to the Basic Properties of the Classical Continuum

Theorem 16a (weak counterexample to the least upper bound principle). For any
decidable property P of natural numbers, there exists a set S of rational numbers
such that

(i) ∃q q ∈ S

(ii) ∃b∈R ∀q ∈S q ≤ b

(iii) if S has a (weak) supremum then ¬¬∃n P (n) ∨ ¬∃n P (n)

where l is a (weak) supremum of S iff ∀b∈R (∀q ∈S q ≤ b ⇔ l ≤ b).

(This is from [11, p. 56].)

Proof Consider any decidable property P of natural numbers.

Define a sequence a of rationals by

a0 = 1, ∀n an+1 =
{

1
2an if ¬P ′(n)

1 if P ′(n)

and define S = { q ∈Q | ∃n q <
∑n

i=0 ai }.
(i) and (ii) are easy.
(iii)
Suppose S has a weak supremum, l.



P. Fletcher

Then ∃n P (n)⇒ 9
4 ∈ S ⇒ 9

4 ≤ l,
and ¬∃n P (n)⇒ ∀q ∈S q < 2⇒ l ≤ 2.
Now, 2 < l ∨ l < 9

4 ,
so ¬¬∃n P (n) ∨ ¬∃n P (n).

This shows that if S has a weak supremum then ¬¬∃n P (n) ∨ ¬∃n P (n), as
required.

This proves the theorem.

The ‘b’ form of the theorem uses the conditional property of an arbitrary propo-
sition A to conclude in part (iii) that if S has a weak supremum then ¬¬A ∨ ¬A

[using axioms 1′, 2′]. Brouwer does not consider this.

Theorem 17a (failure of Dedekind cuts always to define a real). For any
decidable property P of natural numbers, there exist sets S, T of reals such that

(i) ∃x x ∈ S and ∃x x ∈ T

(ii) ∀x∈S ∀y∈T x < y

(iii) ¬∃x∈R (x /∈ S ∧ x /∈ T )

(iv) S has no maximum
(v) if T has a minimum then ¬¬∃n P (n) ∨ ¬∃n P (n).

(This is from [11, p. 61].)

Proof Consider any decidable property P of natural numbers.

Define a sequence a of rationals by

∀n an =
{
1− 2−n−1 if ∀i ≤ n ¬P(i)

2− 2−n−1 if ∃i ≤ n P (i)

and define sets S = { x∈R | ∃n x < an } and T = { x∈R | ∀n x ≥ an }.
(i–iv) are easy.
(v)
Suppose T has a minimum, M .

We show ∃n P (n)⇒ M ≥ 3
2 ,

and ¬∃n P (n)⇒ ∀n an = 1− 2−n−1 ⇒ 1 ∈ T ⇒ M ≤ 1.
Now, 1 < M ∨ M < 3

2 ,
so ¬¬∃n P (n) ∨ ¬∃n P (n).

This shows that if T has a minimum then ¬¬∃n P (n) ∨ ¬∃n P (n), as required.

This proves the theorem.

The ‘b’ form of the theorem (not considered by Brouwer) uses the conditional
property of an arbitrary proposition A to give the conclusion in part (v) that if T has
a minimum then ¬¬A ∨ ¬A [using axioms 1′, 2′].
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Theorem 18a (weak counterexample to compactness). For any decidable property
P of natural numbers, there exists a nested sequence I of closed intervals such that

∃x x ∈⋂
n In ⇒ ¬∃n P ′(2n+ 1) ∨ ¬∃n P ′(2n).

(This is from [11, p. 62].)

Proof Consider any decidable property P of natural numbers.

Define a nested sequence I of closed intervals by

∀n In =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
− 1

2 ,
1
2

]
if ∀i ≤ n ¬P(i)[

− 1
2 ,− 1

4

]
if r ≤ n and P ′(r) and r is odd[

1
4 ,

1
2

]
if r ≤ n and P ′(r) and r is even.

Suppose ∃x x ∈⋂
n In.

Choose such an x.
Then ∃n P ′(2n+ 1)⇒ x ∈

[
− 1

2 ,− 1
4

]
, and ∃n P ′(2n)⇒ x ∈

[
1
4 ,

1
2

]
.

Now, − 1
4 < x ∨ x < 1

4 ,
so ¬∃n P ′(2n+ 1) ∨ ¬∃n P ′(2n).

This shows that ∃x x ∈⋂
n In ⇒ ¬∃n P ′(2n+ 1) ∨ ¬∃n P ′(2n).

This proves the theorem.

The ‘b’ form of the theorem (not considered by Brouwer) uses the oscillatory
property of an arbitrary proposition A to give ∃x x ∈ ⋂

n In ⇒ ¬¬A ∨ ¬A [using
axioms 2′,3].

5.4 Weak Counterexamples in the Theory of Real Functions

Defn. A real number a is a point of positive discontinuity of a function f : R → R

iff there exists a sequence u of real numbers such that un → a as n → ∞ and
∃ε∈Q+ ∀n |f (un)− f (a)| ≥ ε.

f is negatively continuous iff it does not have a point of positive discontinuity.
(Negative continuity is equivalent to sequential nondiscontinuity [2].)
f is continuous iff ∀a ∀ε∈Q+ ∃δ∈Q+ ∀x (|x − a| < δ ⇒ |f (x)− f (a)| < ε).

Any function f is required to be extensional, which means that it satisfies
∀x, y (x = y ⇒ f (x) = f (y)). A function f is strongly extensional iff it satisfies
∀x, y (f (x) # f (y)⇒ x # y).

Theorem 19a (negative continuity theorem). For any f : R → R having a point
of positive discontinuity, and any decidable property P of natural numbers,

(i) ¬∃n P (n) ∨ ¬¬∃n P (n)

(ii) if f is strongly extensional then ∃n P (n) ∨ ¬∃n P (n).
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(Brouwer uses part (i) to show that all functions are negatively continuous
[41, pp. 80–1]. The converses hold: if one assumes ¬∃n P (n) ∨ ¬¬∃n P (n) then
one can define a function with one removable discontinuity, and if one assumes
∃n P (n) ∨ ¬∃n P (n) one can define a step function that is strongly extensional.
Also, Ishihara [28] shows that, assuming a weak form of Markov’s principle, every
function R → R is strongly extensional, and every negatively continuous function
R→ R is sequentially continuous, i.e., un → a as n →∞ implies f (un) → f (a)

as n → ∞. Therefore if one assumes the weak Markov’s principle together with
¬∀P (∃n P (n) ∨ ¬∃n P (n)) then one infers that all functions R → R are
sequentially continuous.)

Proof Consider any function f : R→ R having a point of positive discontinuity a.

Choose a real sequence u such that un → a as n →∞ and a rational ε > 0 such
that ∀n |f (un)− f (a)| ≥ ε.
Consider any decidable property P of natural numbers.

Construct the checking-number x∈R of the drift (a, u) through P .
Since 0 < ε we have 0 < |f (x)− f (a)| ∨ |f (x)− f (a)| < ε. (1)
Now, ∃n P (n)⇒ ∃n x = un ⇒ |f (x)− f (a)| ≥ ε,
so |f (x)− f (a)| < ε ⇒ ¬∃n P (n). (2)
(i)
Now, ¬∃n P (n)⇒ x = a ⇒ |f (x)− f (a)| = 0,
so 0 < |f (x)− f (a)| ⇒ ¬¬∃n P (n). (3)
By (1), (2) and (3), ¬∃n P (n) ∨ ¬¬∃n P (n).
(ii)
Suppose f is strongly extensional.

Then 0 < |f (x)− f (a)| ⇒ f (x) # f (a)⇒ x # a ⇒ ∃n P (n). (4)
By (1), (2) and (4), ∃n P (n) ∨ ¬∃n P (n).

This shows that if f is strongly extensional then ∃n P (n) ∨ ¬∃n P (n).
This proves (i) and (ii) for any decidable property P of natural numbers.

This proves the theorem.

The ‘b’ form of the theorem uses the conditional property of an arbitrary propo-
sition A to give ¬A ∨ ¬¬A [using axioms 1′, 2′], and A ∨ ¬A if f is strongly
extensional [using axioms 1,2′]. Brouwer does not consider this but instead gives a
completely different proof of the negative continuity theorem in [8]; see theorem 30
below.

Theorem 20a (weak counterexample to the intermediate value theorem). For
any decidable property P of natural numbers, there exists a continuous function f :
[−2, 2] → R such that f (−2) > 0 and f (2) < 0 but

∃c∈ (−2, 2) f (c) = 0⇒ ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).
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(This is from [12, p. 445]. Conversely, as Bridges & Richman point out [2, ch. 3,
theorem 2.4], given the schema ¬∃n P ′(2n) ∨ ¬∃n P ′(2n + 1) the intermediate
value theorem is easily proved.)

Proof Consider any decidable property P of natural numbers.

Construct the oscillatory binary shrinking number b ∈ R as in theorem 7a, and
define a = |b| (in fact, a is just the binary approximation number constructed in
theorem 6a).
Construct a continuous function f : [−2, 2] → R such that

f (−2) = 1, f (−1) = a, f (1) = b, f (2) = −1,
with f linear on [−2,−1] and on [−1, 1] and on [1, 2].
Suppose ∃c∈ (−2, 2) f (c) = 0.

Choose such a c.
Then ∃n P ′(2n)⇒ b = a > 0⇒ c > 1,
and ∃n P ′(2n+ 1)⇒ b = −a < 0⇒ c = 0.
But 1 > c ∨ c > 0,
so ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).

This shows that ∃c∈ (−2, 2) f (c) = 0⇒ ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).

This proves the theorem.

The ‘b’ form of the theorem (not considered by Brouwer) uses the oscillatory
property of an arbitrary proposition A to give ∃c∈ (−2, 2) f (c) = 0⇒ ¬A ∨ ¬¬A

[using axioms 2′,3].

Theorem 21a (weak counterexample to existence of local maximum of conti-
nuous functions). For any decidable property P of natural numbers, there exists
a continuous function f : [0, 1] → R such that if f has a local maximum then
¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).

(This is an early example from 1923 [5]. Brouwer used a particular fleeing
property involving the occurrence of 0123456789 in the digits of π , which I have
generalised to an arbitrary fleeing property. Brouwer simply asserted that the function
‘possesses no maximum’, whereas I derive a specific constructively invalid logical
schema from the assumption of a local maximum; to do this I have had to simplify his
argument, replacing his use of an enumeration of all binary fractions in (0, 1) simply
by 1

4 and 3
4 .)

Proof Consider any decidable property P of natural numbers.

For each n, define h2n : [0, 1] → R such that h2n(0) = 0, h2n(
1
4 ) = 2−n,

h2n(1) = 0, and h2n is linear between these points;
and define h2n+1 : [0, 1] → R such that h2n+1(0) = 0, h2n+1( 34 ) = 2−n,
h2n+1(1) = 0, and h2n+1 is linear between these points.
For each n, define gn as hn if P ′(n), and as the zero function otherwise.
Define f : [0, 1] → R as

∑∞
n=0 gn.
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Then ∀x, y∈[0, 1] |f (x)− f (y)| ≤ 4|x − y|, so f is continuous.
Suppose f has a local maximum, attained at x∈[0, 1].

If ∃n P ′(2n) then f = h2n, so x = 1
4 .

If ∃n P ′(2n+ 1) then f = h2n+1, so x = 3
4 .

But 1
4 < x ∨ x < 3

4 ,
so ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).

This shows that if f has a local maximum then ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1).

This proves the theorem.

The ‘b’ form of the theorem (not considered by Brouwer) uses the oscillatory
property of an arbitrary proposition A to show that if f has a local maximum then
¬A ∨ ¬¬A [using axioms 2′, 3].

An alternative approach is to show that the proposition that every continuous func-
tion on [0, 1] has a local maximum implies ∀x, y (x ≤ y ∨ y ≤ x), which is refuted
by theorem 7a.

Defn. (Weak and strong differentiation [23])
c is a weak derivative of f at a, f ′weak(a) = c, iff

¬∃n ∀m ∃p, q
(
p < a < q ∧ q − p < 2−m ∧ ∣∣f (q)−f (p)

q−p
− c

∣∣ > 2−n
)
;

c is a strong derivative of f at a, f ′strong(a) = c, iff

∀n ∃m ∀p, q
(
p < a < q ∧ q − p < 2−m ⇒ ∣∣f (q)−f (p)

q−p
− c

∣∣ < 2−n
)
.

Note that a strong derivative is unique, and that f ′strong(a) = c implies f ′weak(a) =
c; but it does not seem possible to prove that a weak derivative is unique.

f is weakly differentiable at a iff it has a weak derivative at a.
f is strongly differentiable at a iff it has a strong derivative at a.

These concepts are defined for functions f : R → R but can be adapted to
functions on an interval in the usual way.

In future if I omit the qualification ‘weak’ or ‘strong’ then the argument works for
both kinds of differentiation.

Theorem 22a. For any decidable property P of natural numbers, there exists a
strictly increasing, uniformly continuous function f : [0, 1] → R such that if f is
differentiable at any point then ¬∃n P (n) ∨ ¬¬∃n P (n).

(This is from [22]. It supersedes an earlier weak counterexample in [5], which was
faulty.)

Proof Consider any decidable property P of natural numbers.
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For each n > 0, define a ‘sawtooth’ function χn : [0, 1] → R such that

∀i∈{0, . . . n} χn

(
i
n

) = 0

∀i∈{0, . . . n− 1} χn

(
2i+1
2n

)
= 1

4n

with χn linear between these points.
For each n > 0, define a function ψn : [0, 1] → R such that

∀x∈[0, 1] ψn(x) =
{

χn(x) if P ′(n− 1)
0 otherwise.

Define f : [0, 1] → R by ∀x∈[0, 1] f (x) = x +∑∞
n=1 ψn(x).

Then f is strictly increasing.
Also, ∀x, y∈[0, 1] |f (x)− f (y)| ≤ 3

2 |x − y|,
so f is uniformly continuous.
Suppose there exists a point a∈[0, 1] at which f is differentiable.

Then ¬∃n P (n)⇒ ∀x∈[0, 1] f (x) = x ⇒ f ′(a) = 1;
and we can show f ′(a) # 1

2 ∧ f ′(a) # 3
2 ⇒ ¬∃n P (n).

Now, f ′(a) # 1 ∨ f ′(a) # 1
2 and f ′(a) # 1 ∨ f ′(a) # 3

2 ,
so ¬∃n P (n) ∨ ¬¬∃n P (n).

This shows that if f is differentiable at any point then ¬∃n P (n) ∨ ¬¬∃n P (n).

This proves the theorem.

Brouwer [24] also considers the ‘b’ form of the theorem. For any proposition A

the conditional property is used to show that if f is differentiable at any point then
¬A ∨ ¬¬A [using axioms 1′, 2′].

Theorem 23a. For any decidable property P of natural numbers, there exists a
function f : R→ R such that

(i) f ′strong(0) = 0 ⇔ ∃n P (n)

(ii) (f ′weak(0) = 0⇒ f ′strong(0) = 0)⇒ (¬¬∃n P (n)⇒ ∃n P (n)).

(This shows the difference between weak and strong derivatives.)

Proof For each n, define ωn : R→ R by

∀x ≤ −2−n+1 ωn(x) = 0

∀x∈[−2−n+1,−2−n] ωn(x) =
√

(x + 2−n+1)(−2−n − x)

∀x∈[−2−n, 2−n] ωn(x) = 0

∀x∈[2−n, 2−n+1] ωn(x) =
√

(x − 2−n)(2−n+1 − x)

∀x ≥ 2−n+1 ωn(x) = 0.

Consider any decidable property P of natural numbers.
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For any n, define ζn : R→ R by

∀x∈R ζn(x) =
{

ωn(x) if ∀i ≤ n ¬P(i)

0 if ∃i ≤ n P (i).

Define f : R→ R by ∀x∈R f (x) =∑∞
n=1 ζn(x).

(i)
Suppose f ′strong(0) = 0.

Choose m such that ∀p, q
(
p < 0 < q ∧ q−p < 2−m⇒ ∣∣f (q)−f (p)

q−p

∣∣ < 2−3
)
.

Choose p = −2−m−2 and q = 3
22
−m−2.

Suppose ∀i ≤ m+ 2 ¬P(i).

Then f (p) = 0 and f (q) = ωm+2
(
3
22
−m−2

)
= 1

22
−m−2, so

∣∣∣f (q)− f (p)

q − p

∣∣∣ =
∣∣∣

1
22
−m−2 − 0

3
22
−m−2 + 2−m−2

∣∣∣ = 1
5 < 2−3,

which is a contradiction.

This shows that ∃i ≤ m+ 2 P(i).

This shows that f ′strong(0) = 0⇒ ∃n P (n).
Conversely, ∃n P (n)⇒ f ′strong(0) = 0.
Hence f ′strong(0) = 0 ⇔ ∃n P (n), as required.
(ii)
By part (i), ∃n P (n)⇒ f ′strong(0) = 0⇒ f ′weak(0) = 0,
so, contraposing twice, ¬¬∃n P (n)⇒ f ′weak(0) = 0.
Part (i) also says, f ′strong(0) = 0⇒ ∃n P (n).
So (f ′weak(0) = 0⇒ f ′strong(0) = 0)⇒ (¬¬∃n P (n)⇒ ∃n P (n)), as required.

This proves the theorem.

In this case Brouwer considers only the ‘b’ form of the theorem [23]. For
any proposition A the direct property is used to show that if f ′weak(0) = 0 ⇒
f ′strong(0) = 0 then A ∨ ¬A [using axioms 1,2′] or ¬¬A ∨ ¬A [using
axioms 1′, 2′]; Brouwer seems to be doing the former, since he states his argument in
terms of an unjudgeable proposition rather than an untestable one.

Theorem 24a (weak counterexample to Rolle’s theorem). For any decidable
property P of natural numbers, there exists a continuously differentiable function
f : [−3, 3] → R such that f (−3) = f (3) and

∃c∈ (−3, 3) f ′(c) = 0⇒ ¬∃n P ′(2n+ 1) ∨ ¬∃n P ′(2n).

(This is from [12, p. 445].)

Proof Consider any decidable property P of natural numbers.
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Construct the oscillatory binary shrinking number b ∈ R as in theorem 7a, and
define a = |b|.
Construct a continuous function g : [−3, 3] → R such that

g(−3) = 1, g(−2) = a, g(−1) = b, g(0) = −1,
g(1) = −a, g(2) = −b, g(3) = 1,

with g linear on [−3,−2] and [−2,−1] and [−1, 0] and [0, 1] and [1, 2] and [2, 3],
and construct a piecewise quadratic function f : [−3, 3] → R such that f (3) =
0 = f (−3) and f ′ = g.
Suppose ∃c∈ (−3, 3) f ′(c) = 0.

Choose such a c.
Then ∃n P ′(2n+ 1)⇒ b = −a < 0⇒ c = − 3

2 ∨ c = 3
2 ,

and ∃n P ′(2n)⇒ b = a > 0⇒ c ∈ [−1, 0] ∨ c ∈ [2, 3].
But − 3

2 < c ∨ c < −1 and 0 < c ∨ c < 3
2 and 3

2 < c ∨ c < 2,
so c < −1 ∨ − 3

2 < c < 3
2 ∨ 0 < c < 2 ∨ 3

2 < c,
so ¬∃n P ′(2n+ 1) ∨ ¬∃n P ′(2n).

This shows that ∃c∈ (−3, 3) f ′(c) = 0⇒ ¬∃n P ′(2n+ 1) ∨ ¬∃n P ′(2n).

This proves the theorem.

The ‘b’ form of the theorem (not considered by Brouwer) uses the oscillatory
property of an arbitrary proposition A to give ∃c ∈ (−3, 3) f ′(c) = 0 ⇒ ¬¬A ∨
¬A [using axioms 2′,3].

5.5 Weak Counterexamples in Topology

Theorem 25a (weak counterexample to the Heine-Borel theorem). For any decid-
able property P of natural numbers, there exists a closed and bounded set S ⊆ R

such that

(i) S ⊆⋃
n∈N Un, for a countably indexed family n(Un) of open sets,

(ii) if there exists a finite set {n1, . . . nk} ⊆ N such that S ⊆ ⋃k
i=1 Uni

then
∃n P (n) ∨ ¬∃n P (n).

(Brouwer [5, 21] stated this originally for a particular fleeing property involving
the occurrence of 0123456789 in the digits of π , which I have generalised to an arbi-
trary fleeing property. There are subtleties in the interpretation of the word ‘closed’.
I have taken the simplest proof from [21]; a set S is closed iff xn → l as n→∞ and
∀n xn ∈ S imply l ∈ S. The counterexample works by constructing a set S that is not
‘located’; see [2, 21] for more on this.)

Proof Consider any decidable property P of natural numbers.

Define a set S = { un | n ∈ N }, where ∀n un =
{−1 if ∃i ≤ n P (i)

1 if ∀i ≤ n ¬P(i)
.
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Then S is closed and bounded.
(i)
For each n choose Un = (un − 1, un + 1).
Then S ⊆⋃

n∈N Un.
(ii)
Suppose S ⊆⋃k

i=1 Uni
, for some finite subset {n1, . . . nk} ⊆ N.

Choose N = max{n1, . . . nk}.
Suppose ¬∃n ≤ N P(n).

Then un1 , . . . unk
all equal 1,

so
⋃k

i=1 Uni
= (0, 2),

so −1 /∈ S, so ¬∃n P (n).

This shows that ¬∃n ≤ N P(n)⇒ ¬∃n P (n).
Since we have ∃n ≤ N P(n) ∨ ¬∃n ≤ N P(n) then ∃n P (n) ∨ ¬∃n P (n).

This shows that if S ⊆ ⋃k
i=1 Uni

, for some {n1, . . . nk} ⊆ N, then ∃n P (n) ∨
¬∃n P (n).

This proves the theorem.

The ‘b’ form of the theorem (not considered by Brouwer) uses the conditional
property of an arbitrary proposition A to show that if n(Un) has a finite subcover then
A ∨ ¬A [using axioms 1, 2′].

A version of the Heine-Borel theorem can however be proved if the fan theorem
is assumed [38, vol. 1, p. 305]

Defn. A real number x is a point of accumulation of a real set S, accS(x), iff

∀a, b∈R (a < x < b ⇒ ∃∞p∈ (a, b) p ∈ S).

Defn. A real set S is bounded in number, bn(S), iff there exists n such that S has no
subset of cardinality n.

The A form of the Bolzano-Weierstrass theorem says that every infinite S ⊆ [0, 1]
has a point of accumulation.

The B form of the Bolzano-Weierstrass theorem says that every S ⊆ [0, 1]without
a point of accumulation is bounded in number.

Theorem 26a (weak counterexample to the A form). For any decidable property
P of natural numbers, there exists an infinite set S ⊆ [0, 1] such that

∃x accS(x)⇒ ∃n P (n) ∨ ¬∃n P (n).

(This is from [18, p. 517].)

Proof Consider any decidable property P of natural numbers.

Define an infinite set S = { an | n > 0 } ⊆ [0, 1], where

∀n > 0 an =
{ 1

3 + 2−n if ∀i ≤ n ¬P(i)
1
4 + 2−n if ∃i ≤ n P (i).
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We show by cases that ∀x∈R
(
x # 1

3 ∧ x # 1
4 ⇒ ¬accS(x)

)
.

Hence ∀x∈R
(
accS(x)⇒ x = 1

4 ∨ x = 1
3

)
.

Suppose S has a point of accumulation, x.

Then x = 1
4 ∨ x = 1

3 .
We show that x = 1

4 ⇒ ∃n P (n), and x = 1
3 ⇒ ¬∃n P (n).

Thus ∃n P (n) ∨ ¬∃n P (n).

This shows that ∃x accS(x)⇒ ∃n P (n) ∨ ¬∃n P (n).

This proves the theorem.

The ‘b’ form of the theorem (not considered by Brouwer) uses the conditional
property of an arbitrary proposition A to give ∃x accS(x) ⇒ ¬¬A ∨ ¬A [using
axioms 1′, 2′].

Theorem 27a (weak counterexample to the B form). For any decidable property
P of natural numbers, there is a set S ⊆ [0, 1] such that

(i) bn(S)⇒ ∃n P (n)

(ii) ∃n P (n)⇒ ¬∃x accS(x)

(iii) (¬∃x accS(x)⇒ bn(S))⇒ (¬¬∃n P (n)⇒ ∃n P (n)).

Proof Consider any decidable property P of natural numbers.

Define S = { 2−n | ∀i ≤ n¬P(i) } ⊆ [0, 1]. (This is a simplification of Brouwer’s
construction.)
(i)
Suppose S is bounded in number.

Choose k such that S has no subset of cardinality k.
If ∀i ≤ k − 1 ¬P(i) then {20, 2−1, . . . 2−k+1} is a subset of S of cardinality k,
so ∃i ≤ k − 1 P(i).

This shows that bn(S)⇒ ∃n P (n), as required.
(ii)
Suppose ∃n P (n).

Choose the least r such that P(r).
Then S = {20, 21, . . . 2−r+1},
so ¬∃x accS(x).

This shows that ∃n P (n)⇒ ¬∃x accS(x), as required.
(iii) follows from (i) and the double contrapositive of (ii).

This proves the theorem.

This time it is the ‘b’ form of the theorem that Brouwer considers [18, p. 517].
For any proposition A the direct property is used to construct S ⊆ [0, 1] that has no
point of accumulation [using axiom 2′], and if bn(S) then A ∨ ¬A [using axiom 1]
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or ¬¬A ∨ ¬A [using axiom 1′]; Brouwer seems to be doing the latter, since he
considers an untestable A.

Theorem 28a (weak counterexample to Brouwer’s fixed-point theorem). Define
Q = [−1, 1] × [−1, 1], a square in R

2. For any decidable property P of natural
numbers, there is a uniformly continuous injective function f : Q→ Q such that

(i) ¬¬∃n P (n)⇒ ∃≤1p∈Q f (p) = p,
(ii) ∃p∈Q f (p) = p ⇒ ¬∃r P ′(2r) ∨ ¬∃r P ′(2r + 1).

(This is a weak counterexample to:

every uniformly continuous injective function from Q into Q has a fixed point;
every uniformly continuous injective function from Q into Q with at most one
fixed point has a fixed point.)

Proof Consider any decidable property P of natural numbers.

Choose points a =
(
− 1

2 , 0
)
and b =

(
1
2 , 0

)
in Q.

For any n, define a function tan : Q→ Q as follows. Represent each point ofQ by
polar coordinates (r, θ) based at a. The point with polar representation (r, θ) maps
to the point with polar representation (kθ r, θ + tan−1 2−n), where kθ is chosen so
that any point on the boundary of Q maps to another point on the boundary.
This defines tan on each point of Q apart from a. It is extended to the whole of Q

by continuity.
Then, for each n, tan is a bijection from Q to itself, with a as its only fixed
point, satisfying ∀p, q ∈Q ‖tan(p) − tan(q)‖ ≤ 51‖p − q‖, and so is uniformly
continuous.
Moreover, ∀m, n ∀p∈Q ‖tam(p)− tan(p)‖ ≤ 13

4 |2−m − 2−n| and
∀n ∀p∈Q ‖p − tan(p)‖ ≤ 13

4 2
−n.

For any n, define a function tbn : Q → Q similarly, but using a polar
representation based at b. It has similar properties to tan.
Define a sequence t of functions from Q to Q by

∀n tn =
⎧⎨
⎩

id if ∀i ≤ n ¬P(i)

tar if 2r ≤ n and P ′(2r)
tbr if 2r + 1 ≤ n and P ′(2r + 1).

For each n, tn is bijective and uniformly continuous.
Now, ∀m, n (m < n⇒ ∀p ∈ Q ‖tm(p)− tn(p)‖ ≤ 13

4 2
−�m/2�),

so, for each p∈Q, the sequence n(tn(p)) is Cauchy, and hence convergent.
Define f : Q→ Q by ∀p∈Q f (p) = limn→∞ tn(p).
Then ∀m ∀p ∈ Q ‖tm(p)− f (p)‖ ≤ 13

4 2
−�m/2�,

so tm → f uniformly as m→∞,
so f is uniformly continuous.
f is also injective.
(i)
Suppose ¬¬∃n P (n).
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Consider any fixed points p, q of f .

Then ∃r P ′(2r)⇒ ∃r f = tar ⇒ p = a = q,
and ∃r P ′(2r + 1)⇒ ∃r f = tbr ⇒ p = b = q.
so ∃n P (n)⇒ ∃n P ′(n)⇒ ∃r P ′(2r) ∨ ∃r P ′(2r + 1)⇒ p = q,
so, contraposing twice, ¬¬∃n P (n)⇒ p = q,
so p = q.

This shows that ∃≤1p∈Q f (p) = p.

This shows that ¬¬∃n P (n)⇒ ∃≤1p∈Q f (p) = p, as required.
(ii)
Suppose ∃p∈Q f (p) = p.

Choose such a fixed point, p.
Then ∃r P ′(2r)⇒ ∃r f = tar ⇒ p = a;
equivalently, p # a ⇒ ¬∃r P ′(2r).
Similarly, p # b ⇒ ¬∃r P ′(2r + 1).
Hence p # a ∨ p # b ⇒ ¬∃r P ′(2r) ∨ ¬∃r P ′(2r + 1).
Since ∀p (p # a ∨ p # b), this gives ¬∃r P ′(2r) ∨ ¬∃r P ′(2r + 1).

This shows that ∃p∈Q f (p) = p ⇒ ¬∃r P ′(2r) ∨ ¬∃r P ′(2r+1), as required.

This proves the theorem.

Brouwer considers only the ‘b’ form of this theorem [19]: for any proposition A

the oscillatory property is used to give the conclusions

(i) ∃≤1p∈Q f (p) = p, [using axiom 2′]
(ii) ∃p∈Q f (p) = p ⇒ ¬A ∨ ¬¬A [using axioms 2′, 3].

Note that ∃≤1p ∈ Q f (p) = p is understood as ∀p, q ∈ Q (f (p) = p ∧
f (q) = q ⇒ p = q). A slight alteration gives the opposite result: Veldman [45]
shows that, assuming the fan theorem, every uniformly continuous function f : Q→
Q such that ∀p, q ∈Q (p # q ⇒ f (p) # p ∨ f (q) # q) has a fixed point.

6 AreWeak Counterexamples Genuine Proofs or Just Plausibility
Arguments?

Brouwer presents his weak counterexamples as dependent on the existence of a
fleeing property or ‘a mathematical assertion so far neither judged nor recognised
as judgeable’ or ‘a mathematical assertion so far neither tested nor recognised as
testable’. This gives them a provisional or subjective appearance.

Does Brouwer think of them as proper mathematical proofs? Occasionally he
refers to them as ‘theorems’ [41, p. 80]. In [12, p. 445] he speaks of ‘refuting’ clas-
sical theorems by weak counterexamples. In [14, p. 491] he says, ‘To give some
examples refuting the principle of the excluded third and its corollaries . . . ’. In [18]
he speaks of ‘refutation’ of the two forms of the Bolzano-Weierstrass theorem. These
expressions suggest that he regards them as definite mathematical results.
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Sometimes, however, he uses weaker language. In [11] he describes the finding
of a simple ordering of the continuum as hoffnungslos (hopeless), on account of the
weak counterexample. In [14, pp. 493–4] he twice says, ‘there seems to be little hope
for reducing [relations such as inequality] to a constructive property’. The reason for
the vagueness here is not that weak counterexamples are intrinsically vague but that
he is trying to show that x = y cannot be defined by a positive condition; he has
shown that x = y is not equivalent to x # y, but he has not considered other possible
positive conditions it might be equivalent to.

In my view the weak counterexamples are rigorous proofs of precise mathematical
results (given the creative subject axioms assumed). They gain in precision when one
states them for all properties, not just fleeing ones. For example, theorem 6a shows
that

∀P ∃x∈R (x # 0 ∨ x = 0⇒ ∃n P (n) ∨ ¬∃n P (n))

and consequently

∀x∈R (x # 0 ∨ x = 0)⇒ ∀P (∃n P (n) ∨ ¬∃n P (n)).

Thus, if we had a proof of ∀x∈R (x # 0 ∨ x = 0), we could thereby obtain a proof
of the principle of excluded middle for �1 propositions.

This sort of result is analogous to proving a problem NP -complete. It shows that
∀x∈R (x # 0 ∨ x = 0) is a member of a certain class of propositions of recognised
intractability, whose solution would revolutionise mathematical knowledge. This is a
definite and valuable result, not to be considered a mere heuristic argument. It can be
understood even by a classical mathematician.

Just the same remarks apply to the versions of the weak counterexamples with the
creative subject.

(This assumes, of course, that one has no predicativist objection to quantifying
over all properties of natural numbers or all propositions.)

If a general method of solving all mathematical problems is ever invented then all
my theorems in §5 remain valid but they lose all value, just as if a proof of P = NP

is ever found then all proofs of NP -hardness remain valid but lose all value.

7 What are the Right Axioms for the Creative Subject?

I am not concerned here with the soundness of the axioms but with their usefulness
in deriving the weak counterexamples.

Which axioms does Brouwer actually use? He gives little or no justification for
the conclusions drawn from the counterexamples, so I shall simply attribute to him
the axioms that are needed for his conclusions to follow.

7.1 Which Axioms are Really Needed?

Axiom 0 is necessary for any of the arguments to work. In theorem 6b, for example,
a rational sequence a is defined by cases, with an equal to a positive rational or 0
according to whether ∃i ≤ n (�i A ∨ �i ¬A) holds. If this is to count as a well-
defined sequence we must have ∀n an ∈ Q, hence ∀n (an > 0 ∨ an = 0); hence
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∃i ≤ n (�i A ∨ �i ¬A) must be decidable; hence �i A must be decidable. We need
decidability again to show that a is Cauchy. Axiom 0 is therefore indispensable.

Beyond that, the possible choices of axioms are

• axioms 1 and 2,
• axioms 1 and 2′,
• axioms 1′ and 2 (or equivalently 2 and 3),
• axioms 1′ and 2′ (or equivalently 2′ and 3).

Axiom 2 is only ever used in theorem 11b and theorem 11c. Even here, however,
the desired weak counterexample to x /∈ Q ∨ x //∈ Q can be obtained using axiom 2′
instead; the desired weak counterexample to x //∈ Q ⇒ x ∈ Q could be obtained
from theorem 6b instead. One can accomplish all the arguments using axioms 1′ and
2′, provided one is prepared to accept a slightly weaker conclusion, i.e., ¬A ∨ ¬¬A

instead of A ∨ ¬A.

7.2 Axiom 1′ or Axiom 2′?

There is one case where there is a choice between using axiom 1 (or 1′) and using
axiom 2′. In an example in [13], which is my theorem 7b, Brouwer uses axioms 2′, 3
to show

x //< 0⇒ ¬x > 0⇒ ¬��A⇒ ¬A

x //> 0⇒ ¬x < 0⇒ ¬��¬A⇒ ¬¬A.

Thus if x //< 0 ∨ x //> 0 is generally true then so is ¬A ∨ ¬¬A.
Niekus [32, 33] asks why Brouwer doesn’t use a more direct argument, using

axiom 1, giving

x < 0⇒ ��¬A⇒ ¬A

x > 0⇒ ��A⇒ A

Thus if x < 0 ∨ x > 0 is generally true then so is A ∨ ¬A. Niekus concludes that
Brouwer does not want to use axiom 1.

Van Atten [39, p. 1618] objects that Niekus is confusing the two order relations,
x < 0 and x //< 0. This seems to be true, but Niekus’ argument can be easily repaired:
just take the contrapositive of x < 0⇒ ¬A and x > 0⇒ A twice to give

x //< 0⇒ ¬A

x //> 0⇒ ¬¬A

Thus if x //< 0 ∨ x //> 0 is generally true then so is ¬A ∨ ¬¬A — the same
conclusion as Brouwer reaches, by a different route. (Note that the argument can be
stated using only axiom 1′, not axiom 1.)

These two routes from x //< 0 ∨ x //> 0 to ¬A ∨ ¬¬A are theorem 7b(vi,vii)
above. Brouwer takes the route using axioms 2′, 3 rather than the route using
axiom 1′.
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There is a more serious objection to Niekus’ choice of axioms. He rejects axiom 1,
��A ⇒ A. He also rejects axiom 0, �n A ∨ �n A, because he thinks it implies that
the activity of the creative subject is lawlike. The axioms he does accept are

�n A⇒�n+m A

A⇒ ��A (axiom 2)

These are too weak for any counterexample arguments. Without axiom 0, the
sequence defining the real number x is ill-defined. Without axiom 1 or 1′ the theory
admits a trivial interpretation in which �n A holds for every n and A. Axiom 2 or 2′
is no use without axiom 3 (this was why I introduced axiom 3). But axioms 2′ and 3
imply 1′, so assuming 2 or 2′ together with 3 is not really an alternative to assuming
1′.

7.3 Axiom 1 or Axiom 1′?

Does Brouwer use the strong axiom 1 or the weaker axiom 1′? There are several
places where using axiom 1 would give a stronger conclusion than axiom 1′, i.e.,
A ∨ ¬A rather than ¬A ∨ ¬¬A. Brouwer’s practice is variable.

When he begins the counterexample by saying ‘Let α be an assertion which
has neither been judged nor been recognised as judgeable’, a use of axiom 1 is
implied. This applies to [23]. In [11], in the density-in-itself and separability-in-itself
arguments, a use of axiom 1 also seems to be implied.

When he begins by saying ‘Let α be a mathematical assertion so far neither tested
nor recognised as testable’, a use of axiom 1′ is implied. This applies to the checking-
number examples in [14], [20], [41, p. 50], and to the refutation of the B form of the
Bolzano-Weierstrass theorem in [18, p. 517].

8 What Added Value Does the Creative Subject Provide?

All the weak counterexamples can be accomplished with or without use of the
creative subject.

Weak counterexamples without the creative subject always work by showing that
the proposition in question implies one of the formulae,

(i) ∃n P (n) ∨ ¬∃n P (n),
(ii) ¬∃n P (n) ∨ ¬¬∃n P (n),
(iii) ¬¬∃n P (n)⇒ ∃n P (n),
(iv) ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1),
(v) ¬¬∃n P (n)⇒ ¬∃n P ′(2n) ∨ ¬∃n P ′(2n+ 1)

(with the exception of theorem 14a(ii,iii)). In the corresponding version of the weak
counterexample with the creative subject, the conclusion (i) or (iii) is replaced by
A ∨ ¬A or ¬¬A ∨ ¬A (depending on whether we assume axiom 1 or 1′). The
other three conclusions are always replaced by ¬¬A ∨ ¬A. The creative subject
allows us to construct a weak counterexample to (iii), i.e., a property P for which we
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can prove ¬¬∃n P (n) without being able to prove ∃n P (n) (see theorem 4). Hence it
provides a rationale for rejecting Markov’s principle, provided we have rejected the
principle of excluded middle.

Brouwer sometimes uses the creative subject and sometimes does not. For exam-
ple, in [18] he uses a fleeing property (without the creative subject) to refute the A
form of the Bolzano-Weierstrass theorem but uses the creative subject to refute the B
form; he could just as well use either in each case. As a rule, Brouwer resorts to the
creative subject in cases where the version without the creative subject would lead to
the conclusion (iii) or (v). However, two exceptions to this are [41, p. 42, pp. 55–6];
see my theorem 7a and theorem 15a.

Thus the creative subject gives a stronger conclusion. On the other hand, the ver-
sion without the creative subject applies to the reduced continuum (consisting of the
lawlike reals), and hence also to the full continuum (consisting of all reals), whereas
the version with the creative subject applies only to the full continuum. In this respect,
the version without the creative subject is stronger.

The essential function of a weak counterexample is to express explicitly and
rigorously why a certain statement is not provable. Heyting states it in dialogue form:

INT. . . . Nor is it important whether we call it a mathematical result or not. In
any case it shows that it would be foolish to seek a proof for the equivalence of
the relations = and # between real numbers.
CLASS. I have been convinced of that since 2.2.3.
INT. Brouwer’s example analyses one of the subconscious reasons which

made you feel this conviction. [27, §8.1.1]

The weak counterexamples without the creative subject perform this function just
as well as the versions with the creative subject.

9 Arguments that go Beyond the Usual Theory of the Creative
Subject

9.1 ‘Truth of A and Rationality of the Conditional-Checking Number x are
Equivalent’

Brouwer has two, possibly related, claims that fall outside the methods used above; in
attempting to justify them we may get a deeper insight into the nature of the creative
subject, the role of time in the argument, and possibly the connection with the theory
of choice sequences.

In 1954 Brouwer considered the conditional checking-number x of a drift (a, u)

through a proposition A, where a /∈ Q and ∀n un ∈ Q. He claimed that A ⇔ x ∈ Q.
As can be seen from my theorem 11b, this goes slightly beyond what I believe can
be justified.

Let A be a mathematical assertion so far neither tested nor recognized as
testable. Then, in connection with the assertion A and with a drift (a, u) the
creating subject can generate an infinitely proceeding sequence s of limiting
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number cores s1, s2, . . . according to the following direction: As long as dur-
ing the choice of the sn the creating subject has not experienced the truth of A

. . . , each sn is chosen equal to a. But as soon as between the choice of sr−1
and that of sr the creating subject has experienced the truth of A . . . , sr , and
likewise sr+ν for each natural number ν, is chosen equal to ur . This sequence
s converges to a limiting number core x . . . which will be called a conditional
checking-core of (a, u) through A . . . .
Let (a, u) be a drift whose counting cores [un] are rational and whose kernel

[a] is irrational. . . .
. . . truth of A and rationality of x are equivalent. So the assertion of the

rationality of x is neither judgeable nor testable. ([20, p. 525], with notation
altered)

(There are two similar cases in theorem 11c [14, p. 492] [20, p. 525] and theo-
rem 13b [14, p. 492]. Brouwer claims to show that x //∈ Q does not imply x ∈ Q.
He needs a result of the form x ∈ Q ⇒ A ∨ ¬A or x ∈ Q ⇒ A to complete the
argument.)

Brouwer gave no justification for his claim that A ⇔ x ∈ Q. Van Atten provides
a plausible reconstruction of Brouwer’s thinking:

Let A be a proposition that is at present untestable, and (a, u) a drift with
rational numbers un and an irrational a. Then truth of A and rationality of the
conditional checking-number x are equivalent: the choices in x become a fixed
rational as soon as a construction for A has been found, and only then. So
long as the proposition A is not testable, the proposition x ∈ Q is not testable,
and, as decidability implies testability, the proposition x ∈ Q ∨ x /∈ Q is not
provable. ([39, §3.7], with notation altered)

The delicate point here is the phrase ‘and only then’. I have been unable to convert
this into a convincing proof. We cannot, simply by examining the available knowl-
edge about how x is generated, read off all its consequences. To assert that if x ∈ Q

is provable then A is provable, we would have to survey all possible proofs of x ∈ Q.
By this I mean that we would have to be able to say something about the general
form that a proof of x ∈ Q must take, and thereby show that it must contain, or be
transformable into, a proof of A. I can see no way of doing this.

Instead I provide a weak counterexample to show that x ∈ Q does not in general
imply A, if x is a conditional checking-number (the converse is theorem 11b(i)). As
usual, I want to isolate the contribution of the creative subject, so I shall state it first
for an arbitrary decidable property P of natural numbers.

Defn. For any decidable property P , Brouwer’s claim for P , BCP , is the following
statement.

For any drift (a, u), with ∀n un # a and ∀m, n (m = n ⇒ um # un) and a /∈ Q

and ∀n un ∈ Q, with checking-number x of (a, u) through P ,

x ∈ Q⇒ ∃n P (n).
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Theorem 29a. For any decidable property P of natural numbers, if BCP holds then
¬¬∃n P (n)⇒ ∃n P (n).

Proof Consider any decidable property P of natural numbers.

Suppose BCP .

Suppose ¬¬∃n P (n).

Choose a strictly increasing rational sequence u converging to an irrational a;
e.g., choose a = √2 and u = (1, 1.4, 1.41, 1.414, . . .), skipping repetitions.
Note that this gives a drift (a, u) with the required conditions, ∀n un # a and
∀m, n (m = n⇒ um # un).
Construct the checking-number x of (a, u) through P .
Define a new drift (b, v) by b = a − x and ∀n vn = un − x.
Suppose b ∈ Q.

Then, since a /∈ Q, this implies x = a − b /∈ Q,
so by theorem 11a(ii) ¬∃n P (n),
contrary to the hypothesis ¬¬∃n P (n).

This shows that b /∈ Q. (1)
Note that ∀n vn < b and ∀n vn < vn+1.
Define a further sequence w of reals as follows. For any n, if ∃i ≤ n P (i)

then define wn = vn; otherwise choose wn as a rational number between vn

and vn+1 (this choice is made at stage n).
Then ∀n vn ≤ wn < vn+1 ≤ wn+1 < vn+2 < b.
This gives the conditions ∀n wn # b and ∀m, n (m = n⇒ wm # wn). (2)
Consider any n.

Suppose ∃i ≤ n P (i).
Choose the least r such that P(r).
Then r ≤ n and P ′(r),
so, by definition of a checking-number, x = ur ,
so wn = vn = un − ur ∈ Q.

This shows that ∃i ≤ n P (i)⇒ wn ∈ Q.
Also, by construction, we have ¬∃i ≤ n P (i)⇒ wn ∈ Q.
So in both cases wn ∈ Q.

This shows that ∀n wn ∈ Q. (3)
For any n, |wn − b| ≤ |vn − b| = |un − a|,
and hence wn → b as n→∞.
Thus (b, w) is a drift. (4)
Construct its checking-number y through P .
Suppose ∃n P (n).

Choose the least r such that P(r).
Then, by definition of a checking-number, x = ur and y = wr .
So y = wr = vr = ur − x = 0.

This shows that ∃n P (n)⇒ y = 0.
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Contraposing this twice gives ¬¬∃n P (n)⇒ y = 0.
Since we have ¬¬∃n P (n) by hypothesis, this gives y = 0.
Hence y ∈ Q.
By (1), (2), (3) and (4) we can apply BCP to (b, w), giving ∃n P (n).

This shows that ¬¬∃n P (n)⇒ ∃n P (n).

This shows that if BCP then ¬¬∃n P (n)⇒ ∃n P (n).

This proves the theorem.

The theorem shows that any general proof of BCP (for all P or for a class of P s)
would give a proof of Markov’s principle ¬¬∃n P (n) ⇒ ∃n P (n) for that class of
P s.

This theorem is applied to the creative subject as follows.

Defn. For any propositionA, Brouwer’s claim forA,BCA, is the following statement.

For any drift (a, u), with ∀n un # a and ∀m, n (m = n ⇒ um # un) and a /∈ Q

and ∀n un ∈ Q, with conditional checking-number x of (a, u) through A,

x ∈ Q⇒ A.

Theorem 29b. For any propositionA, ifBCA holds then¬¬A⇒ A. [axioms 1,2]

Proof Consider any proposition A.

Define the conditional property P of A. (This gives ∃n P (n) ⇔ ��A.)
By axiom 2, x ∈ Q⇒ A implies x ∈ Q⇒ ��A, i.e., x ∈ Q⇒ ∃n P (n).
So

BCA ⇒ BCP

⇒ (¬¬��A⇒ ��A) by theorem 29a

⇒ (¬¬A⇒ A) by axioms 1,2′.

This proves the theorem.

This theorem shows that if Brouwer’s claim were generally true then so would be
¬¬A ⇒ A, and hence the principle of excluded middle would be valid. We cannot
therefore assert BCA for all A.

However, Mark van Atten (personal communication) has raised several objections
to my formulation of the argument.

1. Van Atten proposes that BCA should be stated not as an implication (x ∈ Q ⇒
A) but as a rule of proof (If x ∈ Q, and all the other conditions, can be proved
without hypotheses then A can be proved without hypotheses); see [35, S2]
for the significance of this distinction. BCP would be similarly reworded. The
proofs of theorems 29a and 29b go through with slight changes. Theorem 29a
now says: for any decidable property P of natural numbers for which BCP and
¬¬∃n P (n) hold, ∃n P (n) holds. Theorem 29b now says: for any proposition A
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for which BCA and ¬¬A hold, A holds. By taking A as B ∨ ¬B, for arbitrary
B, we still obtain a proof of the principle of excluded middle.

2. Van Atten points out that Brouwer’s argument uses an untestable proposition A,
whereas my counterexample uses a testable A (namely B ∨ ¬B); I therefore
seem to have taken ‘Brouwer’s claim’ out of its original context. It might be
thought, therefore, (though this is not van Atten’s opinion) that BCA should be
asserted for all untestable A, rather than for all A. It is, however, hard to see a
rationale for this. Consider the situation again. We have a formula A for which,
at time t0 (now), we lack a proof of ¬A or ¬¬A. At some future time, t1, we
may find a proof of x ∈ Q. Brouwer’s claim is that this is only possible if we
have a proof of A at time t1: that is, we can prove x ∈ Q only via A. Why should
the plausibility of this claim about time t1 be dependent on our lack of a proof of
¬A or ¬¬A at time t0? If it is plausible for currently untestable A then surely it
is plausible for all A.

3. The conditional checking-number x is given as the limit of an infinite sequence;
but the timing of the ‘stages’ at which the terms of the sequence are chosen may
affect the value of x. Up until now I have thought of these stages as given by
a predetermined schedule; van Atten, however, proposes that the creative sub-
ject should choose the terms at freely chosen times, unless it decides to make
these times dependent on another mathematical development (as in Brouwer
[15, p496] and [22, p543]). If so, there will be many possible conditional
checking-numbers for a given drift and proposition A. Brouwer’s ‘direction’
(quoted above from [20, p525]) for choosing the sequence does not constrain the
timings of the stages; and he does indeed speak of ‘a’, rather than ‘the’, condi-
tional checking-number. If this is right, I need to reword BCA to read: for any
drift (a, u) . . . , and for any conditional checking-number x of (a, u) through A,
. . . . The proof of theorem 29b still goes through, and the same conclusion is
reached. Note that BCP and theorem 29a are not affected. The important point is
that the stages of the sequence determining y coincide in time with the stages of
the sequence determining x. I am assuming here that the creative subject, when
choosing the sequence determining y, is allowed to adopt a rule determining the
future timings to agree with those of x. Van Atten’s view is (1) that the creative
subject clearly has the freedom to construct, and theorise about, sequences that
are subject to a certain set of conditions and no others; (2) that the ‘direction’
Brouwer gives [20, p525] is an example of the exercise of that freedom; (3) that,
thus understood, and given Brouwer’s conception of truth, Brouwer’s claim is
correct. In my view, since Brouwer’s direction makes no stipulation about the
timing of the choices of the terms, the creative subject is free to adopt a rule on
the timings, without violating the definition of a conditional checking-number.

9.2 The Negative Continuity Proof of 1927

The second of Brouwer’s claims that goes beyond the usual theory of the creative
subject is the 1927 theorem in [8] that all functions are negatively continuous (see
the definition of negative continuity above, just before theorem 19a). Here is the
argument in full.
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Theorem 1 Every full function is negatively continuous.

Proof Let f (x) be a full function, let ξ0 be an arbitrary point core x, and let
ξ1, ξ2, . . . be a fundamental sequence of point cores x that converges positively
to ξ0. We now assume for the moment that there exist a natural number p and
a fundamental sequence p1, p2, . . . of monotonically increasing natural num-
bers such that |f (ξpν )− f (ξ0)| > 1/p for every ν, and we define a point core
ξω of the unit continuum by starting from an unlimited sequence F1 of generat-
ing intervals of a point belonging to ξ0 and then constructing, by means of an
unlimited sequence of choices of λ-intervals, a point F2 of the unit continuum
in such a way that we temporarily choose, for every natural number n that we
have already considered, the first n intervals identical with the first n intervals
of F1 but reserve the right to determine, at any time after the first, second, . . . ,
(m − 1)th, and mth intervals have been chosen, the choice of all further inter-
vals (that is, of the (m+ 1)th, (m+ 2)th, and so on) in such a way that either a
point belonging to ξ0 or one belonging to a certain ξpν is generated. Then the
function f (x) is not defined for the point core ξω containing F2; this brings us
to a contradiction, and our assumption has proved to be illegitimate. But this
means that the function f (x) is negatively continuous. [8, p459]

This is said to be ‘an immediate consequence of the intuitionistic point of view’:
this means that it is not dependent on well-orderings and bar induction, as the better-
known uniform continuity theorem is.

Different explanations of this proof are given in the literature [31, 34, 37, 43, 44]
[39, appendix B]. Niekus [32] comments that Brouwer’s proof ‘is vague and deviates
essentially from all his other uses of choice sequences’ (p. 32), and also ‘This proof
of the negative continuity theorem is so vague that it allows many reconstructions.
. . . But in no way can this sequence be called characteristic for Brouwer’s use of
individual choice sequences’ (p. 40). Indeed. That is what makes it so interesting.

The proof turns on the notion of a choice sequence as an object with a fixed
intensional identity, even when only a few of its terms are determined. I shall give
two reconstructions of the proof, one using the creative subject and the other using
Appleby’s [1] theory of knowledge states. In the conventional view a choice sequence
x is seen as a generating process, an ‘incomplete object’ that grows over time as its
terms x0, x1, x2, . . . are successively chosen. At the same time as the terms are being
chosen, restrictions may be chosen that limit the future choice of terms. A restric-
tion may take the form of a spread, constraining the future terms, or perhaps a law,
determining all terms from now on, or a law-relation, by which the sequence is con-
strained in a lawlike way relative to another sequence. New facts about x become
true as more and more terms and restrictions are chosen and as we find more and
more proofs. Any conclusion A(x) we draw about x must be proved at a particular
time (by the axiom A(x)⇒ ��A(x)), and so must be based on the terms and restric-
tions that have been chosen up to that time, and once proved it must continue to hold
regardless of how x develops in future.

In Appleby’s view, in contrast, a sequence x is not a growing object but a ‘black
box’ that produces any term on demand. We may query it by asking ‘n?’ and it
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must reply with xn. It may also volunteer intensional information about itself, such
as a spread, a law or a law-relation, at any time. All the information it provides
must be consistent. We never know whether there is more intensional information
still to come. Any conclusion A(x) we draw about x must be proved; a proof is
a finite construction and so must contain a finite amount of information about x.
This information is expressed as a knowledge state: for example, SE(n, m) is the
knowledge that the nth term is m; Spread(s) is the knowledge that the sequence
must conform to a spread s; Law(f ) is the knowledge that the sequence must obey
a law f . A general knowledge state is built up out of atomic knowledge states like
these by finite conjunction and disjunction. If A(x) holds then this must be because
x satisfies some knowledge state.

In the light of this it seems to follow that, when a function f is applied to a
sequence x, giving a natural number value, the computation may be viewed as a dia-
logue or two-person game between f and x, as suggested by van Atten & van Dalen
[40]: f queries x for particular terms, and x answers; x may volunteer intensional
information about itself; eventually, after a finite number of moves, f must announce
the value f (x); and once it has done so it cannot retract its answer, whatever x’s
future behaviour. (In the case where f maps x to a real number, it does not need to
determine f (x) exactly but must eventually determine f (x) to any desired degree of
precision.)

Theorem 30 (negative continuity theorem in [8]). Any function f : R → R is
negatively continuous.

Proof We shall use the binary representation of real numbers (§2).
Consider any function f : R→ R.

Consider any point of positive discontinuity a of f .

Choose a sequence u of real numbers and a rational ε > 0 such that un → a as
n→∞ and ∀n |f (un)− f (a)| ≥ ε.
For the drift (a, u), choose the function v : N→ N, the real a′ and the sequence
u′ of reals as in theorem 9.
Note that since 0 < ε, we have ∀y∈R (0 < |y − f (a)| ∨ |y − f (a)| < ε).
We seek a contradiction.
(Version of the proof using the creative subject)
Consider a real number x constructed as a choice sequence of integers as fol-
lows: the chooser imposes an initial restriction that x belong to the spread R,
and then chooses terms x0 = a′0, x1 = a′1, x2 = a′2, . . . , as a sequence of
individual choices, without imposing any further restrictions.
Since f is total, there exists a stage n after which f (x) is determined to any
desired degree of precision, in particular it is determined whether 0 < |f (x)−
f (a)| or |f (x)− f (a)| < ε.
(Note: I am not saying that all terms of x are chosen to agree with a′, merely
that this is done until f delivers a verdict on whether 0 < |f (x) − f (a)| or
|f (x)− f (a)| < ε, which f must do eventually.)
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Thus there exists n such that either every continuation of x after
x0 = a′0, . . . xn = a′n gives 0 < |f (x) − f (a)|, or every continuation gives
|f (x)− f (a)| < ε.
Now, at the next stage, the chooser may adopt a law-relation that all the terms
of x shall equal the terms of a′ from now on.
This would give x = a′ = a (i.e., they are equal as real numbers),
so f (x) = f (a), so |f (x)− f (a)| = 0.
Alternatively, the chooser may adopt a law-relation at the next stage that all the
terms of x shall equal the terms of u′r from now on, for r = v(n) + 1, giving

∀i xi =
{

a′i if i ≤ n

u′ri if i > n
, which gives x ∈ R by theorem 9(iii).

This would give x = u′r = ur (they are equal as real numbers),
so f (x) = f (ur), so |f (x)− f (a)| ≥ ε.
This is the desired contradiction.
(Version of the proof using knowledge states)
Consider a real number x constructed as a choice sequence of integers as fol-
lows: x volunteers the intensional information that it belongs to the spread R,
and then replies to any query ‘i?’ with a′i , without volunteering any further
intensional information.
Since f is total it must eventually determine f (x) to any desired degree of
precision, in particular it announces whether 0 < |f (x)− f (a)| or
|f (x)− f (a)| < ε, after a finite number of queries ‘i1?’, . . . ‘ik?’.
Choose n = max(i1, . . . ik).
x may then volunteer the information that it satisfies the law-relation
∀i xi = a′i .
In that case x = a′ = a, and hence f (x) = f (a), so |f (x)− f (a)| = 0.
Alternatively, x may volunteer the law-relation that

∀i xi =
{

a′i if i ≤ n

u′ri if i > n

for r = v(n)+ 1,
which gives x = u′r = ur , so f (x) = f (ur), so |f (x)− f (a)| ≥ ε.
One of these will contradict the prior decision on whether 0 < |f (x) − f (a)|
or |f (x)− f (a)| < ε.
This is the desired contradiction.
(The two versions rejoin here.)

This shows that f has no point of positive discontinuity,
i.e., f is negatively continuous.

This shows that any function f : R→ R is negatively continuous.

Notice that, if the trick used in the proof is valid (as I think it is), it can equally
be used to prove that all functions are positively continuous, i.e., continuous in the
usual (pointwise) sense. It can be further generalised to prove the weak continuity
principle for numbers (WC-N), a fundamental axiom of intuitionistic analysis whose
justification is still controversial [40].



Brouwer’s Weak Counterexamples and the Creative Subject: A Critical...

Theorem 31 (WC-N).

∀α ∃m A(α, m)⇒ ∀α ∃m, n ∀β (α(n) = β(n)⇒ A(β, m))

where α, β range over infinite sequences of natural numbers, α(n) =
〈α0, α1, . . . αn−1〉, and the formula A(α, m) is extensional in α, i.e.,

∀α, β ∀m (A(α, m) ∧ α = β ⇒ A(β, m))

where α = β means ∀i αi = βi .

Proof (Version using the creative subject)
Suppose ∀α ∃m A(α, m).

Consider any sequence α.

Consider a sequence γ constructed as follows: the chooser chooses its terms
γ0 = α0, γ1 = α1, γ2 = α2, . . ., as a sequence of individual choices, without
imposing any restrictions.
This continues until a number m is determined such that A(γ, m). This must
happen eventually, after some number of choices γ0 = α0, . . . γn−1 = αn−1,
since ∀α ∃m A(α, m).
Whatever further choices (of terms or restrictions) are made for γ , it will
continue to be the case that A(γ, m).
Consider any sequence β such that α(n) = β(n).

Therefore γ (n) = β(n).
At the next stage, the chooser may adopt a law-relation that
∀i ≥ n γ (i) = β(i).
In that case, γ = β, so, since A is extensional, A(β, m).

This shows that ∀β (α(n) = β(n)⇒ A(β, m)).
Thus ∃m, n ∀β (α(n) = β(n)⇒ A(β, m)).

This shows that ∀α ∃m, n ∀β (α(n) = β(n)⇒ A(β, m)).

This shows that ∀α ∃n A(α, n) ⇒ ∀α ∃m, n ∀β (α(m) = β(m) ⇒ A(β, n)), as
required.
(Version using knowledge states)
Suppose ∀α ∃m A(α, m).

Then there is a function f mapping sequences to natural numbers such that
∀α A(α, f (α)). (Note that f may not be extensional.)
Consider any sequence α.

Consider a sequence γ that behaves as follows: γ responds to any query ‘i?’
by replying αi , without volunteering any intensional information. It does this as
long as no value f (γ ) is announced.
f must eventually announce a value f (γ ), after a number of queries ‘i1?’,
. . . ‘ik?’.
Then A(γ, m) holds, where m = f (γ ).
Choose n = max(i1, . . . ik)+ 1.
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Consider any sequence β such that α(n) = β(n).

Therefore βi1 = αi1 = γi1 , . . . , βik = αik = γik .
We are committed to A(γ, m), whatever γ ’s subsequent behaviour.
γ may now volunteer the law-relation that ∀i γ (i) = β(i).
We thus have γ = β, so, since A is extensional, A(β, m).

This shows that ∀β (α(n) = β(n)⇒ A(β, m)).
Thus ∃m, n ∀β (α(n) = β(n)⇒ A(β, m)).

This shows that ∀α ∃m, n ∀β (α(n) = β(n)⇒ A(β, m)).

This shows that ∀α ∃n A(α, n) ⇒ ∀α ∃m, n ∀β (α(m) = β(m) ⇒ A(β, n)), as
required.

Thus the negative continuity proof may be seen as a special case of a WC-N proof.
Indeed, Veldman [44] assimilates Brouwer’s negative continuity proof to an appli-
cation of WC-N and shows that WC-N leads to positive continuity (theorem 2.6)
and also to strong counterexamples that go far beyond Brouwer’s claims at that
point. This works well mathematically but raises a difficult exegetic question of why
Brouwer did not state his theorem for positive continuity or draw any connection with
his previous uses of continuity principles similar to WC-N in [4] and [7].

Where I disagree with Veldman is that he treats the negative continuity theo-
rem as a weak counterexample, using a fleeing property (theorem 3.2). This is not
how Brouwer stated it. Many years later, in his Cambridge lectures, Brouwer gave
a completely different proof of the same theorem using a weak counterexample (see
theorem 19a above). As van Atten [39, appendix B] remarks, the fact that Brouwer
presented a new proof is no indication that he had come to have second thoughts
about his 1927 proof.

10 Conclusions

1. Weak counterexamples are genuine mathematical proofs.
2. The creative subject is not really necessary for the weak counterexamples. If it

is used, the axioms 0 (�n A ∨ �n A), 1′ (¬A ⇒ ¬��A) and 2′ (¬��A ⇒ ¬A)
will suffice.

3. Brouwer’s 1927 negative continuity theorem is a powerful example of the use of
the concept of choice sequence, but it is not a weak counterexample and does not
need the creative subject.

4. All of the theorems presented in this paper can be stated and proved without
dependence on subjectivity or contingency. Infinite sequences need not be con-
sidered as ‘incomplete objects’ that grow over time; time is involved only in the
innocuous sense that the application of a function to a choice sequence is seen
as a finite sequence of computation steps.
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17. Brouwer, L.E.J. (1950). Sur la possibilité d’ordonner le continu. In Heyting, A. (Ed.) L.E.J. Brouwer:
Collected works, vol. 1, Philosophy and foundations of mathematics (pp. 501–502). Amsterdam:
North-Holland.

18. Brouwer, L.E.J. (1952). On accumulation cores of infinite core species. In Heyting, A. (Ed.) L.E.J.
Brouwer: Collected works, vol. 1, Philosophy and foundations of mathematics (pp. 516–518).
Amsterdam: North-Holland.

19. Brouwer, L.E.J. (1952). Fixed cores which cannot be found, though they are claimed to exist by
classical theorems. In Heyting, A. (Ed.) L.E.J. Brouwer: Collected works, vol. 1, Philosophy and
foundations of mathematics (pp. 519–521). Amsterdam: North-Holland.

20. Brouwer, L.E.J. (1954). Points and spaces. In Heyting, A. (Ed.) L.E.J. Brouwer: Collected works, vol.
1, Philosophy and foundations of mathematics (pp. 522–538). Amsterdam: North-Holland.

21. Brouwer, L.E.J. (1954). Addenda and corrigenda on the role of the principium tertii exclusi in math-
ematics. In van Heijenoort, J. (Ed.) From Frege to Gödel: A source book in mathematical logic,
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