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Abstract

We consider a variant of the classical Biot problem concerning the wrinkling of a compressed

hyperelastic half-space. The traction-free surface is no longer flat but has a localized ridge

or trench that is invariant in the x1-direction along which the wrinkling pattern is assumed

to be periodic. With the x2-axis aligned with the depth direction, the localized imperfection

is assumed to be slowly varying and localized in the x3-direction, and an asymptotic analysis

is conducted to assess the effect of the imperfection on the critical stretch for wrinkling. The

imperfection introduces a length scale so that the critical stretch is now weakly dependent

on wave number. It is shown that the imperfection increases the critical stretch (and hence

reduces the critical strain) whether the imperfection is a ridge or trench, and the amount of

increase is proportional to the square of the maximum gradient of the surface profile.

Keywords: Elastic half-space, wrinkling, bifurcation, nonlinear elasticity.

1. Introduction

Biot [1] was the first to examine the problem of possible surface wrinkling of a compressed

hyperelastic half-space. The problem was further studied by Nowinski [2], Usmani and Beatty

[3], Reddy [4, 5], Dowaikh and Ogden [6], Fu and Mielke [7], Destrade and Scott [8], Murphy

and Destrade [9], and Chen et al. [10]. Some of these studies are in the context of surface

waves in a pre-stressed hyperelastic half-space. For the case of a neo-Hookean half-space

in a state of plane strain, the critical stretch was found to be 0.544. Since the wrinkling

modes are non-dispersive due to lack of a natural length scale in the problem, a small-

amplitude monochromatic mode will induce all higher harmonics at second order through

nonlinear interactions. Based on this fact Ogden and Fu [11] attempted to determine the
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post-buckling solution through Fourier expansion and concluded that a convergent post-

buckling solution (and hence a solution with enough regularity) cannot exist. Fu [12] then

considered the deformation of a corrugated half-space and concluded that any post-buckling

solution should probably contain static shocks. The corrugated half-space problem was also

investigated by Cai and Hutchinson [13] with focus on interactions of a finite number of

modes.

By bending a rectangular rubber block, Gent and Cho [14] demonstrated that creases,

instead of periodic wrinkles, form on the compressed inner surface when the local stretch

reaches 0.65, much earlier than what Biot predicted for periodic wrinkles. Subsequently,

Gent and Cho’s observation has been confirmed by numerical [15, 16], experimental [17, 18],

and analytical studies [19–21].

Although Biot’s buckling mode does not seem realizable in practice, it has nonetheless

provided a major reference point in stability and bifurcation analysis of a variety of soft

materials and structures. For instance, it often appears as the large wave number limit in

a bifurcation analysis [22], and is closely associated with the complementing condition for

the existence of a unique solution for boundary value problems in nonlinear elasticity [23].

Two variants of the Biot problem have received a lot of attention in recent years. The first

is concerned with the buckling of a compressed half-space with material properties varying

with depth; see Lee et al. [24], Wu et al. [25], Wu et al. [26], Diab and Kim [27], Yang

and Chen [28], Chen et al. [29]. The second variant is concerned with the buckling of a

coated half-space (or a film/substrate bilayer). For the latter there now exists a huge body

of literature, driven by a variety of applications. We refer to the review articles by Yang

et al. [30], Li et al. [31], Wang and Zhao [32], and Dimmock et al. [33] for a comprehensive

list of the literature and discussion of applications from different perspectives.

In this paper, we propose and study another variant of the Biot problem by taking into

account a geometrical imperfection on the free surface. The imperfection takes the form of

a localized ridge or trench that varies slowly in the direction perpendicular to the direction

of periodic wrinkling; see Fig. 1. Our aim is to assess how such an imperfection affects the

critical stretch for periodic wrinkling. The other extreme variant of the Biot problem is

concerned with the case when the imperfection is fast-varying such that it is wedge-like.

The latter problem has recently been studied by Lestringant et al. [34].

The current problem has a counterpart in the dynamical setting of topography-guided

surface waves; see Samuel et al. [35] and Fu et al. [36]. As the half-space is compressed, the

surface wave speed will change with respect to the stretch. When the stretch is such that

the surface wave speed vanishes, the surface wave mode becomes the wrinkling mode that is

studied in the current paper.
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The rest of this paper is divided into six sections as follows. After problem formulation

in Section 2, the next three sections are concerned with the asymptotic solutions at leading-

, second-, and third-orders. The leading-order problem recovers Biot’s classical problem,

the second-order problem is mainly concerned with the determination of the anti-plane dis-

placement component, and it is at the third order that we derive an eigenvalue problem

that determines the leading-order correction to the critical stretch due to surface imperfec-

tions. The eigenvalue problem is solved numerically and asymptotically in Section 6, and a

summary and further discussions are presented in the concluding section.

2. Problem formulation

We first summarize the incremental equations for a general homogeneous elastic body

composed of a non-heat-conducting incompressible elastic material. Such a material is as-

sumed to possess an initial unstressed configuration B0. A purely homogeneous static defor-

mation is imposed upon B0 to produce a finitely stressed equilibrium configuration denoted

by Be. A problem of major interest in continuum mechanics is whether such a configuration

is the only one possible. One way to answer this question is to superimpose a small amplitude

perturbation on Be and then solve the resulting incremental boundary value problem. It is

now well-known that the linearized incremental equilibrium equations and incompressibility

condition may be written in the form [37]

χij,j = 0, ui,i = 0, (2.1)

where χij is the incremental stress tensor and ui the incremental displacement superposed on

Be. Throughout this paper, we employ the summation convention whereby Latin subscripts

range between 1 and 3 whereas Greek subscripts range between 1 and 2, and we use a comma

to denote differentiation with respect to the coordinates in Be.

The incremental stress components χij are given by

χij = Ajilkuk,l + p̄uj,i − p∗δji, (2.2)

where the instantaneous elastic moduli Ajilk are defined by [38]

Ajilk = J̄−1F̄jAF̄lB
∂2W

∂FiA∂FkB

∣∣∣∣
F=F̄

, (2.3)

and p̄ and p∗ are the Lagrangian multipliers associated with the primary finite deformation

and the incremental deformation, respectively. In the above definition, W is the strain-

energy function per unit volume in the reference configuration, which is a function of the
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deformation gradient F , the F̄ is the value of F associated with the primary deformation,

and J̄ = det F̄ ≡ 1. For a neo-Hookean material, we have

W =
1

2
µ(trB − 3), Ajilk = µδikB̄jl, (2.4)

where B is the left Cauchy-Green strain tensor (= FF T ), B̄ = F̄ F̄ T , and µ is the ground-

state shear modulus.

We now specialize the above equations to a hyperelastic half-space that is defined by

−h(εx3) ≤ x2 <∞, −∞ < x1, x3 <∞ (2.5)

in the finitely deformed configuration Be, where h is a continuously differentiable even func-

tion to be specified and ε is a small positive parameter so that h is a slowly-varying function

of x3. In writing down (2.5), we have assumed that xi and h have all been scaled by a length

scale L. In the next section, this L will be taken to be the inverse of the wave number of

the wrinkling mode. Therefore the term “slowly varying”above means that h varies over

a length scale much larger than the wavelength of the wrinkling mode. Equivalently, for

a surface profile of arbitrary variation, our analysis will be valid in the large wave number

limit. We further assume that h is localized in the sense that h→ 0 as x3 → ±∞ so that h

represents a localized ridge (if h > 0) or a trench (if h < 0) that maintains its shape in the

x1-direction; see Fig. 1.

发展现状  研究内容  创新点  进程计划  研究背景  

在实际应用中，结构总是会受到各种几何和材料缺陷的影响。 

表面为平面的半无限体，主伸长λ=0.5437时，表面起皱 

表面有隆起的半无限体，主伸长λ=？时，表面起皱 
Figure 1: Half-space with localized surface imperfections.

The finite deformation from B0 to Be is assumed to correspond to a uni-axial compression

with deformation gradient given by F̄ = diag{λ, λ−1, 1}. Strictly speaking, this is not an

exact solution since it cannot satisfy the traction-free boundary condition at the (curved) free

surface exactly; a shear stress of order ε would be required to maintain such a homogeneous
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deformation, but we assume that its effect can be neglected. Our task is then to find

the critical value of λ at which a static inhomogeneous solution can bifurcate from this

primary homogeneous solution. The particular inhomogeneous solution that we are looking

for is periodic in the x1-direction and is localized in the other two directions. When h is

identically zero, this reduces to the classical Biot problem. Our aim is to determine how

a surface imperfection assumed above affects the critical value for wrinkling. It is worth

noting that in contrast to the original Biot problem, the current problem has two length

scales: the height of the localized ridge/trench and the length scale over which it is varying.

As a result, the critical stretch will be a function of the wave number. This dispersive nature

of our problem will further be discussed when numerical results are presented.

Thus, our objective is to solve the incremental equations (2.1) subject to the boundary

condition

χn = 0 on x2 = −h(εx3), (2.6)

and the decay condition

u→ 0 as x2 →∞, (2.7)

where n is any vector normal to the free surface (it does not need to be normalized since

(2.6) is still valid if the left-hand side is multiplied by any constant). We take the convenient

choice

n = {0, 1, εh′}T , (2.8)

where h′ denotes h′(s), the derivative of h(s), evaluated at s = εx3. As a result, with the

use of (2.1)2 and (2.2), the equilibrium equations (2.1)1 and boundary condition (2.6) may

be written as

Aαiβkuk,αβ + (Aαi3k +A3iαk)uk,3α +A3i3kuk,33 − p∗,i = 0, −h(εx3) < x2 <∞, (2.9)

A2iαkuk,α + εh′(εx3)A3iαkuk,α +A2i3kuk,3 + εh′(εx3)A3i3kuk,3 + p̄u2,i − p∗δ2i

+εh′(εx3)(p̄u3,i − p∗δ3i) = 0, on x2 = −h(εx3). (2.10)

We recall our summation convention that Greek letters only range between 1 and 2. A

property concerning the elastic moduliAjilk that we use repeatedly is that each such modulus

is equal to zero whenever the subscript 1, 2 or 3 in it appears an odd number of times; for

instance A1112 = A1332 = 0 etc. Therefore, if the subscript i in (2.9) is equal to 1 or 2, then

the subscript k in the first term may be replaced by a Greek subscript since Aα1βk and Aα2βk

with k = 3 must necessarily be zero.

To facilitate application of the boundary conditions, we employ the variable substitution

xi → x′i where

x′1 = x1, x′2 = x2 + h(εx3), x′3 = εx3, (2.11)
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so that the free surface corresponds to x′2 = 0. We have assumed that the dependence of the

incremental solution on x3 is also through εx3, which means that it is also slowly varying in

the x3-direction. We have

∂

∂x1

=
∂

∂x′1
,

∂

∂x2

=
∂

∂x′2
,

∂

∂x3

= ε
∂

∂x′3
+ εh′(x′3)

∂

∂x′2
.

In terms of the new variables, the incremental equilibrium equations and traction-free bound-

ary conditions become

Aαiβkuk,αβ − p∗,i + ε(Aαi3k +A3iαk)(uk,3α + h′uk,2α)

+ε2A3i3k(uk,33 + h′′uk,2 + 2h′uk,23 + h′2uk,22) = 0, 0 < x2 <∞, (2.12)

A2iαkuk,α + εh′A3iαkuk,α + εA2i3k(uk,3 + h′uk,2) + ε2h′A3i3k(uk,3 + h′uk,2)

+p̄u2,i − p∗δ2i + εh′(p̄u3,i − p∗δ3i) = 0, on x2 = 0, (2.13)

where here and hereafter the primes on x′i are dropped.

We anticipate that due to the geometrical imperfection the critical stretch should be

expanded as

λ = λcr + ε2λ̂, (2.14)

where λcr is the critical stretch in the Biot problem and λ̂ is the leading-order correction

due to the surface imperfection. The order of the correction term is determined by the

fact that the effects of h and this term should both operate at the third order of successive

approximations.

Corresponding to the above expansion, the elastic moduli and p̄ must also be expanded:

Ajilk = A(0)
jilk + ε2λ̂A(1)

jilk + · · · , p̄ = p̄0 + ε2λ̂p̄1 + · · · , (2.15)

where

A(0)
jilk = Ajilk

∣∣∣∣
λ=λcr

, A(1)
jilk =

∂Ajilk
∂λ

∣∣∣∣
λ=λcr

, p̄0 = p̄

∣∣∣∣
λ=λcr

, p̄1 =
∂p̄

∂λ

∣∣∣∣
λ=λcr

.

We now look for an asymptotic solution of the form

u = u(0) + εu(1) + ε2u(2) + · · · , p∗ = p∗(0) + εp∗(1) + ε2p∗(2) + · · · , (2.16)

where all the functions on the right-hand sides are to be determined at successive orders.

On substituting the above asymptotic solution into (2.12) and (2.13), and then equating

the coefficients of like powers of ε, we obtain the following three sets of boundary value

problems.
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Leading order:

A(0)
αγβku

(0)
k,αβ − p

∗(0)
,γ =0, in Be, (2.17)

A(0)
2γαku

(0)
k,α + p̄0u

(0)
2,γ − p∗(0)δ2γ =0, on x2 = 0, (2.18)

A(0)
α3βku

(0)
k,αβ =0, in Be, (2.19)

A(0)
2iαku

(0)
k,α =0, on x2 = 0. (2.20)

Second order:

A(0)
αγβku

(1)
k,αβ − p

∗(1)
,γ =− (A(0)

αγ3k +A(0)
3γαk)(u

(0)
k,3α + h′u

(0)
k,2α), in Be, (2.21)

A(0)
2γαku

(1)
k,α + p̄0u

(1)
2,γ − p∗(1)δ2γ =− h′(A(0)

3γαku
(0)
k,α +A(0)

2γ3ku
(0)
k,2 + p̄0u

(0)
3,γ − p∗(0)δ3γ)

−A(0)
2γ3ku

(0)
k,3, on x2 = 0, (2.22)

A(0)
α3βku

(1)
k,αβ − (p

∗(0)
,3 + h′p

∗(0)
,2 ) =− (A(0)

α33k +A(0)
33αk)(u

(0)
k,3α + h′u

(0)
k,2α), in Be, (2.23)

A(0)
23αku

(1)
k,α + p̄0(u

(0)
2,3 + h′u

(0)
2,2) =− h′(A(0)

33αku
(0)
k,α +A(0)

233ku
(0)
k,2 − p

∗(0))

−A(0)
233ku

(0)
k,3, on x2 = 0. (2.24)

Third order:

A(0)
αγβku

(2)
k,αβ − p

∗(2)
,γ =− λ̂A(1)

αγβku
(0)
k,αβ − (A(0)

αγ3j +A(0)
3γαj)(u

(1)
j,3α + h′u

(1)
j,2α)

−A(0)
3γ3k(u

(0)
k,33 + h′′u

(0)
k,2 + 2h′u

(0)
k,23 + h′2u

(0)
k,22), in Be, (2.25)

A(0)
2γαku

(2)
k,α + p̄0u

(2)
2,γ − p∗(2)δ2γ =− λ̂A(1)

2γαku
(0)
k,α − h

′(A(0)
3γαju

(1)
j,α +A(0)

2γ3ju
(1)
j,2

+ p̄0u
(1)
3,γ − p∗(1)δ3γ)−A(0)

2γ3ju
(1)
j,3

− h′A(0)
3γ3k(u

(0)
k,3 + h′u

(0)
k,2)− λ̂p̄1u

(0)
2,γ, on x2 = 0. (2.26)

Note that in writing down the equilibrium equations and boundary conditions at each or-

der, we have taken i to be γ (1 or 2) and 3, separately, and at third order the equations

corresponding to i = 3 have not been written out since they are not required in subsequent

analysis. It is seen immediately that due to the symmetry properties of the elastic moduli,

stated after equation (2.10), the problem for u
(k)
α is decoupled from the problem for u

(k)
3 at

each order (k = 1, 2, 3).

The above boundary value problems are to be solved in conjunction with the incompress-

ibility equations

u
(0)
1,1 + u

(0)
2,2 = 0, (2.27)
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u
(1)
1,1 + u

(1)
2,2 = −u(0)

3,3 − h′u
(0)
3,2, (2.28)

u
(2)
1,1 + u

(2)
2,2 = −u(1)

3,3 − h′u
(1)
3,2, (2.29)

obtained from the original incompressibility condition (2.1)2.

3. Leading-order problem

It can be seen that the subscript k in (2.19) and (2.20) must necessarily be equal to 3,

and as a result the problem for u
(0)
3 is decoupled from the problem for u

(0)
γ . We take u

(0)
3 = 0

since our focus is on the connection with the classical Biot problem. It is also seen from

(2.17) that A(0)
αγβk is only non-zero if k is equal to 1 or 2. Thus, we may replace k by a Greek

subscript and obtain

A(0)
αγβδu

(0)
δ,αβ − p

∗(0)
,γ = 0. (3.1)

The p∗(0) can be eliminated by cross-differentiating the two equations corresponding to γ =

1, 2, which yields the single equation

A(0)
α1βδu

(0)
δ,2αβ −A

(0)
α2βδu

(0)
δ,1αβ = 0. (3.2)

The p∗(0) in the boundary condition (2.18) with γ = 2 can be eliminated by differentiating

this equation with respect to x1 and then eliminating p
∗(0)
,1 with the use of (3.1). As a result,

the two boundary conditions become

A(0)
21αδu

(0)
δ,α + p̄0u

(0)
2,1 = 0, on x2 = 0, (3.3)

A(0)
22αδu

(0)
δ,1α −A

(0)
α1βδu

(0)
δ,αβ + p̄0u

(0)
2,12 = 0, on x2 = 0. (3.4)

The incompressibility condition (2.27) can be satisfied by introducing a “stream” function

φ such that

u
(0)
1 = φ,2, u

(0)
2 = −φ,1. (3.5)

Equations (3.2)−(3.4) then define a boundary value problem for a single function φ.

We look for a solution of the form

φ = f(x3)z(x2)eix1 + c.c, (3.6)

where f and z are scalar functions to be determined, and c.c. denotes the complex conjugate

of the preceding term. Note that the wave number in the above expression is unity; this is

because we have used the inverse of the original wavenumber to non-dimensionalize x1. The

actual wave number will be restored when numerical results are discussed.
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On substituting (3.6) into (3.2)−(3.4), we obtain the following reduced boundary value

problem for z:

L[z] = 0, for 0 < x2 <∞, (3.7)

B1[z] = 0, B2[z] = 0, on x2 = 0, (3.8)

where the three differential operators L, B1 and B2 are defined by

L[z] = γz(4) − 2βz′′ + αz, (3.9)

B1[z] = γ(z′′ + z), (3.10)

B2[z] = γz(3) − (2β + γ)z′, (3.11)

together with

α = A(0)
1212, 2β = A(0)

1111 +A(0)
2222 − 2A(0)

1122 − 2A(0)
1221, γ = A(0)

2121. (3.12)

In obtaining these expressions we have made use of the fact that A(0)
2121−A

(0)
2112− p̄0 is equal to

the principal stress in the x2-direction which in this case is identically zero; see, e.g. Dowaikh

and Ogden [6].

Through integration by parts, it can be shown that the above operators have the property

that for any two sufficiently differentiable functions g1(x2) and g2(x2),∫ ∞
0

(g1L[g2]− g2L[g1])dx2 = {g′1B1[g2]− g1B2[g2]− g′2B1[g1] + g2B2[g1]}
∣∣
x2=0

. (3.13)

In particular, if g1 = z, the above identity then reduces to∫ ∞
0

zL[g2]dx2 = {z′B1[g2]− zB2[g2]}
∣∣
x2=0

. (3.14)

This reduced identity will be used in Section 5 to derive the amplitude equation for the

unknown function f(x3).

The boundary value problem (3.7) and (3.8) can be solved by elementary methods. It

has a non-trivial decaying solution only if the following bifurcation condition is satisfied:

αγ + 2(β + γ)
√
αγ − γ2 = 0. (3.15)

See, e.g., Dowaikh and Ogden [6]. When the material is neo-Hookean, it gives the critical

stretch λcr = 0.544 first obtained by Biot [1].
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4. Second-order problem

With u
(0)
3 identically zero, the boundary value problem for u

(1)
α is the same as that for

u
(0)
α . Its solution takes a form similar to (3.5) and (3.6), but this solution is not required in

subsequent analysis since u
(1)
α will not appear in any of the equations from now on. Thus,

we shall focus on the following boundary value problem for the anti-plane component u
(1)
3 :

A(0)
1313u

(1)
3,11 +A(0)

2323u
(1)
3,22 = p

∗(0)
,3 + h′p

∗(0)
,2 − (A(0)

α33γ +A(0)
33αγ)(u

(0)
γ,3α + h′u

(0)
γ,2α), in Be, (4.1)

A(0)
2323u

(1)
3,2 = −p̄0(u

(0)
2,3+h′u

(0)
2,2)−h′(A(0)

33αδu
(0)
δ,α+A(0)

2332u
(0)
2,2−p∗(0))−A(0)

2332u
(0)
2,3, on x2 = 0. (4.2)

The p∗(0) in the above equations can be eliminated by differentiating each equation with

respect to x1 and then eliminating p
∗(0)
,1 with the use of (3.1). We then obtain

A(0)
1313u

(1)
3,111 +A(0)

2323u
(1)
3,122 =− (A(0)

α33γ +A(0)
33αγ)(u

(0)
γ,13α + h′u

(0)
γ,12α) +A(0)

α1βδu
(0)
δ,αβ3

+ h′A(0)
α2βδu

(0)
δ,αβ1, in Be, (4.3)

A(0)
2323u

(1)
3,12 =− p̄0(u

(0)
2,13 + h′u

(0)
2,12) + h′A(0)

α1βδu
(0)
δ,αβ −A

(0)
2332u

(0)
2,13

− h′(A(0)
33αδu

(0)
δ,1α +A(0)

2332u
(0)
2,12), on x2 = 0. (4.4)

The form of the right-hand sides of (4.3) and (4.4) suggests that u
(1)
3 should take the form

u
(1)
3 = i(f ′w1 + fh′w2)eix1 + c.c, (4.5)

where the factor i is inserted so that w1 and w2 are both real functions. On substituting this

expression into (4.3) and (4.4) and then equating the coefficients of f and f ′, we obtain

A(0)
2323w

′′
1 −A

(0)
1313w1 =(A(0)

1111 −A
(0)
1122 −A

(0)
1221 −A

(0)
1331 +A(0)

2332 −A
(0)
1133 +A(0)

2233)z′

−A(0)
2121z

′′′, in Be, (4.6)

w′1 =z on x2 = 0, (4.7)

A(0)
2323w

′′
2 −A

(0)
1313w2 =(A(0)

1122 +A(0)
1221 +A(0)

2332 +A(0)
2233 −A

(0)
2222 −A

(0)
1133 −A

(0)
1331)z′′

+A(0)
1212z, in Be, (4.8)

A(0)
2323w

′
2 =− (A(0)

1221 −A
(0)
1111 +A(0)

1122 −A
(0)
2323 +A(0)

1133 −A
(0)
2233)z′,

−A(0)
2121z

′′′, on x2 = 0. (4.9)

The above equations are to be solved subject to the additional decay conditions w1 → 0 and

w2 → 0 as x2 →∞. A unique solution for w1 and w2 can be found by elementary methods.
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5. Third-order problem

In view of the symmetry properties of A(0)
jilk, we can replace the subscript k in (2.25) and

(2.26) by a Greek letter and j by 3 to obtain

A(0)
αγβδu

(2)
δ,αβ − p

∗(2)
,γ =− λ̂A(1)

αγβδu
(0)
δ,αβ − (A(0)

αγ33 +A(0)
3γα3)(u

(1)
3,3α + h′u

(1)
3,2α)

−A(0)
3γ3δ(u

(0)
δ,33 + h′′u

(0)
δ,2 + 2h′u

(0)
δ,23 + h′2u

(0)
δ,22), in Be (5.1)

A(0)
2γαδu

(2)
δ,α + p̄0u

(2)
2,γ − p∗(2)δ2γ =− λ̂A(1)

2γαδu
(0)
δ,α − h

′(A(0)
3γα3u

(1)
3,α +A(0)

2γ33u
(1)
3,2

+ p̄0u
(1)
3,γ − p∗(1)δ3γ)−A(0)

2γ33u
(1)
3,3

− h′A(0)
3γ3δ(u

(0)
δ,3 + h′u

(0)
δ,2)− λ̂p̄1u

(0)
2,γ, on x2 = 0 (5.2)

The incremental pressure p∗(2) can be eliminated in the same manner as how p∗(0) was

eliminated from the leading-order problem. We then look for a solution of the form

u
(2)
1 = U(x2, x3)eix1 + c.c u

(2)
2 = −iV (x2, x3)eix1 + c.c. (5.3)

On substituting these expressions into the incompressibility condition (2.29), we obtain

U =
∂V

∂x2

− ξ3, (5.4)

where

ξ3 = f ′′w1 + f ′h′(w′1 + w2) + f(h′′w2 + h′2w′2). (5.5)

When U is eliminated in favour of V with the use of (5.4), the boundary value problem (5.1)

and (5.2) reduces to the following boundary value problem for V :

L[V ] = ξ′1 − ξ2 − (A
(0)
1111 − A

(0)
1221 − A

(0)
2211)ξ′3 + A

(0)
2121ξ

′′′
3 , 0 < x2 <∞, (5.6)

B1[V ] = ζ1 + A
(0)
2121ξ

′
3, x2 = 0, (5.7)

B2[V ] = ξ1 − ζ2 − A(0)
1111ξ3 + A

(0)
1122ξ3 + A

(0)
2121ξ

′′
3 , x2 = 0, (5.8)

11



where the primes on ξ1 and ξ3 signify differentiation with respect to x2, and

ξ1 =λ̂A
(1)
1111fz

′ − λ̂(A
(1)
1122 + A

(1)
2112)fz′ − λ̂A(1)

2121fz
′′′,

+ (A
(0)
1133 + A

(0)
3113)[(f ′′w1 + f ′h′w2 + fh′′w2) + h′(f ′w′1 + fh′w′2)],

− A(0)
3131(f ′′z′ + h′′fz′′ + 2h′f ′z′′ + h′2fz′′′),

ξ2 =λ̂A
(1)
1212fz + λ̂(A

(1)
1221 + A

(1)
2211)fz′′ − λ̂A(1)

2222fz
′′

+ (A
(0)
2233 + A

(0)
3223)[(f ′′w′1 + f ′h′w′2 + fh′′w′2) + h′(f ′w′′1 + fh′w′′2)]

− A(0)
3232(f ′′z + h′′fz′ + 2h′f ′z′ + h′2fz′′),

ζ1 =− λ̂A(1)
2112fz − λ̂A

(1)
2121fz

′′ + h′(A
(0)
3113 + p̄0)(f ′w1 + h′fw2)

− h′A(0)
3131(f ′z′ + h′fz′′)− λ̂p̄1fz,

ζ2 =λ̂A
(0)
1122fz

′ − λ̂A(0)
2222fz

′ + h′(A
(0)
3223 + A

(0)
2233 + p̄0)(f ′w′1 + fh′w′2)

+ A
(0)
2233(f ′′w1 + f ′h′w2 + fh′′w2)− h′A(0)

3232(f ′z + h′fz′)− λ̂p̄1fz
′.

Since the left-hand sides of (5.6)−(5.8) involve the same operators as those in the leading

order problem, this boundary value problem has a solution only if the right-hand sides satisfy

a solvability condition. This condition may be obtained by replacing g2 by V in the identity

(3.14). After simplification, we obtain

c4f
′′(x3) + c3h

′f ′(x3) + (c2h
′2 + c1h

′′ + c0λ̂)f(x3) = 0, (5.9)

where the coefficients are all real and are given by

c4 =

∫ ∞
0

z[(−A(0)
1133 − A

(0)
3113 + A

(0)
2233 + A

(0)
3223 + A

(0)
1111 − A

(0)
1221 − A

(0)
1122)w′1

+ (A
(0)
3131z

′′ − A(0)
3232z)− A(0)

2121w
′′′
1 ]dx2 + A

(0)
2121z

′(0)w′1(0)− A(0)
2121z(0)w′′1(0)

+ A
(0)
3131z(0)z′(0) + A

(0)
2233z(0)w1(0) + (A

(0)
1111 − A

(0)
1122 − A

(0)
1133 − A

(0)
1331)z(0)w1(0),

c3 =

∫ ∞
0

z[(−A(0)
1133 − A

(0)
3113 + A

(0)
2233 + A

(0)
3223 + A

(0)
1111 − A

(0)
1221 − A

(0)
1122)(w′′1 + w′2)

+ 2(A
(0)
3131z

′′′ − A(0)
3232z

′)− A(0)
2121(w′′′′1 + w′′′2 )]dx2 + (A

(0)
3113 + p̄0)z′(0)w1(0)

− A(0)
3131z

′2(0) + A
(0)
2121z

′(0)(w′′1(0) + w′2(0))− (A
(0)
1133 + A

(0)
3113)z(0)(w′1(0) + w2(0))

+ 2A
(0)
3131z(0)z′′(0) + (A

(0)
3223 + A

(0)
2233 + p̄0)z(0)w′1(0) + A

(0)
2233z(0)w2(0)

− A(0)
3232z

2(0) + (A
(0)
1111 − A

(0)
2211)z(0)(w′1(0) + w2(0))− A(0)

2121z(0)(w′′′1 (0) + w′′2(0)),
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c2 =

∫ ∞
0

z[(−A(0)
1133 − A

(0)
3113 + A

(0)
2233 + A

(0)
3223 + A

(0)
1111 − A

(0)
1221 − A

(0)
2211)w′′2

+ (A
(0)
3131z

′′′′ − A(0)
3232z

′′)− A(0)
2121w

′′′′
2 ]dx2 + (A

(0)
3113 + p̄0)z′(0)w2(0)

− A(0)
3131z

′(0)z′′(0) + A
(0)
2121z

′(0)w′′2(0)− A(0)
2121z(0)w′′′2 (0)

+ A
(0)
3131z(0)z′′′(0)− A(0)

3232z(0)z′(0)

+ (A
(0)
1111 − A

(0)
1122 + A

(0)
3223 + A

(0)
2233 + p̄0 − A(0)

1133 − A
(0)
3113)z(0)w′2(0),

c1 =

∫ ∞
0

z[(−A(0)
1133 − A

(0)
3113 + A

(0)
2233 + A

(0)
3223 + A

(0)
1111 − A

(0)
1221 − A

(0)
2211)w′2

+ (A
(0)
3131z

′′′ − A(0)
3232z

′)− A(0)
2121w

′′′
2 ]dx2 + A

(0)
2121z

′(0)w′2(0) + A
(0)
3131z(0)z′′(0)− A(0)

2121z(0)w′′2(0)

− (A
(0)
1133 + A

(0)
3113 + A

(0)
1122 − A

(0)
2233 − A

(0)
1111)z(0)w2(0),

c0 =

∫ ∞
0

z[A
(1)
2121z

′′′′ + (2A
(1)
1122 + A

(1)
2112 − A

(1)
1111 + A

(1)
1221 − A

(1)
2222)z′′ + A

(1)
1212z]dx2

− z(0)[(A
(1)
1111 − 2A

(1)
1122 + A

(1)
2222 + 2p̄1)z′(0)− A(1)

2121z
′′′(0)]− A(1)

2121z
′(0)z′′(0).

For each specified surface profile h(x3), equation (5.9) is to be solved subject to the decay

conditions f(x3)→ 0 as x3 → ±∞. This is an eigenvalue problem for λ̂ which will be solved

in the next section.

6. Numerical and asymptotic results

We have evaluated the coefficients for a variety of materials, including neo-Hookean,

Gent, Mooney-Rivlin, and Ogden models. It is found that c3 is identically zero for all the

material models considered although we have not been able to prove this result analytically.

We thus rewrite (5.9) as

f ′′(x3) + (d2h
′2 + d1h

′′ + d0λ̂)f(x3) = 0, (6.10)

where

(d0, d1, d2) = (c0, c1, c2)/c4.

Recall that all the coordinates and parameters/functions that have the dimension of length

have been scaled by 1/k, where k is the original wave number. Denoting the unscaled

coordinates, imperfection profile, and amplitude function by x∗i , h
∗, and f ∗, respectively, we

then have

x3 = kx∗3, h(x3) = kh∗(x∗3), f(x3) = kf ∗(x∗3),
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and

h′(x3) =
dh∗

dx∗3
, h′′(x3) =

1

k

d2h∗

dx∗23

, f ′′(x3) =
1

k

d2f ∗

dx∗23

.

The dimensional form of the amplitude equation (6.10) is then given by

f ∗′′(x∗3) + (k2d2h
∗′2 + kd1h

∗′′ + k2d0λ̂)f ∗(x∗3) = 0, (6.11)

where a prime now signifies differentiation with respect to x∗3. Note, however, that x∗3 is not

the original dimensional coordinate in the anti-plane direction, but that coordinate multiplied

by ε. Equation (6.11) shows that the current problem is dispersive: the correction λ̂ to the

critical stretch is dependent on the wave number even though the leading order term is not.

To facilitate interpretation of numerical results, it is convenient to scale x∗3, h
∗ and f ∗ by

the maximum value of |h∗(x∗3)|, h0 say. Thus we write

x∗3 = h0x̂3, h∗(x∗3) = h0ĥ(x̂3), f ∗(x∗3) = h0f̂(x̂3).

On substituting these expressions into (6.11) and then dropping the hats, we obtain

f ′′(x3) + k2h2
0

{
d2h

′2 +
d1

kh0

h′′ + d0λ̂

}
f(x3) = 0. (6.12)

As a consistency check, if h0 is taken to be 1/k, this recovers (6.10). Recalling equation

(2.14), we see that the correction to the critical stretch due to the surface imperfection is a

function of kh0 and ε.

Equation (6.12) subject to the decay conditions f(x3)→ 0 as x3 → ±∞ is an eigenvalue

problem that has a non-trivial solution only for special values of λ̂. This eigenvalue problem

needs to be solved numerically in general. However, asymptotic solutions can be obtained

when kh0 is either large or small.

When kh0 is sufficiently small, it can be shown that the eigenvalue problem has at most

one eigenvalue given by√
−d0λ̂ =

1

2
(d2 + d2

1)kh0

∫ ∞
−∞

h′2dx3 +O((kh0)2). (6.13)

See Simon [39], Klaus [40], and also Fu et al. [36]. Thus, this single eigenvalue can exist only

if

d2 + d2
1 > 0. (6.14)

In Table 1 we have shown the values of the coefficients for some commonly used material

models.

In view of the fact that d0 < 0 and the product under the radical sign in (6.13) must be

positive, we may conclude that localized solutions exist only if λ̂ > 0, that is localized surface
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Table 1: Coefficients of the amplitude equation

d0 d1 d2

neo-Hookean -3.087 0 0.436

Gent (Jm = 200) -3.043 0.006 0.443

Gent (Jm = 97) -2.995 0.013 0.450

Gent (Jm = 30) -2.764 0.046 0.487

Gent (Jm = 10) -1.652 0.194 0.661

Mooney-Rivlin (µ2/µ1 = 0.1) -3.360 0.077 0.365

Ogden -3.811 0.039 0.250

imperfection will increase the critical stretch, thus making the half-space easier to wrinkle.

It is seen that d1 is identically zero for the neo-Hookean material model. This means that

when this model is used, a surface ridge or trench has the same effect on the critical stretch,

but this symmetry is lost when the other material models are used. However, according to

the asymptotic expansion (6.13) the sign of h does not affect the leading order term.

On the other hand, when kh0 is large, a WKB analysis can be conducted to find the

eigenvalues; see Bender and Orszag [41]. The eigenfunctions would localize near the points

where the term d2h
′2 attains a maximum or minimum. Since h(x3) has been assumed to

be an even function and to decay to zero as |x3| → ∞, we have h′(0) = 0 and so there

must exist at least two such maximum points, symmetrically located on the two sides of the

origin. For the examples that we shall consider later, there exist exactly two such maximum

points. Focus on the positive one, which we denote by x0. It is known that for a minimum of

d0λ̂ (and hence a maximum of λ̂) this point should be a second-order turning point and the

associated eigenfunctions exist in a thin layer of order (kh0)−1/2 around x0. The asymptotic

solution takes the form

f(x3) = f0(ξ) + (kh0)−1/2f1(ξ) + (kh0)−1f2(ξ) + · · · , (6.15)

λ̂ = λ̂0 + (kh0)−1λ̂1 + (kh0)−2λ̂2 + · · · , (6.16)

where the boundary layer variable ξ is defined by

ξ = (kh0)
1
2 (x3 − x0), (6.17)

and the constants λ̂i (i=0, 1, ...) are to be determined. On substituting (6.15)−(6.17) into

(6.12), and then equating the coefficients of like powers of kh0, we find that the leading order

problem can be satisfied only if

λ̂0 = −d2

d0

h′2(x0). (6.18)
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The second-order problem requires that h′′(x0) = 0, which we have assumed already. Finally,

at third order, we obtain

f ′′2 (ξ) + (d0λ̂1 + d2h
′
0h
′′′
0 ξ

2)f2(ξ) = 0, (6.19)

where h′0 = h′(x0), h′′′0 = h′′′(x0). This equation can be reduced to the Weber’s equation

g′′(s)− (
1

4
s2 − d0

a2
λ̂1)g(s) = 0, (6.20)

with the substitutions ξ = s/a, f2(ξ) = g(s), where

a = (−4d2h
′
0h
′′′
0 )

1
4 .

Equation (6.20) has localized solutions only if

d0

a2
λ̂1 = m+

1

2
, (m = 0, 1, 2, ...), (6.21)

and the associated solutions are given by

g(s) = e−
1
4
s2Hem(

s√
2

), or se−
1
4
s2Hem(

s√
2

), (6.22)

where Hem are the Hermite polynomials. The two solutions given by (6.22) are symmetric

and anti-symmetric modes, respectively. Thus, we obtain the following two-term expansion

for λ̂:

λ̂ = −d2

d0

h′2(x0) +

√
−d2h′0h

′′′
0

d0kh0

(2m+ 1), (m = 0, 1, 2, ...). (6.23)

For each m, there exist both a symmetric and an anti-symmetric mode given by (6.22),

and there are infinite pairs of such modes. These predictions will shortly be verified by our

numerical results.

The amplitude equation (6.12) is now solved numerically following the procedure outlined

in Fu et al. [36]. In the limit x3 → ±∞, equation (6.12) can be approximated by

f ′′(x3) + (kh0)2d0λ̂f(x3) = 0. (6.24)

It is clear that f(x3) will have the required decay behaviour as x3 → ±∞ only if d0λ̂ < 0,

which is consistent with the asymptotic expression (6.13). We then have

f ′(x3)± kh0

√
−d0λ̂ f(x3)→ 0, as x3 → ±∞. (6.25)

Since h(x3) has been assumed to be an even function of x3, f(−x3) is a solution of (6.12)

whenever f(x3) is a solution. Thus, the eigen solutions of (6.12) are either even or odd. For

the even (symmetric) modes, we may impose, without loss of generality, the conditions

f(0) = 1, f ′(0) = 0, (6.26)
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and the decay behaviour through

e(λ̂) ≡ f ′(L) + kh0

√
−d0λ̂ f(L) = 0, (6.27)

where L is a sufficiently large positive constant and the first equation in (6.27) defines the

error function e(λ̂). For each fixed λ̂, the e(λ̂) can be evaluated after integrating (6.12)

subject to the initial conditions (6.26). We first plot e(λ̂) against λ̂ to show the approximate

locations of any zeros and then use the Newton-Raphson method to find the exact values

of the zeros. All of our symbolic manipulations and numerical integrations are carried out

with the aid of Mathematica [42].

For the odd (anti-symmetric) modes, the initial conditions (6.26) are replaced by

f(0) = 0, f ′(0) = 1, (6.28)

and we integrate (6.12) subject to the initial conditions (6.28) and iterate on λ̂ in order to

satisfy the decay condition (6.27). To avoid having to adjust L for different values of λ̂, we

solve the eigenvalue problem in terms of a scaled variable x̃3 defined by x̃3 = kh0

√
−d0λ̂ x3.

Then it is found sufficient to choose L to be between 15 and 25.
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0.10
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(a) (b)

Figure 2: Variation of λ̂ with respect to kh0 when (a) h(x3) = sech(x3), and (b) h(x3) = e−x2
3 and the

material is neo-Hookean. Solid line: numerical results; dashed line (blue): asymptotic results given by the

leading term in (6.13); dotted line (red): asymptotic results given by (6.23).

As an illustrative example, consider the case when the topography is described by the

‘Gaussian bump’h(x3) = e−x
2
3 and the less localized bump h(x3) = sech(x3). Fig. 2 shows

the variation of λ̂ with respect to kh0 for the first mode when the material is neo-Hookean.

There is excellent agreement between the asymptotic results (large or small kh0) and the

numerical results. For instance, the leading-order asymptotic result for small kh0 is capable

of approximating the exact result with a relative error less than 5% for kh0 up to 0.3. It is

also observed λ̂ is larger for the more localized Gaussian bump.
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Figure 3: Effect of changing the sign of h: variation of λ̂ with respect to kh0 when h(x3) = sech(x3) (solid

line) or h(x3) = −sech(x3) (dashed line). (a) Gent material model with Jm = 97; and (b) Gent material

model with Jm = 10.
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Figure 4: Existence of higher symmetric (solid lines) and anti-symmetric (dashed lines) modes when the

material is neo-Hookean. (a) h(x3) = sech(x3); (b) h(x3) = e−x2
3 .

To show the effect of a trench-like surface topography, we consider the Gent material

model with Jm = 97 and show in Fig. 3 the effect of changing the sign of h. It is seen

that changing the sign has a negligible effect for small kh0, as indicated by the asymptotic

result (6.13), but for the larger values of kh0, the effect is noticeable. However, the effect

is only significant for small enough values of Jm. Also, the trench-like surface topography

corresponds to a larger value of λ̂, and so is slightly easier to wrinkle.

It is found that the current eigenvalue problem has an infinite number of symmetric

and anti-symmetric modes. Fig. 4 shows the dependence of λ̂ on kh0 for the first three

symmetric and anti-symmetric modes. It can be seen that the symmetric (solid curves) and

anti-symmetric modes (dashed curves) alternately emerge as kh0 increases and each pair

converges to the same curve in the large kh0 limit. For each fixed kh0, the first symmetric
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mode has the largest value of λ̂ and is therefore the critical mode.

Finally, in Fig.5 we have shown the eigenfunctions corresponding to the first four modes

for a typical case. It is seen that the m-th mode has m−1 zeros in the interval, as in standard

Sturm-Liouville eigenvalue problems, and the eigenfunctions for the symmetric mode always

exhibit a “trench”at x3 = 0. As predicted by the asymptotic analysis, for large kh the first

two eigenfunctions are localized near the two second-order turning points at x3 = ±x0, which

explains the trench behaviour around x3 = 0.
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Figure 5: Eigenfunctions for the first four modes corresponding to kh0 = 15 in Fig. 4(a).

7. Conclusion

In this paper we have studied the bifurcation condition for wrinkling of a compressed

hyperelastic half-space with geometrical surface imperfections. This can be viewed as a

variant of the classical Biot problem in that the traction-free surface is flat except for a

straight, infinite length, ridge or trench, the profile of which is invariant in the x1-direction.

For an arbitrary surface profile, the determination of the wrinkling condition would be a

fully numerical problem, but under the assumption that the topography is slowly varying

and localized in the x3-direction, an asymptotic analysis becomes possible. The necessary

small parameter ε characterizes the ratio of the wavelength of the wrinkling modes to the
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lengthscale over which the surface imperfections vary; the maximum height h0 of the surface

imperfection is assumed to be of the same order as the wavelength. Thus, our results are

only relevant when kh0 is of order one or larger although the case of small kh0 (for the first

mode) was considered to validate our numerical scheme.

The main result is that the critical stretch has the asymptotic expansion λ = λcr + ε2λ̂,

where λcr is the classical Biot value and λ̂ is determined by solving an eigenvalue problem

consisting of (6.11) and the associated decay conditions. The λ̂ depends on kh0 and there is

an infinite number of wrinkling modes. The maximum of λ̂ is obtained in the limit kh0 →∞,

and hence from (6.23) the maximum of λ is given by

λmax = λcr −
d2

d0

[εh′(x0)]
2
. (7.29)

Note that the factor εh′(x0) in the second term is simply the maximum gradient of the

surface profile in terms of the original dimensional variables. The above expression may be

taken to be the critical stretch for an incompressible half-space with surface imperfections

to wrinkle. Since d2/d0 is negative, the above formula shows that a geometrical surface

imperfection would increase the critical stretch by an amount that is proportional to the

square of the maximum gradient of the surface profile.
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