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Abstract

A weakly nonlinear analysis is conducted for localized necking of a hyperelastic solid cylinder

under axial stretching based on the exact theory of nonlinear elasticity. The amplitude

equation derived is shown to be consistent with the one-dimensional model recently proposed

by Audoly and Hutchinson (J. Mech. Phys. Solids 97, 2016, 68-91). It is shown that results

based on the infinite-length approximation are sufficiently accurate even for cylinders with

very moderate length/diameter ratios. In contrast, a weakly nonlinear analysis based on

the finite length is only valid for very stubby cylinders and for axial force much closer to its

bifurcation value than anticipated.
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1. Introduction

Necking is a phenomenon commonly observed in the tension test of ductile materials.

It has also been observed in semi-crystalline polymers (Carothers & Hill, 1932), and glassy

polymers (Whitney & Andrews, 1967; Crissman & Zapas, 1974; Zapas & Crissman, 1974;

Ward & Sweeney, 1982). Numerical simulations of necking in plastic materials have been

conducted by Chen (1971), Needleman (1972), Norris et al. (1978), Burke & Nix (1979),

and Silling (1988). Analyses based on one-dimensional (1D) models have been conducted by

Barenblatt (1964), Antman (1972), Antman (1973), Ericksen (1975), Triantafyllidis & Aifan-

tis (1986), Owen (1987), Coleman (1983), Coleman & Newman (1988), Dai & Bi (2006), but

such 1D models are usually not self-consistent in the sense that not all relevant terms are

kept at every order of the approximate solution. Notable exceptions are those derived from

the three-dimensional theory by Dai et al. (2008), Dai & Peng (2012), and more recently

Audoly & Hutchinson (2016). Necking has also been conducted based on the nonlinear elas-

ticity theory by treating necking as a periodic mode admitted by the incremental equations;
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see Wesolowski (1962), Hill & Hutchinson (1975), Antman & Carbone (1977), Scherzinger

& Triantafyllidis (1998), Triantafyllidis et al. (2007). Constitutive behaviour that gives rise

to necking has been investigated by Leonov (2002). Commonly used hyperelastic material

models such as neo-Hookean, Mooney-Rivlin, Ogden, and Gent strain-energy functions do

not allow necking under entirely mechanical loading, but subject to additional effects such

as electric actuation or surface tension, necking becomes commonplace; see Fu et al. (2018)

and Fu et al. (2020).

Except for the analysis by Mielke (1991) and Fu (2001), it has been customary in the

literature to treat localized necking as a bifurcation initiated from a periodic mode satisfying

special types of end conditions. The same practice prevailed in the studies of localized

bulging of inflated rubber tubes for many years. However, recent numerical simulations and

experimental studies carried out by Wang et al. (2019) have shown that localized bulging

in the latter problem is fairly insensitive to end conditions when the length/diameter ratio

exceeds a fairly moderate value; it is appropriate to treat localization as a bifurcation problem

with zero wave number and view end effects as imperfections, as in the approach of center-

manifold reduction. Our current study is motivated by the study of Audoly & Hutchinson

(2016) which provides us with a convenient platform to assess the effect of finite length on

localized necking. It may be viewed as an extension of the study by Fu (2001) from the

plane strain case to the 3D case with the use of the perturbation approach. We remark that

although the perturbation approach is less rigorous than the center-manifold reduction, the

two approaches have almost always yielded the same amplitude equations/normal forms.

The rest of this paper is divided into five sections as follows. After formulating the necking

problem in the next section, we apply in Section 3 the perturbation approach to derive

the amplitude equation that governs the shape and character of the localized solutions.

In Section 4 we present a slightly simplified version of the analysis given by Audoly &

Hutchinson (2016) and show that this approach yields the same amplitude equation as the

perturbation approach. In Section 5 we discuss the question “how long should the cylinder

be, when describing necking, for it to be treated effectively as a cylinder of infinite length”.

The paper is then concluded with a summary that highlights our main findings.

2. Problem formulation

We first summarize the governing equations for a general homogeneous elastic body com-

posed of a non-heat-conducting incompressible elastic material. Such a material is assumed

to possess an initial unstressed configuration B0. A finite static deformation (not necessarily

homogeneous) is imposed upon B0 to produce an equilibrium configuration denoted by Be.

To determine whether this finitely deformed configuration is unique or not, we superimpose
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on Be a small amplitude perturbation that brings the material body to the current con-

figuration denoted by Bt. Relative to a common coordinate system the position vectors of

a representative material particle in the three configurations are denoted by X, x and x̃,

respectively, and we write

x̃ = x + u(x), (2.1)

where u, as a vector function of x, denotes the incremental displacement field from Be to

Bt. The x itself is a function of X. We define deformation gradient tensors F̄ and F̃ by

dx = F̄ dX, dx̃ = F̃ dX. (2.2)

With the use of (2.1), we also have

dx̃ = (I + gradu)dx = (I + η)F̄ dX,

where η = gradu denotes the gradient of u with respect to x. It then follows that

F̃ = (I + η)F̄ . (2.3)

We assume that the constitutive behaviour of the material is described by the strain-energy

function W (F ) measured per unit volume in the reference configuration such that the nom-

inal stress S is given by

S =
∂W

∂F
− pF−1, (2.4)

where p is the Lagrangian multiplier associated with the constraint of incompressibility

detF = 1 and will subsequently be referred to as the constraint pressure. Specialized to the

deformation B0 → Be, the constitutive equation (2.4) defines the nominal stress S̄ and the

constraint pressure p̄. The equilibrium equations for the configurations Be and Bt are given

by

Div S̄ = 0, Div S̃ = 0, (2.5)

respectively, where Div is the divergence operator with respect to X and S̃ denotes the

nominal stress associated with the deformation B0 → Bt,. For the purpose of bifurcation

analysis, it is convenient to define an incremental stress tensor χ through

χT = J̄−1F̄ (S̃ − S̄), (2.6)

where the superscript T stands for transpose, and J̄ denotes the determinant of F̄ (which is

unity in the current case but is kept in the formula to maintain the generality of the formula).

With the use of (2.5) and the identity div J̄−1F̄ = 0 where div denotes the divergence with

respect x, we obtain

divχT = 0. (2.7)
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By straightforward Taylor expansion around the finite deformation (F̄ , p̄), equation (2.6)

together with (2.4) yields (Fu & Rogerson, 1994)

χij = Ajilkηkl + (p̄+ p∗)ξji − p∗δji +
1

2
A2
jilknmηklηmn + · · · , (2.8)

where the tensor components ξji are defined by

ξji = (I − F̄ F̃−1)ji = ηji − ηjmηmi + · · · , (2.9)

p∗ is the incremental constraint pressure associated with the deformation Be → Bt, and Ajilk
and A2

jilknm are the 1st- and 2nd-order instantaneous elastic moduli (Chadwick & Ogden,

1971). The Ajilk are given by

Ajilk = J̄−1F̄jAF̄lB
∂2W

∂FiA∂FkB

∣∣∣∣
F=F̄

, (2.10)

and A2
jilknm are defined in a similar manner. Their expressions in terms of the principal

stretches can be found in Ogden (1984) or Fu & Ogden (1999). Note that the above ex-

pressions are valid for any coordinate system, and the tensor ξ enjoys the property that

div ξ = 0.

When (2.8) is substituted into (2.7), the resulting expression can be simplified by making

use of the fact that div ξ = 0. More precisely, we shall replace (2.7) by

l ≡ divχT − (p̄+ p∗) div ξ = 0 (2.11)

in the subsequent derivations.

On any part of the material boundary that is traction-free, we have S̃TN = 0, S̄TN = 0,

and hence χn = 0, where N and n denote the unit normals to the boundary in B0 and Be,
respectively.

We now specialize the above governing equations to the case when the material body is

a solid circular cylinder which has radius A in B0. The finite deformation from B0 to Be
corresponds to a uni-axial tension in the axial direction so that F̄ takes the form

F̄ =
1√
λ
er ⊗ er +

1√
λ
eθ ⊗ eθ + λez ⊗ ez, (2.12)

where λ is the constant stretch in the axial direction, and {er, eθ, ez} are the usual basis

vectors for cylindrical polar coordinates. The principal axes of stretch coincide with the

coordinate axes. Let the z-, r- and θ-directions be the 1-, 2- and 3-directions. The three

principal stretches are λ1 = λ, λ2 = λ3 = 1/
√
λ. As a result, the elastic moduli enjoy the

following properties which we use frequently:

A2121 −A2112 = p̄, A3131 −A3113 = p̄, A1122 = A1133, A2222 = A3333 etc. (2.13)
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Our aim is to determine the critical value of λ, denoted λcr, at which localized necking takes

place, and the necking profile when λ varies in a small neighbourhood of this critical value.

We observe that since the material and the primary deformation (2.12) are both assumed

to be homogeneous, our analysis cannot predict the location of the necking although we

shall assume without loss of generality that the center of necking is located at Z = 0. In

real applications the location is determined by the inevitable geometrical imperfections or

material inhomogeneities.

Anticipating that the necking deformation under consideration is axi-symmetric, we con-

sider u in the form

u = u(r, z)er + v(r, z)ez, (2.14)

where u(r, z) and v(r, z) denote the incremental displacement in the r- and z-directions,

respectively. It then follows that

η = gradu = urer ⊗ er + uzer ⊗ ez + vrez ⊗ er + vzez ⊗ ez +
u

r
eθ ⊗ eθ, (2.15)

where ur = ∂u/∂r, uz = ∂u/∂z etc. The equilibrium equations that are not satisfied

automatically are

χ2j,j +
1

r
(χ22 − χ33) = 0, χ1j,j +

1

r
χ12 = 0. (2.16)

They will be subjected to the manipulation given by (2.11); for instance, the second equation

will be replaced by

l2 ≡ χ1j,j − (p̄+ p∗)ξj1,j +
1

r
χ12 −

1

r
(p̄+ p∗)ξ21 = 0. (2.17)

These equations are augmented by the incompressibility condition which can be expanded

as

ηii −
1

2
ηmnηnm + ... = 0. (2.18)

We also need to expand the boundary conditions to quadratic order. The external surface

of the tube is assumed to be traction-free, and so we have

χi2 = 0, r = a. (2.19)

For numerical illustrations, we shall assume that the strain-energy function is given by

W =
2µ

m2
(λm1 + λm2 + λm3 − 3) (2.20)

with m = 1/2, where µ is the ground state shear modulus. We shall scale all lengths by A,

stress and W by µ, and use the same symbols to denote the scaled quantities. Therefore,

from now on we have µ = 1 and A = 1. All of our symbolic manipulations and numerical

integrations are carried out with the aid of Mathematica (Wolfram Research Inc, 2019).
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3. Near-critical necking solution

We first assume that the cylinder is infinitely long, and look for an asymptotic solution

for (2.11) and (2.18) subject to the boundary conditions (2.19). We use λ as the control

parameter in our post-bifurcation analysis, and write

λ = λcr + ελ0, (3.1)

where λ0 is a constant and ε is a small positive parameter characterizing the order of deviation

of λ from its critical value λcr. We expect that the necking solution that we are looking for

is localized but slowly varying in the z-direction, depending on z through the far distance

variable s defined by (Fu, 2001)

s =
√
εz. (3.2)

Note that as a result of (3.1), all the elastic moduli and other quantities that depend on λ

should also be expanded into Taylor series around λ = λcr. For instance,

Ajilk = A(1)
jilk + ελ0A′jilk + · · · , a = a0 + ελ0a1 + · · · , (3.3)

where A′jilk denotes the derivative of Ajilk with respect to λ evaluated at λ = λcr, and the

constants a0 and a1 are given by a0 = λ
−1/2
cr , a1 = −λ0a0/(2λcr). In our subsequent analysis,

we use Ajilk to denote A(1)
jilk to simplify notation, and the second-order moduli A2

jilknm are

all evaluated at λ = λcr whenever they appear.

Guided by the scalings given by Fu (2001), we deduce that u = O(
√
εv), p∗ = O(

√
εv),

and that v is of order
√
ε. Thus, we look for an asymptotic solution of the form

u = ε
{
u(1)(r, s) + εu(2)(r, s) + ε2u(3)(r, s) + · · ·

}
,

v =
√
ε
{
v(1)(r, s) + εv(2)(r, s) + ε2v(3)(r, s) + · · ·

}
, (3.4)

p∗ = ε
{
p(1)(r, s) + εp(2)(r, s) + ε2p(3)(r, s) + · · ·

}
,

where all the functions on the right hand sides are to be determined from successive approx-

imations.

In the linear analysis, the incremental pressure p∗ can be eliminated by replacing the

two equilibrium equations l1 = 0, l2 = 0 by l1,2 − l2,1 = 0, where l1 and l2 are defined by

(2.11). In the current nonlinear setting, it is no longer possible to eliminate p∗ completely,

but nonetheless through this manipulation p∗ does not appear at first- and second-orders.

On substituting (3.4) into l1,2 − l2,1 = 0, the incompressibility condition (2.18), the

boundary conditions (2.19), and then equating the coefficients of like powers of ε, we obtain

a hierarchy of boundary value problems. To leading order, we obtain

d

dr

1

r

d

dr
rv(1)rs = 0, v(1)s +

1

r

d

dr
ru(1) = 0, 0 < r < a0, (3.5)
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and

v(1)rs = 0,
1

r

d

dr
rv(1)rs = 0, on r = a0, (3.6)

where v
(1)
s = ∂v(1)/∂s and v

(1)
rs = ∂2v(1)/∂r∂s.

Using (3.5)2 to eliminate v
(1)
s from (3.5)1 and (3.6), we obtain

L[u(1)] = 0, 0 < r < a0, (3.7)

B1[u(1)] = 0, B2[u(1)] = 0, on r = a0, (3.8)

where the three differential operators are defined by

L[u] =
d

dr

1

r

d

dr
r
d

dr

1

r

d

dr
ru, B1[u] =

1

r

d

dr
r
d

dr

1

r

d

dr
ru, B2[u] =

d

dr

1

r

d

dr
ru.

The three operators satisfy the identity (Ye et al., 2020)∫ a0

0

{rgL[f ]− rfL[g]} dr = {rgB1[f ]− rfB1[g] + (rf)′B2[g]− (rg)′B2[f ]}|a00 , (3.9)

where f and g are any two sufficiently smooth functions. This identity will be used to derive

the amplitude equation later.

On integrating (3.5), we find that v
(1)
1 and u

(1)
1 must be a linear combination of the

independent solutions

1, r2, log(r),

and

r, r3, r log(r),
1

r
,

respectively. However, on substituting this general solution into the boundary conditions

(3.6) and noting that the solution must be bounded at r = 0, we find that u(1) and v(1) take

the reduced form

v(1) = −A1(s), u(1) = c1(s)r, (3.10)

where c1(s) is an arbitrary function, and A′1(s) = 2c1(s).

At second order, we find that u(2) and v(2) satisfy the governing equations

d

dr

1

r

d

dr
rv(2)rs = 0, v(2)s +

1

r

d

dr
ru

(2)
1 = 3c21(s), 0 < r < a0, (3.11)

and boundary conditions

v(2)rs = −rc′′1(s), ζ1
1

r

d

dr
rv(2)rs = ζ2c

′′
1(s), on r = a0, (3.12)

where the constants ζ1 and ζ2 are defined by

ζ1 = A2121, ζ2 = A2121 +A3333 − 4A1133 +A2233 + 2A1111 − 3A2112. (3.13)
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Equations (3.11) can be solved to give

v(2) = −2

∫
c2(s)ds+

1

2
A2(s)r

2, u(2) =
3

2
rc21(s) + rc2(s)−

1

8
r3A′2(s), (3.14)

where c2(s) and A2(s) are functions to be determined. On substituting (3.14)1 into the

boundary conditions (3.12), we obtain

c′′1(s) + A′2(s) = 0, ζ2c
′′
1(s)− 2ζ1A

′
2(s) = 0. (3.15)

It then follows that a non-trivial solution exists only if the following bifurcation condition is

satisfied:

2ζ1 + ζ2 = 0. (3.16)

We now show that this bifurcation condition has a clear physical interpretation. To this end,

we note that

σ11 = λ1W1 − p, σ22 = λ2W2 − p,

where W1 = ∂W/∂λ1, W2 = ∂W/∂λ2. Solving σ22 = 0 for p, we obtain

σ11 = λ1W1 − λ2W2 = λW1 − λ−1/2W2 = λw′(λ),

where

w(λ) = W (λ, λ−1/2, λ−1/2). (3.17)

The nominal stress in the axial direction is λ−1σ11 = w′(λ). The bifurcation (3.16) is then

identical to w′′(λ) = 0, which means that bifurcation takes place when the axial nominal

stress reaches a maximum.

Once u(1), v(1) and v(2) are known, the leading order incremental pressure p(1) can be

obtained by equating the coefficients of ε3/2 in (2.16)2 and then integrating the resulting

equation with respect to s. We thus obtain

p(1) = (A1133 − 2A1111 +A1122 + 2A2112) c1(s) + 2ζ1

∫ s

A2(s)ds. (3.18)

We now have all the solutions to derive the amplitude equation.

At third order, we obtain

L[u(3)] = k1rc
(4)
1 , (3.19)

where

k1 = ζ−11 (2A1133 + 2A1221 −A3333 −A1111 −A1212).

The boundary conditions take the form

B1[u(3)] = k2r
2c′′′′1 + k3λ0c

′′
1 + k4(c

′
1)

2 + (k4 − 10)c1c
′′
1 + k5c

′′
2, (3.20)
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B2[u(3)] = k6r
3c′′′′1 + k7λ0c

′′
1 + k8r(c

′
1)

2 + r(k8 − 5)c1c
′′
1 + rk9c

′′
2, (3.21)

where k2, · · · k9 are constants whose expressions are not written out here for the sake of

brevity.

Since the homogeneous form of the above boundary value problem has a non-trivial

solution, the nonhomogeneous terms on the right hand sides of the three equations (3.19),

(3.20) and (3.21) must satisfy a solvability condition. This condition may be obtained by

taking f = u(3), and g to be any solution of the leading-order problem, e.g. g = r, in the

identity (3.9). This gives∫ a0

0

r2L[u(3)]dr = (r2B1[u(3)]− 2rB2[u(3)])|a00 . (3.22)

On evaluating the integral and simplifying, we obtain the amplitude equation

d1c
′′′′
1 (s) + λ0d2c

′′
1(s) +

1

2
d3(c

2
1(s))

′′ = 0, (3.23)

where d1, d2 and d3 are given by

d1 =
1

8
a20 {A3333 − 4A1133 +A2233 + 2A1111 − 2A1212 − 3A1221 + 5A2121)} ,

d2 = A′3333 − 4A′1133 +B′2233 + 2A′1111 − 3A′2112 + 3A′2121,

d3 = 3A3333 + 6A1133 + 3A2233 − 12A1111 + 3A2112 − 3A2121 +A2
333333

−6A2
113333 + 3A2

223333 + 12A2
331111 − 6A2

331122 − 4A2
111111.

Focusing on localized solutions that satisfy the decay conditions c1(s)→ 0 as s→ ±∞, we

may integrate (3.23) twice to obtain

d1c
′′
1(s) + λ0d2c1(s) +

1

2
d3c

2
1(s) = 0. (3.24)

Collecting all the results obtained so far, we find that F takes the form λ(1− 2εc1(s)) +O(ε2) O(ε3/2) 0

O(ε3/2) λ−1/2(1 + εc1(s)) +O(ε3/2) 0

0 0 λ−1/2(1 + εc1(s)) +O(ε3/2)

 .
This shows that even to order ε, the principal axes still coincide with the three coordinate

axes, and the principal stretch to order ε in the axial direction is given by

λ1 = λ(1− 2εc1(s)) = λcr + ελ0 − 2εc1(s)λcr +O(ε2). (3.25)

Since the nominal stress attains its maximum at λ = λcr, the local behaviour of stress versus

λ in a small neighbourhood of λ = λcr must be parabolic. This mean that if c1(s) is a
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constant the principal stretch given by (3.25) and the stretch λcr + ελ0 must lie on opposite

sides of, and be equi-distance from, λ = λcr, that is,

λcr + ελ0 + (λcr + ελ0 − 2εc1(s)λcr) = 2λcr,

from which we obtain c1(s) = λ0/λcr. On substituting this constant solution into (3.24),

we obtain d3 = −2λcrd2 which provides a useful check on our derivations. As a result, the

amplitude equation may be reduced to

d1c
′′
1(s) + d2

(
λ0c1(s)− λcrc21(s)

)
= 0. (3.26)

Finally, we observe that once c1(s) is determined the radius of the necked cylinder is given

by

r(a) = a0 + ελ0a1 + εa0c1(s) + · · · . (3.27)

4. Connection with the 1D model of Audoly and Hutchinson (2016)

We first summarize the theory proposed by Audoly and Hutchinson (2016) for a compress-

ible cylinder of arbitrary cross-section, and then specialize to the case of an incompressible

cylinder of circular cross-section. The position vector corresponding to a uni-axial tension

in the axial direction for a compressible cylinder is given by

x = λZez + µ(λ)(X2e2 +X3e3), (4.1)

where e2 and e3 together with ez are unit vectors associated with a rectangular coordinate

system, X1(≡ Z), X2 and X3 are the associated coordinates of X, the λ has the same

meaning as in the previous sections and µ(λ) is the stretch in the transverse directions

which is determined by σ22 = 0 (where σ is the Cauchy stress). To describe necking solutions,

Coleman & Newman (1988) replaced the constant stretch λ by a function λ(Z), and (4.1)

by

x = Λ(Z) e1 + µ(λ(Z))(X2e2 +X3e3),

where Λ(Z) is defined by Λ′(Z) = λ(Z). Not surprisingly, this representation is not expected

to be asymptotically self-consistent in the sense among terms of the same order, some terms

are kept in the analysis whereas others are not. The correct expansion is of the form (Audoly

& Hutchinson, 2016)

x1 = Λ(Z) + (X2
2 +X2

3 −K)v1(Z) + · · · ,
x2 = µ(λ(Z))X2 + · · · , (4.2)

x3 = µ(λ(Z))X3 + · · · ,
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where the function v1(Z) is to be determined, and K is a normalization constant such that

the area integral of X2
2 + X2

3 − K over the cross section vanishes. This representation is

simply a Taylor expansion of the displacement field in terms of the transverse coordinates

X2 and X3 by taking into account the fact that for the current necking problem, the axial

displacement must be an even function of X2 and X3, whereas the other two displacement

components must be odd functions of X2 and X3, respectively. Thus the omitted terms in x1

must be at least quartic in X2 and X3, whereas the omitted terms in x2 and x3 must be at

least cubic in X2 and X3. As a result, these omitted terms are not involved in the following

analysis, but the term containing v1 will. The term X2
2 + X2

3 in x1 could be replaced by

kX2
2 +X2

3 with k a constant, but energy minimization would eventually give k = 1. We note

that Dai et al. (2008) and Dai & Peng (2012) proposed similar expansions to characterize

necking, but their expansions were around a uniform finite deformation.

To keep track of the orders of different terms, we may define two scaled coordinates and

scale K through

(X̄2, X̄3, K̄) =
1

ε
(X2, X3, K),

where ε is a small positive parameter not related to the ε in the previous sections. Corre-

sponding to (4.2) the deformation gradient takes the form

F = (I + εV (1) + ε2V (2) + · · · )F0,

where

F0 =

 λ(Z) 0 0

0 µ(λ) 0

0 0 µ(λ)

 , V (1) =

 0 q2 q3

p2 0 0

p3 0 0

 ,

V (2) =

 λ−1(X̄2
2 + X̄2

3 − K̄)v′1(Z) 0 0

0 ∗ ∗
0 ∗ ∗

 .
In the above expressions, the p’s and q’s are given by

p2 = λ−1tX̄2, p3 = λ−1tX̄3, q2 = 2µ−1X̄2v1(Z), q3 = 2µ−1X̄3v1(Z),

with t defined by t(Z) = dµ/dZ, and the ∗’s denote non-zero components that are not needed

in the subsequent analysis.

On expanding the strain-energy function around F = F0, we obtain

W = W (F0) + Jσij(εV
(1)
ij + ε2V

(2)
ij ) +

1

2
JAjilkV (1)

ij V
(1)
kl +O(ε3), (4.3)

where J = detF0, (σij) is the Cauchy stress associated with the deformation gradient F0,

and the instantaneous elastic moduli Ajilk are given by (2.10) with F̄ replaced by F0. With
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the use of the facts that corresponding to F0 the principal axes of stretch coincide with the

coordinate axes and the deformation is due to a uni-axial tension so that σ22 = σ33 = 0,

equation (4.3) can be reduced to

W = W (F0) + ε2Jσ11λ
−1(X̄2

2 + X̄2
3 − K̄)v′1(Z) +

1

2
ε2J

{
A2121(q2 + p2)

2 +A3131(p3 + q3)
2

+σ11(p
2
2 + p23)

}
+O(ε3), (4.4)

where we have also made use of the facts that for compressible materials

A2121 −A2112 ≡ σ22 = 0, A3131 −A3113 ≡ σ33 = 0, A1212 −A2121 ≡ σ11 − σ22 = σ11,

and A1313 = A1212 etc. It is then seen that energy is minimized by choosing v1 to satisfy

q2 + p2 = 0, q3 + p3 = 0. As a result, equation (4.4) reduces to

W = W (F0) + ε2n(λ)(X̄2
2 + X̄2

3 − K̄)v′1(Z) +
1

2
ε2n(λ)λ−1t2(X̄2

2 + X̄2
3 ) +O(ε3), (4.5)

where n(λ) (= Jλ−1σ11 = w′(λ)) is the nominal stress in the axial direction.

When the above expression is integrated over the cross section, the term involving v′1(Z)

vanishes. The integral of ε2(X̄2
2 + X̄2

3 ) is the geometric moment of inertia of the cross-section

which we denote by M . We then have

E [λ] =

∫
B0

W (F )dZdX2dX3 =

∫ L

−L

{
SW (F0) +

M

2
n(λ)λ−1t2

}
dZ, (4.6)

where S is the cross-sectional area. This is the equation (2.28a) of Audoly & Hutchinson

(2016).

Specializing the above expression to an incompressible circular cylinder for which µ =

λ−1/2 so that t = −λ−3/2λ′(Z)/2, we obtain

E [λ] =

∫
B0
W (F )dZdX2dX3 = π

∫ L

−L

{
w(λ) + 2b(λ)(λ′)2

}
dZ, (4.7)

where w(λ) is given by (3.17), and b(λ) is defined by

b(λ) =
n(λ)

32λ4
. (4.8)

Suppose now that the cylinder is stretched by a force F per unit area in the reference

configuration, then the total energy is

π

∫ L

−L

{
w(λ) + 2b(λ)(λ′)2 − Fλ

}
dZ.

The associated Euler-Lagrangian equation is

w′(λ) + 2b′(λ)(λ′)2 − F − d

dX
(4b(λ)λ′) = 0,
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or equivalently,

w′(λ)− 4b(λ)λ′′ − 2b′(λ)(λ′)2 − F = 0. (4.9)

This has an integral given by

w(λ)− 2b(λ)(λ′)2 − Fλ = C. (4.10)

This concludes our summary of the 1D theory of Audoly & Hutchinson (2016), and from

this point onwards our analysis deviates from theirs since our aim is to determine the range

of validity when the finite-length cylinder is treated effectively as an infinite cylinder.

Focusing on localized solutions in an infinitely long cylinder, and denoting the limiting

value of λ as Z → ±∞ by λ∞, we have F = n(λ∞) = w′(λ∞) and from (4.10)

w(λ)− 2b(λ)(λ′)2 − w′(λ∞)λ = w(λ∞)− w′(λ∞)λ∞. (4.11)

Following Fu et al. (2008), we now look for a bifurcation solution given by

λ = λ∞ + y(Z), (4.12)

where y(Z) is a perturbation from the uniform solution. It then follows that

1

2
w′′(λ∞)y2 +

1

6
w′′′(λ∞)y3 − 2b(λ∞)(y′)2 = O(y4).

On differentiating once and neglecting higher order terms, we obtain

4b(λ∞)y′′ = w′′(λ∞)y +
1

2
w′′′(λ∞)y2. (4.13)

Solutions of the linearized version of this equation change character when the sign of w′′(λ∞)

changes. Thus, the bifurcation condition is given by w′′(λ∞) = 0 which is equivalent to (3.16).

Denote the first root of this equation by λcr. Then in a small neighbourhood of this point,

the amplitude equation is

4b(λcr)y
′′ = w′′′(λcr)(λ∞ − λcr)y +

1

2
w′′′(λcr)y

2, (4.14)

which is identical to the equation (6.12) of Dai & Peng (2012) when specialized to the

particular compressible material model considered by the latter authors. The above equation

does indeed have a localized solution given by

y(Z) = −3(λ∞ − λcr) sech2

[
1

4

√
w′′′(λcr)(λ∞ − λcr)

b(λcr)
Z

]
. (4.15)

This solution is valid when w′′′(λcr)(λ∞ − λcr) > 0. Since the bifurcation point corresponds

to the maximum of the nominal stress, we have w′′′(λcr) < 0. It then follows that the
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bifurcation is always subcritical (i.e. λ∞ − λcr < 0) and the bifurcated solution corresponds

to a localized reduction in the radius. The axial stretch at Z = 0 is given by

λ(0) = λ∞ − 3(λ∞ − λcr) = 3λcr − 2λ∞. (4.16)

To compare the amplitude equation (3.26) with the above 1D theory, we note that a0 =

λ
−1/2
cr , and

y′ =
dy

dZ
=
dy

dz

dz

dZ
= λcr

dy

dz
, y′′ = λ2cr

d2y

dz2
.

Equation (4.14) then becomes

4λ2crb(λcr)y
′′ = w′′′(λcr)(λ∞ − λcr)y +

1

2
w′′′(λcr)y

2. (4.17)

Comparing (4.12) with (3.25) shows that y = −2c1(s)λcrε. In terms of c1(s), the amplitude

equation (4.17) becomes

4λ2crb(λcr)c
′′
1(s) = w′′′(λcr)

[
λ0c1(s)− λcrc21(s)

]
. (4.18)

This is identical to (3.26) provided

w′′′(λcr)

4λ2crb(λcr)
= −d2

d1
.

We have checked and verified that this is indeed the case.

0 2 4 6 8 10
λ(0)-λ∞
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3.5
λ∞

exact solution

asymptotic solution

0 2 4 6 8 10
λ(0)-λ∞

1.15

1.20

1.25

1.30

n(λ∞)

exact solution

asymptotic solution

(a) (b)

Figure 1: Dependence of λ∞ (left) and the nominal stress n(λ∞) (right) on the necking amplitude “λ(0)−λ∞”

corresponding to an infinitely long cylinder with the constitutive behaviour described by (2.20). Results for

the power-law model are very similar except that the critical value of λ∞ is smaller.
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5. Effects of finite length and validity of the infinite-length assumption

Return now to the fully nonlinear equation (4.9). We shall determine the variation of

λ(0) with respect to λ(L) in the fully nonlinear regime, and assess the effects of finite length.

Note that λ(L) becomes λ∞ and F becomes n(λ∞) when L is infinity.

We first consider the case when L is infinity. Evaluating (4.11) at Z = 0 where λ′ = 0,

we obtain

w(λ(0))− w′(λ∞)λ(0) = w(λ∞)− w′(λ∞)λ∞. (5.1)

This defines λ(0) as a function of λ∞. The trivial solution λ(0) = λ∞ is always a solution,

but as λ∞ reaches the critical value λcr, a non-trivial solution becomes possible. In Fig. 1,

we have shown the variation of λ∞ and nominal stress n(λ∞) against λ(0) − λ∞ given by

the fully nonlinear equation (5.1) and the leading-order asymptotic result (4.16). The strain

energy function used is given by (2.20) with m = 1/2. As expected, the asymptotic result

does capture the near-critical behaviour correctly. Corresponding to each non-trivial solution

of λ(0), the associated non-trivial solution for λ(Z) is obtained by integrating (4.9) subject

to the “initial” data λ(0) and λ′(0) (= 0). This solution automatically satisfies the decay

condition λ→ 0 as Z →∞ since the initial data lie on the separatrix in the phase plane of

the (spatial) dynamical system (4.9); see Fig. 2.

λ

λ'

λ(0)λ(L)λL λR

Figure 2: Phase portrait of the “spatial” dynamical system (4.9) showing the separatrix (solid line) and a

typical closed orbit (dashed line).

In Audoly & Hutchinson (2016), the first-order differential equation (4.10) is solved

subject to the “natural” boundary conditions λ′(0) = λ′(L) = 0. The solution is expressed

in terms of an integral that is evaluated numerically, and results are presented for the plane-

strain case with b(λ) = n(λ)/(12λ5) and for the power law model

w(λ) =
σ∗

N + 1
(lnλ)N+1, (5.2)
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where N (0 < N < 1) and σ∗ are material constants. Here we shall solve the original

second-order differential equation (4.9) directly using a shooting method and assess the

effects of different length/diameter ratios. We validate our numerical scheme by reproducing

the results in Audoly & Hutchinson (2016) before computing the relevant results for a solid

circular cylinder modelled by the strain-energy function (2.20). For the latter case, the load

maximum determined by n′(λ) = w′′(λ) = 0 is given by F = Fmax ≡ 1.3029 that is achieved

when λ = λcr = 3.3930 (recall that F has been scaled by µ). Necking solutions can only

exist for F < Fmax. For each F < Fmax, equation (4.9) as a dynamical system has two fixed

points, determined by n(λ) = F and denoted by λL and λR (> λL), respectively. It can

be shown that λL is a saddle, whereas λR is a center; see Fig. 2. As a result, there exists a

single separatrix that starts and finishes at the saddle point. This separatrix represents a

localized necking solution that can be approximated by (4.15) when F is sufficiently close to

Fmax. Enclosed within the separatrix are an infinite number of closed orbits centered around

λR. Each such orbit represents a periodic solution, and there exists exactly one such orbit

corresponding to each L specified.

0 2 4 6 8 10
λ(0)-λ(L)1.5

2.0

2.5

3.0

3.5

λ(L)

Figure 3: Solid line (black): λ∞ against λ(0)− λ∞ for an infinite cylinder (λ∞ = λ(L)). Dashed line (blue):

λ(L) against λ(0)− λ(L) for a finite-length cylinder with L = 1. The two sets of results only differ near the

bifurcation point where solution is not localized.

To determine the periodic solution for each specified L, we solve (4.9) numerically subject

to the “initial” conditions

λ(0) = λ0, λ′(0) = 0, (5.3)

where λ0 is to be found/tuned in order to satisfy the end condition λ′(L) = 0. Evaluating

(4.10) at Z = 0 and L in turn and then subtracting the two resulting equations to eliminate

C, we obtain

F =
w(λ0)− w(λ(L))

λ0 − λ(L)
. (5.4)
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Figure 4: Profiles of the axial stretch λ as a function of Z (left) or z (right). The three profiles correspond

to F = 1.3019 (black), 1.2800 (blue), 1.2500 (orange), respectively, with lower values of F corresponding to

larger values of λ(0) and more localized profiles.

It follows from the above description of the phase portrait that λ(L) must necessarily lie

in the open interval (λL, λR). It is this fact that makes our shooting procedure relatively

straightforward. Our solution strategy is as follows. For each F < Fmax, we scan λ(L) in

the interval (λL, λR). For each λ(L), the λ0 is determined by solving (5.4) and the equation

(4.9) is then solved subject to (5.3) to find λ′(L). If λ′(L) never changes sign when λ(L)

reaches the right hand side λR of the interval, then the only solutions possible are the trivial

solutions λ0 = λ(L) = λR or λL, F = n(λR) = n(λL). Otherwise, a non-trivial solution

exists and we iterate on λ(L) so that λ′(L) is less than a specified tolerance, say 10−8. For

L < 2, our computation confirms the result of Audoly & Hutchinson (2016) that bifurcation

takes place when
w′′(λ)

4b(λ)
+
π2

L2
= 0. (5.5)

When L ≥ 2, the above bifurcation condition can effectively be replaced by w′′(λ) = 0, the

bifurcation condition for an infinite cylinder. For instance, when L = 2, λcr only differs from

the exact bifurcation stretch by 1.2% and the associated axial forces for L = 2 and L = ∞
differ from each other by less than 0.005%.

We tried to superimpose the dependence of F on λ0−λ(L) for a finite cylinder on Fig. 1(b)

that is for an infinite cylinder. It was found that the results for L ≥ 1 are all graphically

indistinguishable from the solid curve shown in Fig. 1(b). We also tried to display the

dependence of λ(L) on λ0 − λ(L) in Fig. 1(a). For all L ≥ 2 the results are graphically

indistinguishable from the solid curve in Fig. 1(a). Fig. 3 compares the two sets of results for

the case L = 1. It is seen that even for this case the difference is only noticeable near the

bifurcation point where the necking solution is less localized and so the end effect is indeed
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Figure 5: Variation of axial force against scaled end shortening (i.e. average strain) for L = 1, 2, 3, 4 (solid

lines), with snap-back more pronounced for larger values of L. The dashed line corresponds to the uniform

solution.

significant. The above observations are surprising since we have expected the finite-length

results to deviate from the result for an infinite cylinder at least for a very stubby cylinder

such as the one with L = 2. To show why this is the case, we have shown in Fig. 4(a) the

profiles of λ(Z) when L = 2, corresponding to F = 1.3019, 1.28 and 1.25, respectively. It

is seen that even for F = 1.3019 which is very close to Fmax and for which the solution is

expected to spread over a large distance, the solution actually tends to λ(L) rapidly. Fig. 4(b)

shows λ as a function of the current coordinate z. It is seen that the deformed lengths for

lower values of F are shorter since the tube is stretched less.

The results shown in Fig. 4(a) highlight the difficulties that would arise when trying to

satisfy the boundary condition λ′(L) = 0 when L is large. Because each solution decays

exponentially, the same solution would apply to cylinders of different lengths depending

on the tolerance set, that is how accurately we satisfy this boundary condition. On the

other hand, even if we fix the tolerance, by changing λ(0) by an infinitesimal amount we

can satisfy λ′(L) = 0 with different lengths. Therefore, when studying localized necking in

a finite-length cylinder with natural boundary conditions, the cylinder can and should be

treated as infinitely long even when the length/diameter ratio is as moderate as 2.

We now give further support to the above claim in a number of ways. Firstly, we show in

Fig. 5 the variations of the axial force against end shortening δ for four values of L. Assuming

that cylinders with L = 3, 4 can effectively be treated as infinite cylinders, we compute the

corresponding δ according to

δ =

∫ L

0

λ(x)dx−L =

∫ 2

0

λ(x)dx− 2 +

∫ L

2

λ(2)dx− (L− 2) = δ2 + (λ(2)− 1)(L− 2), (5.6)
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where δ2 is the end shortening associated with L = 2 and λ(2) is calculated using the solution

for L = 2. To verify the accuracy of this approximation, we repeat the same calculation for

the energy function (5.2) and b(λ) adopted by Audoly & Hutchinson (2016), and find that

the counterpart of our Fig. 5 exactly coincides with their Fig. 3(a).
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Figure 6: Comparison of two sets of asymptotic results with the exact solution obtained by integrating

(4.9) subject to the natural boundary conditions when L = 1. Solid line (black): exact result; dashed line

(orange): current result (4.16); dotted line (blue): asymptotic result of Audoly & Hutchinson (2016).

0 2 4 6 8 10 12
λ(0)-λ(L)1.5

2.0

2.5

3.0

3.5

λ(L)

exact solution

Asymptotic solution AH

asymptotic solution ∞

0 2 4 6 8 10 12
λ(0)-λ∞1.10

1.15

1.20

1.25

1.30

F

exact solution

(a) (b)

Figure 7: Same as in Fig. 6 except that L = 2. The results demonstrate the fact that the finite-length

cylinder can now effectively be treated as an infinite cylinder.

Secondly, Fig. 6 displays the weakly nonlinear asymptotic result of Audoly & Hutchinson

(2016) and our asymptotic result (4.16) together with the exact result for the case L = 1. The
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corresponding results for L = 2 is shown in Fig. 7. In applying (4.16) that is independent

of L, the λ∞ is identified with λ(L). It is seen that the results of Audoly & Hutchinson

(2016) outperform our results for L = 1 but our results clearly outperform theirs as soon as

L has become as large as 2. Also, although the asymptotic results of Audoly & Hutchinson

(2016) have the correct gradient at zero necking amplitude, their rapid curling up and away

from the exact solutions in Figs 6(a) and 7(a) are further indications that a weakly nonlinear

analysis for localization problems based on a finite critical mode number has a very narrow

region of validity.

Finally, we compare the actual profiles of r(Z) given by the two asymptotic theories.

The two-term weakly nonlinear results of Audoly & Hutchinson (2016) are obtained by

substituting the expansions

λ = λ∗cr + ε2l1 + ε cos
πZ

L
+ ε2d2 cos

2πZ

L
, F = n(λ∗cr + ε2l1) + ε2F2 (5.7)

into (4.9), expanding in terms of ε, and then equating the coefficients of like powers of ε.

The coefficients of ε, ε2 and ε3 in turn give the bifurcation condition (5.5), expressions for

d2 and F2, and expression for l1. The small parameter ε is determined by the condition that

1

L

∫ L

0

λ(Z)dZ = λcr + ε2l1, (5.8)

where the left hand side is computed with the aid of the exact numerical solution. In applying

the one-term asymptotic solution (4.12) together with (4.15), the λ∞ is identified with λ(L)

from the exact solution. In Fig. 8, we have shown the two asymptotic solutions together

with the exact solution when F = 0.999Fmax. It is seen again that the results of Audoly &

Hutchinson (2016) outperform our results for L = 1 but our results outperform theirs when

L = 2. Also note that the two-term asymptotic solution even has the “wrong” shape when

L = 2.

6. Conclusion

Localized necking in a stretched plate or cylinder of finite length has previously been

studied as a bifurcation from the primary deformation with a non-zero wave number. In

other words, necking solutions have previously been approximated by a superposition of

periodic functions. Such an approach only applies to certain types of end conditions, and

is invalid if, for instance, the ends are fixed. The current paper investigates the validity of

the other approach, the one in which the necking problem is treated as a bifurcation with

zero wave number. This is in the same spirit as our previous studies on localized bulging of

inflated rubber cylinders. When a cylinder of finite length is effectively treated as an infinite

cylinder, the question naturally arises as to how long the cylinder should be (when compared
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Figure 8: Comparison of the two asymptotic theories with solid (black), dotted (blue), and dashed (or-

ange) lines denoting the exact solution, the two-term asymptotic solution given by (5.7)1 and the one-term

asymptotic solution (4.12) and (4.15) for an infinite cylinder. (a) L=1; (b) L=2.

with the radius) for this approach to be valid. Surprisingly, we find that our approach gives

sufficiently accurate results for length/diamter ratios as small as 2 (note, however, that

this ratio becomes more than three times larger in the deformed configuration). This is

due to the fact that the necking solutions decay exponentially towards the two ends, and

furthermore, the further away the load is from the bifurcation value, the more localized the

solution. This behaviour can best be described by a homoclinic orbit, whereas any analysis

based on a superposition of periodic functions will have limited validity since a large number

of sinusoidal terms will be required to approximate a homoclinic solution, especially in the

fully nonlinear regime. This approach also has the advantage that it is independent of

the end conditions; all types of end conditions are lumped together as imperfections. Our

evaluation of the validity of the infinite-length approximation has been made possible by the

availability of the 1D model proposed recently by Audoly & Hutchinson (2016). In return,

the amplitude equation derived using the exact 3D theory of nonlinear elasticity serves to

provide an alternative validation for this powerful 1D model.
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