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Abstract

health system

Clinical prediction models (CPMs) have become fundamental for risk stratification across healthcare. The CPM
pipeline (development, validation, deployment, and impact assessment) is commonly viewed as a one-time activity,
with model updating rarely considered and done in a somewhat ad hoc manner. This fails to address the fact that
the performance of a CPM worsens over time as natural changes in populations and care pathways occur. CPMs
need constant surveillance to maintain adequate predictive performance. Rather than reactively updating a
developed CPM once evidence of deteriorated performance accumulates, it is possible to proactively adapt CPMs
whenever new data becomes available. Approaches for validation then need to be changed accordingly, making
validation a continuous rather than a discrete effort. As such, “living” (dynamic) CPMs represent a paradigm shift,
where the analytical methods dynamically generate updated versions of a model through time; one then needs to
validate the system rather than each subsequent model revision.
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Background

Clinical prediction models (CPMs) are tools that com-
pute the risk of an outcome given a set of patient char-
acteristics (“predictors”), and can be used for informing
diagnosis or prognosis in individuals [1, 2]. They are typ-
ically based on multivariable regression models, for ex-
ample as derived by analysing historical cohort data or
routinely collected healthcare data. Arising from the de-
sire to move health systems away from managing or cur-
ing disease towards preventative medicine, CPMs have
become popular and several are now embedded in
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clinical practice (e.g. QRISK3 [3] and the Leicester dia-
betes risk score [4]).

Commonly, the process of developing a CPM equation
is a one-time activity, with estimates of model parameters
obtained from a single dataset ignoring time. Once a
model has been developed, usually the model equation re-
mains fixed until a revision is conducted. However, revi-
sions are rare and usually undertaken at an arbitrary time,
or following an external validation that suggests the model
is miscalibrated. Model validation is an important aspect
of the CPM pipeline and aims to evaluate whether model
predictions are accurate (in settings they would be applied
to in practice). Similarly to model development, validation
is often a one-time activity. Commonly, the literature re-
fers to CPMs as being “validated”, but this may create a
false impression that no more model testing needs to be
performed. In this paper, we propose moving away from
one-time model development and validation, and rather
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embed CPM development, validation, and updating into a
dynamic system that reflects an evolving healthcare ser-
vice. For example, the current COVID-19 pandemic rep-
resents a situation where this would be particularly useful,
given how quickly healthcare processes have changed,
meaning that any prediction models for COVID-19 need
to be updated rapidly [5, 6]. For example, in the future,
vaccinations, immunity build up, and virus mutation may
affect the strength of predictor effects over time.

Calibration drift prediction problem
CPM production pipelines are built on the assumption
that once produced and verified, evidence can be trans-
lated into practice ad infinitum. But the distribution of
patient characteristics, disease prevalence, and health
policies change over time. When these changes occur,
the estimated CPM parameters and corresponding pre-
dictions may no longer be valid [7, 8]. Consequently, the
agreement between the observed and predicted event
rates worsens over time [9]: the so-called calibration
drift [10]. Hickey et al. [8] highlight this issue in the lo-
gistic EuroSCORE model [11], which quickly became
outdated as improvements in patient outcomes were
rapid. Therefore, there is evidence that model coeffi-
cients need to change through time, as illustrated with
EuroSCORE. In addition, Luijken et al. [12] observed
that changing predictor measurement procedures in-
duced miscalibration in nine real-world examples.

Traditional practice to address this is to develop an-
other CPM de novo. However, alternative approaches,
such as updating [13, 14], aggregating existing CPMs
[15, 16], or meta-analysis of individual participant data
[17, 18], are preferable because they do not discard his-
torical data and previous research efforts [19]. For ex-
ample, models such as QRISK are now updated yearly
[3, 20] using contemporary data and also revised to in-
clude additional predictors (such as the revision of QRIS
K2 [21] into QRISK3 [3]). Nonetheless, this updating
(recalibration) is still relatively uncommon, often occurs
a substantial time after model development, is often
undertaken at arbitrary time points, and is typically
dependent on funding. For example, EuroSCORE II [22]
was developed in 2012, some 13 years after the original
model, and it is unclear when this will be updated again.
The problem with this approach to model validation and
revision is that predictive performance of a CPM may
only be investigated many years after the model has been
developed. Although this can subsequently result in the
CPM being updated, incorrect decisions may have
already been made as a result of the miscalibrated model
and harm already caused.

Typically, a model is developed or updated under the
assumption that the data are well described by a fixed
underlying model where the coefficients are constant
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across the observation period used to develop the model.
If the prevalence of an outcome is increasing at a steady
rate during a 5-year window of data collection and then
used to develop the model, the CPM will be calibrated
to the middle of the window and not the most recent
data. The overarching issue here, for both development
and validation, is that the data-generating process could
change through time. While frequent model updating
will mitigate these issues, it does not eliminate the prob-
lem since commonly used methods do not acknowledge
temporal changes. Rather, we propose embedding pre-
diction models in practice to ensure development, valid-
ation, and updating are a continual process. We now
discuss how this might be implemented and the chal-
lenges involved.

Possible solution and challenges

The healthcare system and disease populations are con-
stantly changing, but the CPMs we deploy are not up-
dating at the same rate. Therefore, we need to ensure a
CPM is maintained on a continual (rather than an ad
hoc) basis. For this to be achieved, we need to reduce
the latency period between observing calibration drift
and updating a model, thus moving towards a service
that constantly monitors a model and has an embedded
feedback loop where the monitoring information is then
relayed back to the model and used to modify and main-
tain it.

Dynamic models
Dynamic prediction models have been proposed as a po-
tential solution to calibration drift and to allow predic-
tion models to evolve simultaneously with the healthcare
system [23, 24]. They are a collection of analytical
methods that allow CPMs to continuously adapt as data
on new patients arises—thus reducing the data-action la-
tency compared with traditional methods of developing
CPMs at a single point in time. By dynamic model, we
mean models that update over calendar time as data on
new individuals arises, not models that update predic-
tions for individuals as new data on them arises. A dy-
namic model is formulated to account for the calendar
time that a prediction is made, that is the calendar time
predictors are recorded for each individual (e.g. date of
GP appointment), and is designed to evolve over time,
such that the parameter estimates are not constrained to
remain fixed as (calendar) time evolves. Thus, given a
fixed set of patient characteristics, a dynamic model
could produce different predicted risks at different times
of prediction, for example, if two individuals with the
same predictor values are observed at different times,
then the model could produce different predicted risks.
The simplest approach to develop a dynamic CPM is
to include (calendar) time as a predictor [25, 26].
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Alternatively, the Bayesian dynamic model could be im-
plemented, where information obtained from past data
is used as prior information and combined with new
data to obtain updated estimates, thereby updating with
new observations in real time [23, 24, 27]. More weight
can also be given to the most recent data by “forgetting”
past data at a given rate. For more detail on these
methods, see the reviews by Jenkins et al. [24] and Su
et al. [28]. In summary, dynamic models allow us (1) to
utilise historical data and models more effectively, (2) to
reduce data-action latency (time between changes in the
data and reacting to them), and (3) to “automatically”
adapt model parameters over time. Hickey et al. [29] il-
lustrate the use of dynamic modelling in EuroSCORE
and show how the coefficients change over time.
Although there is much potential in dynamic
models, they are rarely used in healthcare. There are
both methodological and practical reasons why this is
so. Methodological reasons include the following: (1)
a lack of methods on how to validate dynamic predic-
tion models [24], (2) uncertainty on when to include
new or exclude existing predictors, (3) deciding how
much to discount historical data, (4) uncertainty
around when to update the model, (5) the potential
lack of model transparency, and (6) inconsistent out-
puts over time (e.g. a patient with the stable risk fac-
tors could have changing predicted risks because the
model has changed). Practical considerations include
the following: (1) lack of robust and suitable new data
to be able to update the models continuously, (2)
complexity of the dynamic modelling approach, (3)
lack of software implementations, (4) lack of requisite
expertise by those developing the model, and (5) lack
of infrastructure and funding. However, many of these
problems are not specific to dynamic CPMs, for ex-
ample, the problem of how to handle historical data
in traditional CPMs is often ignored but a problem is
still present. When updating CPMs, we often append
the new data to past data or use only the recent data
to perform the update. This is an arbitrary choice by
the researcher performing the update, and neither is
likely to be optimal. Raftery et al. [23] attempted to
address this in dynamic modelling by using an ap-
proach to choose how to discount past data at each
update by optimising the predictive performance over
past samples, but this is computationally expensive.
More of these challenges have also attempted to be
addressed in statistical literature, for example, use of
the time dependent AUC [30], but have yet to be ap-
plied to continual prognostic modelling. Other theor-
etical methods to address these challenges also exist,
but their application in prognostic model research is
generally lacking and it remains unclear how this
would and should affect prediction model research.
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Model surveillance

If a dynamic model evolves with every new data point,
then there is only ever the next data point in which to
validate each evolution of the model. Furthermore, valid-
ation at a given time point is only a single snapshot in
time. It does not follow that if a CPM, dynamic or other-
wise, has high performance at a given point in time that
it will always perform well. However, as we continue to
make predictions for new patients, we can record and
monitor the accuracy, essentially continuously monitor-
ing and testing for calibration drift (prequential testing
[31]). This leads to the idea of model surveillance, where
the CPM monitoring could be performed after every
new data point or at given intervals. Prequential testing
approaches have a long history in the statistical literature
and have been used in areas such as economic forecast-
ing. However, they have yet to be transported and used
in prediction model research. Lenert et al. [32] discuss
the notion of having surveillance of models used in prac-
tice as the models themselves can directly impact the
data and subsequently their own performance. They ex-
plain that without surveillance, models will have limited
effectiveness and can become hazardous. We propose
prequential testing as a potential solution to these issues
but further research is required.

Feedback loop
Model surveillance, and the use of prequential testing,
could also allow us to address some of the issues dis-
cussed above. However, continuous monitoring of per-
formance will not address all of these problems. The
results of continuous monitoring need to be transported
back into the model providing a feedback loop, which al-
lows the model to learn and ensures the model continu-
ally provides accurate predictions (Fig. 1). Ideally, this
would be conducted in a timely manner to reduce the
data-action latency, which is a key metric of the learning
health system (LHS) [33], a system that improves itself
by learning from new data through cyclic processes that
mobilise data to create new knowledge and then use that
knowledge to improve. We therefore need a system ap-
proach, where one encompasses clinical prediction mod-
elling into a learning health system, thus resulting in a
learning prediction system. This system could improve
itself by learning from data, continually and in real time,
and would take place through cyclical processes (Fig. 1).
Minimising the data-action latency, and doing so effi-
ciently, requires concerted data capture, aggregation,
and analysis followed swiftly by interpretation of results,
assignment of responsibility for any actions, and record-
ing of actions. Not only can a learning prediction system
allow a model to evolve over time, but it could also de-
cide when and how to evolve each iteration of the cycle.
This is achievable in LHSs that are supported by
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Fig. 1 lllustration of the current CPM pipeline (top) and the proposed learning prediction system (bottom)

infrastructures that enable these processes to take place
routinely and with efficiency of scale and scope. Dy-
namic methods (updating and/or monitoring) offer a
flexible solution, requiring less manual labour, but need
the infrastructure and sustained resources in place to
implement them. Adibi et al. [34] discuss an integrated
infrastructure for CPMs and highlight that much of the
technology is available, but not yet fully utilised in
healthcare. For dynamic updating to work, a system is
needed where patient data is automatically collected and
stored in a database and subsequently used to update
parameter estimates.

Further considerations

We acknowledge that continually updating a CPM might
not always be needed. For example, comparative audit
requires a standardised method to adjust for case-mix
differences, so dynamic methods might not be appropri-
ate. Also, updating all of the coefficients in a model may
not always be a good idea. Booth et al. [35] recently pro-
posed temporal recalibration in settings where survival is
improving over time. This approach develops a model

using all the available data but then recalibrates the
baseline survival function using a subset of the data from
a recent time window. Vergouwe et al. [36] described a
closed test procedure to select methods for updating
prediction models, something which could be embedded
into the learning prediction system. This study also
found that model revision, updating all model coeffi-
cients, can be chosen over intercept-only updating, even
in small sample sizes, further supporting the need for a
continual system. Although we could redevelop or up-
date traditional models on a daily basis, the use of dy-
namic methods may offer a more flexible solution. Both
traditional and dynamic approaches to CPM develop-
ment/updating have their advantages and disadvantages
(see Table 1), but ultimately, all CPMs need their per-
formance to be monitored regularly and thus require a
continual flow of data.

Dynamic CPMs require a continual flow of data. These
are typically provided by routine data sources such as
audit data, registries, and electronic health records. Dy-
namic CPMs also offer opportunity in remote monitor-
ing data, such as wearable device or app data, which
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Table 1 Summary of the characteristics and pros and cons for different modelling approaches

Models

Characteristics

Advantages Disadvantages

Existing approaches

Fixed model never updated
fixed

« Never updated

Model with ad hoc updating (e.g. EuroSCORE)

Models that get periodically updated (e.g. QRISK)

updates

Proposed approaches

Models with discrete updating and continual
validation/monitoring (learning prediction system with
discrete updating and continual monitoring)

new data

« Updated as a result of
the monitoring

- Feeds back information
to the model on how

- Model and coefficients

- Updated when
opportunity allows

- Fixed coefficients
between updates

- Fixed regular updates
- Set time period between

+ Updated when
opportunity allows
« Continuously monitors

+ Cheap (funding
available)

+ Low complexity and
easy to communicate

« Can become miscalibrated quickly

« Dethroned by new model likely
developed in future

« Ends up as research waste

« Loss of information

« Easy to maintain

+ Cheap (funding
available)

+ Low complexity

- Little manual labour

- Advantageous over
developing a
completely new
model

- Non-responsive to calibration drift
- Long data-action latency

« Lower chance of
miscalibration than
above

- Allows predictors to
be included/excluded
from the model

« Relatively low
complexity

- Funding required

- Can still observe calibration drift
between updates

« Increased maintenance

- Requires more than manual labour
to maintain

- Uncertainty on length of time
needed between updates

+ Monitoring informs « Funding and infrastructure

updates required
+ Only update when « Update does not immediately
required follow after suggestion from

+ Reactive to changes monitoring
« Transports well across - Requires some manual labour to
settings and maintain

and when to update

Complete dynamic system (continual model update
with continual validation/monitoring) (learning
prediction system with continual updating and
monitoring)

new data

+ Dynamic model
« Continuously monitors

« Feeds back information
to the model

populations
- Efficient - Requires access to an appropriate
- Potential to be more  “living” data source that is linked
accurate to the relevant outcomes

« Provides less
miscalibrated results

« "Reacts” quicker to
change (responsive)

+ Possible to automate

+ Less manual labour « Deciding how much to discount
to maintain historical data

- Transports well across « Uncertainty around when to
settings and update the model

- Uncertainty on how one should
validate dynamic prediction
models

« Uncertainty on when to include/
exclude predictors

populations « Lack of software packages
- Do not need to store - Complexity of approach
the data - Lack of requisite expertise by

those developing the model

« Lack of transparency

- Inconsistent outputs from day to
day

- Funding

provides large quantities of data in real time that is
otherwise challenging to analyse. However, continuous
data flows are usually not supported by epidemiological
studies and clinical trials. This could raise concerns
about the quality of dynamic CPMs because routine data
sources tend to have poorer data quality and higher
levels of missingness than study datasets. A possible so-
lution is to develop CPMs using high-quality study data

(e.g. from a prospective observational study) and dynam-
ically revise and monitor them using the routine data.
However, quality checks and comparisons between the
datasets would still be required.

Throughout this article, we have focused on the tem-
poral aspect of miscalibration; however, miscalibration
can also occur when CPMs are transferred to different
settings and/or populations [9, 37]. It may be possible to
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generalise the concept of dynamic CPMs to address this
type of calibration variation in space. For example, dy-
namic approaches could be used to tailor a model to a
local population or transfer a model to a different set-
ting. This is an area that requires further research.

Conclusion

Static CPMs are at risk of being always one step behind
on reality. Through an alliance between information
technology and statistics, clinical prediction can be pro-
gressed to a continual service that minimises the data-
action latency in preventative medicine.
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