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Chromosome Rearrangement and Modification by 
loxPsym-mediated Evolution. The loxPsym sites themselves 
are too short, at only 34 bp, to participate in homologous 
recombination, so the SCRaMbLE system is only induced 
by the addition of Cre recombinase [4]. When the 
SCRaMbLE system is induced, not all loxPsym sites will be 
activated. The stretch of DNA between two active loxPsym 
sites is referred to as a segment, and may include several 
ORFs. 

The ability to generate multiple variations from a wild-
type chromosome, via insertion, deletion, translocation, or 
inversion of existing genes, means that it is possible to 
produce thousands or millions of novel genomes. Most of 
these genomes will, of course, be non-functional, and the Sc2.0 
project aims to use directed evolution to select colonies with 
desirable characteristics. On solid medium, a primary metric 
for fitness in vitro is colony size. Growth in liquid media can 
also be measured. Fitness in vitro is often measured as the 
ability to produce a substance at enhanced levels. Of these 
metrics, only the last is amenable to evaluation using 
computational simulation. 

Directed evolution can be an efficient approach to 
identifying desired variants of a wild-type organism. 
However, by applying only directed evolution, many 
interesting and potentially useful genotypes will be missed. 
Further, directed evolution is a time-consuming and 
wasteful process, which cannot fully explore the genomic 
richness generated by the SCRaMbLE system.  

There is a large body of work into the interaction 
between evolutionary processes and the fitness landscape 
generated by individuals in a population [5-9]. Evolution 
has been shown to occur more efficiently—that is, more of 
the possible phenotypes are explored in a shorter time—
upon a relatively smooth fitness landscape than on a jagged 
surface, in which the fitness of one individual is largely 
unrelated to that of an individual close in genotype [10]. At 
present, this more theoretical view of the potential of the 
SCRaMbLE system is largely ignored, the assumption being 
that if enough recombinant chromosomes are generated, 
individuals with desired phenotypes can be identified via 
screening.  

Computational modeling and analysis of the fitness 
landscape generated by the SCRaMbLE system offers the 
prospect of identifying system parameters which can 
produce a smooth fitness landscape, hence improving the 
efficiency of the directed evolution process, and of 
improving our understanding of the biology of an important 
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I. INTRODUCTION

The Synthetic Yeast 2.0 (Sc2.0) project is an 
international effort aimed at engineering a eukaryotic 
genome, that of the Baker’s yeast Saccharomyces 
cerevisiae. The project involves eleven institutions from five 
countries. S. cerevisiae is widely recognized as a model 
organism, is generally regarded as safe, and hence has been 
studied in considerable detail, and is extensively used in 
industry [1]. It is therefore an ideal organism for genome-scale 
engineering of a eukaryote [2]. The ultimate aim of Sc2.0 is to 
reconfigure the yeast genome in such a way that it is easier 
to understand and manipulate, using procedures including 
the deletion of all known genome destabilizing elements 
(transposons and sub-telomeric repeat regions); the 
insertion of symmetrical loxP (loxPsym) recombination sites 
immediately downstream of all non-essential genes; 
conversion of rarely used stop codons, such as TAG, to the 
major stop codon TAA,  to free up a codon; the watermarking 
of all protein coding sequences by synonymous base changes, 
so that they can be identified as synthetic genes by PCR 
amplification; the removal of all tRNA genes; and the 
removal of the majority of the 250 introns. 

The insertion of the loxPsym sites is of particular 
importance, since these sites become the locations of 
genome reshuffling with the addition of Cre recombinase 
[3]. This system is known as SCRaMbLE: Synthetic 
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model eukaryote. The stochastic nature of an evolutionary 
algorithm, combined with genome-wide data on mutations, 
means that multiple runs can explore different areas of the 
evolutionary landscape. 

In this paper we report the development of a 
computational model of the SCRaMbLE system, and the 
fitness landscape generated thereby. The model was 
parameterized on both genome-scale experimental mutant 
data and a computational yeast metabolic model. Each set 
of recombined chromosomes generated from a chromosome 
pre-processed by the SCRaMbLE system is considered as 
comprising a genetic landscape. Each newly generated 
chromosome has a genetic distance, D, from its parent and 
all other chromosomes in the population, and a fitness, f. By 
combining these two metrics, a fitness landscape can be 
constructed and explored. This model allows different 
configurations of a SCRaMbLEd chromosome to be 
explored.  

II. METHODS 

A. Algorithm 

Because of the extensive processing and modularization 
of yeast chromosomes, as described briefly above, it is 
reasonable to consider each chromosome as a linear vector 
of genes. We chose to simulate the synthesized right arm of 
Chromosome IX (synIXR), because it is relatively short [3], 
allowing detailed manual checking of the results, and 
because in vitro data from SCRaMbLE experiments is 
available for this chromosome, permitting comparison of 
simulation results with laboratory data.  

The simulated chromosome was initialized as a list of 
strings of 43 segments, reflecting the relative position of 
each segment in the targeted chromosome. Segments were 
separated by the loxPsym site immediately after every non-
essential ORF. The probablity of a Cre recombinase binding 
to a breakpoint is scrProb. A pseudo-random number 
generator was used to determine whether a Cre recombinase 
binds to a breakpoint.  

B. Distance metric 

The genetic distance between each pair of chromosomes 
in the population was calculated using the Levenshtein 
distance [11]. This distance metric measures the number of 
edits required to convert one string into another, using 
insertion, deletion, or substitution. The genetic distance can 
be considered to be a measure of the similarity between 
evolved chromosomes.  

In order to determine which of the mutation operations 
are optimal at any point in the chromosome, we need a cost 
value for each modification. If we were working with DNA 
sequence information, the use of a substitution matrix, such 
as PAM [12] or BLOSUM [13], might be appropriate. 
However, in this simulation, we handled segments as 
indivisible units, as dictated by the SCRaMbLE system, so 
all operations were assigned an equal weight of 1.0. This 
weighting assumes that all operations are equally likely, an 
assertion which could be modified in the light of 
experimental data. 

Fitness is an abstract concept and is very difficult to 
apply in practice. The fitness function used here was based 
on two types of data: Single gene deletion/overexpression 

fitness data (experimental fitness) and flux balance analysis 
results (FBA fitness).  

An in vitro project described previously used colony size 
as a measure of the fitness of gene deletion and gene 
overexpression strains [14]. In a similar fashion, 
SCRaMbLEd chromosomes which produce colonies at least 
equal in area to those of the wild-type can be considered to 
be fit. However, this approach is clearly infeasible for a 
simulated system. Another important concept related to 
fitness is gene essentiality. Of the entire genetic 
complement of an organism, only some genes are essential 
for life [2]. However, this concept is also fraught with 
difficulty, particularly for unicellular organisms. Which genes 
are essential depends largely upon the environment, and an 
organism grown in rich media is likely to require fewer 
genes for survival than one grown in minimal media.  

Further, genes do not act in isolation; a gene may be 
essential only in the absence of one or more other genes [15]. 
Synthetic lethality occurs when either of two genes is sufficient 
for viability alone, but the organism becomes inviable when 
both genes are knocked out [16]. Although most of the 
research into synthetic lethality has been performed in the 
context of two-gene interactions, most genes and their products 
interact with multiple other genes and gene products, in a 
plethora of ways [17]. There is a very large body of research 
into complex genetic networks and their robustness or 
otherwise in the face of internal and environmental 
challenges, based largely upon the work of Paul Erdös in the 
1950s [18], but blossoming in a genomic context in the early 
2000s [19-21], and to which we have contributed [22-24]. 
However, because of the nebulous nature of gene essentiality, 
and the preliminary nature of this work, we chose to apply a 
naïve definition of essentiality. For our chromosome, genes 
were deemed essential if they were identified as such in any 
description in the Saccharomyces Genome Database [25]. 
Of the 43 segments on synIXR, 7 ORFs (YBL112C, 
YIR006C, YIR008C, YIR010W, YIR016W, and 
YIR023W, located on segments 2, 7, 9, 10, 12, and 20 
respectively) were essential, and the segments carrying 
them were identified as essential, using this criterion. Any 
SCRaMbLEd chromosome not carrying all seven essential 
genes was deemed to be non-viable.  

Whilst the absence of essential genes results in the 
failure of the cell to grow under certain conditions, some 
genes, especially those encoding enzymes which carry out 
key processes in metabolic networks, only result in a 
reduced growth rate when absent. The contribution of these 
enzymes, and therefore their genes, can be modelled using 
genome scale metabolic modelling. Flux balance analysis 
(FBA) is a common approach for simulating metabolic 
networks [26]. FBA determines the flow of metabolites 
through a given metabolic network, and can be used to 
predict the growth rate of an organism under a given growth 
regime. In this work we reconstructed the yeast metabolic 
network for each of the SCRaMbLEd chromosome variants, 
taking into account deleted and duplicated enzyme-
encoding genes.  

The FBA-related fitness was based on the latest 
consensus yeast metabolic model [27], while the constraint 
file was created from simulated SCRaMbLEd results in 
which ORFs on deleted segments are set to 0. The fitness of 
the SCRaMbLEd genomes, Fs, was then calculated by 
running a flux balance analysis, using FlexFlux software 



[27, 28]. The results were normalized by considering the 
wild-type fitness, Fw, which was calculated as 88120.37 
mmol/gDW/h by running the no-constraint FBA of the 
original yeast metabolic model (Eq. 1). 

Normalized FBA Fitness = 
Fs−Fw

Fw
                (1) 

Both the single gene deletion fitness data and the single 
gene over-expression fitness data were obtained from 
published data [14]. We analyzed the distribution of growth 
rates in the set of mutants from the experimental data, 
including the deletion and duplication data, to determine 
how these data could be used to parameterize the fitness 
function. The variability between the deletion and duplication 
datasets was found to be high, while the variability between 
those two data groups was relatively low, with both datasets 
showing a high proportion of mutants, peaking at a fitness of 3-
3.5 as measured by the growth rate (Figure 1). The culture 
media used for both groups were similar, but differed slightly 

due to the strategies used for the selection of mutated strains. 
Using the hypothesis that the fitness distributions of deletion 
and duplication mutations are similar, we applied quantile 
normalization to the fitness score of the deleted and 
duplicated ORFs in the two datasets (Figure 1).  

Using this approach, given a SCRaMbLEd genome, an 
experimental fitness score (EFS) could be calculated by 
averaging the normalized fitness scores of the deleted or 
duplicated ORFs.  

EFS =X  ,                             (2) 

where x is the normalized fitness of a mutated ORF 

A comprehensive fitness value was then calculated by 
multiplying the FBA fitness and the EFS. ORFs not 
included in the metabolic model or wet-lab data were 
considered to not affect the fitness. 

Fitness=EFS * normalized FBA Fitness                (3) 

 

 

Fig. 1. A) Growth rates of a systematically mutated set of yeast strains obtained experimentally by Yoshikawa et al. There is high variability within the deletion 

and duplication datasets, but relatively low variability between datasets, allowing the application of quantile normalisation to both datasets. B) Quantile 

normalised distribution of single ORF deletion and duplication data. 

C. Flux balance analysis with FlexFlux 

We developed an algorithm to incorporate flux balance 
analysis when determining fitness values. The algorithm 
was implemented in Java, and relies on FlexFlux, a steady-
state based metabolic network research tool for flux balance 
analysis [28].  FBA models were represented using the 
Systems Biology Markup Language (SBML) [29]. The 
implementation takes a list of deleted genes from the 
Chromosome class and runs FlexFlux to simulate gene 
knockout on the latest yeast consensus SBML genome-scale 
model, yeast_8.3.5 [27]. First, it creates a text-based 
constraint file which contains an objective function for 
maximizing the biomass. Next, the unique ID of every 
deleted ORF is obtained from the SBML model file. These 
IDs are written into the constraint file, and their status is set 
as “0” to represent deletion. Finally, FlexFlux is called with 
the constraint file and generates a result document. Some of 
the deleted ORFs might not be included in the SBML 
model, indicating that such ORFs are not involved in the 
well-understood metabolic network. In these cases, these 
ORFs are not written into the constraint file. If none of the 
deleted ORFs are included in the SBML model, the method 
returns wild-type fitness. 

D. Parameterisation 

A recombinase protein, Cre, randomly binds to a 
loxPsym site and initiates SCRaMbLing. We simulated this 
process using a parameter, scrProb, the probability of a Cre 
protein binding to a loxPsym site and triggering deletion or 
duplication. scrProb was estimated based on experimental data. 
On average, for chromosome synIXR, around six 
SCRaMbLE events occurred following four hours of 
induction with 1 µM estradiol [3]. Using this information, 
we estimated the probability of an event, using a simple 
simulation to investigate the correlation between scrProb 
and the average number of SCRaMbLE events. 

The simulation results indicated that when scrProb 
was between 0.2 and 0.4,  the number of SCRaMbLE 
events was about six (Figures 2 and 3), which is the average 
number of SCRaMbLE events of surviving strains identified 
from the experimental data. scrProb could be further refined 
using additional experimental results, which are not 
currently available. With different scrProb, the survival 
rates of SCRaMbLE strains were different. If scrProb = 0.2, 
the survival rate was 147/1000; while with scrProb = 0.4, 
the survival rate was 207/1000. Hence, given further data 
about the survival rate, which could be obtained by running 
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a simple wet-lab experiment comparing colony numbers 
between a SCRaMbLEd culture and a negative control, we 
could produce a more accurate estimate of the possibility of 

a loxPsym site being involved in a SCRaMbLE event. In 
this work, we set the scrProb to 0.2. 

 

 

Fig. 2. Single point breaking probability versus the average number of SCRaMbLE events. When the possibility of a Cre binding to a loxPsym was around 

0.2 to 0.4, the average number of SCRaMbLE events in chromosome synIXR was about six per surviving strain, which is the average number of 

SCRaMbLE events determined in vivo. 

 

Fig. 3. Single point breaking probability versus the number of survivors. When the probability of a loxPsym binfing a Cre was around 0.2 to 0.4, the 

survival rate was between 14.7% and 20.7%. 

E. Fitness landscape analysis 

 
We simulated 4,280 strains, using a pseudo random 

number generator. The resulting dataset was used for fitness 
landscape analysis and further investigation.  

Chromosome synIXR has loxP flanked 43 segments, 
making it difficult to visualize. We therefore used a dimension 
reduction algorithm named t-Distributed Stochastic Neighbor 
Embedding (t-SNE) to convert the 43-dimensional input 
into a two-dimensional array representing the genotype of a 
genome for every genome in the simulation [30]. t-SNE is 
a non-linear dimension reduction algorithm and is implemented 
by minimizing the Kullback-Leibler divergence between 
two similarity distributions: the pairwise similarities of high 
dimensional data points, and the corresponding low-
dimensional embedded output points [31]. 

The two-dimensional array produced by t-SNE was used 
as the x and y axes of the fitness landscape, with the fitness 
score of each strain as the z axis. A tunable parameter of t-
SNE, perplexity, balances the attention between local and 
global data by estimating the number of close neighbors of 
each point in the landscape. t-SNE was optimized by 
comparing the results produced by our simulator, resulting 
in a perplexity value of 40.  

For a larger chromosome or a genome with much higher 
dimensions, due to pairwise similarities, computation is 
expensive, and t-SNE is inefficient. A linear dimension 
reduction algorithm such as Principal Components Analysis 

could be applied to reduce the dimensionality to under 50, 
followed by the use of t-SNE [32]. A potential approach 
would be to use LargeVis [33] instead of t-SNE for 
dimension reduction. LargeVis constructs K-nearest neighbor 
graphs more efficiently, and uses a principled probabilistic 
model for graph visualization. Another dimension reduction 
solution is to use UMAP, which is believed to preserve a better 
global structure than t-SNE [34]. 

III. RESULTS 

In this work we used an in silico evolutionary approach 
to develop a model describing the evolution of a population 
of yeast mutants whose genomes were perturbed using the 
SCRaMbLE system. We validated the model of deletions by 
comparing in silico and in vivo ORF deletions in mutant 
populations, validated the fitness function by reference to 
experimental data, and finally analysed the fitness landscape 
of the populations generated in silico, using the model.  

A. Deletion patterns in SCRaMbLEd genomes in silico 

and in vivo.  

To evaluate whether the results of the SCRaMbLE 
simulation were comparable with the wet lab data, we ran a 
simulation investigating deletion patterns on the circular 
chromosome synIXR. A random simulation dataset with 80 
surviving strains was generated, and compared with a 
wet-lab experimental dataset with 64 surviving strains 
[3](Figure 4). 



 

 

 

 

Fig. 4. A) Simulated deletion patterns using the modelling system, with deletion probability = 0.2. B) Deletion patterns obtained in vivo by Shen and co-

workers [3]. C) Simulated deletion patterns with Segment 24 as an essential segment. 

Comparing the above two figures (Figure 4A and 4B), we 
observed similar deletion patterns. Both experimental and 
simulation data have two subsequent deletion patterns 
ranging from Segment 13 to Segment 18, and Segment 20 
to Segment 43 respectively. The peaks of these deletion 
patterns are similar, with around 30 deletions for pattern 
Segment 13-18 and around 50 deletions for pattern Segment 
20-43. However, for the simulation results, the second 
pattern, between Segments 20 and 43, was much smoother 
than its counterpart. If we combined the fitness score of  the 
simulations by isolating strains with a relatively high fitness 

score, we might produce a different perspective, and the 
results may be even more similar to those of the real data. 
However, since the relevant fitness data was not published 
with the experimental deletion patterns for synIXR [3], we 
could not make this comparison. The number of deletions of 
ORFs between Segments 21 and 31 was much higher than in 
the wet lab results. Further data about gene functions, from 
the Saccharomyces Genome Database (SGD)[35], suggested 
that null mutants of Segment 24 (carrying ORF YIR026C) 
decreased the competitive fitness of growth rate, which may 
explain the difference described above (Figure 4). 
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Fig. 5.  In silico deletion patterns of all genomes (Figure 5A) and high fitness genomes (Figure 5B). The Y axis indicates the number of genomes with a related 

deleted segment in a dataset generated by SCRaMbLE simualation .  The most significant difference between all strains and high fitness strains was observed 

in the deletion patterns between Segments 3 and 6, which were absent in the high fitness results, suggesting that the ORFs on these segments are related to high 

fitness.  

 

TABLE I.  IN SILICO FITNESS VERSUS QUALITATIVE EXPERIMENTAL FITNESS FOR THREE DELETION MUTANTS AND THE WILD-TYPE STRAIN. THE FITNESS 

FUNCTION DESCRIBED IN EQ3 WAS USED TO CALCULATE THE FITNESS SCORES OF SIMULATIONS. THE SIMULATION RESULTS WERE CONSISTENT WITH 

EXPERIMENTAL RESULTS.   

Strain Simulation Fitness Experimental Fitness 

Wild-type 1 Wild-type 

∆YIR004W 

0.886 Slow-growth 

∆YIR005W 0.797 Slow-growth 

∆YIR020C 0.977 Slow-growth 

 
 

According to the findings of Deutschbauer and co-
workers, the ORF YIR026C is vital for strains competing 
with each other, due to the decreased competitive fitness of 
the null mutant [34]. Hence, strains SCRaMbLEd and 
sequenced from colonies in a wet lab are very likely to 
contain this ORF. This observation indicates that Segment 
24 is non-essential when there are no other strains 
competing against it. However, due to its reduced growth 
rate, the YIR026C null mutant could not survive in 
competition with other scrambled strains on a plate, 
resulting in the deletion patterns being shifted from 
Segment 34 to Segment 30. Thus, YIR026C on Segment 24 
is an essential ORF in a multicellular  consortium. Adding 
Segment 24 as an essential unit in the simulation produced 
results similar to the wet-lab results (Figure 4C). 

Genomes with a higher fitness score than the wild-type 
genome were filtered for further analysis. The most 
significant differences between all genomes and high fitness 
genomes was observed in the deletion patterns between 
Segments 3 and 6, which were absent in the high fitness 

results, suggesting that the ORFs on these segments are 
related to high fitness (Figure 5). 

Together, these results suggest that the SCRaMbLE 
simulator models deletion events with reasonable accuracy. 
Since the simulation is based on random numbers, those 
simulation results provide further evidence that the 
SCRaMbLE deletion process is largely random, but is 
constrained by its metabolic and phenotypic effects on the 
resulting mutant strains.  

B. Fitness function validation 

To validate the final fitness function (Eq. 3) used for the 
evolutionary process in silico, we calculated the fitness  of 
the genomes of three reported slow-growing single deletion 
mutants: YIR004W on Segment 5, YIR005W on Segment 
6, and YIR020C on Segment 18 (Table 1). These ORFs, 
which are supported by experimental evidence (p < 0.05), are 
all on the SynIXR chromosome. [3] These results (Table 1) 
were consistent with experimental results. 
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C. Fitness distance correlation 

Fitness distance correlation (FDC) is usually used for 
optimizing genetic algorithms and analyzing the ruggedness of 
fitness landscapes. We applied it to the analysis and 
comparison of the fitness landscapes generated by the 
simulated SCRaMbLEd yeast mutant populations. FDC 
samples data points on the fitness landscape, and calculates the 
correlation between the measured fitness and the distance to the 
global optimal fitness. We used it to investigate the topology of 
the in silico landscape, and for studying the shape and size of 
the evolutionary search space.  

The dataset, Fitness Dataset 1, with 4280 strains 
generated for fitness landscape analysis was also used here 
(Methods section F). We also constructed a smaller dataset, 
Fitness Dataset 2, derived from Fitness Dataset 1 by 
removing strains with mutated genes whose products were 
not modelled in the metabolic network. Usually, when the 
FDC value is between -0.15 and 0.15, optimization is 
difficult, because the fitness landscape is very rough. The 
FDC coefficient of 4,280 simulated scrambled genomes in 
Fitness Dataset 1 was 0.07. However, the FDC rose slightly 
to 0.09 for FDC Dataset 2. In this case, only strains with a 
fitness with a contribution from FBA contributed to the 
landscape. Scatter plots (Figure 6 and Figure 7) show the 
structure of FDC Dataset 1 and FDC Dataset 2. For FDC 
Dataset 2, a weak tendency could be observed (Figure 6) for 
fitness to increase with distance from the wild type. There 
was no significant structure in the correlation of fitness and 
distance for FDC Dataset 2, in which all mutants were 
retained (Figure 7). The results shown in the scatter plots are 
consistent with the FDC values. The slight difference 
between Fitness Dataset 1 and the Fitness Dataset 2 is 
probably because, while the whole fitness landscape is 
rugged, some patterns still exist in the metabolic-genes-
mutated subset, since only three ORFs from synIXR are 
involved in the metabolic network. The generated fitness 
landscape has high ruggedness, based on FDC analysis. 

 

Fig. 6. Scatter plot of fitness-distance correlation of Fitness Dataset 2, 

with 237 genomes whose mutant gene products all featured in the 

metabolic network used to calculate genome fitness.       

 

Fig. 7. Scatter plot of fitness-distance correlation of 4,280 simulated 

scrambled genomes. Mutants were included even if the mutant gene 

products did not feature in the metabolic model used to calculate the 

genome fitness, using FBA.  

Fitness Dataset 1 was used for visualizing the fitness 
landscape (Figure 8A). Due to the lack of data points of 
mutated genomes with ORFs encoding enzymes, the 
SCRaMbLE simulator was also used to generate 401 
SCRaMbLEd genomes with mutated genes whose products 
contributed to the metabolic network used to evaluate 
fitness (Figure 8B). All genomes were divided into four 
groups based on fitness: High, Wild-type, Low, and Dead 
(not shown). The dimension reduction algorithm t-SNE was 
used to convert high dimensional data to two dimensions. 
The fitness of most of the computationally SCRaMbLEd 
genomes was lower than that of the wild-type genome. A 
large number of genomes were inviable, due to deletion of 
essential genes. For Figure 8B, clear boundaries could be 
observed between each group of genomes, indicating that 
there are obvious patterns of genomes with mutations in 
genes contributing to metabolism. Mutations in these ORFs 
redirect the flux in the FBA model of the metabolic 
networks, and thus lead to changes in the fitness score. 
Some ORFs play a key role in the metabolic networks. By 
altering these key ORFs, the flux of the FBA model changed 
significantly. Although single gene deletion and duplication 
experimental data were integrated into the fitness function 
(Eq. 3), the fitness scores of genomes with and only with 
mutated ORFs encoding metabolic enzymes were fully 
dependent on the FBA results of the metabolic model. Since 
only three ORFs from synIXR were involved in the 
metabolic model, t-SNE easily captured the key features 
necessary to distinguish groups with different fitness.  

 

 

 

Fig. 8. Scatter plot of fitness distance correlation of 4,280 simulated 

genomes. Mutants were included even if the nutant gene products 

did not feature in the metabolic model used to calculate the genome 

fitness using FBA fitness landscape visualization. 

For the other genomes generated by the simulator, 
including those with non-metabolic-related mutants, no 
clear patterns regarding fitness were observed (Figure 8A). 
These results, together with the results from the FDC 
analysis, indicated that the fitness landscape of 
SCRaMbLEd yeast had a high degree of ruggedness, 
although the metabolic enzyme-encoded mutation fitness 
subset might be smoother. 
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IV. DISCUSSION 

The aim of the Yeast2.0 project is to produce eukaryotic 
chromosomes which are easily manipulable, and which can 
produce millions of variants on the original, naturally 
evolved, genomes, which can then be searched for genomes 
which are viable, relatively easily cultivated, and have 
biological characteristics which are desirable for use in 
application areas such as the production of drug precursors, 
biofuels, and industrial enzymes. The choice of S. cerevisiae 
as the first target was due to its known safety, easy culture 
conditions, and well-studied biology, but this approach 
could be applied, in principle, to any other eukaryote. 

The identification of valuable variants, in the original 
project, was reliant upon evolution in vitro. This approach, 
while demonstrably valuable, has several drawbacks. The 
most obvious issue is that evolution in vitro requires time, 
expertise, and technology, and is costly. More 
fundamentally, however, this use of evolution takes no 
account of the fitness landscape of the system; it essentially 
considers each variant as an individual entity, without 
considering the relationships between variants, their 
mutations, and their places in the fitness landscape. 

The concept of a fitness landscape was first suggested 
by Sewall Wright in 1932 as a unifying concept in 
evolutionary theory [37]. The concept is based upon the 
observation that individuals with similar genomes tend to 
have similar phenotypes, and therefore similar fitnesses, 
although it is acknowledged that small changes in a genome 
can lead to large changes in the phenotype, and vice versa. 
A fitness landscape can therefore be characterized in term 
of its ruggedness, with smooth landscapes facilitating the 
evolutionary process, and making the prediction of fitness 
relatively easy, whereas rugged landscapes hamper 
evolution, and are hard to predict [9]. 

An understanding of the characteristics of the fitness 
landscape generated by the SCRaMbLE system will be of 
interest from a purely theoretical perspective because, in 
conjunction with the data produced in the biology 
laboratories of the consortium members, it provides an 
unparalleled opportunity to explore a real, extensive fitness 
landscape, and assess our understanding of this process by 
developing and evaluating simulation approaches. This 
project also has more directly practical applications. The 
ability to simulate the fitness landscape generated by the 
SCRaMbLE system may allow us to investigate the 
parameters of the system, and identify combinations of 
parameters which could lead to the generation of smooth 
fitness landscapes in vivo, thereby facilitating the process of 
artificial evolution in vitro, and saving time and money 
when identifying valuable variants. In the future, it may 
even be possible to develop genetic circuits to modulate the 
in vivo SCRaMbLE system to bias the evolutionary 
landscape in an optimal direction through the repression or 
enhancement of the recombination of particular loxP 
segments.  

In this study, we developed a system for the simulation 
of SCRaMbLE in silico, including metrics for the distance 
between chromosomes, and for the fitness of the variants. 
These two metrics allow us to generate a fitness landscape 
for SCRaMbLE run with a specific set of parameters. We 
applied our simulator to a single landscape, identified clear 

clusters of variants, and evaluated the ruggedness of the 
landscape of the chromosome we used.  

We found that the simulation results of the deletion 
patterns of synIXR we obtained were consistent with real-
world data, a finding which confirms that the SCRaMbLE 
process tends to be random. By testing various values of the 
breakpoint possibility of the simulator, we inferred that the 
real-world possibility of a loxPsym site being involved in 
SCRaMbLE ranges from 0.2 to 0.4. This value could be 
narrowed down to a more precise number by running simple 
wet-lab experiments. We also found that the fitness 
landscape tends to be rugged, a finding which indicates that 
we may be able to improve the efficiency of the artificial 
evolution process by identifying changes which can be 
made to the system. 

This work will form the basis for an extended study of 
simulation of the SCRaMbLE system. In future work, we 
will apply the system both to other chromosomes and to 
individual chromosomes repeatedly, to investigate whether 
these preliminary results apply to other chromosomes, and 
to evaluate the extent of variability between the landscapes 
that can be generated from a single chromosome. As 
discussed above, one of the most important aspects of the 
research will be the evaluation of the effects of modification 
of the parameters on the ruggedness of the landscape. It is 
highly likely that these parameters do not interact in a linear 
fashion, making it unlikely that optimal parameter settings 
can be achieved by chance in the laboratory. We also 
envisage being able to improve the parameterization for our 
model as new data emerges from future wet-lab 
SCRaMbLE studies. 

In summary, we developed a simulator for the 
SCRaMbLE system, which has the potential to provide both 
theoretical and practical insights into this exciting new 
approach to bioengineering. 
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