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Phosphate and sulfate groups are integral to energy metabolism and intro-
duce negative charges into biological macromolecules. One purpose of
such modifications is to elicit precise binding/activation of protein partners.
The physico-chemical properties of the two groups, while superficially simi-
lar, differ in one important respect—the valency of the central (phosphorus
or sulfur) atom. This dictates the distinct properties of their respective esters,
di-esters and hence their charges, interactions with metal ions and their solu-
bility. These, in turn, determine the contrasting roles for which each group
has evolved in biological systems. Biosynthetic links exist between the two
modifications; the sulfate donor 30-phosphoadenosine-50-phosphosulfate
being formed from adenosine triphosphate (ATP) and adenosine phospho-
sulfate, while the latter is generated from sulfate anions and ATP.
Furthermore, phosphorylation, by a xylosyl kinase (Fam20B, glycosamino-
glycan xylosylkinase) of the xylose residue of the tetrasaccharide linker
region that connects nascent glycosaminoglycan (GAG) chains to their
parent proteoglycans, substantially accelerates their biosynthesis. Following
observations that GAG chains can enter the cell nucleus, it is hypothesized
that sulfated GAGs could influence events in the nucleus, which would com-
plete a feedback loop uniting the complementary anionic modifications of
phosphorylation and sulfation through complex, inter-connected signalling
networks and warrants further exploration.
1. Introduction
The evolution of complex organisms and the need to coordinate precise
responses to changing conditions selected molecular systems able to recognize
and bind partners to initiate, regulate or terminate the appropriate biochemical
processes. Macromolecular interactions that are coordinated by charge–charge
interactions, combined with conformational compatibility and augmented by
weaker, but numerous, hydrogen bonding and other interactions, collectively
provide sufficient affinity, selectivity and specificity to fulfil this role. Biochemi-
cal processes have evolved to rely heavily, although not exclusively, on
phosphorylation to add the charged moieties, while phosphatases remove
them. Such modifications can be used to switch signalling systems, direct mol-
ecules to target organelles or terminate biochemical processes [1]. One
alternative modification which is much less well studied is sulfation.
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Figure 1. The structures of the phosphate donor ATP (a) and the sulfate donor PAPS (b).
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Phosphorylation and sulfation have evolved to employ
the same nucleotide backbone in their respective donors,
but these differ in the substitution of the phosphate or sulfate
moiety that is to be transferred and their position (figure 1).
Furthermore, as nucleic acids appeared first, evolution was
able, by re-employing the available molecules, to incorporate
sulfate and thereby generate additional diversity. In this way,
increasingly complex biological systems could be regulated
or modified from the available molecular repertoire without
the need for an overwhelming increase in the number of
structural genes.

In broad terms, phosphorylation is integral to the structure
of nucleic acid polymers, energy production, protein synthesis,
intracellular and extracellular signalling (although extracellular
polyphosphorylated proteins are relatively rare), while sulfa-
tion is linked to extracellular signalling, hormone regulation
and cell degradation [2]. The ability to tune and control signal-
ling systems that is provided by phosphates, coupledwith their
stability in the form of O-linked, singly charged, di-esters that
join bases in polynucleic acids, may explain their early evol-
utionary involvement in fundamental mechanisms of
reproduction and metabolism [3]. Sulfate mono-esters, on the
other hand, occur in a range of roles that are broadly distinct
from those to which phosphates are put, including in
sulfoglycosphingolipids [4] and as a means of increasing solu-
bility and assisting clearance of dietary and environmental
toxins [5]. Comparisons of phosphate and sulfate groups
have been made previously, in particular, concerning analysis
of their stereochemical properties and protein binding comple-
mentarity, structural information having been garnered from
X-ray crystal structures [6], as have comparisons of their incor-
poration, or removal, by enzymes [7]. Here, we survey how the
two modifications differ, in regard to both their properties and
the biological functions to which they have evolved, and
attempt to identify links between them, some of which are
only beginning to be explored.

As the most energetically favourable interactions avail-
able between molecular species, charge–charge interactions
not only allow long-range recognition owing to Coulombic
forces (proportional to the inverse square of their distance
apart) and relatively high energy binding (proportional to
the inverse of their spatial separation and often involving sol-
vent entropic components), but are also subject to the
influence of counter ions, especially metal cations; a property
which provides further potential means by which the
properties of molecules nearing them may be tuned or differ-
entiated. There is a disparity in the extent of the literature
concerning these two forms of modification, which has tra-
ditionally focused on phosphorylation, although protein
sulfation as a post-translational modification of tyrosine
residues is increasingly recognized as an important regulator
of cell communications and responses [8–13].

Nature employs the addition of charged groups to bio-
logical molecules in roles that range from structural
components of, most notably, the nucleic acids, to facilitating
control of macromolecular interactions and increasing the
solubility of toxins to assist their clearance. Phosphorylation
emerged early in evolution as the dominant means of intro-
ducing charges though the action of single enzymes [14,15]
and the conclusion that phosphates cannot be replaced like-
for-like by sulfates has been drawn [7].

Here, we assess the properties of these two widespread
and seemingly very similar anionic groups in biochemistry
as modifications to macromolecules, examine the origins
and consequences of their contrasting properties and relate
these to their roles. We highlight the biochemical and evol-
utionary opportunities that their distinct characteristics
provided, as well as the advantages offered by the interplay
between those signalling systems that exploit them.
2. Evolutionary links between phosphorylation
and sulfation

Phosphorylation is employed as both the fundamental
energy currency and as the principal means of activating
intracellular biochemical events and pathways, predomi-
nantly using the same molecule, adenosine triphosphate
(ATP), as the phosphate donor, although there are limited
instances in which pyrophosphate [16–18], guanosine tripho-
sphate (GTP) [19] and adenosine diphosphate (ADP) [20]
serve this role. With very few exceptions, for example,
bacterial sulfotransferases (STs) that use phenolic sulfates
[21] and which show evidence of having evolved in a
convergent manner, sulfation employs the sulfate donor
30-phosphoadenosine-50-phosphosulfate (PAPS), which is
derived using phosphorylation machinery (figure 1).

In the biosynthesis of PAPS, the sulfate anion is adeny-
lated using ATP to form adenosine phosphosulfate (APS)
by ATPS and APS is then phosphorylated to form PAPS by
APS kinase (figure 2b). In eukaryotes, ATPS and APS
kinase are fused into a single enzyme, PAPS synthase
(PAPSS), of which there are two non-equivalent forms in
mammals [22] to help overcome the low catalytic efficiency
of the forward reaction of ATPS (Keq∼ 10−8) [23].

Although linked at the biosynthetic level, the fact that
phosphorylation and sulfation are not interchangeable is con-
sistent both with the observation that the two groups possess
distinct fundamental characteristics as well as with the
hypothesis that these lie at the origin of their distinct roles.
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Figure 2. (a) Reduction of sulfate (SO2�4 ) to sulfite and sulfide (H2S) by sulfate reducing bacteria. The process is initiated by the consumption of ATP to form APS,
adenosine 50-phosphosulfate, catalysed by sulfate adenylyl transferase (Sat). (b) The sulfate donor PAPS is made in two enzymatic steps from the sulfate anion via
APS. These activities are fused into a single enzyme, PAPS synthase.

Table 1. Key properties of phosphorus, sulfur, phosphate and sulfate groups, and their esters.

property phosphorus sulfur

electronegativity [24,25] 2.19–2.253 2.48–2.589

covalent (double bond) radius (pm) [26] 107(3) 111(2)

geometry (phosphate and sulfate esters) [27,28] tetrahedral tetrahedral

enthalpy of hydration (free anions) (kJ mol−1) [29] 2765 1080

valency (of central P or S atom) 5 (3s23p3) 6 (3s23p4)

mono-esters (and charge)a R–O–PO2�3 (�2) R–O–SO�3 (�1)

di-esters (and charge) R–O–PO�2 –O–R
0 (�1) R–O–SO2–O–R’ (0)

aThe pKa of the sulfate anion is low (1.92), ensuring that anion and ester are negatively charged under all physiological conditions. By contrast, the pKa of
phosphate (H2PO�4 /HPO

2�
4 ) is 7.2, indicating that the anion exists in approximately 1 to 1 ratio of the two forms at pH 7.

Table 2. Solubility of common phosphate and sulfate salts (g l−1 at
20°C) [37].

cation sulfate phosphate
ratio (solubility
(sulfate/phosphate))

Na 40.8 12.2 3.37

K 13.0 108.0 0.12

Mg 39.7 2.6 × 10−4 1.5 × 105

Ca 0.26 0.002 (10°C) 132

Zn 61.3 insoluble —
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3. Differences between phosphate and sulfate
groups

While sulfate and phosphate groups do bear superficial simi-
larity, in terms of, for example, their broad geometry, overall
size, shared Lewis basicity and the electronegativity of sulfur
and phosphorus atoms, there are two key differences that
give rise to important distinctions in properties: namely, the
valency of sulfur and phosphorous and, related to this, the
charge of their resulting (inorganic) sulfate and phosphate
ions, hence also their (organic) mono- and di-esters
(table 1). The solubility of salts has been explained by refer-
ence to the relationship between lattice energy and
enthalpy of hydration, insolubility tending to be most pro-
nounced when the cation and anion are of similar sizes,
such as barium and sulfate ions.

Both anions form stable, ordered clusters [30], although
the hydration shell of phosphates is larger than for sulfates,
each oxygen hydrogen bonding 3 water molecules with
strong attraction, providing 13 bound water molecules in
the first cell [30], while sulfate binds water more weakly
and in smaller rings [31,32].

One consequence is that the solubility of common salts of
inorganic phosphate (PO3�

4 ) and sulfate (SO2�
4 ) are widely

different (table 2). Inorganic phosphate salts of the group II
elements calcium and magnesium are considerably less
soluble than their corresponding sulfates; the ratio of the
solubility of sulfate to phosphate being 132 for calcium and
150 000 for magnesium. Sulfate anions are also more effective
than phosphate at causing the ‘salting out’ of proteins,
according to the Hofmeister series, an effect that has been
explained in terms of both electrostatic interactions [33] and
solvation energies [34,35].

A second distinction, however, is that phosphates
form both doubly and singly charged phospho- mono-
(R–O–PO2�

3 ) or di-esters (R–O–PO2
−–O–R0), respectively,

with organic compounds. By contrast, sulfates form singly
charged mono-esters (R–O–SO�

3 ) with broad cation
compatibility, while their di-esters (R–O–SO2–O–R0) are
uncharged. It has been considered that during early evol-
ution, calcium ions were simply a toxin owing to precisely
this propensity to precipitate simple metabolites, particularly
phosphates [36]. When attached to biological macromol-
ecules, the mono-ester sulfate groups (R–OSO�

3 ) provide
a more versatile means of binding cations than the corre-
sponding doubly charged phosphates (R–OPO2�

3 ) in that,
as singly negatively charged ions, they have wider cation
compatibility (table 2). This enables sulfated molecules to
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remain soluble in both calcium and magnesium salt forms, as
well as with zinc in low amounts. Thus, the formation of
singly charged sulfate mono-esters, rather than doubly
charged phosphate mono-esters, provided a means of intro-
ducing further charges into biological molecules while
avoiding solubility limitations. Furthermore, the single
negative charge introduced by sulfation may avoid unwanted
additional hydrogen bonding or salt bridges with, for
example, Arg residues on the surface of complementary bind-
ing surfaces. This analysis reveals that sulfation can introduce
charge without exerting pronounced intramolecular or
intermolecular effects, compared with phosphate.

There are also important differences in the properties
of the respective di-esters of phosphates and sulfates with
evolutionary implications. According to conventional
thinking concerning early biogenesis, the assembly of
nucleic acids into polymers was a key step. This involved
forming two covalent bonds through phosphate di-ester
(R�O�PO�

2 �O�R0) groups, leaving the single remaining
negative charge available to interact with cations, retaining
solubility, and thereby enabling key features of nucleic acid
biochemistry that involve interaction with magnesium and
zinc ions [38]. The interacting group, in this case, the phos-
phinyl moiety (–PO�

2 –), possesses sp or intermediate
sp–sp2 hybridization at oxygen and the lone pair, acting as
a Lewis base, coordinates metal ions (Lewis acids) with a pre-
ferred syn geometry [39]. Comparable interactions would not
be available with the analogous (hypothetical) sulfate di-ester
(R–O–SO2–O–R0), since it is uncharged. The single charge of
the phosphate di-ester may also have facilitated attachment to
catalytic mineral surfaces, the stereochemical preference for
cation binding determining the selection of the mineral sur-
face, thereby generating complex structures destined to be
used as biochemical entities [40]. Mineral contact with nucleic
acids has also been proposed to play a role in horizontal gene
transfer (reviewed in [41]).

An earlier comparison of the interactions of phosphory-
lated or sulfated macromolecules with proteins revealed
that phosphate binding sites in proteins are more highly
conserved than those of the comparable sulfate binding
sites [42]. This may reflect evolutionarily deeper, more tightly
controlled mechanisms involving phosphates and a con-
trasting degree of relaxed specificity, which is a feature of
the interactions between protein networks and the principal
polymeric bearer of sulfate (mono-ester (R–O–SO�

3 ))
groups, the glycosaminoglycan (GAG) class of polysacchar-
ides (reviewed in [43]), whose evolution has been linked to
the development of multicellular organisms [44]. The singly
charged sulfate mono-esters of GAGs permit a degree of
ion selectivity that is perforce based on the appropriate sub-
stitution pattern [45] (i.e. the spacing of anionic groups on the
GAG polysaccharide) rather than being dictated by the geo-
metry and multiple charges of an individual anionic group.
It also seems likely that this property avoids strong binding
by solitary sulfate groups thereby enabling the subsequent
exchange of bound cations to higher affinity proteins.
4. Control of biochemical processes
The emergence of sulfation enabled the development of sev-
eral capabilities that, excluding the post-translational
sulfation of proteins on tyrosine, are largely distinct from
those to which phosphorylation has been put. These roles
for sulfation include the neutralization of hormones to
allow diffusion to their target where they are then de-sulfated
to revert to their active form [46], the derivatization of toxic
phenolic compounds (e.g. p-cresol) [47] from the breakdown
of tyrosine, to increase solubility and facilitate excretion, and
the diversification of polysaccharide structure to increase the
repertoire of potential interactions with proteins [48].

The majority of proteins are regulated by post-
translational modification and these also contribute to evol-
utionary changes. Enzymatic phosphorylation (mono-ester
formation) of a free hydroxyl or other analogous functional
group, such as an amine, alters protein stability, localization
and interactions, and is itself a source of biological diversity.
There are two main modes of action, which can be termed
either a switch, or aggregate action [49]. In the first, phos-
phorylation results in a drastic change of activity (via
conformational change or activation of a previously inactive
form) to the extent that a two-state system can be considered
to have been formed: on or off. In the second, a more complex
situation prevails, in which multiple phosphorylation sites
are substituted to varying extents to provide a population
containing proteins with a range of activities [50]. Addition-
ally, the combination of phosphorylation sites may dictate
a level of activity or, in some cases, the on or off status.
Although based on very different macromolecular scaffolds,
the latter situation bears some similarity to the sulfated
GAG polysaccharides, in as much as several active forms
exist and, among these, there can be varying levels of activity
[43]. In eukaryotes, phosphorylation of Ser, Thr and Tyr
amino acid side chains is well established while, in prokar-
yotes, phosphorylation also includes His and Cys
derivatives [51,52]. As many as 30% of eukaryotic proteins
may be phosphorylated and many of these are phosphory-
lated at several sites [53,54]. This basic picture has,
however, had to be revised following discovery of additional
phosphorylated amino acids, including Arg, Lys and Asp
[55–58]. It has been suggested that phosphorylation of Ser,
Thr and Tyr residues may have evolved from the negatively
charged Asp and Glu residues (mutations of Asp or Glu to
Tyr require only one G to U substitution) and this could
explain why, in some cases, phosphorylation can activate pro-
teins, having effectively evolved from a permanently on state
to a switchable state, using phosphorylation as the control
mechanism [50].
5. Sulfation provides an economical route to
diversifying signalling capabilities

Since there were, presumably, no biological catalysts or meta-
bolic processes initially, the combination of available
chemicals, together with atmospheric and geochemical con-
ditions, are generally held to have been responsible for the
generation of the first biological molecules [59]. The ability
to use environmental sulfate as a major energy source is
also very ancient, having been exploited by sulfate reducing
bacteria, which are among the earliest known, dating from
about 3.5 Ga and are considered to have played a key role
in establishing the sulfur cycle on Earth [60,61]. In this pro-
cess, sulfur forms a major source of energy, which is highly
conserved [62], termed dissimilatory sulfate reduction (DSR;
distinct from assimilatory sulfate reduction (ASR) used by
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many bacteria for the biochemical incorporation of small
amounts of sulfur into organic biomolecules). Sulfate anions
are transported from the surrounding environment into the
cell through a range of sulfate transporters [63], and the key
enzyme, sulfate adenylyl transferase (Sat) (ATP sulphury-
lase), converts sulfate into APS with the consumption of
ATP in 1 : 1 stoichiometry (figure 2a). This process supplies
a terminal electron acceptor for the electron transport chain
and then reduces sulfate, first to sulphite, then to hydrogen
sulfide, enabling the net production of ATP [64,65]. Of par-
ticular note to our discussion, however, is the evolutionarily
ancient association of phosphorylation and sulfation, as
well as the observation that ATP is required to ‘prime’ the
DSR pathway.

Prokaryotes possess fully operational signalling systems
based on phosphorylation [66,67] and genetic analysis
shows that the filistera Capsaspora owczarzaki possesses
diverse kinases [68], while the tyrosine kinase signalling
system probably evolved before divergence of this organism
from the common branch containing choanoflagellates and
metazoans about 600 Ma. In the sponge Amphimedia queen-
slandia, an early metazoan, there are around 150 receptor
tyrosine kinases, such as epidermal growth factor and MET
receptors.

To evolve more complex life forms, especially those incor-
porating multicellular assembly and coordination, it would
have been more efficient to expand the number and subtlety
of signalling events, than to evolve novel ways of signalling
[69]. Such enabling complexity can be achieved to some
extent by expanding pathways, combining protein domains
and so on, building from the existing molecular machinery
and chemical repertoire. It has been estimated that the
move from (the presumed) pre-existing levels to the complex-
ity required by choanoflagellates or metazoans involved a
significant increase in Src homology 2 (SH2) and protein tyro-
sine phosphatase (PTP) domains [70–73]. The additional
expansion, first evident with the rise of the metazoans [44]
and provision of a graded response, both in support of signal-
ling but also its inhibition, was supplied by the advent of the
GAG polysaccharides (which, with the sole exception of
hyaluronate, are sulfated) and some of which are obligatory
co-receptors in cellular signalling. These pathways are modu-
lated through their differential activation and inhibition, a
prime example being the fibroblast growth factor/FGFR
signalling network (involving tyrosine kinase activity; see
also §6), the details of which are beginning to be elucidated
in relation to GAG structure and substitution pattern
[48,74,75]. Gradients can also be established and maintained
through regulation of chemokines and cytokines to influence
differential responses (reviewed in [76]). Thus, a direct
link exists between extracellular signalling driven by sulfa-
tion and intracellular signalling driven by phosphorylation.
Sulfated GAGs may thereby serve as expanders and
modulators of the existing signalling capability.

The biochemical sulfation of GAGs is achieved through
Golgi ST enzymes, which employ PAPS as the sulfate
donor, but the origins of these enzymes are subject to discus-
sion. One bioinformatics study [44] identified evidence of
homology between 3-O-sulfotransferase (3OST) enzymes
(HS3ST 1, 2, 3A, 3B, 4, 5 and 6) and sequences in bacteria,
but it is not known whether these represent the identification
of ancestral proteins that are the originators of other STs in
higher organisms. If so, this would be consistent with the
observed presence of more 3OSTs than any other form of
ST in the GAG biosynthetic machinery of metazoans [77].
Alternatively, they may be examples of convergent evolution
although, since HS3STs are related to other heparan sulfate
(HS) STs, it is more difficult to see why the relationship is
with 3OSTs in particular, and not across the ST family. A
further possibility is that these STs could have arisen by hori-
zontal gene transfer from a higher organism, but this raises
the question why, seemingly, only 3OST was transferred
and whether higher degrees of homology would be expected.
6. Interactions between systems using
phosphorylation and sulfation merit further
investigation

In addition to sulfated GAG-mediated fibroblast growth
factor receptor signalling involving tyrosine phosphorylation
(§5), there are further intriguing possibilities of the interaction
between systems using phosphorylation and sulfation that
have been explored. One is the suggestion that sulfated
GAGs can enter the cell nucleus (e.g. [78]) and may be
involved in transporting proteins into the nucleus [79]. The
hypothesis is that sulfated GAGs may influence processes
in the nucleus directly, presumably through interactions
with nuclear proteins [80,81]. This is supported by evidence
that distinct sulfation patterns in chondroitin sulfate (CS)
GAGs regulate the transcription factor Otx2 that mediates
neuronal plasticity via upregulation of 6-O-sulfation in CS
[82,83]. At the junction of two neurons, Otx2 is released by
one neuron and is bound by CS of the adjacent neuron. Fol-
lowing internalization, it is transported along the neuron and
then released from the vesicle to act in the nucleus. Such a
capability provides a route through which sulfation can influ-
ence subsequent phosphorylation events (figure 3). The
others relate to the extracellular functions of nuclear, DNA
binding proteins and DNA in disease. For example, histones
are often released in acute inflammatory conditions, and their
level can predict acute organ failure and mortality in acute
pancreatitis [84] and, with neutrophil DNA, they are integral
to neutrophil extracellular traps (NETs) [85] (figure 3), the
formation of which can be induced by heparin [86].

A direct link between phosphorylation and sulfated GAG
biosynthesis is, however, provided by Fam20B, which encodes
a GAG xylosylkinase [87,88], for the phosphorylation of the
xylose sugar residue of the proteoglycan tetrasaccharide link-
age region. The phosphorylated xylose stimulates the addition
of galactose to the linker region by galactosyltransferase II,
increasing its rate of synthesis. While kinases are molecular
activators and signal transducers that can regulate cellular
processes by adding phosphate groups to diverse target mol-
ecules, most of the attention paid to kinase activities has
focused on themodification of protein targets in the cytoplasm
and nucleus. The biosynthesis of CS or HS type proteoglycans
is determined by the identity of the first residue in the chain
following this tetrasaccharide linker; GalNAc denoting CS
and GlcNAc, the HS type, but phosphorylation of xylose resi-
dues results in significantly more efficient elongation by
addition of a galactose residue of the GAG tetrasaccharide, a
precursor in sulfated GAG chain biosynthesis for a range of
proteoglycans [87,88]. Furthermore, the enzyme, 2-O-phos-
phoxylose phosphatase (PXYLP1) has been shown to
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catalyse the removal of the phosphate group from the xylose
residues of GAGs and influence CS GAG biosynthesis
[89,90]. Thus, controlling the phosphorylation status of
the nascent chain is emerging as a means of regulating the
biosynthesis of sulfated GAG polysaccharides (figure 3).

GAG xylosylkinase, Fam20B, activity and specificity are
evolutionarily conserved, and its presence can be traced to
the oldest animal phylum. It should be noted, however,
that these are the sponges, which do not produce sulfated
GAGs. Nonetheless, sponges do possess homologues of
XylT, GalT-I, GalT-II and GlcAT and have tetrasaccharide lin-
kers with a phosphorylated xylose residue. These arguments
suggest that the appearance of Fam20B xylosylkinase may
have set the scene for the biosynthesis of complex sulfated
glycan molecules, such as the GAGs, that supported the evol-
ution of complex life and points to phosphorylation as a
molecular switch for their appearance.

7. Conclusion
While the enzymatic addition of phosphate and sulfate
groups bestows negative charges upon their target molecules,
their fundamental chemical properties distinguish both the
types of linkages that are available to each and the sub-
sequent characteristics of molecules so derivatized. These
properties, in turn, dictate the resulting functions for which
they have evolved in biological systems and impose a basic
dichotomy of roles on the two forms of modification. At
the molecular level, examples of interactions between pro-
teins and phosphorylated peptides are provided by studies
of SH2 domains [91], and those between sulfated GAGs
and proteins by studies of antithrombin [92] and FGFs [93].

Phosphorylation and sulfation are, nevertheless, linked
at the biosynthetic level of the formation of the sulfate
donor PAPS from APS and ATP (figure 2b and figure 3).
Phosphorylation also acts as the switch at the initial
stages of the biosynthesis of the most heavily sulfated bio-
logical macromolecules, the GAG polysaccharides, and
these are the carbohydrate component of a major family
of proteoglycans. These proteoglycans are involved in regu-
lating numerous protein networks through both intra- and
intercellular signalling and include numerous kinases.
Their interactions with proteins are characterized by rela-
tively relaxed structural specificity, in contrast to much
phosphorylation-driven signalling, several potential GAG
sequences being able to interact effectively with a given
protein and, often, a given GAG sequence can interact
with several proteins, albeit with different binding
characteristics.

Exogenously added GAG components detected in the cell
nucleus [78] raise the intriguing possibility of interactions
with nuclear proteins. Thus, a potential feedback mechanism
can be hypothesized which warrants investigation (figure 3).
It has long been known that histones, for example, can be iso-
lated through their interactions with immobilized heparin—a
sulfated GAG [81]—and extracellularly, this is linked to their
activity in acute inflammatory diseases. Similarly, it is likely
that the extracellular DNA of NETs interacts with a subset
of HS-binding proteins, altering their regulatory functions,
though this has not been formally established. It will be inter-
esting to learn what differences exist between the modes of
binding of phosphorylated and sulfated molecules—deriva-
tized in these two distinct ways—to those proteins to which
they bind selectively, or to which they both bind. Early efforts
were made to address this question [42] but, to the best of our
knowledge, there has not previously been an extensive com-
parative study of the properties of protein binding sites for
DNA, RNA and GAG-binding proteins.
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The repertoire of available biomolecules is relatively
limited and the addition of charges via phosphorylation
and/or sulfation offers a means of delivering molecular
diversity to support correspondingly more elaborate signal-
ling events during the evolution of increasingly complex
life forms. Ultimately, by employing already existing
biochemical apparatus to make these two distinct derivatiza-
tions, biological systems have been able to expand their
repertoire of modification and, hence, ways of signalling,
efficiently. The points at which these occurred during evol-
ution, the full extent of the interactions between the two
systems, and their consequences on the subsequent develop-
ment of advanced complex life forms are all topics worthy of
further exploration.
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