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Rok Krašovecd, Christopher G. Knightd

aSchool of Engineering and Information Sciences, Middlesex University, London NW4
4BT, UK

bResearch Institute for the Environment, Physical Sciences and Applied Mathematics,
Keele University, ST5 5BG, UK

cDepartment of Statistics, University of Warwick, CV4 7AL, UK
dFaculty of Life Sciences, University of Manchester, M13 9PT, UK

Abstract

The typical view in evolutionary biology is that mutation rates are minimised.
Contrary to that view, studies in combinatorial optimisation and search have
shown a clear advantage of using variable mutation rates as a control param-
eter to optimise the performance of evolutionary algorithms. Ronald Fisher’s
work is the basis of much biological theory in this area. He used Euclidean
geometry of continuous, infinite phenotypic spaces to study the relation be-
tween mutation size and expected fitness of the offspring. Here we develop a
general theory of optimal mutation rate control that is based on the alterna-
tive geometry of discrete and finite spaces of DNA sequences. We define the
monotonic properties of fitness landscapes, which allows us to relate fitness
to the topology of genotypes and mutation size. First, we consider the case
of a perfectly monotonic fitness landscape, in which the optimal mutation
rate control functions can be derived exactly or approximately depending on
additional constraints of the problem. Then we consider the general case of
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non-monotonic landscapes. We use the ideas of local and weak monotonic-
ity to show that optimal mutation rate control functions exist in any such
landscape and that they resemble control functions in a monotonic landscape
at least in some neighbourhood of a fitness maximum. Generally, optimal
mutation rates increase when fitness decreases, and the increase of mutation
rate is more rapid in landscapes that are less monotonic (more rugged). We
demonstrate these relationships by obtaining and analysing approximately
optimal mutation rate control functions in 115 complete landscapes of bind-
ing scores between DNA sequences and transcription factors. We discuss the
relevance of these findings to living organisms, including the phenomenon of
stress-induced mutagenesis.

Keywords: Adaptation, Fitness landscape, Mutation rate, Population
Genetics, Phenotypic Plasticity
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1. Introduction

Mutation is one of the most important biological processes that influence
evolutionary dynamics. During replication mutation leads to a loss of infor-
mation between the offspring and its parent, but it also allows the offspring
to acquire new features. These features are likely to be deleterious, but have
the potential to be beneficial for adaptation. Thus mutation can be seen as
a process of innovation, which is particularly important as the number of all
living organisms is tiny relative to the number of all possible organisms. A
question that naturally arises with regards to mutation is whether there is
an optimal balance between the amount of information lost and potential
fitness gained.

The seminal mathematical work to investigate biological mutation is by
Ronald Fisher [1], who considered mutation as a random motion in Euclidean
space, the points of which are vectors representing collections of phenotypic
traits of organisms. Using the geometry of Euclidean space, Fisher showed
that probability of adaptation decreases exponentially as a function of mu-
tation size (defined using the ratio of mutation radius and distance to the
optimum), and concluded therefore that adaptation is more likely to occur
by small mutations. Several studies, however, suggested that large muta-
tions can be quite frequent in nature, thereby prompting re-examination of
the theory [2]. Thus, Kimura [3] extended the theory to take into account
differences in probabilities of fixation for mutations of small and large size.

3



Subsequently Orr [4] considered the effect of mutation across several replica-
tions. Interestingly, while he had a critical role in developing mathematical
theory around discrete alleles, Fisher in his geometric model uses Euclidean
space, which is uncountably infinite and unbounded. That this is an impor-
tant issue became apparent only after the realisation that biological evolution
occurs in a countable or even finite space of discrete molecular sequences [5].
However, subsequent geometric models based on Fisher’s, while they have
explicitly modelled discrete mutational steps (e.g. [6]), continue to assume
that they occur within the same infinite Euclidean space. This issue may
contribute to the fact that the predictions of such models have at best only
been partially verified in actual biological systems [7, 8, 9, 10]. One of the
contributions of the current work is that we consider mutation using the ge-
ometry of other spaces, and in particular the geometry of a Hamming space,
which is finite and leads to a radically different view about the role of large
mutations.

Mutation size as considered by Fisher is closely related to mutation fre-
quency measured in biology in terms of the number of mutations per repli-
cation per DNA base. Mutation rates in biology vary over several orders
of magnitude [11]. Nonetheless, mutation rate for any particular species is
typically believed to be minimised, within bounds set by physiology [12], or
more likely population genetics [13]. Despite this, mutation rates are known
to vary within and among populations of a single species [14] and recently,
population-genetic models have been developed proposing that variable mu-
tation rates may be in fact adaptive in biology [15].

Independent of such biological concerns, researchers in evolutionary com-
putation and operations research have a longer history of considering variable
mutation rates in genetic algorithms (GAs) (e.g. see [16, 17, 18, 19, 20] for
reviews). In particular, Ackley suggested in [21] that mutation probability
is analogous to temperature in simulated annealing, which decreases with
time through optimisation. A gradual reduction of mutation rate was also
proposed by Fogarty [22]. In a pioneering work, Yanagiya [23] used Markov
chain analysis of GAs to show that a sequence of optimal mutation rates
maximising the probability of obtaining global solution exists in any prob-
lem. A significant contribution to the field was made by Thomas Bäck [24],
who studied the probability of adaptation in the space of binary sequences
and suggested that mutation rate should depend on fitness values rather than
time. More recently, numerical methods have been used to optimise a muta-
tion operator [20] that was based on the Markov chain model of GA by Nix
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and Vose [25]. The complexity of this model, however, restricted the appli-
cation of this method to small spaces and populations. It is these insights
regarding mutation rate variation from evolutionary computation and opera-
tions research which we develop here towards the particular issues presented
by biological systems.

We develop theory in the following directions:

1. Generalise Fisher’s geometric model of adaptation for metric spaces,
and in particular for discrete spaces of sequences, such as the Hamming
spaces with arbitrary alphabets.

2. Define problems of optimal mutation rate control within such spaces,
and study how different problem formulations (e.g. time horizon, ob-
jective function) affect the solutions.

3. Extend the theory to more biologically realistic (i.e. rugged) fitness
landscapes.

Some relevant results have already been reported. For example, results
for general Hamming spaces were first reported in [26, 27]. We develop these
results towards biology in Section 2. Various optimisation problems were
considered in [28, 29], deriving theoretical optimal mutation rate control
functions. We address how such control functions may also be obtained nu-
merically in Section 3. In Section 4, we develop theory to consider a fitness
landscape as a memoryless communication channel between fitness values and
distance from an optimal sequence. We introduce the ideas of local and weak
monotonicity of a landscape. This allows us to formulate hypotheses about
monotonicity and mutation rate control in biological fitness landscapes. We
test these hypotheses by numerically obtaining optimal mutation rate con-
trol functions for 115 published complete landscapes of transcription factor
binding [30]. Our results presented in Section 5 show that all the optimal
mutation rate control functions in these biological landscapes do indeed con-
verge to non-trivial forms consistent with the theory developed here. We
also observe differences among optimal mutation rate control functions, vari-
ation that relates to variation in the landscapes’ monotonic properties. We
conclude in Section 6 by discussing how mutation rate control as considered
here may be manifested in living organisms.

2. A Generalisation of Fisher’s Geometric Model of Adaptation

In this section, we consider an abstract problem, in which organisms are
viewed as points in some metric space and adaptation as a motion in this
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space towards some target point (an optimal organism). In such formulation,
maximisation of biological fitness corresponds to a minimisation of distance
to the target, and geometry of the metric space allows us to solve the optimi-
sation problem precisely. These abstract results will be used in the following
sections to develop the theory further bringing it closer to biology.

2.1. Representation and assumptions

Let Ω be a set of all possible organisms. Environment defines a prefer-
ence relation . on Ω (a total pre-order), so that a . b means b is better
adapted to or has a higher replication rate in a particular environment than
a. Throughout this paper we shall consider only the case of countable or
even finite Ω, although the theory can be easily extended with certain care
to the uncountable case. It is well-known from game theory (e.g. [31]) that
in the countable case the preference relation always has a utility representa-
tion: there exists a real function f : Ω → R such that a . b if and only if
f(a) ≤ f(b). In the biological context, the utility function is called fitness,
and it is usually defined to have non-negative values (i.e. if f(ω) is the repli-
cation rate of ω). Having positive fitness values is not essential, because the
preference relation does not change under a strictly increasing transforma-
tion of f , such as adding a constant ε ∈ R to f or multiplying it by a positive
number (i.e. representation f(ω) is equivalent to λf(ω) + ε for any λ > 0
and ε ∈ R). Thus, our interpretation of fitness simply as a numerical rep-
resentation of a preference relation on organisms is distinct from population
genetic definitions of fitness (e.g. see [32]). We shall assume also that there
exists a top (optimal) element > ∈ Ω such that f(>) = sup f(ω), which is
the most adapted and quickly replicating specie in the current environment.
Note that a finite set Ω always contains at least one top (optimal) element
> as well as at least one bottom element ⊥.

Generally, one can consider also the set Θ of all environments (including
other organisms), because different environments θ ∈ Θ impose different
preference relations .θ on Ω, which have to be represented by different fitness
functions fθ(ω) := f(ω, θ). In this paper, however, we shall assume that
a particular environment has been fixed, and therefore consider only one
preference relation and one fitness function.

During the replication, organism a can mutate into b with probability
P (b | a), and the products P (b | a) · f(a) define the selection-mutation ma-
trix — the infinitesimal generator of the replicator-mutator dynamics (gen-
erally non-linear Markov evolution). Mutation can have different effects on
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fitness of the offspring. Mutation a 7→ b can be deleterious, if f(a) > f(b),
neutral, if f(a) = f(b), or beneficial, if f(a) < f(b). We shall analyse how
the probability of beneficial mutation can be related to the ‘geometry’ of
mutation.

Fitness is defined by the interaction of an organism with its environment,
and therefore it is a property of a phenotype. Thus the set Ω, which is the
domain of the fitness function, can be thought of as not just the set of all
organisms, but the set of all possible phenotypes. Reproduction of organisms,
however, involves passing of information about the phenotypes in the form
of codes, which can be elements of some other set. Consider a representation
of phenotypes ω ∈ Ω by points of a topological vector space H (e.g. a space
of traits, a space of DNA sequences and so on). In information theory, a
mapping κ : Ω → H is called a code, and we shall assume here that it
is uniquely decodable: κ(a) = κ(b) implies a = b. That is, ω 7→ κ(ω) is
an injection of Ω into a possibly larger space H. In biological terms, each
genotype has either one or no phenotype, and each phenotype has precisely
one genotype. In addition, we shall assume that the image of κ is closed
under the operation of addition in H, which implies that for all a, b ∈ Ω,
there exists c ∈ Ω such that κ(a) + κ(c) = κ(b). Thus, mutation a 7→ b in Ω
can be represented in H by addition of codes κ(a) and κ(c) = κ(b) − κ(a),
as shown on the following diagram:

Ω 3 a Mutation //

κ
��

b ∈ Ω

H 3 κ(a)
+κ(c) // κ(b) ∈ H

κ−1

OO

We shall assume that the topology in H is defined by a metric d : H ×
H → [0,∞) (i.e. H is a metric vector space). Under a uniquely decodable
mapping κ, the metric on H induces an equivalent metric on Ω representing
‘dissimilarity’ of two phenotypes. Thus, abusing notation, we shall identify
phenotypes ω with their codes κ(ω) and write d(a, b) and b = a+c instead of
d(κ(a), κ(b)) and κ(b) = κ(a)+κ(c). A sphere and a ball of radius r ∈ [0,∞)
around every point a ∈ Ω is defined as usual:

S(a, r) := {b ∈ Ω : d(a, b) = r} , B(a, r) :=
⋃

n∈[0,r]

S(a, n)

If a mutates into b, then we call r = d(a, b) a mutation radius.
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More generally, a representation may be non-uniquely decodable or even
stochastic, in which case Ω is not a metric space, but this will not be consid-
ered here. Thus we consider a simplified picture of uniquely decodable geno-
types. The motivation for distinguishing genotype and phenotype however
will become apparent in Section 4 when we define the monotonic properties
of general fitness landscapes. In particular, the radius r is the dissimilarity
of the codes (e.g. genotypes) κ(a) and κ(b), and it depends on the choice of
a representation space H, its metric and the encoding-decoding schemes κ
and κ−1, all of which may influence landscape monotonicity.

2.2. Fisher’s representation in Euclidean space

In this section, we identify fitness f(ω) with the negative distance−d(>, ω)
from the top element, but later we shall generalise the relation between fit-
ness and the topology of a representation space. Thus, adaptation (beneficial
mutation) corresponds to a transition from a sphere of radius n = d(>, a)
into a sphere of a smaller radius m = d(>, b), which is depicted in Figure 1.

ra6
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&%
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r>
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Q
Q
Q
Q
Q
Q
Qs

n

XXXXXXXXXz

m

Figure 1: Mutation of a into b by radius r = d(a, b). The distances n = d(>, a) and
m = d(>, b) from an optimal element > define the fitnesses of a and b. The intersection
of spheres S(a, r) and S(>,m) define the probability P (m | n, r).

This geometric view of mutation and adaptation is based on Ronald
Fisher’s idea [1], which was, perhaps, the earliest mathematical work on
the role of mutation in adaptation. Fisher represented phenotypes by points
of Euclidean space H ≡ Rl of l ∈ N traits, and therefore equipped Ω with
Euclidean metric dE(a, b) = ‖a−b‖2 (here ‖·‖2 denotes the standard `2-norm
in Rl). The top element > was identified with the origin in Rl, and fitness
f(ω) with the negative distance −dE(>, ω). Then Fisher used geometry of
the Euclidean space to show that probability of beneficial mutation decreases
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exponentially as mutation radius increases, and therefore mutations of small
radii are more likely to be beneficial. Despite subsequent development of the
theory [2], the use of Euclidean space for representation was not revised.

Euclidean space is infinite, and the interior of any ball has always smaller
volume than its exterior. Therefore, assuming mutation in random direc-
tions, an organism on the surface of a ball around an optimum is always
more likely to mutate into the exterior than the interior of this ball. This
obvious and simple property is key for the conclusion that adaptation is more
likely to occur by small mutations. Recently, we showed that the geometry
of a finite space, such as the Hamming space of sequences, implies a different
relation between the radius of mutation and adaptation [26, 27]. In partic-
ular, mutation radius maximising the probability of adaptation varies as a
function of the distance to the optimum.

2.3. Probability of adaptation and representation in a Hamming space

One of the most common examples of a finite metric space is a Hamming
space of sequences. Let us denote byHl

α := {1, . . . , α}l the set of all sequences
of letters from a finite alphabet {1, . . . , α} and length l. The alphabet can be
equipped with operations of addition and multiplication such that it becomes
a finite field GF (α) (a Galois field) and Hl

α becomes a linear algebra over
GF (α). A linear algebra is also a vector space, and Hl

α is an example of
a finite vector space (there are αl points in Hl

α). The space Hl
α can be

equipped with the Hamming metric dH(a, b) := |{i : ai 6= bi}| counting the
number of different letters. The Hamming metric can also be defined as
dH(a, b) := ‖a − b‖H , where ‖ · ‖H : Hl

α → {0, 1, . . . , l} is the Hamming
weight counting the number of letters in a sequence not equal to the additive
unit of the field GF (α) (zero of the field). Thus, addition of sequences results
in a substitution of some letters, which corresponds to a simple mutation,
and the Hamming distance counts the number of substitutions.

Consider mutation of sequence a ∈ S(>, n) into sequence b ∈ S(>,m) by
radius r = dH(a, b), as shown on Figure 1. Assuming equal probabilities for
all sequences in the sphere S(a, r), the probability that the offspring sequence
is in the sphere S(>,m) is given by the number of elements in the intersection
of spheres S(>,m) and S(a, r):

P (m | n, r) =
|S(>,m) ∩ S(a, r)|d(>,a)=n

|S(a, r)|
(1)
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where | · | denotes cardinality of a set (the number of its elements). The
cardinality of the intersection S(>,m) ∩ S(a, r) with condition d(>, a) = n
is computed as follows

|S(>,m) ∩ S(a, r)|d(>,a)=n

=
∑

r0+r−+r+=min{r,m}
r+−r−=n−max{r,m}

(α− 2)r0
(
n− r+

r0

)
(α− 1)r−

(
l − n
r−

)(
n

r+

)
(2)

The summation runs over indexes r0, r− and r+ satisfying conditions r0 +
r−+ r+ = min{r,m} and r+− r− = n−max{r,m}. These conditions follow
from the triangle inequalities for r, m and n, such as

|n−m| ≤ r ≤ n+m

When r ≤ m then r0, r− and r+ count respectively the numbers of neutral,
deleterious and beneficial substitutions in r ∈ [0, l]. They also satisfy the
following constraints r− ∈ [0, b(r+m−n)/2c] and r+ ∈ [0, b(n−|r−m|)/2c],
where b·c denotes the floor operation.

The cardinality of sphere S(a, r) ⊂ Hl
α is

|S(a, r)| = (α− 1)r
(
l

r

)
(3)

Equations (1)-(3) allow us to compute the probability of adaptation in the
Hamming space Hl

α, which is the probability that the offspring is in the
interior of ball B(>, n):

P (m < n | n, r) =
n−1∑
m=0

P (m | n, r) (4)

Figure 2 shows the probability of adaptation in Hamming space H100
4 (i.e.

alphabet of size α = 4 and length l = 100) as a function of mutation radius
r for different values of n = d(>, a). One can see that when n < 75 (more
generally when n < l(1−1/α)), the probabilities of adaptation decrease with
r, similar to Fisher’s conclusion for the Euclidean space. However, for n = 75
there is no such decrease, and when n > 75 (i.e. for n > l(1 − 1/α)), the
probability of adaptation actually increases with r. This is due to the fact
that, unlike Euclidean space, Hamming space is finite, and the interior of
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Figure 2: Probability of adaptation P (m < n | n, r) in the Hamming space H100
4 as

a function of mutation radius r. Different curves show P (m < n | n, r) for different
distances n = dH(>, a) of the parent sequence from the optimum >.

ball B(>, n) can be larger than its exterior. The geometry of a Hamming
space has a number of interesting properties [33]. For example, every point ω
has (α− 1)l diametric opposite points ¬ω, such that dH(ω,¬ω) = l, and the
complement of a ball B(ω, r) in Hl

α is the union of (α − 1)l balls B(¬ω, l −
r − 1).

Remark (Representation space). Using arbitrary alphabets is important not
only because DNA molecules are sequences with α = 4 bases, but also be-
cause it allows us to consider different representations, where the letters of
the alphabet may correspond not to DNA base-pairs, but to higher-level
structures such as triplets of DNA bases (encoding amino acids) or genes.
Changing the representation by considering subsequences of a sequence as
letters from an alphabet of a larger size α corresponds to decreasing the
length l of the sequence. The Hamming metric, measuring the distance be-
tween sequences, takes values in {0, . . . , l}, and changing the alphabet and
length changes the geometry of the representation space Hl

α.
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Figure 3: Optimal mutation rate control functions derived mathematically to minimise
expected distance to optimum in Hamming space H10

4 . Different control functions are
optimal solutions to different optimisation problems described in Section 2.5.

Remark (Variable lengths). Hamming metric compares sequences of the same
lengths, and it counts the least number of substitutions between a pair of
sequences, which is the main mutation mechanism that we consider here.
Variable length sequences can be compared using, for example, the Levensh-
tain metric, which counts the least number of substitutions, insertions and
deletions. The space of all variable length finite alphabet sequences is count-
ably infinite, and it can be considered as a vector space over an extended
Galois field [34]. Hamming spaces are finite subspaces of this space, and one
can consider the set of nested Hamming spaces, where increasing complexity
corresponds to an increasing sequence length [27]. We note also that every
such finite subspace has a top element >, but the whole space of variable
length sequences may fail to have one.

2.4. Random mutation

By mutation of parent sequence a into b we understand a random process,
so that the mutation radius is a random variable. The simplest form of
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mutation, called point mutation, is the random process of independently
substituting each letter in a to any of the other α−1 letters with probability
µ. At its simplest, with one parameter, there is an equal probability µ/(α−1)
of mutating to each other base. Such mutation corresponds also to additive
noise: b = a + c, where c is a sequence obtained by point mutation of the
origin in Hl

α (the sequence with all letters equal to zero — the additive unit
of the field GF (α)). The parameter µ is called mutation rate. For point
mutation, the probability of mutating by radius r ∈ [0, l] is given by the
binomial distribution:

Pµ(r | n) =

(
l

r

)
µ(n)r(1− µ(n))l−r (5)

The expected value and variance of the mutation radius are respectively
Eµ{r} = lµ and σ2(r) = lµ(1 − µ). Note in the equation above that we
assume that mutation rate µ may depend on the distance n = dH(>, a) from
the top sequence.

Optimisation of the mutation rate requires knowledge of the probability
Pµ(m | n) that the offspring sequence b is in the sphere S(>,m) that can be
expressed as follows:

Pµ(m | n) =
l∑

r=0

P (m | n, r)Pµ(r | n) (6)

Equations (1)–(3) and (5) can be substituted into equation (6) to obtain the
precise expression for transition probability Pµ(m | n) in Hl

α.

Remark (Optimal mutation operator). Mutation in biology is much more
complex than described above, and its precise mathematical modelling in-
volves many parameters. One parameter point mutation, however, is optimal
in a certain sense: it is a solution of one specific variational problem of min-
imisation of expected distance between points a and b in a Hamming space
subject to a constraint on mutual information between a and b. We define
and solve this problem in Appendix C. The optimal solutions are conditional
probabilities having exponential form Pβ(b | a) ∝ exp[−β dH(a, b)], where pa-
rameter β > 0, called the inverse temperature, is related to the constraint on
mutual information. Because Hamming metric dH(a, b) = ‖a − b‖H is com-
puted as the sum

∑l
i=1 δai(bi) of elementary distances δai(bi) between letters

ai and bi in ith position in the sequence, and the values of δai(bi) do not de-
pend on the position i, the exponential conditional probability factorises into
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the product Pβ(b | a) ∝
∏l

i=1 e
−β δai (bi) corresponding to independent substi-

tution of letters ai into bi with equal probabilities µ/(α−1), where µ is related
to the inverse temperature β. Changing the representation space H and its
metric will result in a different optimal mutation operation. For example,
if H is the space of variable length sequences with Levenshtain metric, then
optimal mutation Pβ(b | a) will involve independent substitutions, insertions
and deletions. If elementary distances δai(bi) are different between different
pairs of letters, then there will be different parameters for different pairs. If
elementary distances depend on the position i in a sequence or the metric
d(a, b) is not the sum of elementary distances, then the optimal mutation
is a more complex process with non-independent substitutions, insertions or
deletions, the phenomenon known in biology as epistasis.

2.5. Optimal control of mutation rates

The fact that we have shown above that the probability of adaptation
depends on mutation rate introduces the possibility of organisms maximising
the expected fitness of their offspring by controlling mutation rate. The exact
form of the optimal mutation rate control functions depends on a number
of factors, such as the time horizon. Here we cover the principal elements
required, developed in [28].

Let Pt(a) be the distribution of parent sequences in Hl
α at time t, and let

Pt(n) =
∑

a:d(>,a)=n Pt(a) be the distribution of their distances n = dH(>, a)

from the optimum. Transition probabilities P (m | n) define linear transfor-
mation of Pt(n) into distribution Pt+1(m) of distances m = dH(>, b) of their
offspring from the optimum:

Pt+1(m) =
l∑

n=0

P (m | n)Pt(n)

If this linear transformation T (·) :=
∑l

n=0 P (m | n)(·) does not change with
time and assuming that distance to the optimum has Markov property (i.e.
distance at t+ 1 depends only on distance at t, but not at t− 1, t− 2, etc),
then the distribution Pt+s(m) after s generations is defined by T s(·), the sth
power of T (·).

According to equation (6) transition probabilities Pµ(m | n) from sphere
S(>, n) to S(>,m) depend on the mutation rate parameter µ for each dis-
tance n from top sequence >, and we call the collection of pairs (n, µ) the
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mutation rate control function µ(n). The expressions for the transition prob-
abilities Pµ(m | n) between spheres around optimal element > ∈ Hl

α can be
used to optimise this function. This optimisation, however, can be done with
respect to different criteria leading to different optimal functions. For exam-
ple, after one replication, the conditional expected distance to the optimum
E{m | n} =

∑l
m=0mPµ(m | n) is minimised if the mutation rate µ depends

on n according to the following step function:

µ(n) =


0 if n < l(1− 1/α)
1
2

if n = l(1− 1/α)
1 otherwise

(7)

This function is shown on Figure 3 for Hamming space H10
4 . The sudden

change of the optimal mutation rate from µ = 0 to µ = 1 at n = l(1 −
1/α) corresponds to the sudden change of the effect of the mutation radius
on the probability of adaptation shown on Figure 2. If parent sequences
are uniformly distributed Pt(a) = α−l in Hl

α, then mutation of sequences
with this control function achieves the greatest decrease E{n} − E{m} =∑l

n=0 nPt(n) −
∑l

m=0mPt+1(m) of the expected distance to the optimum.
Note, however, that sequences with n = dH(>, a) < l(1−1/α) do not mutate.
Therefore, if after several generations all sequences are closer to > than
l(1−1/α), then their offspring cannot get closer to >. In the space of binary
sequences (α = 2) this occurs after only one replication. For this reason,
the control of mutation by the step function is not optimal for adaptation in
more than one generation.

Deriving a mutation rate control function minimising the expected dis-
tance to the optimum after several generations is not a trivial task. However,
for a sufficiently large number of generations this problem is equivalent to
minimising the expected time at which individuals achieve maximum fit-
ness. The expected convergence times can be computed using techniques
for absorbing Markov chains, and numerical methods show that the optimal
mutation rate control changes in this case from a step to a more smooth,
sigmoid-like function [28].

A simpler but closely related problem is maximisation of probability
Pµ(b = > | a) of mutating directly to the optimum, or maximisation of
the probability Pµ(m = 0 | n), which has the following expression:

Pµ(m = 0 | n) = (α− 1)−nµn(1− µ)l−n (8)
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Conditions dPµ/dµ = 0 and d2Pµ/dµ
2 ≤ 0 defining the mutation rate max-

imising this probability lead to the equation n − lµ = 0 and the following
linear mutation rate control function shown on Figure 3 for H10

4 :

µ(n) =
n

l
(9)

This variation of optimal control functions illustrates the importance of the
number of generations (time horizon) for which the expected fitness is max-
imised, as pointed out previously by Orr [4].

Another approach to mutation rate control is to maximise the probability
of adaptation:

Pµ(m < n | n) =
n−1∑
m=0

Pµ(m | n)

Bäck obtained the mutation rate function µ(n) maximising this probability
(which he called the probability of success) in the space Hl

2 of binary se-
quences [24]. The expressions from the previous section allow us to obtain
similar functions for general Hamming spaces Hl

α. Figure 3 shows this func-
tion for H10

4 . We note that the comparison m < n used in the probability of
adaptation and its maximisation effectively changes fitness from being abso-
lute (i.e. depending only on an individual) to relative (e.g. depending also on
the parent of an individual). Indeed, maximisation of P (m < n | n) is equiv-
alent to maximisation of the expected value E{f2(m,n) | n} of a two-valued
relative fitness function f2(m,n) = 1 if m < n; f2(m,n) = 0 otherwise.

Another approach that we pursued elsewhere is based on information
theory [27, 29]. In brief, the optimisation of expected fitness is performed
subject to constraints on information divergence of distribution Pt+1(m) from
distribution Pt(n). The resulting optimal mutation rates µ(n) correspond to
cumulative probabilities P0(m < n) =

∑n−1
m=0 P0(m), where P0(m) is the

distribution of m = d(>, a) assuming uniform distribution P (ω) = α−l of
sequences in Hl

α. Figure 3 shows this function for H10
4 . We point out that

this control not only achieves a very fast decrease of the expected distance
E{m} to the optimum, but the resulting populations also have the smallest
variance σ2(m) of the distances.

There are other optimisation criteria, such as maximisation of cumulative
expected fitness, that may lead to different optimal control functions. Thus,
Figure 3 and this discussion illustrates the fact that there is no single optimal
mutation rate control function, but a variety of functions each of which solves
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a specific optimisation problem. However, it is also evident from Figure 3
that all these control functions have a common property of monotonically in-
creasing mutation rate with increasing distance of parent sequence from the
optimum. Where an evolutionary system optimises a particular criterion,
such as one of those considered in this section, on a monotonic landscape,
the optimal mutation rate control function will be the corresponding derived
function. In Section 3 we shall consider an approximation technique appli-
cable to a more general class of problems including cases where derivation is
impractical. In Section 4 we relax the assumption of a monotonic landscape.

3. Evolutionary Optimisation of Mutation Rate Control Functions

Analytical approaches cannot always be applied to derive optimal mu-
tation rate control functions due to high problem complexity. Another ap-
proach is to use numerical optimisation or evolutionary techniques to obtain
approximately optimal solutions. In this section, we introduce such an evolu-
tionary technique that uses two genetic algorithms. The first, which we refer
to as the Inner-GA, evolves sequences with the mutation rate controlled by
some function that maps fitness to mutation rate. The second, which we refer
to as the Meta-GA, evolves a population of such mutation rate control func-
tions for better performance of the Inner-GA. In this section, we describe the
details of these algorithms and report results of experiments. The Inner-GA
can use any fitness function. First, we shall apply the techique to the case
when fitness of an individual is its negative distance from a selected point
in a Hamming space. Later we shall apply the technique to more general
non-monotonic fitness landscapes.

3.1. Inner-GA

The Inner-GA is a simple generational genetic algorithm that uses no
selection and no recombination. Each genotype in the Inner-GA is a sequence
ω ∈ Hl

α, and we used populations of 100 individuals. The initial population
had equal numbers of individuals at each fitness value, and they were evolved
by the Inner-GA for 500 generations using simple point mutation, according
to a mutation rate control function specified by the Meta-GA. The fitness
can be defined by an arbitrary real function y = f(ω), and the average fitness
ȳ(t) of the population is calculated at each generation, in order that expected
fitness E{y}(t) may be maximised by the Meta-GA.
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Figure 4: Means and standard deviations of mutation rates for the fittest control functions
evolved in each of 20 runs of the Meta-GA using Inner-GAs with individuals inH10

4 evolved
to minimise expected distance to the optimum after 500 generations.

3.2. Meta-GA

The Meta-GA is a simple generational genetic algorithm that uses tour-
nament selection (a good choice when little is known or assumed about the
structure of the landscape). Each genotype in the Meta-GA is a mutation
rate function µ(y) of fitness values y. The domain of µ(y) is an ordered par-
tition of the range {y : f(ω) = y, ω ∈ Hl

α} of the Inner-GA fitness function.
Thus, individuals in the Meta-GA are sequences of real values µ ∈ [0, 1]
representing probabilities of mutation at different fitnesses, as used in the
Inner-GA.

At each generation of the Meta-GA, multiple copies of the Inner-GA were
evolved for 500 generations, with the mutation rate in each copy controlled
by a different function µ(y) taken from the Meta-GA population. We used
populations of 100 individual functions, which were initialised to µ(y) = 0.
All runs within the same Meta-GA generation were seeded with the same
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initial population of the Inner-GA. The Meta-GA evolved functions µ(y) for
5 ·105 generations to maximise the average fitness ȳ(t) ≈ E{y}(t) in the final
generation of the Inner-GA.

The Meta-GA used the following selection, recombination and mutation:

• Randomly select three individuals from the population and replace the
least fit of these with a mutated crossover of the other two; repeat with
the remaining individuals until all individuals from the population have
been selected or fewer than three remain.

• Crossover recombines the start of the numerical sequence representing
one mutation rate function with the end of another using a single cut
point chosen randomly, excluding the possibility of being at either end
so that there are no clones.

• Mutation adds a uniform-random number ∆µ ∈ [−.1, .1] to one ran-
domly selected value µ (mutation rate) on the individual mutation rate
function but then bounds that value to be within [0, 1].

The Meta-GA returns the fittest mutation rate function µ(y).

3.3. Evolved control functions

The kind of mutation rate control function the Meta-GA evolves depends
greatly on properties of the fitness landscape used in the Inner-GA. In Sec-
tion 2.5 we showed theoretically that for f(ω) corresponding to negative
distance to optimum −dH(>, ω), the optimal mutation rate increases with
n = dH(>, ω). Therefore, the population of mutation rate functions in the
Meta-GA should evolve the same characteristics in such a landscape. Fig-
ures 4 shows the average and standard deviations of the fittest control func-
tions evolved in 20 runs of the Meta-GA using Inner-GAs with individuals
in H10

4 (i.e. α = 4, l = 10) and fitness defined by f(ω) = −dH(>, ω). As
predicted, the mutation rate increases with n = dH(>, ω). We shall now
consider more complex landscapes.

4. Locally and Weakly Monotonic Fitness Landscapes

The logic behind the variation and optimal control of mutation rates de-
scribed in the previous section was based on the assumption that fitness
f(ω) is isomorphic to negative Hamming distance −dH(>, ω) from the top
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sequence, which allowed us to derive optimal control functions using the ge-
ometry of the space of sequences. As detailed below, this assumption implies
global monotonicity of the fitness landscape, and it is highly unlikely in real
biological landscapes, which can be rugged [35]. In this section, we define
the concept of a local and weak monotonicity relative to a chosen metric
and show that all landscapes are weakly monotonic at least in some small
but non-trivial neighbourhood of the top sequence. This relation between
fitness and distance allows one to implement a control of mutation rate using
feedback from fitness values. We then consider how monotonicity of different
landscapes may influence these fitness-based optimal control functions.

4.1. Memoryless communication between fitness and distance

If fitness y = f(ω) is not isomorphic to the negative distance n = dH(>, ω)
from the optimum, then fitness values of the sequences do not provide full in-
formation about their distances. Thus, in order to employ the optimal control
µ(n) of mutation rate based on the distance from the top sequence, one has
to estimate the distance from fitness values. The estimation of unobserved
random variable n = dH(>, ωt) at time t from a sequence yt, yt−1, . . . , y0

of observed random variables is known as the filtering problem [36]. Note
that generally the observed process {yt}t≥0 is not Markov (i.e. P (yt+1 |
yt, . . . , y0) 6= P (yt+1 | yt)), even if the unobserved process {n}t≥0 and the
joint process {(n, yt)}t≥0 are. For this reason, the optimal control of mutation
rate should be a function µ(yt, . . . , y0) of the entire history of observations.
It seems unlikely, however, that such a control has biological relevance, as its
implementation would require information about fitness values in all previous
generations. Instead, we shall consider a control based only on the current
fitness value yt. Our analysis will focus on monotonic properties of the fit-
ness landscape that will allow us to relate transition probability Pµ(yt+1 | yt)
between fitness values of the parent and offspring with probability Pµ(m | n)
of transitions between spheres of different radii around the optimum. We
shall demonstrate that the ‘similarity’ between these transition probabili-
ties increases as sequences evolve closer to the optimum, and for this reason
the optimal control function µ(yt) based on the current fitness values should
closely resemble the distance-based optimal control function µ(n) in some
neighbourhood of the optimum.

By a fitness landscape, we understand it to mean a graph of a function
f ◦ κ−1 : Hl

α → R which associates representations κ(ω) ∈ H (codes) of
individuals with their fitness values y = f(ω). The landscape defines a joint
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distribution P (y, n) of the fitness values y = f(ω) and distances n = dH(>, ω)
from the nearest global optimum. This joint distribution defines conditional
probabilities P (n | y) and P (y | n). Let us consider mutation of sequence a
into sequence b, and let us denote by n = dH(>, a) and m = dH(>, b) their
distances from the nearest optimum and by yt = f(a) and yt+1 = f(b) their
fitness values. Thus, given sequence b, its fitness and distance values yt+1

and m are independent of the parent sequence a. We shall assume further
that given distance m, the fitness value yt+1 is also independent of distance
n: P (yt+1 | m,n) = P (yt+1 | m). One can show that this is equivalent to
conditional independence of yt+1 and yt given distances m and n: P (yt+1, yt |
m,n) = P (yt+1 | m)P (yt | n). The transition probability Pµ(yt+1 | yt) in this
case can be expressed as a composition of transition probabilities P (n | yt),
Pµ(m | n) and P (yt+1 | m) in the following way:

Pµ(yt+1 | yt) =
l∑

m=0

l∑
n=0

P (yt+1 | m)Pµ(m | n)P (n | yt)

Thus, we assume that the fitness landscape acts as a memoryless communica-
tion channel between distances of individuals to the nearest global optimum
and their fitness values. The amount of information communicated through
this channel defines how ‘similar’ the conditional probabilities Pµ(yt+1 | yt)
and Pµ(m | n) are and how effective a mutation control function µ(y) is.

If fitness values y = f(ω) of sequences and their distances n = dH(>, ω)
from the nearest global optimum are statistically independent, then P (n |
yt) = P (n), P (yt+1 | m) = P (yt+1) and therefore Pµ(yt+1 | yt) = P (yt+1).
This means that fitness yt+1 of the offspring is independent of fitness yt of its
parent, and therefore a control of mutation rate will have no effect on fitness
of the offspring. On the other hand, if there is a one-to-one correspondence
between the fitness values y = f(ω) and distances n = dH(>, ω) (i.e. there
is a bijection g : R → R such that f(ω) = g ◦ dH(>, ω) and g−1 ◦ f(ω) =
dH(>, ω)), then Pµ(yt+1 | yt) = Pµ(m = g−1(yt+1) | n = g−1(yt)), and
the optimal mutation rate control function is µ ◦ g−1(y), where µ(n) is an
optimal control function obtained using Pµ(m | n). In particular, the identity
f(ω) = −dH(>, ω) used in previous section is established by g(·) = −1× (·).
In Appendix A the relationship between transition probabilities P (yt+1 | yt)
and P (m | n) is explained in more detail.
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4.2. Monotonicity of fitness landscapes

Let us consider landscapes in which fitness and distance to nearest global
optimum are not isomorphic but there is a deterministic mapping between
them. Moreover, we shall consider monotonic properties of these mappings,
which allow us to clarify notions of ‘smooth’ or ‘rugged’ fitness landscapes,
used in biological literature. Note that these monotonic properties are rel-
ative to (i.e. depend on) the choice of a representation space, its metric d
and encoding-decoding scheme. Below we introduce the definitions of various
monotonic properties of landscapes which later allow us to analyse rugged
biological landscapes and address optimal control of mutation rate in such
landscapes.

Definition 1 (Local monotonicity). Let (Ω, d) be a metric space, and let
f : Ω → R be a real function. Then, if all a and b inside some ball B(ω, δ)
satisfy the properties below, we say that:

• d is locally monotonic relative to f at ω if:

−d(ω, a) ≤ −d(ω, b) ⇐= f(a) ≤ f(b)

• f is locally monotonic relative to metric d at ω if:

−d(ω, a) ≤ −d(ω, b) =⇒ f(a) ≤ f(b)

• f and d are locally isomorphic at ω if:

−d(ω, a) ≤ −d(ω, b) ⇐⇒ f(a) ≤ f(b)

• We say that d or f are globally monotonic (isomorphic) at > relative
to each other if the relevant property holds over B(>, δ) ≡ Ω.

The three monotonic relations between fitness and distance defined above
are illustrated on Figure 5. These cases represent idealised situations, but
they help in understanding the properties of real and biologically relevant
landscapes. Let us first consider global monotonicity, that is when the mono-
tonic properties hold for the entire Ω.

The monotonic relationships between distance d(>, ω) and fitness f(ω)
can be represented by real monotonic functions h : R → R and g : R → R
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Figure 5: Schematic representation of monotonic properties described in Definition 1.
Abscissae represent sequence space, ordinates represent fitness. a) Distance to optimum
is monotonic relative to fitness (fitness landscape can have ‘cliffs’); b) fitness is monotonic
relative to distance to optimum (landscape can have ‘plateaus’); c) fitness and distance to
optimum are isomorphic (neither cliffs nor plateaus are allowed).

such that h ◦ f(ω) = d(>, ω) and g ◦ d(>, ω) = f(ω). These mappings are
shown in the commutative diagrams in Figure 6. It is clear from the dia-
grams that mappings h and g are adjoint to encoding κ and decoding κ−1

schemes. Thus, for these diagrams to commute, these mappings as well as the
representation space with its topology must satisfy certain properties. This
represents the fact that monotonicity of fitness and distance (i.e. monotonic-
ity of h and g) is relative to the choice of a representation space, its metric
d and encoding-decoding scheme.

(Ω,.)

κ
��

(R,≤)

h
��

f−1
oo

(Hl
α,.)

−d(>,·) // (R,≤)

(Ω,.)
f // (R,≤)

(Hl
α,.)

κ−1

OO

(R,≤)
−d−1(>,·)oo

g

OO

Figure 6: Commutative diagrams connecting the preference relationship among pheno-
types (upper left), fitness values (upper right), distances from the top sequence (lower
right) and the representation space (lower left). The arrows give the functions relating
these sets including the fitness/inverse-fitness function (top) and encoding-decoding func-
tion (left). The landscape is the mapping from the representation space (lower left) to
the fitness values (upper right). The diagrams show that the relationships h and g be-
tween fitness and distance to the optimum impose certain properties on the metric d,
the representation space and the encoding-decoding scheme. Note that d(>, a) is used as
short-hand for d(κ(>), κ(a)); see Section 2.1.

If the metric d is monotonic relative to fitness f , then the distance to
optimum is overdetermined, because there are generally more fitness values
f(ω) than spheres S(>, n) around the optimum (see Figure 5a). This follows
directly from the fact that in this case sequences with the same fitness must
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have the same distances to the optimum, but not necessarily vice versa (see
Proposition 2 in Appendix B). Transition probabilities P (yt+1 | yt) between
fitness values are easily determined by transition probabilities P (m | n) be-
tween spheres around > and monotonic function h ◦ f(ω) = d(>, ω) (see
Proposition 1 in Appendix A):

P (yt+1 | yt) =
1

|h−1 ◦ h(yt+1)|
P (m = h(yt+1) | n = h(yt))

where h−1(y) := {x : h(x) = y} is the pre-image of y, and cardinality
|h−1 ◦ h(y)| ≥ 1 represents degeneracy of the mapping h (i.e. the number of
fitness values at the same distance from > as y). Thus, generally P (yt+1 |
yt) ≤ P (m = h(yt+1) | n = h(yt)), when distance to optimum is monotonic.
In addition, it is easy to show that in the case of a globally monotonic metric
there can be only one optimal element. Indeed, applying the definition to >1

and >2 we have:

f(>1) = f(>2) =⇒ d(>2,>1) = d(>2,>2) = 0 ⇐⇒ >1 = >2

The case of distance being overdetermined has little practical interest for
our theory. In addition, this property does not allow for fitness plateaus as
can be seen from Figure 5a. Such plateaus may be important in biology
[37]. It is therefore particularly interesting to look at the case where f is
monotonic to d, which allows for plateaus. In this case distance to optimum is
underdetermined, because there can be fewer fitness values f(ω) than spheres
S(>, n) around the optimum (see Figure 5b). It follows directly from the fact
that in this case sequences with the same distance from the optimum must
have the same fitness values, but not necessarily vice versa (see Proposition 2
in Appendix B). Transition probabilities P (yt+1 | yt) between fitness values
can be computed from transition probabilities P (m | n) between spheres
around > and monotonic function g ◦ d(>, ω) = f(ω) (see Proposition 1 in
Appendix A):

P (yt+1 | yt) =
1

|g−1(yt)|
∑

m∈g−1(yt+1)

∑
n∈g−1(yt)

P (m | n)

One can see that the relation between two transition probabilities is more
complicated than in the previous case, and captures a model of ‘noisy’ com-
munication between fitness and distance simply in the mapping g. The
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amount of noise in this case depends on the average degeneracy of the map-
ping g, represented by the average number of distance values |g−1(y)| cor-
responding to each fitness value y = f(ω). The extreme case is a constant
fitness function, which has only one value so that all sequences are optimal.
A non-trivial example of a highly degenerate landscape is a Boolean land-
scape, where fitness can have only two values, a situation close to many in
biology where a single, non-lethal aspect of the environment is critical for
determining fitness (e.g. a nutrient that either can or cannot be utilised, an
absent vitamin that is or is not required or, resistance or not to a pathogen
or stressor). We now combine the results obtained in Section 2 with those
in this section to derive transition probabilities between fitness values on
this Boolean landscape where fitness is not isomorphic to distance as in the
landscapes used in Section 2 and how this leads on to optimal mutation rate
control even in this degenerate case.

Example 1 (Boolean landscapes). Boolean fitness landscape is defined by
f(ω) = 1 if ω = >; f(ω) = 0 otherwise. There can be multiple optima
> ∈ Ω with f(>) = 1, and the domain is partitioned into two disjoint
subsets f−1(1) = {ω : f(ω) = 1} and f−1(0) = {ω : f(ω) = 0}. Because
there are only two fitness values, there are only four transition probabilities
P (yt+1 | yt) between them, the most important of which for optimisation
purposes is probability P (yt+1 = 1 | yt = 0). This probability is related to
probability P (ωt+1 | ωt) of transitions between any two points ωt, ωt+1 ∈ Ω
in the following way:

P (yt+1 = 1 | yt = 0) =
1

|f−1(0)|
∑

ωt+1∈f−1(1)

∑
ωt∈f−1(0)

P (ωt+1 | ωt)

One can see that the size of subsets f−1(1) and f−1(0) relative to each other
plays an important role, and this characteristic can be used to study different
types of Boolean landscapes. When ω are represented by sequences in a
Hamming space Hl

α, the probability P (ωt+1 | ωt) with dH(ωt+1, ωt) = n is
given by equation (8): Pµ(ωt+1 | ωt) = (α−1)−nµn(1−µ)l−n. This expression
can be used to maximise the transition probability above by optimising the
mutation rate µ(0).

4.3. Weak monotonicity

Generally, fitness landscapes may have different local monotonic proper-
ties, described above, and the relationship between fitness and distance to
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an optimum may not be described by any function, but rather it is non-
deterministic, described by conditional probabilities P (n | yt) and P (yt+1 |
m). In this case, we can still define monotonicity in a weak sense (i.e. on
average) using conditional expected fitness values within spheres of a given
radius from point ω:

E{f | n} =
1

|S(ω, n)|
∑

a:d(ω,a)=n

f(a)

Definition 2 (Weak local monotonicity). Let (Ω, d) be a metric space, and
let f : Ω → R be a real function. Then we call f weakly locally monotonic
at ω relative to metric d if there exists a ball B(ω, δ) such that for all a, b
within this ball, the following condition holds:

−d(ω, a) = −n ≤ −d(ω, b) = −m =⇒ E{f | n} ≤ E{f | m}

It is not difficult to show that all fitness landscapes are weakly and locally
monotonic at >. To see this, assume the opposite, that E{f | n} > E{f | m}
holds for all neighbourhoods of >. Then clearly sup f(ω) cannot be attained
at > (i.e. > is not the optimum). Thus, there must be some neighbourhood
B(>, δ), containing elements other than >, where weak monotonicity holds.
Our analysis in Section 5 suggests that biological landscapes may exhibit
weak monotonicity in large neighbourhoods of the optimum.

As discussed previously, if f is locally monotonic relative to d, then
spheres S(>, δ) cannot contain elements with different values y = f(ω). This
is not true in the case of weak monotonicity. The variation of fitness within
the spheres S(>, n) can be measured by the conditional variance of fitness:

σ2(f | n) =
1

|S(>, n)|
∑

ω:d(>,ω)=n

|f(ω)− E{f | n}|2

Clearly, stronger monotonicity implies smaller variance σ2(f | n). It is not
difficult to see that an increase of expected fitness E{f | n} → f(>) coincides
with a decrease of the variance σ2(f | n) → 0. Because of these weak
locally monotonic properties of general fitness landscapes, the probabilities of
transitions P (yt+1 | yt) between fitness values that are close to the optimum
yt, yt+1 > f(>) − ε will be similar to transition probabilities P (m | n)
between spheres with n, m = d(>, ω) < δ. Therefore, we formulate the
following hypotheses:
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Hypothesis 1 Optimal mutation rate increases with a decrease in fitness
in some neighbourhood of an optimum for realistic fitness landscapes
(e.g. biological landscapes) where fitness is not isomorphic to distance,
similar to the monotonic increase in optimal mutation rate derived for
the isomorphic case.

Hypothesis 2 Real and biological landscapes exhibit weak monotonicity in
large neighbourhoods of an optimum.

Hypothesis 3 The larger the neighbourhood of weak monotonicity, the
more mutation rate control may contribute to evolution towards high
fitness.

5. Evolving Fitness-Based Mutation Rate Control Functions

To test the relevance of our predictions about the optimal mutation rate
control functions more widely in biologically realistic sequence-fitness land-
scapes, we used the described earlier Meta-GA technique (see Section 3)
to evolve approximately optimal functions for 115 published complete land-
scapes of transcription factor binding [30]. Transcription factors have evolved
over very long periods to bind to specific DNA sequences. The landscapes
show experimentally measured strengths of interaction (DNA-TF binding
score) between the double-stranded DNA sequences of length l = 8 of base
pairs each and a particular transcription factor. Because these landscapes
represent results of direct interaction between the DNA sequences and the
transcription factors, the DNA sequences can be thought of as both ‘pheno-
types’ and their codes, which allows us to identify the space Ω of phenotypes
with the representation space, which in this case is the Hamming space H8

4

(α = 4, l = 8). The DNA-TF binding score, however, which plays the role
of fitness, is clearly not identical to the negative Hamming distance of a
sequence from the top sequence (a sequence with the maximum DNA-TF
binding score). In this section, we show that the mutation rate control func-
tions obtained for these landscapes using evolutionary technique conform well
to our theoretical predictions about the optimal mutation rate control.

5.1. Evolved control functions

We used the Meta-GA evolutionary optimisation technique, described in
Section 3, to obtain for each landscape the best possible mutation rate control
function that maximises the average DNA-TF binding score in the population
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(expected fitness) after 500 replications. The Meta-GA algorithm converged
within a small margin of statistical error to a specific mutation rate control
function in each landscape. To get sufficiently significant results as well as
an estimate of the convergence, 16 replicate runs were performed in each of
the 115 transcription factor landscapes.

Figure 7 shows the average values and standard deviations of the evolved
mutation rates for three transcription factors: Srf, Glis2 and Zfp740. Evolved
functions for all landscapes are shown on Figure D.10 in supplementary ma-
terial. One can see that the evolved functions for each transcription factor
landscape is monotonic in the direction predicted: close to zero mutation at
the maximum fitness, rising to high levels further from the maximum fitness
value. Once the mutation rate has peaked near the maximum value µ = 1,
the mutation rates tend to decrease and become chaotic. As will be shown
in the next section, this occurs at lower fitness values at which the landscape
is no longer monotonic (i.e. further from the peak of fitness). Small stan-
dard deviations indicate good convergence to a particular control function.
Observe that there is poor convergence at low fitness areas of the landscape
that are poorly explored by the genetic algorithm.

5.2. Landscapes for transcription factors

The variation in the evolved mutation rate control function is clearly
related to a variation in the properties of the landscapes. Our theoretical
analysis suggests that the main property affecting the mutation rate control
is monotonicity of the landscape relative to a metric measuring the mutation
radius. In particular, the radius of point-mutation is measured by the Ham-
ming metric, and we shall look into the local and weak monotonic properties
of the transcription factors landscapes relative to the Hamming metric.

Figure 8 shows average DNA-TF binding scores within spheres S(>, n)
around the optimal sequence as a function of Hamming distance n = dH(>, ω)
from the optimum. Data is shown for three transcription factors: Srf, Glis2
and Zfp740. Lines connect average values at discrete distances for visualisa-
tion purpose. Errorbars show standard deviations of the DNA-TF binding
scores within the spheres. Distributions of fitness with respect to Hamming
distance dH(>, ω) for all 115 transcription factors are shown on Figure D.11
(supplementary material).

One can see from Figure 8 that the landscape for the Srf factor has
monotonic properties: The average values increase steadily for sequences
that are closer to the optimum, and the deviations from the mean within the
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Figure 7: Examples of GA-evolved optimal mutation rate control functions. Data are
shown for the transcription factors Srf, Glis2 and Zfp740. Each curve represents the aver-
age of 16 independently evolved optimal mutation rate functions on a particular transcrip-
tion factor DNA-binding landscape [30]. Errorbars represent standard deviations from the
mean. Similar curves for all 115 landscapes are shown in supplementary Fig. D.10. The
arrows indicate the edge of monotonicity ε, that defines an interval of fitness values below
the maximum, where mutation rate monotonically increases.

spheres are relatively small. This is in contrast to the other two landscapes.
We note also that the average values for Glis2 decrease quite sharply around
the optimum, while the landscape for Zfp740 has a relatively flat plateau
area around the optimum, which means that there are many sequences with
high DNA-TF binding score. This difference may explain different gradients
of optimal mutation rates near the maximum fitness shown on Figure 7.

5.3. Monotonicity and controllability

Our results have confirmed that the evolved optimal mutation rates rise
from zero to very high levels as fitness decreases from the maximum value
f(>) to some value f(>) − ε (see supplementary Fig. D.10). We refer to
the corresponding value ε > 0 as the monotonicity radius, as it defines the
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Figure 8: Examples of fitness landscapes based on the binding score between DNA se-
quences and transcription factors (TF) from [30]. Data are shown for the transcription
factors: Srf, Glis2 and Zfp740. Lines connect mean values of the binding score shown as
functions of the Hamming distance from the top sequence (a sequence with the highest
DNA-TF binding score). Errorbars represent standard deviations. Similar curves for all
115 landscapes are shown in supplementary Fig. D.11.

neighbourhood of > in terms of fitness values in which the evolved muta-
tion rate control function has monotonic properties. We find substantial
variation in monotonicity radius among transcription factors (see Fig. 7 and
supplementary Fig. D.10)

We hypothesised that the variation in the optimal mutation rate control
functions relates to variation in the monotonicity of the transcription factor
landscapes. Various measures have been proposed for the roughness of bio-
logical landscapes [35]. Here we focus on the Kendall’s τ correlation, which is
directly concerned with monotonicity; specifically, τ measures the proportion
of mutations that, in moving closer to the optimum in sequence space, also
increase in fitness. As shown in Figure 9, we find that τ of the landscape
does indeed have a relationship with the monotonicity radius ε of the evolved
mutation rate control functions (Spearman’s ρ = 0.77, P ≈ 10−16, N = 115).
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Figure 9: Linear relation between monotonicity of the landscapes measured by the
Kendall’s τ correlation (ordinates) and the edge of monotonicity ε (abscissae) of the cor-
responding evolved mutation rate control functions. Three labels show data for three
transcription factors shown in Figs. 7 and 8.

Finally, we hypothesise that these related features of the transcription
factor landscape and mutation rate function themselves relate to the biologi-
cal evolution of this transcription factor system. To test this we looked at the
evolutionary age of transcription factor families [38]. We find the suggestion
of a relationship between the monotonicity of a landscape (τ) and the age of
the transcription factor family, implying that the more recently a transcrip-
tion factor family evolved, the more monotonic is its landscape (Spearman’s
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ρ = 0.23, P = 0.061, N = 115). We find a more substantial relationship
between this evolutionary age and the monotonicity radius ε (Spearman’s
ρ = 0.36, P = 0.0032, N = 115).

6. Discussion

In this paper we have developed and tested theory relating to the control
of mutation rate in biological sequence landscapes. To do so, we had to move
the theory closer to the biology in three ways. Firstly (in Section 2), we gener-
alised Fisher’s geometric model of adaptation, from its Euclidean space (con-
tinuous and infinite) to discrete, finite Hamming spaces of sequences. Doing
so demonstrated that, in contrast to the behaviour in Euclidean space, where
the probability of beneficial mutation behaves similarly at different distances
from the optimum [39], the probability of beneficial mutation, for a given
mutation size, varies markedly depending on the distance from the optimum
(Figure 2). Secondly, we analytically derived functions for optimal control of
the mutation rate minimising the expected Hamming distance to a particular
point (optimal sequence). We demonstrated also a variation of these control
functions dependent on specific formulations of the optimisation problem.
Nonetheless we observed consistency: all optimal functions increase mono-
tonically (Figure 3). Thirdly, we developed theory concerning locally and
weakly monotonic landscapes, demonstrating that all possible landscapes,
including biologically rugged landscapes, can be included in these categories
and thus that, at some level, our theoretical findings regarding mutation rate
control may be applied to realistic biological landscapes. The most striking
differences from existing theory in Euclidean spaces occur when sequences are
short and far from a peak. We therefore used transcription factors binding to
DNA sequences [30] as a test case, which involves both short sequences (eight
base-pairs) and highly evolved binding specificity (i.e. we expect that many
sequences will bind much more weakly than the best). We tested hypotheses
arising from the theory, relating to the nature of optimal mutation rate func-
tions (Hypothesis 1 and Figure 7), the monotonic properties of landscapes
(Hypothesis 2 and Figure 8) and the relationship between the two (Hypothe-
sis 3 and Figure 9). In each case we find evidence to support the hypothesis,
implying that our theory is relevant to these biological landscapes.

We have considered the possibility of varying the general mutation rate for
a single genotype, that is mutation rate plasticity, and identified forms that
such plasticity may be expected to take as a function of fitness in biological
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fitness landscapes. This raises a number of important questions about how
this theory might relate to living organisms. The primary question is whether
such control of mutation rate plasticity actually occurs in nature. Variation
in mutation rate is well known, and organisms with a genetically encoded
raised mutation rate, termed mutators, are found at appreciable frequencies
in various real populations, apparently via their association (that is ‘hitch-
hiking’) with beneficial mutations [40, 41]. Mutation rate plasticity is a more
subtle effect than simply being a mutator. However, as with the evolution of
mutators, for mutation rate control to have evolved at all might be expected
to require so-called ‘second-order selection’, that is selection not directly on
a trait’s effect on an individual’s fitness, but indirectly via the genetic effects
it produces [42]. While rare, there are clear examples of second-order selec-
tion occurring in biology [43], and in our more abstracted system of genetic
algorithms we do see mutation rate plasticity rapidly evolving to particular
forms (Figure 7). This implies that mutation rate control of the sort we have
considered may reasonably be hypothesised in biology.

Most existing discussion of mutation rate plasticity in nature concerns
the observed phenomenon of stress-induced mutagenesis [44]. It has long
been postulated, and most recently argued from a population genetic model
[15], that such plasticity might indeed be adaptive. Such adaptationist hy-
potheses for stress-induced mutation have been subject to protracted debate
[45], but here are present two difficulties. First, it is necessary to exclude
alternative, non-adaptive hypotheses. For instance, it seems likely that a
raised mutation rate could be a physiologically unavoidable direct effect of
stress. This has long been speculated, for instance Muller remarked that
the kinetics of temperature’s effect on mutation rate resembles that of an
ordinary chemical reaction [46]. Second, there needs to be a connection be-
tween the imposed or measured variable, stress, and the variable considered
by the theory, (inverse) fitness. The first difficulty is ameliorated by the
development of explicit theory around non-adaptive hypotheses of mutation
rate variation [13]. However, this population genetic theory is currently de-
fined as an alternative to physiological hypotheses of mutation rate variation,
whereas real organisms experience both physiological and population-genetic
constraints. Integrating the two would help understand what might be ex-
pected in terms of stress-induced mutagenesis without recourse to adaptive
hypotheses. Regarding the second issue, the connection between stress and
fitness, ‘stress’, as typically defined, can be difficult to separate from ‘normal’
physiological processes [47]. This means that stress is not a simple inverse
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of fitness. Indeed, stress may actually be associated with increased fitness
(e.g. in the phenomenon of hormesis [48]). Therefore, while it is possible
that stress-induced mutagenesis is an example of mutation rate control as
discussed in this paper, further work is required to clarify how exactly the
theory relates to that example and perhaps to look for new examples of
mutation rate control.

Given the current uncertainties about the existence of mutation rate con-
trol in nature, it is important to ask whether, nonetheless, mechanisms exist
whereby the processes discussed in this paper could be exercised. The very
existence of mutator phenotypes demonstrates that, physiologically, increas-
ing mutation rates from the low values typical of biology is possible. If it
is possible via genetic change in mutators, it seems highly likely also to be
possible in a controlled way via plastic changes. Indeed, several different
mechanisms for modulating mutation rates have been proposed, notably by
regulating particular DNA repair mechanisms [49, 50, 51] or up regulating
mutagenic repair [52, 53, 54].

While regulation of mutation rate is mechanistically feasible, a more chal-
lenging issue for the relevance of the theory presented here is whether feed-
back mechanisms exist for an individual organism to assess its own fitness
against which to set its mutation rate. Stress is one indicator that may be
assessed by an individual and is known to induce regulatory responses (e.g.
the SOS response in bacteria [55]), but as discussed above, stress may not be
a clear indicator of fitness. We propose three possible alternative feedback
mechanisms, assessing either absolute or relative fitness. Absolute fitness
is the scale used in the theory developed in this paper and concerns the
number of offspring left in subsequent generations. For some organisms it
may be possible to assess absolute fitness by assessing their own reproduc-
tive period relative to an internal or external clock. It is notable that one
of the best characterised examples of stress-induced mutation [14] actually
relates to mutagenesis in ageing bacterial colonies (MAC) and ageing may
be an appropriate biological clock for this mechanism, one that is known to
be associated with mutation rates in human males [56]. Secondly, for organ-
isms with limited dispersal rates, the number of live organisms of the same
genotype in the near vicinity may be a proxy for absolute fitness. Thirdly,
while the fitness scale we have worked with is absolute, we have demonstrated
elsewhere [26, 27] that appropriate mutation rate functions may be approx-
imated by the cumulative distribution function of the population fitnesses
through evolution (also shown in Figure 3). That is, information about an
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organism’s fitness relative to others in its population could in principle act
as feedback, allowing an individual to set its mutation rate in a good ap-
proximation to what would be optimal if absolute fitness were known. These
latter two mechanisms raise the intriguing possibility that population-level
or social effects could be important in determining individual mutation rates.
Testing which, if any, of these processes actually occurs in biology will give
important insights into evolutionary mechanisms.

We have focused on fitness-associated control of mutation rate. However,
mutation is only one evolutionary process where fitness-associated control
may be beneficial. Recombination and dispersal are also evolutionary pro-
cesses that may be under the control of the individual and therefore open
to similar effects. Fitness-associated recombination has been demonstrated
to be advantageous theoretically [57, 58] and identified in biology [59, 60].
Similarly, the idea that dispersal associated with low fitness might be ad-
vantageous has a basis in simulation of spatially differentiated populations
[61, 62]. This association might perhaps be framed more generally in terms
of ‘fitness associated dispersal’. Thus the framework for control of mutation
rate in response to fitness that we have developed here may in future be
applicable to both recombination and dispersal.

To conclude, our development of theory and testing its predictions in
silico not only clarifies ideas around the monotonicity of fitness landscapes
and mutation rate control, it leads directly to questions testable in living
organisms. At the same time there is the potential for greater insight through
further development of the theory. Three directions seem particularly likely
to be fruitful.

First, while it is striking how effective mutation rate control is for adap-
tive evolution without invoking selection in our in silico experiments, it will
be important to consider the role of a selection strategies. Such strategies
may implicitly modify fitness functions. For instance, one of the analyti-
cally derived functions shown in Figure 3 is the mutation rate function for a
DNA space (H10

4 ) which maximises the probability of adaptation (as derived
by Bäck for binary sequences [24]). As outlined in the corresponding sec-
tion, maximising the probability of adaptation is equivalent to maximising
expected fitness of the offspring relative to its parent. This effect may be
implicit in a selection strategy that removes the offspring of reduced fitness
that will inevitably be produced by maximising offspring expected fitness.
Given the importance of selection in biology, we therefore anticipate that
such functions may be closer to putative mutation rate control functions in
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living organisms. This requires further work.
A second area for development is in variable adaptive landscapes. The

importance of time-varying adaptive landscapes in biological evolution is be-
coming increasingly appreciated [63, 64] and variable mutation rates have a
particular role here [65]. It is worth noticing however that our derivation of
optimal mutation rate functions is not dependent on a fixed landscape, as it
depends only on the fitness values. Nonetheless, as we demonstrate for the
transcription factor landscapes, variation in landscapes’ monotonic proper-
ties relates to the shape of mutation rate functions in predictable ways (Fig-
ure 9). This deserves further exploration both theoretically and empirically:
measuring variation in the monotonic properties of real biological landscapes
will be informative about optimal mutation rate functions and vice versa.

Finally, there is potential to develop theory around the role of encoding-
decoding schemes. Landscape monotonicity, as explored here, is not absolute;
it depends on the encoding-decoding scheme (see Figure 6). That is, if the
encoding changes, it may be possible to convert a non-monotonic landscape
into a monotonic one. Biology uses a variety of such encoding schemes which
may themselves evolve. For the transcription factor landscapes used here, the
encoding-decoding scheme is defined by the biochemical interactions between
the transcription factor (a protein molecule) and DNA. Thus, evolution of
transcription factors constitutes evolution of the encoding-decoding scheme,
and indeed we do find a relationship between that evolution (age of families)
and the monotonic properties of the associated landscapes. A more familiar
example of a biological encoding-decoding scheme is the genetic code where
there is much existing work on its evolution (e.g. [66]). Determining how evo-
lution of such codes affects the monotonic properties of biological landscapes
as explored here may therefore provide novel insights into large-scale evolu-
tionary patterns. Ultimately, theory such as this that identifies analytically
or empirically optimal mutation rate control functions may help make pre-
dictions about evolutionary responses to future environmental change [67]
or inferences about the environment(s) within which particular organisms
evolved. In the meantime mutation rate control as developed here will as-
sist directed evolution within biological and other complex landscapes, for
instance in the evolution of DNA-protein binding [68].
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[24] T. Bäck, Optimal mutation rates in genetic search, in: S. Forrest (Ed.),
Proceedings of the 5th International Conference on Genetic Algorithms,
Morgan Kaufmann, 1993, pp. 2–8.

[25] A. E. Nix, M. D. Vose, Modeling genetic algorithms with Markov chains,
Annals of Mathematics and Artificial Intelligence 5 (1) (1992) 77–88.

[26] R. V. Belavkin, A. Channon, E. Aston, J. Aston, C. G. Knight, Theory
and practice of optimal mutation rate control in Hamming spaces of
DNA sequences, in: T. Lenaerts, M. Giacobini, H. Bersini, P. Bourgine,
M. Dorigo, R. Doursat (Eds.), Advances in Artificial Life, ECAL 2011:
Proceedings of the 11th European Conference on the Synthesis and Sim-
ulation of Living Systems, MIT Press, 2011, pp. 85–92.

[27] R. V. Belavkin, Mutation and optimal search of sequences in nested
Hamming spaces, in: IEEE Information Theory Workshop, IEEE, 2011.

[28] R. V. Belavkin, Dynamics of information and optimal control of muta-
tion in evolutionary systems, in: A. Sorokin, R. Murphey, M. T. Thai,
P. M. Pardalos (Eds.), Dynamics of Information Systems: Mathemat-
ical Foundations, Vol. 20 of Springer Proceedings in Mathematics and
Statistics, Springer, 2012, pp. 3–21.

[29] R. V. Belavkin, Minimum of information distance criterion for opti-
mal control of mutation rate in evolutionary systems, in: L. Accardi,
W. Freudenberg, M. Ohya (Eds.), Quantum Bio-Informatics V, QP-
PQ: Quantum Probability and White Noise Analysis, World Scientific,
Forthcoming.

[30] G. Badis, M. F. Berger, A. A. Philippakis, S. Talukder, A. R.
Gehrke, S. A. Jaeger, E. T. Chan, G. Metzler, A. Vedenko, X. Chen,

39



H. Kuznetsov, C. F. Wang, D. Coburn, D. E. Newburger, Q. Morris,
T. R. Hughes, M. L. Bulyk, Diversity and complexity in DNA recogni-
tion by transcription factors, Science 324 (5935) (2009) 1720–3.

[31] J. von Neumann, O. Morgenstern, Theory of games and economic be-
havior, 1st Edition, Princeton University Press, Princeton, NJ, 1944.

[32] H. A. Orr, Fitness and its role in evolutionary genetics, Nat Rev Genet
10 (8) (2009) 531–539.

[33] R. Ahlswede, G. Katona, Contributions to the geometry of Hamming
spaces, Discrete Mathematics 17 (1) (1977) 1–22.

[34] R. Sánchez, R. Grau, Vector space of the extended base-triplets over
the Galois field of five DNA bases alphabet, International Journal of
Biological and Life Sciences 3 (2) (2007) 89–96.

[35] A. E. Lobkovsky, Y. I. Wolf, E. V. Koonin, Predictability of evolutionary
trajectories in fitness landscapes, PLoS Computational Biology 7 (12)
(2011) e1002302.

[36] R. L. Stratonovich, On the theory of optimal non-linear filtration of
random functions, Theory of Probability and its Applications 4 (1959)
223–225, English translation.

[37] A. Wagner, Neutralism and selectionism: a network-based reconcilia-
tion, Nature Reviews Genetics 9 (12) (2008) 965–74.

[38] M. T. Weirauch, T. R. Hughes, A catalogue of eukaryotic transcription
factor types, their evolutionary origin, and species distribution, in: T. R.
Hughes (Ed.), A Handbook of Transcription Factors, Vol. 52 of Sub-
cellular biochemistry, Springer, 2011, pp. 25–73.

[39] H. A. Orr, The distribution of fitness effects among beneficial mutations,
Genetics 163 (4) (2003) 1519–26.

[40] F. Taddei, M. Radman, J. Maynard-Smith, B. Toupance, P. H. Gouyon,
B. Godelle, Role of mutator alleles in adaptive evolution, Nature
387 (6634) (1997) 700–2.

40



[41] P. D. Sniegowski, P. J. Gerrish, R. E. Lenski, Evolution of high mutation
rates in experimental populations of E. coli, Nature 387 (6634) (1997)
703–5.

[42] O. Tenaillon, F. Taddei, M. Radmian, I. Matic, Second-order selection
in bacterial evolution: selection acting on mutation and recombination
rates in the course of adaptation, Research in Microbiology 152 (1)
(2001) 11–16.

[43] R. J. Woods, J. E. Barrick, T. F. Cooper, U. Shrestha, M. R. Kauth,
R. E. Lenski, Second-order selection for evolvability in a large Es-
cherichia coli population, Science 331 (6023) (2011) 1433–6.

[44] R. S. Galhardo, P. J. Hastings, S. M. Rosenberg, Mutation as a stress
response and the regulation of evolvability, Critical Reviews in Biochem-
istry and Molecular Biology 42 (5) (2007) 399–435.

[45] O. Tenaillon, E. Denamur, I. Matic, Evolutionary significance of stress-
induced mutagenesis in bacteria, Trends in microbiology 12 (6) (2004)
264–70.

[46] H. Muller, The measurement of gene mutation rate in Drosophila, its
high variability, and its dependence upon temperature, Genetics 13 (4)
(1928) 279.

[47] J. M. Koolhaas, A. Bartolomucci, B. Buwalda, S. F. de Boer, G. Flugge,
S. M. Korte, P. Meerlo, R. Murison, B. Olivier, P. Palanza, G. Richter-
Levin, A. Sgoifo, T. Steimer, O. Stiedl, G. van Dijk, M. Wohr, E. Fuchs,
Stress revisited: a critical evaluation of the stress concept, Neuroscience
and biobehavioral reviews 35 (5) (2011) 1291–301.

[48] D. Costantini, N. B. Metcalfe, P. Monaghan, Ecological processes in a
hormetic framework, Ecology Letters 13 (11) (2010) 1435–47.

[49] G. Feng, H. C. Tsui, M. E. Winkler, Depletion of the cellular amounts
of the MutS and MutH methyl-directed mismatch repair proteins in
stationary-phase Escherichia coli K-12 cells, Journal of Bacteriology
178 (8) (1996) 2388–96.

[50] J. W. Drake, Avoiding dangerous missense: thermophiles display espe-
cially low mutation rates, PLoS Genetics 5 (6) (2009) e1000520.

41



[51] A. Deem, A. Keszthelyi, T. Blackgrove, A. Vayl, B. Coffey, R. Mathur,
A. Chabes, A. Malkova, Break-induced replication is highly inaccurate,
PLoS Biology 9 (2) (2011) e1000594.

[52] R. G. Ponder, N. C. Fonville, S. M. Rosenberg, A switch from high-
fidelity to error-prone DNA double-strand break repair underlies stress-
induced mutation, Molecular Cell 19 (6) (2005) 791–804.

[53] A. Slack, P. C. Thornton, D. B. Magner, S. M. Rosenberg, P. J. Hast-
ings, On the mechanism of gene amplification induced under stress in
escherichia coli, PLoS Genetics 2 (4) (2006) e48.

[54] S. van der Veen, T. Abee, Generation of variants in listeria monocy-
togenes continuous-flow biofilms is dependent on radical-induced DNA
damage and RecA-mediated repair, PLoS ONE 6 (12) (2011) e28590.

[55] J. Courcelle, A. Khodursky, B. Peter, P. O. Brown, P. C. Hanawalt,
Comparative gene expression profiles following UV exposure in wild-
type and SOS-deficient Escherichia coli, Genetics 158 (1) (2001) 41–64.

[56] A. Kong, M. L. Frigge, G. Masson, S. Besenbacher, P. Sulem, G. Mag-
nusson, S. A. Gudjonsson, A. Sigurdsson, A. Jonasdottir, A. Jonasdottir,
W. S. W. Wong, G. Sigurdsson, G. B. Walters, S. Steinberg, H. Helga-
son, G. Thorleifsson, D. F. Gudbjartsson, A. Helgason, O. T. Magnus-
son, U. Thorsteinsdottir, K. Stefansson, Rate of de novo mutations and
the importance of father’s age to disease risk, Nature 488 (7412) (2012)
471–475.

[57] L. Hadany, T. Beker, On the evolutionary advantage of fitness-associated
recombination, Genetics 165 (4) (2003) 2167–79.

[58] A. F. Agrawal, L. Hadany, S. P. Otto, The evolution of plastic recombi-
nation, Genetics 171 (2) (2005) 803–12.

[59] A. F. Agrawal, A. D. Wang, Increased transmission of mutations by low-
condition females: evidence for condition-dependent DNA repair, PLoS
Biology 6 (2) (2008) e30.

[60] W. H. Zhong, N. K. Priest, Stress-induced recombination and the mech-
anism of evolvability, Behavioral Ecology and Sociobiology 65 (3) (2011)
493–502.

42



[61] C. A. Aktipis, Know when to walk away: contingent movement and the
evolution of cooperation, Journal of Theoretical Biology 231 (2) (2004)
249–60.

[62] C. A. Aktipis, Is cooperation viable in mobile organisms? simple walk
away rule favors the evolution of cooperation in groups, Evolution and
human behavior : official journal of the Human Behavior and Evolution
Society 32 (4) (2011) 263–276.

[63] V. Mustonen, M. Lassig, From fitness landscapes to seascapes: non-
equilibrium dynamics of selection and adaptation, Trends Genet 25 (3)
(2009) 111–9.

[64] S. Collins, Many possible worlds: Expanding the ecological scenarios in
experimental evolution, Evolutionary Biology 38 (1) (2011) 3–14.

[65] M. Stich, S. C. Manrubia, E. Lazaro, Variable mutation rates as an
adaptive strategy in replicator populations, PLoS ONE 5 (6) (2010)
e11186.

[66] S. J. Freeland, R. D. Knight, L. F. Landweber, L. D. Hurst, Early
fixation of an optimal genetic code, Molecular Biology and Evolution
17 (4) (2000) 511–8.

[67] L. M. Chevin, R. Lande, G. M. Mace, Adaptation, plasticity, and ex-
tinction in a changing environment: towards a predictive theory, PLoS
Biology 8 (4) (2010) e1000357.

[68] C. G. Knight, M. Platt, W. Rowe, D. C. Wedge, F. Khan, P. J. Day,
A. McShea, J. Knowles, D. B. Kell, Array-based evolution of DNA ap-
tamers allows modelling of an explicit sequence-fitness landscape, Nu-
cleic Acids Res 37 (1) (2009) e6.

[69] C. E. Shannon, A mathematical theory of communication, Bell System
Technical Journal 27 (1948) 379–423 and 623–656.

[70] R. L. Stratonovich, On value of information, Izvestiya of USSR Academy
of Sciences, Technical Cybernetics 5 (1965) 3–12, in Russian.

[71] R. V. Belavkin, Optimal measures and Markov transition kernels, Jour-
nal of Global Optimization (2012) 1–30.

43



Appendix A. Memoryless Communication

Let (X,X ) and (Y,Y) be measurable sets. We shall now consider an
X × Y -valued stochastic process {(xt, yt)}t≥0 and the ‘similarity’ between
the marginal processes {xt}t≥0 and {yt}t≥0 under special assumptions on the
communication between X and Y . Recall that a Markov transition kernel
from (X,X ) to (Y,Y) is a conditional probability measure P (Yi | x) on (Y,Y),
which is X -measurable for each Yi ∈ Y . We shall often use measure-theoretic
notation dP (y | x) for transition kernel P (Yi | x), especially when it appears
under the integral.

Proposition 1. Let (X,X ) and (Y,Y) be measurable sets, and let {(xt, yt)}t≥0

be a X × Y -valued stochastic process such that elements of the marginal pro-
cess {yt}t≥0 are conditionally independent given corresponding elements of
{xt}t≥0:

dP (yt, . . . , y0 | xt, . . . , x0) = dP (yt | xt)× · · · × dP (y0 | x0)

Then transition kernel dP (yt+1 | yt) can be expressed as a composition of
transition kernels dP (xt | yt), dP (xt+1 | xt) and dP (yt+1 | xt+1) as follows:

dP (yt+1 | yt) =

∫
xt+1∈X

∫
xt∈X

dP (yt+1 | xt+1) dP (xt+1 | xt) dP (xt | yt)

This transition kernel has the following properties:

1. If X and Y are statistically independent, then yt+1 ∈ Y is independent
of yt ∈ Y : dP (yt+1 | yt) = dP (yt+1)

2. If dP (x | y) corresponds to a function x = h(y) and y are uniformly
distributed in the preimage h−1(x), then

dP (yt+1 | yt) =
1

|h−1 ◦ h(yt+1)|
dP (xt+1 = h(yt+1) | xt = h(yt))

3. If dP (y | x) corresponds to a function y = g(x) and x are uniformly
distributed in the preimage g−1(y), then

dP (yt+1 | yt) =
1

|g−1(yt)|

∫
xt+1∈g−1(yt+1)

∫
xt∈g−1(yt)

dP (xt+1 | xt)
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4. If dP (y | x) corresponds to a bijection y = h(x), then

dP (yt+1 | yt) = dP (xt+1 = h(yt+1) | xt = h(yt))

Proof. Transition kernel dP (xt+1 | xt) can generally be expressed as follows:

dP (yt+1 | yt) =

∫
xt+1∈X

∫
xt∈X

dP (yt+1, xt+1, xt | yt)

=

∫
xt+1∈X

∫
xt∈X

dP (yt+1 | xt+1, xt, yt) dP (xt+1 | xt, yt) dP (xt | yt)

Using the Bayes formula and conditional independence dP (yt+1, yt | xt+1, xt) =
dP (yt+1 | xt+1) dP (yt | xt) one can show that dP (yt+1 | xt+1, xt, yt) =
dP (yt+1 | xt+1) and dP (xt+1 | xt, yt) = dP (xt+1 | xt). Indeed

dP (yt+1 | xt+1, xt, yt) =
dP (yt+1, yt | xt+1, xt)∫

yt+1∈Y
dP (yt+1, yt | xt+1, xt)

=
dP (yt+1 | xt+1) dP (yt | xt)∫

yt+1∈Y
dP (yt+1 | xt+1) dP (yt | xt)

= dP (yt+1 | xt+1)

dP (xt+1 | xt, yt) =

∫
yt+1∈Y

dP (yt+1, xt+1 | xt, yt)

=

∫
yt+1∈Y

dP (yt+1, yt | xt+1, xt) dP (xt+1 | xt)
dP (yt | xt)

=

∫
yt+1∈Y

dP (yt+1 | xt+1) dP (yt | xt) dP (xt+1 | xt)
dP (yt | xt)

= dP (xt+1 | xt)

Thus, dP (yt+1 | yt) can be expressed using the composition of transition
kernels dP (yt+1 | xt+1) dP (xt+1 | xt) dP (xt | yt). We now consider four
important cases.
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1. If X and Y are independent, then dP (yt+1 | xt+1) = dP (yt+1) and
dP (xt | yt) = dP (xt), and therefore

dP (yt+1 | yt) = dP (yt+1)

∫
xt+1∈X

∫
xt∈X

dP (xt+1 | xt) dP (xt) = dP (yt+1)

2. If x = h(y) and y are uniformly distributed in the preimage h−1(x),
then

dP (xt | yt) = δh(yt)(xt) , dP (yt+1 | xt+1) =
1

|h−1 ◦ h(yt+1)|

which gives the resulting expression.

3. If y = g(x) and x are uniformly distributed in the preimage g−1(y),
then

dP (xt | yt) =
1

|g−1(yt)|
, dP (yt+1 | xt+1) = δg(xt+1)(yt+1)

The resulting expression is obtained by integrating dP (xt+1 | xt) for
each xt+1 ∈ g−1(yt+1) and xt ∈ g−1(yt).

4. Follows trivially from the fact that |h−1 ◦ h(y)| = 1 for a bijection.

Remark. It is not required in Proposition 1 for any of the stochastic processes
{(xt, yt)}t≥0, {xt}t≥0 or {yt}t≥0 to be Markov. It is well-known, however, that
if {xt}t≥0 is Markov (i.e. dP (xt+1 | xt, . . . , x0) = dP (xt+1 | xt)) and yt are
conditionally independent given the corresponding xt, then the combined
process {(xt, yt)}t≥0 is Markov as well, because in this case dP (xt+1, yt+1 |
xt, yt, . . . , x0, y0) = dP (yt+1 | xt+1) dP (xt+1 | xt). The unobserved process
{xt}t≥0 is often referred to as a hidden Markov model, and xt is estimated
from observed values y0, . . . , yt of the related process {yt}t≥0 (this is called
the filtering problem [36]). Note that the observed process {yt}t≥0 is usually
non-Markov (i.e. dP (yt+1 | yt, . . . , y0) 6= dP (yt+1 | yt)). In the context of
Section 4, the unobserved variable x ∈ X is distance to optimum d(>, ω),
and observed variable y ∈ Y is fitness.
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Appendix B. Monotonicity

Proposition 2. Let (Ω, d) be a metric space, and let f : Ω→ R be a function
with f(>) = sup f(ω) for some > ∈ Ω. If the metric d is monotonic at >
relative to f , then all ω with the same values f(ω) have the same distance
d(>, ω) from the optimum. Conversely, if f is monotonic at > relative to d,
then all ω with the same distance d(>, ω) from the optimum have the same
values f(ω).

Proof. Indeed, using the definition of monotonic d:

f(a) = f(b) ⇐⇒ f(a) ≤ f(b) ∧ f(a) ≥ f(b)

=⇒ −d(>, a) ≤ −d(>, b) ∧ −d(>, a) ≥ −d(>, b)
⇐⇒ d(>, a) = d(>, b)

Using the definition of monotonic f :

d(>, a) = d(>, b) ⇐⇒ −d(>, a) ≤ −d(>, b) ∧ −d(>, a) ≥ −d(>, b)
=⇒ f(a) ≤ f(b) ∧ f(a) ≥ f(b)

⇐⇒ f(a) = f(b)

Appendix C. Point Mutation as Optimal Solution of Variational
Problem

Let (Ω, d) be a metric space, dQ(a ∈ Ω) be a probability measure of the
‘parent’ points, and let dP (b ∈ Ω) be a probability measure of their ‘offspring’
points obtained by a stochastic transformation defined by the transition ker-
nel dP (b | a). The product dP (b | a) dQ(a) defines a joint probability mea-
sure of parents and their offspring. The expected distance between parents
and offspring is

E{d(a, b)} =

∫
Ω×Ω

d(a, b) dP (b | a) dQ(a)

The mutual information between parents and offspring is defined as

I{a, b} =

∫
Ω×Ω

[
ln
dP (b | a)

dP (b)

]
dP (b | a) dQ(a)
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We remind that I{a, b} ≥ 0 with zero if and only if a and b are statistically
independent. The supremum of I{a, b} corresponds to the case when b is
obtained from a deterministically using some injective function on Ω (i.e.
a one-to-one mapping). For example, if b is identical to a (i.e. dP (b | a)
corresponds to the identity mapping on Ω), then I{a, b} = sup I{a, b} = |Ω|
and d(a, b) = 0. Consider the following variational problem

minimise E{d(a, b)} subject to I{a, b} ≤ λ (C.1)

where optimisation is over all joint probability measures dP (b | a) dQ(a)
or over all transition probabilities dP (b | a), if dQ(a) is fixed. Because of
the constraint on mutual information, the transition probabilities dP (b | a)
cannot correspond to any injective function on Ω, and therefore generally b
cannot be identical to a so that E{d(a, b)} > 0. Note that problem (C.1) has
the following ‘inverse’ problem:

minimise I{a, b} subject to E{d(a, b)} ≤ υ (C.2)

The constraint on the expected distance implies that a and b are not inde-
pendent so that I{a, b} > 0. It is well-known in information theory (e.g.
see [69, 70] or [71] for generalisations) that solutions to these variational
problems are members of an exponential family

dPβ(b | a) = e−β d(a,b)−Ψ(β,a) dP (b) , eΨ(β,a) =

∫
B

e−β d(a,b) dP (b)

where parameter β (called the inverse temperature) is defined from one of
the conditions:

I{a, b} = λ , E{d(a, b)} = υ

Moreover, if the metric space Ω is also a group (Ω,+) with invariant measure
ν, and the metric is translation invariant d(a, b) = d(a+ c, b+ c), then these
exponential transition kernels have the following simplified form

dPβ(b | a) = e−β d(a,b)−Ψ0(β) dν(b) , eΨ0(β) =

∫
B

e−β d(a,b) dν(b)

In particular, this is the case when Ω is a normed vector space, and the metric
is defined using the difference of two vectors: d(a, b) = ‖a− b‖. For example,
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the Hamming space Hl
α := {1, . . . , α}l is a finite vector space over a finite

field GF (α) with the Hamming metric defined as dH(a, b) = ‖a− b‖H , where
‖ · ‖H is the Hamming weight. The invariant measure on a Hamming space
is the counting measure ν(b) = 1. Thus, for a Hamming space the optimal
transition kernel solving problems (C.1) and (C.2) is

Pβ(b | a) = e−β ‖a−b‖H−Ψ0(β) , eΨ0(β) =
∑
b∈Hlα

e−β ‖a−b‖H

We now show that the above exponential transition kernel implements point
mutation.

Indeed, because e−β ‖a−b‖H = e−β r for all sequences in the sphere S(a, r) :=
{b : ‖a− b‖H = r} around point a and radius r, the summation of e−β ‖a−b‖H

over all sequences b ∈ Hl
α can be replaced by the summation of |S(a, r)|e−β r

over the spheres of all radii r ∈ {0, . . . , l}. The number of sequences in a
sphere of the Hamming space Hl

α is |S(a, r)| = (α− 1)r
(
l
r

)
, and therefore

eΨ0(β) =
∑
b∈Hlα

e−β ‖a−b‖H =
l∑

r=0

(α− 1)r
(
l

r

)
e−β r = [1 + (α− 1)e−β]l

Thus, Pβ(b | a) has the following simple expression:

Pβ(b | a) =
e−β ‖a−b‖H

[1 + (α− 1)e−β]l

Given a sequence that is n = ‖>− a‖H letters away from >, the probability
of mutation by radius r = ‖a− b‖H is:

Pβ(r | n) = |S(a, r)|Pβ(b | a) = (α− 1)r
(
l

r

)
e−β r

[1 + (α− 1)e−β]l

The inverse temperature parameter β is determined either from condition
I{a, b} = λ or E{‖a − b‖H} = υ. In particular, it is convenient to use the
latter condition in conjunction with the following expression for the expected
mutation radius

E{r} =
d

dβ
Ψ0(β) =

l

1 + eβ/(α− 1)
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Inverting the equation E{r}(β) = υ gives the result

β = ln

(
l − υ
υ

)
+ ln(α− 1)

Changing parametrisation from β to υ, the probability Pβ(r | n) can be
written as binomial distribution with probability of success µ = υ/l:

Pυ(r | n) =

(
l

r

)(
υ

l − υ

)r (
1 +

υ

l − υ

)−l
=

(
l

r

)(υ
l

)r (
1− υ

l

)l−r
Therefore, exponential transition kernel that solves optimisation problems (C.1)
and (C.2) in the Hamming space corresponds to independent substitution of
each letter in a sequence to any other of the α − 1 letters with probability
µ/(α− 1), and this process is known as point mutation.

Appendix D. Supplementary Figures
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Figure D.10: Optimal mutation rate control functions evolved by a Meta-GA on the
transcription factor DNA-binding landscapes from [30]. Ordinates show mutation rates,
and abscissae show the binding scores. Each panel corresponds to a different transcription
factor. Lines connect the average mutation rates obtained in 16 independent trials on a
particular landscape. Errorbars represent standard deviations from the mean. The GAs
do not spend much time at low binding scores meaning that the results become more
random.
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Figure D.11: Landscapes of binding score between 8 base-pair DNA sequences and tran-
scription factors (TF) from [30]. Ordinates show binding scores, and abscissae show Ham-
ming distances from the top sequence (a sequence with the highest DNA-TF binding
score). Each panel corresponds to a different transcription factor. Lines connect mean
values of the binding score for each value of the Hamming distance from the top sequence.
Errorbars represent standard deviations. Note that this dataset does not distinguish be-
tween sequences on opposite strands of the DNA. Therefore, a sequence and its reverse
complement are shown only once and the Hamming distance shown is either to the top
sequence or its reverse complement, whichever is the closer.

58


	1 Introduction
	2 A Generalisation of Fisher's Geometric Model of Adaptation
	2.1 Representation and assumptions
	2.2 Fisher's representation in Euclidean space
	2.3 Probability of adaptation and representation in a Hamming space
	2.4 Random mutation
	2.5 Optimal control of mutation rates

	3 Evolutionary Optimisation of Mutation Rate Control Functions
	3.1 Inner-GA
	3.2 Meta-GA
	3.3 Evolved control functions

	4 Locally and Weakly Monotonic Fitness Landscapes
	4.1 Memoryless communication between fitness and distance
	4.2 Monotonicity of fitness landscapes
	4.3 Weak monotonicity

	5 Evolving Fitness-Based Mutation Rate Control Functions
	5.1 Evolved control functions
	5.2 Landscapes for transcription factors
	5.3 Monotonicity and controllability

	6 Discussion
	Appendix  A Memoryless Communication
	Appendix  B Monotonicity
	Appendix  C Point Mutation as Optimal Solution of Variational Problem
	Appendix  D Supplementary Figures

