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Abstract (single paragraph; limit = 250 words; current word count = 238) 
 

When Functional Electrical Stimulation (FES) is used to restore movement in subjects 

with spinal cord injury (SCI), muscle stimulation patterns should be selected to generate accurate 

and efficient movements. Ideally, the controller for such a neuroprosthesis will have the simplest 

architecture possible, to facilitate translation into a clinical setting. In this study, we used the 

simulated annealing algorithm to optimize two proportional-derivative (PD) feedback controller 



gain sets for a 3-dimensional arm model that includes musculoskeletal dynamics and has 5 

degrees of freedom and 22 muscles, performing goal-oriented reaching movements. Controller 

gains were optimized by minimizing a weighted sum of position errors, orientation errors, and 

muscle activations. After optimization, gain performance was evaluated on the basis of accuracy 

and efficiency of reaching movements, along with three other benchmark gain sets not optimized 

for our system, on a large set of dynamic reaching movements for which the controllers had not 

been optimized, to test ability to generalize. Robustness in the presence of weakened muscles 

was also tested. The two optimized gain sets were found to have very similar performance to 

each other on all metrics, and to exhibit significantly better accuracy, compared with the three 

standard gain sets. All gain sets investigated used physiologically acceptable amounts of 

muscular activation. It was concluded that optimization can yield significant improvements in 

controller performance while still maintaining muscular efficiency, and that optimization should 

be considered as a strategy for future neuroprosthesis controller design. 

 

1. Introduction 
 

Spinal cord injury (SCI) impairs movement and sensation below the level of injury. High-

level SCI, which affects the cervical C1 – C4 levels, compromises voluntary motor function 

below the neck. Although communication between the brain and peripheral neuromuscular 

system is impaired, muscle function remains intact. Functional Electrical Stimulation (FES) is a 

technology that uses electrical current to activate peripheral nerves that otherwise would be 

inactive due to injury (Crago et al., 1996) to restore useful muscular movement. FES 

neuroprostheses have been applied to numerous physiological systems, including upper 

extremity function, which is addressed in the present study.  



Feedforward control is the form most commonly used for clinical FES applications 

(Peckham and Knutson, 2005; Lynch and Popovic, 2008). It entails calculating and applying 

muscle stimulation patterns using available information about the system, without the use of 

feedback signals. It is simple to implement and does not require sensors; however, this absence 

of sensors also makes the success of the movements generated heavily dependent on accurate 

models of the controlled system and environment.  

Feedback control requires the use of sensors, which detect arm properties and allow the 

controller to correct its actions if they deviate from the desired behavior. Upper extremity (UE) 

FES applications of feedback control have included shoulder function (Yu et al., 2001), elbow 

extension (Giuffrida and Crago, 2001; Memberg et al., 2003), hand grasp (Kilgore et al., 1989), 

and wrist stabilization (Lemay and Crago, 1997).  

Additionally, more advanced upper extremity FES controllers have been investigated. 

These can involve the combination of feedforward and feedback control (Abbas and Chizeck, 

1995; Blana et al., 2009), reinforcement learning (Izawa et al., 2004; Thomas, 2009; Jagodnik, 

2014), and artificial neural networks (Giuffrida and Crago, 2005; Hincapie and Kirsch, 2009).  

Many projects that develop advanced controllers compare their new control method to 

more basic feedback control, e.g. proportional-derivative (PD) or proportional-integral-derivative 

(PID), to demonstrate the superiority of the newly-developed advanced controller. However, 

there is often minimal effort invested in adequately tuning the feedback controllers intended for 

comparison, and we hypothesize that these feedback controllers may often perform worse than 

they would have, had they been properly tuned. PID controller tuning algorithms include the 

Ziegler-Nichols method (Ziegler and Nichols, 1942; Astrom and Hagglund, 2004) and the Chien, 

Hrones, and Reswick method (Chien et al., 1952). However, these tuning methods can often 



result in poor performance (Astrom and Hagglund, 2001), particularly for nonlinear systems such 

as FES control. For example, when using Ziegler-Nichols tuning, overshoot is common for 

nonlinear systems (Dey and Mudi, 2009). Such tuning algorithms cannot be considered 

optimized. Because these simpler feedback controllers have not been given the same care in 

tuning as the more advanced controllers to which they are being compared, it is likely that 

inaccurate conclusions may be drawn when comparing these two classes of control algorithms. 

For this reason, we propose to mathematically optimize a proportional-derivative (PD) 

controller gain set for a 3-dimensional human shoulder and arm system, and to compare its 

performance on dynamic reaching tasks to PD controller gain sets tuned using standard 

algorithms. We hypothesize that optimization will yield significantly improved performance 

when compared with standard, non-optimal, tuning methods. PD control was selected because it 

represents a basic feedback control architecture, and because goal-directed reaching movements 

with a single endpoint specified per task are being performed (Heaviside step function with no 

explicit trajectory specified); such a task specification could result in compromised performance 

should an integral control component be added, as in a PID controller. Additionally, PD control 

is consistent with the Equilibrium Point hypothesis, which effectively explains certain features of 

motor control (Bizzi et al., 1992; Feldman et al., 1998).  

We have previously determined for a planar arm system that using simulated annealing to 

optimize PD control can yield excellent performance (Jagodnik and van den Bogert, 2010). To 

extend our previous work, we optimize a PD controller to perform goal-oriented reaching 

movements, using a 3-dimensional biomechanical model of a human arm that has 5 degrees of 

freedom (DOF). We explore two PD controller architectures: one with 2 gains, and another with 

10. The optimized controller gain sets are applied to a large variety of point-to-point reaching 



tasks, and tested for their ability to generalize to tasks for which they had not been optimized, 

and for their ability to withstand muscular fatigue. The performance of our optimized controller 

gain sets is compared with that of three other PD controller gain sets that have not been 

optimized for this system, and conclusions are drawn about the utility of optimization for 

neuroprosthesis controller development.  

2. Methods  
 

2.1. Biomechanical Model  
 

For all experiments described, a 3-dimensional (3D) computational musculoskeletal 

model of the human arm was used that has 5 degrees of freedom (DOF) (Table 1) and 102 

muscle elements grouped into 22 muscles (Table 2) (Chadwick et al., 2009). The model includes 

gravity and uses a fixed scapula as the base of the model. All joints are modeled as hinges, with 

the glenohumeral joint consisting of three such hinges (Chadwick et al., 2009); this joint is 

modeled according to the Y-Z’-Y’’ convention (Fig. 1). Rotations and displacements are defined 

according to Wu et al. (2005). Muscles are modeled as a Hill structure (Zajac, 1988) with 

activation dynamics and contraction dynamics. Passive muscle force was not included because 

the difficulty in correctly estimating the Lslack value for the parallel elastic element (Chadwick et 

al., 2009) for all muscle elements was found to negatively impact model performance. The 

model was implemented for forward dynamic muscle-driven simulation. 

 
 

2.2. Controller Design and Optimization 

 

The PD controller calculates muscle stimulation values proportional to joint angle errors 

and angular velocities (Eq. (1)). The sign of the moment arm is also included in this equation, to 

ensure production of movement in the proper direction, given that each muscle can potentially 

affect multiple DOFs. The PD controller initially calculates 102 outputs, one for each muscle 



element. For each of the 22 muscles, the calculated stimulation values of its N elements were 

averaged, and this mean value was applied to all elements of the muscle, resulting in a total of 22 

unique muscle stimulation values applied per iteration (Fig. 2). This grouping constrained the 

system to a more realistic approximation of an FES system, in which an electrode would 

stimulate discrete muscles or muscle groups, rather than individual muscle elements.  

The PD controller equation is:  
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and Rij(θ) is moment arm, index i represents the muscle, index j represents degree of freedom, 

Kpj is the proportional gain matrix about degree of freedom j, Kdj is the derivative gain matrix 

about degree of freedom j,   is joint angle, and 


  is joint angular velocity. We assume that we 

do not need to know the actual moment arm, which will vary between people and when 

comparing human physiology to our model; it is assumed that the direction of action is the same 

as in our evaluated model. 

Two versions of the PD controller were implemented: one using 2 gain parameters (a 

single proportional gain (Kp) and a single derivative gain (Kd)) and the other using 10 gain 

parameters, with a Kp and a Kd value for each of the 5 DOF sensors (Appendix, Table 1).  

All simulations were implemented using the C programming language, and this work 

made use of the High Performance Computing Resource in the Core Facility for Advanced 

Research Computing at Case Western Reserve University. 



The gain matrix, K, was optimized by the cost function equation (Eq. (3)), which consists 

of three terms: a position error term, measuring the error between endpoint hand position and 

specified target position, in cm; an orientation error term, measuring error between actual 

endpoint forearm orientation and specified target orientation, in degrees; and an effort term 

(feffort, with values ranging from 0.0 (no activation) to 1.0 (full activation)) determined by the 

continuously-valued muscle activation level. Endpoint (i.e., end-of-movement) position and 

orientation errors were used to quantify performance.  

The cost function is defined as: 
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where ip  is endpoint position error of movement i in cm; 
io  is endpoint orientation error of 

movement i in degrees; and act is muscle activation (0.0 to 1.0). Nm = 100 is number of 

movements performed. T is duration of simulated movements, and was selected to be 2 seconds 

because able-bodied reaching movements (~0.5 s) should complete within this period (Gottlieb 

et al., 1997), while allowing additional time for muscle-weakened movements (as in the Fatigue 

Robustness Test, described below) to complete.  



Gain matrices were optimized using the simulated annealing algorithm (Kirkpatrick et al., 

1983; Goffe et al., 1994) over a set of 100 dynamic, goal-oriented reaching tasks. The 

temperature reduction factor reduced the “temperature” (i.e. tendency to explore the state space) 

parameter by a specified percentage at each time step; once this parameter reached a value <10
-6

, 

the optimization was terminated. A range of values for this parameter was tested from 1 x 10
-10

 

to 0.5. Values of 1 x 10
-7

 and 1 x 10
-4

 were found to produce the best results in the 2- and 10-

parameter controllers, respectively. Multiple random seed values were used for each 

optimization, to verify that global optimal solutions were being identified. The initial solution for 

the 2-parameter controller was taken from (Jagodnik and van den Bogert, 2010), and the initial 

solution for the 10-parameter controller was the optimized 2-parameter gain set. 

The wrist was selected as the most distal point for our model; specifically, we used the 

midpoint of the ulnar and radial styloid processes. Our model outputs the transformation matrix 

describing the position and orientation at the endpoint. Position and orientation errors are 

calculated from the relative transformation between final posture and specified target posture. 

Cost function weights Wx in Eq. (3) were selected as follows: W1 = 1.0, W2 = 1.0, W3 = 

80.0. These values balanced the cost function components so that no term would dominate the 

cost function calculation. The controller gains, Kp and Kd, were constrained between 0 and 2. A 

gain of 2 produces full muscle stimulation for 0.5 rad of joint angle error or 0.5 rad/sec of 

angular velocity error.  

The reaching movement task sets used in our work were created in the following way. 

Each goal-oriented reaching task was specified by two values: an initial position and a target 

position, with each position described by one joint angle value for each of the 5 DOF. A set of 25 

static positions (Appendix, Table 2) was selected that represents useful arm positions spanning 



the functional arm workspace (Gresham et al. 1986; Marino et al. 1998; Cornwell et al. 2012). 

From this set of 25 static positions, a set of 600 dynamic reaching movements was generated by 

each position being paired with every other position (excluding static tasks having identical 

initial and target positions). From this set, a subset of 100 tasks was randomly selected for 

controller optimization. The remaining 500 tasks were used for the post-optimization controller 

tests described below. The 100-task training set had mean position displacement (i.e., distance 

between the initial position and specified target position of the wrist) of 36.32 ± 13.65 cm (mean 

± SD), and mean orientation displacement of 37.28 ± 27.87°.  

2.3. Simulation Experiments 

2.3.1. Effect of Controller Architecture 

For this investigation, we optimized a PD controller with 2 gain parameters, and another 

with 10 gain parameters. Refer to Section 2.2 for details.  

 

2.3.2. Generality and Fatigue Robustness Tests 
 

The set of 500 dynamic, goal-oriented reaching movements (Section 2.2) was used to 

perform both the Generality Test and the Fatigue Robustness Test. This set had the following 

properties: mean position displacement of 32.97 ± 14.85 cm, mean orientation displacement of 

34.62 ± 24.85°. 

For the following controller tests, in addition to testing the two gain sets optimized on the 

3D arm model, three other 2-parameter PD controller gain sets were tested (Table 3). The Hand-

Tuned controller is a manually-tuned gain set whose Kd was initially set to 0, and whose Kp was 

increased until target overshoot and ringing were first observed; Kd was then increased until 

overshoot was eliminated. The Ziegler-Nichols gain set used this eponymous frequency-response 

tuning method (Ziegler and Nichols, 1942; Astrom and Hagglund, 1995). The 2D optimized 2-



parameter gain set resulted from our previous work using simulated annealing to optimize a PD 

controller for a 2-DOF planar arm model (Jagodnik and van den Bogert, 2010).  

 

2.3.2.1. Generality Test 
 

The purpose of the Generality Test was to apply the gain sets to tasks for which they had 

not previously been optimized, and to observe the resulting performance. PD controllers using 

each of the 5 gain sets were applied to the 500-task testing set, and accuracy and effort data were 

collected. Kruskal-Wallis ANOVA analysis with multiple comparison was performed to 

compare the five PD controller gain sets for the following performance metrics: endpoint 

position error; endpoint forearm orientation error; and muscular effort measured as the mean 

muscle activation over the entire movement and over only the final timestep of the movement.  

 

 

2.3.2.2. Fatigue Robustness Test 
 

This test examined gain set robustness to weakening the muscles of the arm model. We 

applied 11 levels of fatigue to the muscles over each movement; all muscle elements were 

weakened by the same amount, such that the maximum force that each element could produce 

was decreased by the same percentage. Fatigue levels were selected by counting up by 5%, from 

0% to 50% fatigue, with the upper limit approximating the estimated maximal levels of muscular 

fatigue observed in SCI clinical subjects, assuming that they are regularly being treated using 

electrical stimulation (Thomas et al., 1997b; Belanger et al., 2000). Mean and standard deviation 

values for each PD controller gain set performing at each of 11 fatigue levels were analyzed for 

position error, orientation error, and mean muscular effort metrics.  

 

 



3. Results  
 

The gains resulting from the optimizations performed in this study are presented (Table 

3). This table also lists the additional three PD controller gain sets used for comparison analyses.  

 

 

3.1. Generality Test 
 

Position and orientation errors (Fig. 3) and endpoint and mean effort values (Fig. 4) for 

the PD controllers using all five gain sets on the Generality Test are presented. These values 

include the endpoint position errors on the Generality Test (Fig. 3A). Kruskal-Wallis ANOVA 

analysis showed a significant effect of gain set on position error ( (4) = 606.23, p << 0.001). 

There were significant differences (p < 0.01) between all gain set pairwise comparisons for the 

endpoint position error metric, except for the comparison between the two gain sets optimized on 

the 3D arm model (2-parameter vs. 10-parameter gain sets had position errors of 3.0 ± 3.2 cm vs. 

2.9 ± 3.1 cm, respectively). Animations of controllers specified by different gain sets controlling 

the arm for a set of representative tasks are available as Electronic Supplementary Material.  

Endpoint orientation errors for the Generality Test display an increasing trend across 

tuning methods (Fig. 3B), with the gain sets optimized on the 3D arm model having the smallest 

errors (4.3º ± 3.9º and 3.9º ± 3.2º for 2- and 10-parameter gain sets, respectively), and the 

Ziegler-Nichols gain set showing the largest errors (16.8º ± 10.2º). The Kruskal-Wallis test 

showed a significant effect of gain set on orientation error ( (4) = 816.68, p << 0.001). 

Significant differences (p < 0.01) existed between all gain set pairs for this metric, excepting the 

comparison between the gain sets optimized on the 3D arm model.  

Trends in the endpoint muscular effort values for the Generality Test were minimal (Fig. 

4A). Means and distributions among the five gain sets were very similar (each gain set had 

values of approximately 0.06 ± 0.02), although the two optimized gain sets had several larger 



outlier values in the range of 0.23 – 0.30 that were absent in the other three gain sets. No 

significant differences existed between any pair of gain sets for this metric.  

The whole-task mean effort values for the Generality Test tended to be higher for the 

optimized gain sets (Fig. 4B). The mean values of the two controllers optimized on the 3D arm 

model were 0.11 ± 0.03 and 0.10 ± 0.03 for the 2- and 10-parameter gain sets, respectively, 

while the optimized planar controller, manually-tuned and Ziegler-Nichols gain sets had mean 

values of 0.08 ± 0.02, 0.08 ± 0.02, and 0.07 ± 0.02, respectively. The Kruskal-Wallis test showed 

a significant effect of gain set on mean effort ( (4) = 709.72, p << 0.001).  Significant 

differences (p < 0.01) were observed between all gain set pairs for this metric, excepting the pair 

consisting of the manually-tuned and 2-parameter planar optimized gain sets. 

 

 

 

3.1.1. Illustration of an Example Task from the Generality Test 
 

To demonstrate the relative performance of PD controllers on a specific task, we selected 

a representative movement from the 500-task set (Fig. 5). The endpoint position error (Fig. 6A) 

and endpoint orientation error (Fig, 6B) for the PD controller are shown using all five gain sets. 

Consistent with the trends in Figs. 3 and 4, the two optimized gain sets had the smallest errors, 

while the Ziegler-Nichols-tuned gain set had substantially larger errors than all others. For all 

controllers, the hand position remains constant once the final hand position has been attained.  

 
 

3.2. Fatigue Robustness Test 
 

The results of the Fatigue Robustness Test show much higher errors for the Ziegler-

Nichols gain set compared with the other gain sets (Fig. 7). The performance trends in this figure 

are consistent with those of the Generality Test (Figs. 3, 4, and 6).  



Endpoint position error shows a consistent ordering of gain set behavior (Fig. 7A). The 

two 3D model-optimized gain sets had very similar position error values; even at 50% fatigue, 

this error remained <5 cm. Relative trends among the other three gain sets remained consistent 

with previous figures. Endpoint orientation error shows similar trends (Fig. 7B). In contrast, 

muscular effort across each complete movement (Fig. 7C) shows an opposite ordering of gain set 

properties, compared with the error values of Figs. 7A and 7B.  

4. Discussion  
 

In this study, we optimized a PD controller for a 3D model of the human arm using 

simulated annealing. Two different PD control architectures were investigated, with 2 and 10 

gain parameters. When PD controllers using the optimized gain sets were applied to a large set of 

tasks on which the gains had not been optimized, to test ability to generalize, both gain sets 

achieved excellent accuracy, with the 10-parameter gain set slightly, but not significantly, 

outperforming the 2-parameter gain set on all performance metrics. When compared with three 

other gain sets that had not been optimized for the 3D arm, the two optimized gain sets had 

consistently smaller endpoint position and orientation errors than the other gain sets. The 

Ziegler-Nichols-tuned and manually-tuned gain sets required less muscular effort than the 3D-

optimized gain sets, although muscular effort across all gain sets and tasks remained within a 

physiologically reasonable range.  

When considering composite performance of the PD controller using each gain set, we 

found that our two optimized gain sets had significantly better accuracy while still requiring 

acceptably low levels of muscular activation.  

The PD controllers using the two optimized gain sets had strongly similar characteristics. 

In the Generality Test, Kruskal-Wallis analysis revealed no significant differences between the 



PD controllers using the two optimized gain sets on the metrics of cost function, endpoint 

position error, endpoint orientation error, and endpoint muscular effort. Both controllers had 

good accuracy, with endpoint position and orientation errors averaging ~3 cm and ~4°, 

respectively. In the context of restoring arm movement for SCI rehabilitation, this level of 

accuracy is considered acceptable for achieving useful movement, with the expectation that fine 

adjustments can be made by the subject (e.g. Thomas et al., 1997a, b). Using the optimized 2-

parameter gain set for future clinical applications may be warranted, as manually fine-tuning this 

controller will be much more tractable than modifying 10 parameters.  

We had previously found for a planar arm system that selecting a PD controller with 

more gain parameters does not necessarily result in significantly improved performance 

(Jagodnik and van den Bogert, 2010). Similarly, in the present work, we find again that there 

may not be a functional benefit to using a controller with more parameters, when the 

performance of the simpler 2-parameter gain set is nearly identical to the more complex 10-

parameter version.  

Comparing the movement completion times of our tested tasks against similar tasks in the 

literature, our optimized controllers completed movements in approximately the same time range 

as other studies have reported for moderate-speed movements (Nagasaki, 1989; Uno et al., 

1989). However, one limitation of a static-gain controller with step response is that movements 

cannot be accelerated or slowed without having to modify the controller gains. 

We examined a representative subset of the movements from the Generality Test for 

smoothness and path efficiency. For the two optimized gain sets, trajectories tended to be smooth 

and efficient. For certain tasks, the optimized gain sets showed a small amount of oscillation 



before settling at the target position; this occurred somewhat more often in movements generated 

by the optimized 2-parameter gain set.  

The constant steady state error values seen in all controllers (Fig. 6) indicate that the 

controlled hand remains static once it achieves its final position. This suggests that these 

controllers produce efficient movements that are terminated once the final position is attained. 

This work included delay related to muscle dynamics, which was a characteristic of the 

muscle model used. However, we did not include neural delay; this was a reasonable assumption, 

as FES systems do not involve this form of delay. 

Simulated annealing optimization has the disadvantage that it is a relatively slow 

optimization method (Rutenbar 1989). Additionally, it cannot guarantee a global optimal 

solution (Suman and Kumar 2006). We therefore performed several optimizations of both 

controllers, each with a different randomly-generated seed value, to confirm that each 

optimization result was consistent with the other optimization results for that controller. 

Our arm model assumes a fixed scapula, which limits the range of humeral elevation. 

Glenohumeral stability was not considered for our system. When extending our optimized 

controllers to high-level SCI populations, whose rotator cuff muscles are generally not 

functional, adding stimulation of the rotator cuff muscles should be considered in order to ensure 

shoulder stability (Blana, 2008). 

While PD control will always have fundamental limitations, including the inability to 

adapt its architecture to changing environments and arm properties, we believe that optimizing 

PD control can be a useful step toward developing the most accurate and efficient advanced 

control architectures possible. Although exact correspondence between model and human subject 

is unlikely, thus necessitating fine-tuning in the clinical setting, we believe that useful 



improvements in control can be achieved via optimization. In summary, our results demonstrate 

that mathematically optimizing PD control can yield substantial improvements in performance, 

beyond what standard tuning algorithms can achieve. 

 

5. Conclusion 
 

We have optimized two proportional-derivative (PD) controller gain sets on a 3-

dimensional biomechanical arm model performing goal-oriented reaching movements, and have 

demonstrated that optimization can yield significant improvements in controller accuracy over a 

wide range of dynamic reaching tasks, when compared with three other PD controller gain sets 

that had not been optimized for this system. The optimized controllers used physiologically 

reasonable levels of muscular effort to perform tasks, and they maintained superior performance 

in the presence of variable muscular fatigue. Comparing the performance of our PD controller 

specified by 2 gain parameters against another requiring 10 gains, it was found that the accuracy 

of both controllers was very similar. It is therefore recommended that the simpler 2-parameter 

version of the controller be used in the future. The technique of optimizing PD control permits 

the use of a simple control architecture to achieve accurate and efficient upper extremity control 

with the goal of restoring voluntary arm movement to individuals paralyzed by high-level spinal 

cord injury.  
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Tables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 
Angular limits for 3D arm model degrees of freedom. 
 

Degree of Freedom Min Angle (°) Max Angle (°) 

Plane of elevation        -10 90 
Angle of elevation 5 90 
Internal rotation        -55 70 
Elbow flexion 5         140 
Forearm pronation 5         160 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2 

Muscles included in 3D arm model, with joints crossed by each muscle 

(GH: Gleno-humeral, HU: Humero-Ulnar; RU: Radio-Ulnar) and number 

of elements used to model each muscle. 
 

Muscle Joints Crossed # of Elements 

Deltoid, scapular part GH 11 
Deltoid, clavicular part GH 4 
Coracobrachialis GH 3 
Infraspinatus GH 6 
Teres minor GH 3 
Teres major GH 4 
Supraspinatus GH 4 
Subscapularis GH 11 
Biceps, long head GH, HU, RU 1 
Biceps, short head GH, HU, RU 2 
Triceps, long head GH, RU 4 
Latissimus dorsi GH 6 
Pectoralis major, thoracic part GH 6 
Pectoralis major, clavicular part GH 2 
Triceps, medial head HU 5 
Brachialis HU 7 
Brachioradialis HU, RU 3 
Pronator teres HU, RU 2 
Supinator HU, RU 5 
Pronator quadratus RU 3 
Triceps, lateral head HU 5 
Anconeus  HU 5 

 
 
 
 
 
 
 
 

Table 3 
The five tested controller gain sets.  
 

# Gains Description Kp Kd 

10 

 1.841 0.234 

 1.875 0.172 

3D optimized 1.994 0.124 

 1.298 0.104 

 1.551 0.038 

2 3D optimized 1.797 0.114 
2 2D optimized 0.962 0.128 
2 3D Hand-Tuned 0.80 0.10 
2 3D Ziegler-Nichols 0.468 0.05 
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Figure Captions 
 
Fig. 1. Joint angle definitions for 3D arm model. The shoulder joint is modeled according to the 

Y-Z’-Y’’ convention. 
 
Fig. 2. System block diagram of arm with proportional-derivative (PD) control. The PD 

Controller block is specified by the PD controller equation (Eq. (2)). u() are muscle stimulation 

values, θ(5) are joint angles, and )5(  are angular velocities,  with the subscript “targ” indicating 

target values. 
 
Fig. 3. Boxplots showing (A) endpoint position errors and (B) endpoint orientation errors for the 

Generality Test. ‘3D 10-param’ is the set of 10 proportional-derivative (PD) gains optimized on 

the 3-dimensional arm model; ‘3D 2-param’ is the pair of 2 gains optimized on the 3-

dimensional arm model; ‘2D 2-param’ is the pair of gains optimized on the planar arm model; 

‘Hand-Tuned’ indicates the gain set manually tuned on the 3D arm model; and ‘Ziegler-Nichols’ 

denotes the gain set tuned on the 3D arm model using the Ziegler-Nichols method. Red ‘+’ 

symbols indicate individual outlier values. 
 
Fig. 4. Boxplots showing (A) endpoint muscular effort and (B) whole-task mean muscular effort 

values for the Generality Test. ‘3D 10-param’ is the set of 10 proportional-derivative (PD) gains 

optimized on the 3-dimensional arm model; ‘3D 2-param’ is the pair of 2 gains optimized on the 

3-dimensional arm model; ‘2D 2-param’ is the pair of gains optimized on the planar arm model; 

‘Hand-Tuned’ indicates the gain set manually tuned on the 3D arm model; and ‘Ziegler-Nichols’ 

denotes the gain set tuned on the 3D arm model using the Ziegler-Nichols method. Red ‘+’ 

symbols indicate individual outlier values. 
 
Fig. 5. Example task visualization: front (A) and side (B) views of the initial position (Position 

description: “Hand in front, in usable space #1.”), and front (C) and side (D) views of the target 

position (Position description: “Outstretched to object at right.”). 
 
Fig. 6. (A) Endpoint position errors and (B) Endpoint orientation error for 5 proportional-derivative (PD) 

controller gain sets performing the example reaching task (Figure 5) from the Generality Test. ‘3D 10-

param (opt)’ is the set of 10 PD gains optimized on the 3-dimensional arm model; ‘3D 2-param (opt)’ is 

the pair of 2 gains optimized on the 3-dimensional arm model; ‘2D 2-param (opt)’ is the pair of gains 

optimized on the planar arm model; ‘Hand-Tuned’ indicates the gain set manually tuned on the 3D arm 

model; and ‘Ziegler-Nichols’ denotes the gain set tuned on the 3D arm model using the Ziegler-Nichols 

method. 

 
Fig. 7. Fatigue Robustness test results. Plots show performance metrics as a function of muscular fatigue 

over all muscles. Error bars show standard deviation of the estimated mean. (A) Endpoint position error in 

cm. (B) Endpoint orientation error in degrees. (C) Mean muscular effort over the entire movement. 
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Appendix Table 1 

Gain definitions for the 10-parameter proportional-

derivative (PD) controller gain set. 
 

 DOF1 DOF2 DOF3 DOF4 DOF5 

Kp Kp1 Kp2 Kp3 Kp4 Kp5 
Kd Kd1 Kd2 Kd3 Kd4 Kd5 

 

 

Appendix Table 2 
Static arm positions used to generate training and testing task sets.  

DOF: Degrees of Freedom 
 

Task Description 
Angles (in °) by DOF  

DOF1 DOF2 DOF3 DOF4 DOF5 

1 outstretched to table  80.0    65.0    30.0    10.0   70.0 
2 touch side of face  60.0    89.0   -45.0  139.0   40.0 
3 press elevator button  65.0    85.0    10.0    40.0   70.0 
4 hold mug with a straw  40.0    80.0   -10.0  139.0   75.0 
5 arm outside central workspace    1.0    85.0    30.0    50.0   75.0 
6 armrest position    5.0    25.0      5.0    85.0 140.0 
7 outstretched to countertop  89.0    89.0    30.0      5.0   75.0 
8 outstretched to object at right  70.0    75.0    30.0    15.0   70.0 
9 hand at mouth  65.0    75.0   -30.0  115.0   25.0 

10 hand in front, in usable space #1  40.0    50.0      5.0  100.0   75.0 
11 hand in front, in usable space #2  45.0    60.0    10.0  110.0   80.0 
12 extend to side    5.0    85.0    35.0    10.0   80.0 
13 hang near side, elbow slightly flexed  20.0    30.0   -10.0    30.0   90.0 
14 wave hello    1.0    85.0   -55.0    90.0 100.0 
15 arm in neutral position #1  10.0    50.0    10.0    75.0   85.0 
16 arm in neutral position #2  20.0    55.0    15.0    70.0   80.0 
17 elevate & extend forward  88.0    85.0    40.0    10.0   80.0 
18 extend in 30° plane, elbow flexed  30.0    70.0    45.0    80.0   80.0 
19 extend forward, elbow flexed   65.0    80.0    45.0    40.0   75.0 
20 extend in 50° plane  50.0    75.0    30.0    15.0   75.0 
21 extend to side, slightly forward  10.0    75.0    35.0    10.0   65.0   
22 touch chest  60.0    50.0   -10.0  139.0   10.0 
23 hand at table height  80.0    55.0    30.0      5.0   75.0 
24 pull door open, elbow flexed -10.0    85.0    30.0    90.0   40.0 
25 extend in 45° plane, elbow flexed  45.0    85.0    30.0    55.0   75.0 

 
 
 
 
 
 
 




