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Abstract This paper deals with a low-frequency analysis of a viscoelastic inhomogeneous
bar subject to end loads. The spatial variation of the problem parameters is taken into con-
sideration. Explicit asymptotic corrections to the conventional equations of rigid body mo-
21 tion are derived in the form of integro-differential operators acting on longitudinal force
22 or bending moment. The refined equations incorporate the effect of an internal viscoelastic
23 microstructure on the overall dynamic response. Comparison with the exact time-harmonic
24 gsolutions for extension and bending of a bar demonstrates the advantages of the developed
25 approach. This research is inspired by modeling of railcar dynamics.
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% 1 Introduction
31
% Mathematical modeling of the effect of an internal microstructure, aimed to extend the
8 range of validity of the traditional equations of rigid body dynamics, is of obvious inter-
3 st for various industrial applications. In particular, computational procedures for predict-
35 . . . . S . . . . .

ing longitudinal forces in railway dynamics (e.g., see recent contributions Iwnicki 2006;
% Ansari et al. 2009; Chen et al. 2012) may benefit from taking into account the absorption of
8 Vibration energy by transported loads including raw materials.
% Among the publications on the subject, we mention (Milton and Willis 2007) which
39 r . . . .. .
0 suggests a general methodology within the framework of linear anisotropic elasticity leading
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to a sort of ‘macroscale’ Newton’s second law with a frequency-dependent mass. We also
cite here (Addessamad et al. 2009) dealing with homogenization of viscoelastic periodic
media.

This paper is concerned with a low-frequency analysis of an inhomogeneous viscoelastic
microstructure. The adapted asymptotic methodology was earlier exploited both for peri-
odic and thin functionally graded structures; see, e.g., Craster et al. (2013) and references
therein. The proposed perturbation scheme is developed for an inhomogeneous viscoelastic
bar governed by the conventional integral constitutive relations in linear viscoelasticity with
strains in the left-hand sides; see Sect. 2. In-plane horizontal, vertical and rotational mo-
tions induced by prescribed end forces and moments are studied starting from the classical
one-dimensional theories for bar extension and bending. In the case of bending, the consid-
eration is restricted to a symmetry of problem parameters that enables separation of vertical
and rotational motions. A typical timescale characterizing viscous behavior is assumed to
be much greater than the time elastic waves take to propagate the distance between the ends
of the bar.

Explicit low-frequency corrections to the equations of rigid body motion are constructed
in Sects. 3 and 4. They are given in the form of integro-differential operators acting on
longitudinal force or bending moment. An example of a homogeneous bar is presented in
Sect. 5. A comparison with the exact solutions of the original time-harmonic problems for
extension and bending of a bar (see Sect. 7 and the Appendix) demonstrates the advantages
of the proposed approach. Numerical data are calculated for a Voigt bar.

2 Statement of the problem

Consider a viscoelastic inhomogeneous bar of length 2/ subject to end longitudinal and
transverse forces as well as end bending moments, see Fig. 1. The 1D equations of motion
are written as

F,=mx)uy 2.1

and
Ny +m(x)w, =0, 2.2)
N =Gy, (23)

where x is the longitudinal coordinate, ¢ is time, u is longitudinal displacement, w is trans-
verse displacement, F is longitudinal force, G is bending moment, N is transverse force,
and m(x) is mass per unit length.

Fig. 1 Scheme of loading
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Linear viscoelastic behavior within the classical theories of extension and bending can
be described by the following relations (see, e.g., Cristensen 1982; Rabotnov 1980):

B 1 ! oF (x, 1)
e(x»l‘)—m(F(x:l‘)—fo K(y(x)(t—t]))Tdm) (2.4)
and

1 ! aG(x, 1)
)= ——Gx,t) — K t—t))——=dt |, 2.5
re(x, 1) E(x)l(x)( (x, 1) /(; (y@) @ —m) on 1) (2.5)
where e = u, and k = w,, are the longitudinal and bending strains. We also use the notation:
E(x) is the Young’s modulus, A(x) is cross-sectional area, / (x) is the second moment of
inertia, K (y (x)t) is creep kernel depending on function y (x). For example, for the Voigt
model

K(y@)t)=e v (2.6)
with y (x) = 583 , where 1 (x) denotes viscosity. In this case, we get from (2.4) and (2.5),
respectively,
F(x,1)=AX)[E@e(x, 1) + pu(x)e (x,1)] 2.7
and
G(x,0) =T()[E@)k(x, 1)+ px)e (x,0)]. (2.8)

The boundary conditions corresponding to the end forces and moments shown in Fig. 1
are

F(=l,t)=F(t), F(,t)=F(t) 2.9)

and

N(=Il,t)=N,(t), NU,t)=Ny(t) and G(—=[,1)=G (), G(,t)=Gy().
(2.10)

The goal of the paper is to consider low-frequency motions starting from the governing
equations above. Let us denote typical values of the variable quantities m(x), E(x), A(x),
I(x) and y(x) by my, Eo, Ao, Iy, and yy, respectively. In what follows, we assume that a
typical time scale of viscous behavior yofl is much greater than a characteristic time that
elastic waves take to propagate the distance between the ends of the bar, i.e.,

mo
EyAg

vo ' >1 @2.11)

for horizontal motions governed by (2.1), (2.4) and (2.9), whereas

—1 2 mo
I | — 2.12
Yo >0, Eoly (2.12)

for vertical and rotational motions governed by (2.2), (2.3), (2.5), and (2.10).
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3 Horizontal motion

Consider the problem of (2.1), (2.4) and (2.9) under the asymptotic assumption (2.11). We
introduce dimensionless variables and dimensionless displacement and force by the formu-
lae

x=£&l and t:fyofl 3.
and
u=Iu, and F =cAyEyF,, (3.2)
where
12)’02"10
= "« 3.3
VIR (3-3)

is a small parameter related to (2.11). Then we get

Fue = mu(E)ityee (3.4)

and
e = m (F* - /0 K (@) = 1) Fur dr.) (3.5)

with
Fo(—1,7)=Fi.(t) and F.(1,7) = Fa(t) (3.6)

where

1©="2 E©=5200 m©="0 ad )= yﬁf) (3.7)

and
F,=¢eAogEyF;., i=1,2. 3.8)

Here and below we assume that the integral term in the right-hand side of (3.5) is of order F,.
We are looking for the solution of (3.4)—(3.6) in the form

u*=u0+8u|+--- and F*:f0+8f1+-~-. (39)

At leading order

Sfoe =my({)uge: and  wuge =0 (3.10)

subject to the boundary conditions
fo(=1,v)=Fi.(r) and fo(l,7) = Fa. (7). (3.11)
Immediately, we get from the second equation (3.10) that

up(§,7) =v0(7) (3.12)
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i.e., at leading order we observe horizontal rigid body motion. Next, we have from the first
equation (3.10), taking into account the imposed boundary conditions (3.11), that

1
UOTT/ m*(é)d%-:FZ*_Flw (313)
-1
At the same time,
3
fo=U0n/ m, (&) d&; + F. (3.14)
-1
or
(Fao = F1,) [, mo(&1) d&y
0= ] L Fi.. (3.15)
[ m.(§)dE
At next order
1

fie=m,E)ui; and wu =

m(fo—/o K@) (@ — ) fou d‘L’1> (3.16)

with the homogeneous boundary conditions fi(£1, r) = 0. By integrating the second equa-
tion (3.16), we have

(fo(éh T) — / K (y &) —11)) for, 1. 1’1)dT1> d& + v,
0
(3.17)

& 1
“ =/0 E.(DA. &)

where v (1) is a low-frequency correction to the center displacement. The second derivative
of (3.17) in the dimensionless time is

5 1
Ui =/(; m(fmr(gl, T)(l - K(O)) — Jfor (61, T) K- (0)

_/ Kn()’*(fl)(f—fl))fml (‘gl»tl)drl) dél + Vire- (318)
0

We also get from the first equation (3.16) and the homogeneous boundary conditions
above that

1

1 &
T @) de /4 (5 [/0 E. (€A, ()

Virr =

X (f(m(éh (1= K©0) = for (61, DK (0)
- f Koo (v (ED (T — 1)) for, (61, Tl)dn) dSl] d§. (3.19)
0

Finally, we obtain for the acceleration of the center (§ = 0) that

VUrr = Vorr + EVigr + - ¢

F2*_Fl* 1 ! 4 1
= — € / m*(f)[/ ﬁ
[Lima&ds  [2 m(E)dE I o E.(EDAL&)

@ Springer

Journal ID: 11043, Article ID: 9256, Date: 2015-02-10, Proof No: 1, UNCORRECTED PROOF



«MTDM 11043 layout: Small Condensed v.2.0  file: mtdm9256.tex (Alapsin) class: spr-small-v1.1 v.2014/07/10  Prn:2015/02/10; 9:15  p. 6/17»

«

o N O o & O N =

o g A W N =+ O

AUTHOR’S PROOF

N

2

NN
N O O
o © ™

2

NN
NN NN
AR N =

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

doctopic: OriginalPaper numbering style: ContentOnly reference style: mathphys»

Mech Time-Depend Mater

x (fOrr(glv (1= K(0) — for (61, 1)K~ (0)

= / Kee (&) (@ = 1) for (&w.)dn)dsl}ds, (3.20)
0

or in the original variables
! * F tt )
Ma, = F, — F, — (1 — K(O))/_lm(x)</(; %m)m
! b Fo(xy, 1)
- K, o
© /,,’"(x)</o E(xl)A(xodx‘)dx

1 X 1 t
_/Jm(X)[/O m(/o Kn(y(xl)(t_tl))FOII(xl,tl)dﬁ)dxli|dx7

(3.21)
where a;,(t) = lv,,(t) and M = fiz m(x)dx denote acceleration and mass, respectively, and

bh—-F (7
F(): M m(xl)dx1 +F1. (322)
-l

The derived formula (3.21) contains in the right-hand side a low-frequency correction to
the classical equation of rigid body motion Ma;, = F, — F,. This correction incorporates
the effect of viscoelasticity of an inhomogeneous bar and makes possible calculating dy-
namic response caused by self-equilibrated external loads, i.e., F; = F,. The quantity (3.22)
is crucial for the obtained correction. It corresponds to the low-frequency variation of the
longitudinal force along the length.

A similar formula can be derived for any point of the structure (|x| < [) starting from
the equations in this section, in particular, for the left (x =) and right (x = —/) ends,
respectively. Indeed, we get for the ends of the bar (|x| = FI)

! For(x, 1)
EmAx)

1 X
_/ m(x)(/ —Fon(xl’t) dx1>dx]

i o E@GAx)

1 1 X
_Kt(o)[M/¢ de_/ m(x)(/ del)dx]
0o EMmAK) -l 0o E(x1)A(x)
Fl 1 t

—M/o m(/{) K,,(y(x)(t—tl))thl(x,tl)dtl)dx

1 X 1 t
+/:lm(x)|:/(; m(/; Kn(y(xl)(f—fl))le(xl,fl)dll)dxl]dX,

(3.23)

Mah:Fz—F1+(l—K(O))[M/¥
0

where the upper(lower) sign corresponds to the left (right) end.
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4 Vertical motion and rotation

For the sake of simplicity, we assume a symmetry of the problem parameters specified by
even functions m(x), E(x), I (x), and y (x). In this case the boundary condition (2.10) cor-
responding to the bending vibration can be separated into two parts:

NEFL)=+N"(t),  GEFl.1)=G"@) (4.1)
and
NEFL. ) =N*@t),  GEFl.1)=%G (), 4.2)
where
W= MOEND ) M0N0
and
Gt = W TG0 er 1 i L 0 ; Ga20), 4.3)

In the low-frequency domain, the boundary conditions (4.1) and (4.2) govern perturbed rigid
body vertical motion and rotation, respectively; see Fig. 2.
We introduce a small parameter

=lyi——x1 4.4
e Eolo<< 4.4)

\\\

\

N N
\ llihne N NI

N aaaaa

Fig. 2 Perturbed rigid body
motion: (a) overall, (b) vertical
(¢) rotational _ X SN

N+
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according to (2.12) and dimensionless quantities by the formulae

Eol Eol,
=8 OOG* and Nzglg0

w=Iw*, G N,.
Then, we get from (2.2), (2.3), (2.5), (4.1), and (4.2) that

N*S + m*(é)w*” =0,

N, =G
and
. .
Weee = m(c - /0 K (16)(x — 1)) G, dn)
with
N.Fl,)=+N- and G.(F1,1)=G*
or

N.(F1,0) =N} and G.(¥l,t)==G,.

In the formulae above,

L&) = %f) Gt = EEZ"IO G and N*= #Nﬁ.
We express the sought for solution as
Wy=wo+ewi+---, Ny=no+en +--- and G.,=go+eg +---.
At leading order
nog = —ms (&) Wores Woeg = 0 and no= 8og
subject to
no(Fl, 1) =%N, and g(Fl, 1) =G}
or

no(FL,©) =N and g(Fl,7)==G;.

4.5)

(4.6)
A.7)

(4.8)

4.9)

(4.10)

(4.11)

4.12)

(4.13)

(4.14)

First, consider the vertical motion for which w, (&, ) and G.(&, T) are even functions
of &, whereas N, (&, 7) is an odd function. In this case we get from the second equation

(4.12) that

wo(§, 7) = vo(7)

(4.15)

corresponding to the vertical rigid body motion. We also get, taking into account the bound-

ary conditions (4.13) imposed on ny, that
1
e [ mote)de =2
-1
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and
C2NT fy maEn
Jhma(§) de

Then, we derive from the last equation (4.12), by applying the boundary conditions (4.13)
related to gy, that

nog=

4.17)

2N Lok
80:17*// m (&) d& d& + G (4.18)
[ m(&)dg Je Jo
At next order
nig = —m (§)Wire, ny =g

and
1 T
Wige = m(é’o —/(; K(y:(&)(t — 1)) 80q (£, Tl)dl'1> 4.19)

with the homogeneous boundary conditions n;(F1, ) = g; (1, r) = 0, where g, is given
by (4.18). By integrating twice the last equation (4.19), we have

& ré 1 T
w1=f0/0 m(go@z,w—/o K(y*@l)(r—n))go,l@z,rl)dn)dszdsl

+ vy, (4.20)
leading to
£ b 1
Wi = fo fo m(gm@z,r)(l ~ K(0) ~ g0: (52. DK (0)
— fo K (1067 = 1) g0, 2, ) dﬁ) d& d&; + Ve @21)

Then, from the first equation (4.19) and the homogeneous boundary conditions above

1 1 & ré 1
T =——7 = * e N7 e N T ’ 1 - K 0
T T @) de L’" © Uo /0 ERESTACS <g° {1 —KO)
— goc (&1, 1)KL (0) - f Kee (1 (€27 = 1)) 20 <sz,r1)dn)dszdsl]ds. (4.22)
0

Finally, we obtain for the refined acceleration of the center £ = 0 that

Uz = Vorr + EVigr + -+

SR flm(@[fs—l
N meerde [ ma@yag Jo T Lo EdED LD
X (gOn(%‘l, 7)(1 = K(0)) — goc (£1, T) K. (0)

—f Kn(J/*(“El)(T—Tl))g()zl(é&l,T1)dT1>dfl]d5 (4.23)
0
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or

1 X X1 1
Mav:Nl_N2_[[m(X)[A /o m((l_K(O))GOn(xz’t)

_KI(O)GOt(XZ,t)_/ Kn()/(t—tl))Gon(Xz,tl)dﬁ)dmdxl]dx, (4.24)
0

where a, (1) = v, (1), M = [, m(x)dx and

G1+G2

Go(x,t) = M / / m(xy)dx,dxy + —— 2 (4.25)

In case of a perturbed rigid body rotation, w, (¢, ) and G, (&, t) are odd functions of &,
while N, (&, 7) is an even function. Thus, we get from the second equation (4.12) that

wo(§, T) = &vo (7). (4.26)

Now, we multiply the first equation (4.12) by & and get

Enge + £2m.(§)vo, =0,

By integrating the latter over the length of the structure and taking into account the boundary
conditions (4.14) along with the third equation (4.12), we have

UOT‘[/ S m*(é)dé I ( « T N+) 4.27)
We also deduce from (4.12), (4.14) and (4.27) that

2G, +N;) [, Ema (&) dé
JL 82m (&) di

NF (4.28)

no=—

and

Iy fi (&) dty
' E2m.(6) dé

go=—2(G, +N}) N*. (4.29)

*

Then, integrating the third equation (4.19), we obtain

&1 1 T
wy = /0 /0 EG)LG) <go(§2» T) — [0 K(y(ED(r — ‘ﬁ))gorl (&2, Tl)dﬁ) dg&, dé&,
+ Evy, (4.30)

where gy is now given by (4.29) and v,(t) = w: (£, ) at £ = 0. The second derivative of
(4.30) in the dimensionless time is

31 1
Wire = /(; /(; m (gOrr(%—Za T)(l - K(O)) — 8or (SZa 7T)K.(0)

- / Krr(y*(SZ)(r - rl))gOZl (527 Tl) dTl) d‘§2 dgl + ‘gvlrr- (431)
0
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Finally,

| 1 & & 1
o= emea O [ mene

X (gon(%‘z, D)(1 = K(0)) — gor (52, 1) K- (0)

- / Ko (re(E) (T — 1)) 80y (52, r1)d11) d§, dél] dg. (4.32)
0

The refined angular acceleration of the center & = 0, namely
VUrr = Vorr + Vi + 0,

is given by

G, +N} 1 ! £ora 1
Ver = — 3 - /Sm*(s)[// e
[ &m &) ds [ Em.(E)dE S 0 Jo Ei(6)1.(5)

X (g()n(éz, T)(1 = K(0)) — gor (52, 1) K+ (0)

- / Koo v+ (&) (r — 1)) 20r, (&2, Tl)dfl) dé, d§1i| ds. (4.33)
0

In the original variables the last equation takes the form

1 X px 1
JR=G,— G, —I(N,+N,) — /_l xm(x)[/o /0 eV ((1 — K(0))Goy(x2,1)
= K(0)Go(x2,1) —f Ko (y () (t = 1)) Gy, (x2, l‘l)dﬁ) dxzdxl] dx, (434)
0

where angular acceleration §2 and moment of inertia J are given by £2 = v, and J =
fil x%m(x) dx, whereas

(G2 — G —I(N1 + Np)) [y fxll Xam(xp) dxz dx,
filxzm(x)dx

Go(x. 1) = n guv] +Ny). (435)

Equations (4.24) and (4.34) contain low-frequency corrections to classical equation of
rigid body dynamics Ma, = Ny — N, and J2 = G, — G| — [(N, + N,). The quantities
(4.25) and (4.35) are key for the established approximate formulae. They express the leading
order low-frequency variation of the bending moment along the length of the structure.

5 A homogeneous bar

The derived equations (3.21), (4.24) and (4.34) take a simpler form for the perturbed
rigid body motion of a homogeneous viscoelastic bar. In this case m(x) =m, E(x) = E,
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A(x)=A, I(x)=1,and y(x) =y, and the formulae (3.22), (4.25), and (4.35) become

x+DFR—-(x—-DF

Fy = s 5.1
0 T (5.1)
Ni—N, G +6G;
2 2
= — s 2
Go= (" =x")—p—+— (5.2)
and

xz Ni+ N, 2 2 Gy — G

G0:x<l—2—1>T+x(3l -2 2 (5.3)

By inserting the latter into (3.21), (4.24) and (4.34), we respectively get for the horizontal
motion

mi? .
Ma,=F - F, — G6EA FOtt( _K(O))_FOth(O)
t
_f Kn()/(t _tl))FOII dl‘]), 54
0

for the vertical motion

I .
Ma, =Ny =Ny = = <G0n(1 — K(0) — Go K, (0)

t
_/ Krt(y(l_tl))GOtl dll) 5.5
0
and for a rotation
12 = Go—Gr 1Ny + Ny — E (6 (1 - K(©0)) — Go K, (0)
= L2 1 1 2 40E1 Ot 0r By
t
—f Ki(y )@ —1))Goy, dl1>, (5.6)
0

where M =2ml, J = 2ml?, Fy=F, — F;, and Gy = 35 (N; — N2) + 1(G; + G») in (5.5)
or Go=—(N +No) + £(G> - G)) in (5.6).
As an 111ustrat10n we spec1fy these formulae for a Voigt bar; see (2.6). They become

mi* E(i-n) ¢
Ma, = F, — F| — ﬂ 01‘ - — e r F(), dt 5.7
ml® E@-1)
Maval—Ng—i-M— GOt__ e n GQ dh (5.8)
and
JR2=G,—G,—I(N, +N,) — 40_1< o — —/ e HE Gy, dt1> (5.9)
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6 Numerical results

As an example, consider time-harmonic motion of a homogeneous viscoelastic bar studied
in the previous section. In this case the constitute relations (2.4) and (2.5) become

_F (1+id) 6.1)
e= EA i .
and

G )
k= (+i08) 6.2)

) :/ K(Zz>eizdz, (6.3)
0 w

—iwt

with

where w is the circular frequency. Here and below the factor e is separated.
First, let the horizontal motion of the bar be induced by a force applied to its right end,
i.e., F(—I) =0 and F(l) = F,; see Fig. 1. Then, we get from Eq. (5.4) that

)\2
May, = Fz[l + Fh(l + ia)], (6.4)

=l Eﬂ (6.5)

This formula coincides with a two-term low-frequency expansion of the exact solution of
the associated problem; see (A.6) and (A.7).

It is worth mentioning that in line with the dynamic homogenization procedure developed
for three-dimensional anisotropic elastic solids (Milton and Willis 2007), this result can be
presented in the form of a generalized Newton’s second law with a frequency-dependent
complex mass given by

where

M. (h) = (6.6)

22 ’
1+ 21 +1i8)
The latter concept enables incorporating the effect of internal viscoelasticity into rigid body
dynamics.

Numerical data are presented in Figs. 3 and 4, where a; = Ma/F, is the normalized
acceleration plotted versus the dimensionless frequency ;. A Voigt material is studied. In
this case

Mn
5= B 6.7)
I —irB
with
_Hn A
P IV mE’
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Fig. 3 Horizontal acceleration 1.05 . "Exadt
vs. frequency (real part) Approximate -
1.041
=103
®©
i
1.02
1.01}F
10 005 01 015 02 025 03 035 04 045 05
M
Fig. 4 Horizontal acceleration 0.06F T T "Exact 3
vs. frequency (imaginary part) Approximate ——
0.05F ]
0.04F P
* < ’
®©
0.03F
E
0.02
0.011

00 005 01 015 02 025 03 035 04 045 05
M

The solid and dashed lines correspond to the exact solution (A.9) and the asymptotic for-
mulae (6.4), respectively. The curves related to the values § = 0.1, 1.0, 5.0 are marked with
the numbers 1, 2 and 3. A numerical comparison presented in these figures demonstrates the
advantage of the developed methodology, which considerably extends the range of validity
of the conventional Newton’s second law. There is also a clear potential for increasing the
accuracy of the formula (6.6) using Pade approximations; see, e.g., Andrianov and Awre-
jeewicz (2001).

Now we proceed to the vertical motion caused by equal end forces, i.e., N(/) =
—N(—1) = Ny and G(%I) =0 (see Fig. 2). Thus, Eq. (5.5) becomes

3
Ma, = —2N2[1 + EAﬁ(l + iS)} (6.8)
where
m
Ao =0l [ —. 6.9
ol*\| = (6.9)

The latter formula also corresponds to a two-term asymptotic expansion of the exact solu-
tion, see (A.9) and (A.10).
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Fig. 5 Vertical acceleration vs. 1.35 Exact
frequency (real part) Approximate -

Fig. 6 Vertical acceleration vs.
frequency (imaginary part)

Numerical results are given in Figs. 5 and 6 for the same values of the parameter 8 which

is now is expressed by
W | m
Sl ) 6.10
P=pVEr (610

In addition, we adapt here the notation a;; = —Ma /2N, and define the parameter § in (6.8)
as

= i (6.11)
1 —ix,pB
As before, the two-term formula (6.8) extends the range of the applicability of Newton’s
second law to the vertical motion of a bar. Similarly to the data displayed in Figs. 3 and 4, we
observe a better accuracy of the aforementioned formula at greater values of the parameter
B responsible for the effect of viscosity.
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7 Concluding remarks

The developed perturbation scheme consists of the following steps. First, we determine rigid
body accelerations. Then, we calculate the leading order variation of the longitudinal force
or bending moments along the bar. At next order, we evaluate the sought for corrections to
rigid body accelerations expressed in terms of the aforementioned force and moments. It is
worth noting that a representation of the constitutive relations in the form (2.4) and (2.5)
with strains in the left-hand sides is crucial for perturbing rigid body motions.

The developed approach enables various extensions. In particular, a similar analysis can
be initiated for 2D antiplane and plane problems for a viscoelastic rectangular loaded by
stresses prescribed along its sides. For an elongated rectangular there is an obvious pos-
sibility for adapting higher-order asymptotic structure theories. In this case not only one-
dimensional equations of motion but also related boundary conditions should be refined; see
Babenkova and Kaplunov (2003a) and Babenkova and Kaplunov (2003b). It is clear that the
calculation of low-frequency corrections for more general geometries relies on numerical
calculations. At the same time, the perturbation algorithm presented in the paper should not
be subject to major changes.

The proposed methodology is not restricted to the adapted linear viscoelastic model.
More elaborate theories taking into account nonlinearity and time inhomogeneity of vis-
cous behavior can be taken into consideration, at least for a bar. In addition, the established
integro-differential relations may be applied to various problems of multibody dynamics,
including evaluation of longitudinal forces in railcars.
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was supported by National University of Science and Technology “MISiS”, Russia by grant K3-2014-052.
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Appendix
Substitute the formulae (6.1) and (6.2) into the equations of motion (2.1) and (2.2), (2.3)
specified for a time-harmonic motion of a homogeneous bar and introduce dimensionless
variables. Then, these equations take the form

uge + qpu =0 (A1)
and

Weees — qyw =0, (A2)

where g7 = A%(1+4i8) and g} = A2(1 +i3). Subject them to the boundary conditions corre-
sponding to the problems analyzed in the previous section, i.e.,

FI(1+id)
Uleet =0, tglem = (A3)
and
NP (1 +i8)
Wege le=t1 = F—Fr Wee lg=+1 = 0. (A4)
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The solution of the problem (A.1) and (A.3) is given by

u(g)__F21(1+i8)cosh(qh(l+éj)) (AS5)
- E Agj sinh 2g;, ’ '

In this case the horizontal acceleration of the center (§ =0) is given by

Fqy

=—. A.6
g M sinh g, (A.6)

Over the low-frequency band A, <« 1 we get g, < 1 assuming that § ~ 1 (y ~ w) in (5.3).
As a result, we arrive at the expansion

F a
2214 % ), A.
an =5 ( + 5 + (A7)

The solution of the problem (A.2)-(A.4) can be written as

NyI3(1 +i8) cosgq, coshéq, + coshg, cos&q,

= . A.8

wiE) EI q3(cosq, sinhg, + sing, coshg,) (A-8)

The associated acceleration of the center £ = 0, namely

2N h
= 2N q,,(.cos qv+ ctos qv) ’ (A.9)
M cosgq, sinhg, + sing, coshg,
has the following low-frequency expansion
2N, 3,

v=—— 1+ — ). A.10
“ M<+m%+ ) (A10)
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