
  

 

Abstract Fast and accurate segmentation of musculoskeletal ultrasound images is an on-going challenge. Two principal 

factors make this task difficult: firstly, the presence of speckle noise arising from the interference that accompanies all 

coherent imaging approaches; secondly, the sometimes subtle interaction between musculoskeletal components that leads to 

non-uniformity of the image intensity. Our work presents an investigation of the potential of Convolutional Neural Networks 

(CNNs) to address both of these problems. CNNs are an effective tool that has previously been used in image processing of 

several biomedical imaging modalities. However, there is little published material addressing the processing of 

musculoskeletal ultrasound images, particularly using a panoramic technique. In our work we explore the effectiveness of 

CNNs when trained to act as a pre-segmentation pixel classifier that determines whether a pixel is an edge or non-edge pixel. 

Our CNNs are trained using two different ground truth interpretations. The first one uses an automatic Canny edge detector to 

provide the ground truth image; in the second interpretation, the ground truth was obtained using the same image marked-up 

by an expert anatomist. In this initial study the CNNs have been trained using half of the prepared data from one image, using 

the other half for testing; validation was also carried out using three unseen ultrasound images. CNN performance was 

assessed using Mathew’s Correlation Coefficient, Sensitivity, Specificity and Accuracy. The results show that CNN 

performance when using expert ground truth image is better than in the case of using Canny ground truth image. Our 

technique is promising and has the potential to speed-up the image processing pipeline using appropriately trained CNNs. 

 
Index Terms— Segmentation, Convolutional Neural Networks, Musculoskeletal model, Ultrasound image 

 

 

I. INTRODUCTION1 

 

usculoskeletal Ultrasound Imagery (MUI) arises 

from the response of the sound waves that comes 

from ultrasonography scanning of muscle, tendon, bone 

and other musculoskeletal components. It is a flexible 

imaging modality because not only is it free from ionizing 

radiation and magnetic fields, but it is also very cost 

effective and highly portable. Also, imaging via 

ultrasonography can be performed in real-time; it is non-
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invasive and interestingly allows dynamic free 

movement. However, conventional ultrasonography has 

limitations due to a relatively narrow field of view.The 

panoramic ultrasound imaging technique has arisen to 

extend the field view of the ultrasound imagery [1]. In the 

panoramic imaging technique, a transducer collects a 

panorama of images as a rapid succession of frames: 

keeping the old frame and continues to add a newly 

scanned image to the previous ones. All scanned frames 

are parallel to the direction of scan plane. In this way the 

ultrasonographer can elongate the field of view of the 

image. So, this is a powerful technique that potentially 

allows the clinician to see a whole muscle from origin to 

insertion at one instance. This kind of accurate muscle 

imaging will help in the estimation of important 

geometric parameters that are used in computational 

musculoskeletal models: such as muscle fascicle length 

and tendon length in the long muscles.  

    The main purpose of computational musculoskeletal 

modelling is the analysis of human movement and 

skeletal loading resulting from internal forces in the 

musculoskeletal system in vivo [2]. Fundamental to the 

usefulness of musculoskeletal modelling is the accurate 

determination of these kinds of geometric parameters.  
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Estimates of these parameter values have previously been 

obtained from cadavers [3], and then either treated as 

generic parameters of scaled based on external 

measurements. But subject-specific, automatic, close to 

real time, determination of these parameters when the 

MUI is captured is also highly desirable. That is 

considered essential to achieve personalized 

musculoskeletal model based on individual patient 

musculoskeletal characteristics. Figure 1 illustrates a 

typical scenario: starting from scanning the shoulder 

region by ultrasonography, to image processing which 

includes image enhancement, edge detection and 

segmentation. This allows us to extract the important 

parameters for the musculoskeletal model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 Image processing and segmentation of MUI is not a 

trivial task due to speckle noise, and the low contrast and 

homogeneity of ultrasound gray level intensities [4].   The 

detection and elimination of speckle noise in ultrasound 

images is a challenge because it is multiplicative noise. 

The main reason is the coherent nature of the ultrasound 

image acquisition process [5]. Multiplicative noise is 

more problematic than additive noise since it is not 

amenable to simple linear filtering [6]. There is little 

doubt that despeckling ultrasound images would enhance 

the performance of image classifiers such as our CNNs. 

However, in this initial study we want to see how well the 

noise toleration properties of CNNs are able to cope with 

this noise. 

    The first automatic segmentation technique on MUI 

was in 2014 [4]. This technique addressed at the 

beginning some issues related with MUI such as speckle 

noise reduction and contrast enhancement. Extraction of 

image features was achieved by using a curvelet 

transform. Then the following steps used morphological 

processing like erosion and dilation to eliminate distorted 

pixels. Subsequent automatic segmentation was expected 

to support MUI diagnosis, but the muscle edges were not 

well preserved due to dilation and erosion. Furthermore, 

the MUI was not obtained using the processing 

constraints introduced by the panoramic technique, and it 

was not performed on those muscle groups that we are 

attempting to label as shown in figure 2d, below.  

    Convolutional Neural Networks (CNNs) are one 

member of the Deep Learning Neural Network (DNN) 

family. The simple concept of CNN is inherited from a 

biological process at the visual cortex. CNN consists of 

successions of different types of layers including 

convolutional layers, subsampling layers and finally a 

fully connected classification layer [7]. CNNs have been 

used in many different types of biomedical imaging 

applications. One of these applications is the 

classification of a pixel as a membrane or not in electron 

microscopy biopsy images by Ciresan et. al.[8]. Ciresan’s 

work made extensive use of graphics processing units 

(GPUs) in the training of their CNNs. GPU has a 

significant role in the acceleration of deep neural network 

training [9], but no special GPU architecture is required 

once the CNNs have been trained. In 2013, this scenario 

of pixel classification was also applied to detect mitosis in 

breast cancer images; features that were fed to the 

classifier came from a fusion of CNN features and 

handcrafted features [10]. This work was also concerned 

with identifying mitosis without the need for handcrafted 

features [9]. CNNs have also been applied to X-ray image 

processing applications. Here, CNNs have been used to 

detect bone [11]. Recently, segmentation of blood vessels 

has been introduced as another application of using CNNs 

on retinal photographs [12]. This shows that CNNs are 

finding increasing use in biomedical image processing 

applications. 

    In this work we plan to recruit the CNN to investigate 

its ability to classify whether MUI pixels are edge or non-

edge pixel of muscles. Two different types of ground 

truth images are involved in the development of the 

CNNs. One set of ground truth was obtained from a 

human expert and other comes from commonly used 

automatic method of edge detection. We compare 

between the results to demonstrate the difference in CNN 

performance in these two cases. Additionally, we have 

observed how well CNN can tolerate low image contrast 

and speckle noise. In neither of our two scenarios was any 

special noise reduction or feature extraction pre-

processing applied. 

II. METHODS 

 

    This section describes the approach we have used in 

detail and is organized as follows: A. Data collection and 

preparation; B. CNN configuration, C.CNN training 

details; D. Visualization of output images from training 

and testing processes. E. Quantitative assessment using 

the training and testing data; and F. further final 

validation with additional MUI that was not part of the 

training/testing process. 

 

Scanning   

shoulder region 

of a patient 

Fig. 1 shows the intended application of this work in the image 

processing pipeline, where images have been recorded from patient 
for processing: image enhancement, edge detection and 

segmentation. 
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A. Dataset preparation 

    Data was collected from scanning the left and right 

shoulder regions of a cadaver (male, 74 years old) by 

ultrasonography. Using a LOGIQ e Bt12 instrument, at 

12MHz and the scanning technique use was the 

panoramic technique. The image dimensions were 

initially 550x1024, but following simple cropping of the 

background, the dimensions became 178x783. Four 

sample images were collected, one of the four (sample1) 

was used for CNN training and testing. While the rest of 

the ultrasound image samples (sample2, sample3 and 

sample4) have been used in the final validation. Figures 

2a, 2b, 2c, 2d show for sample1: the original ultrasound 

image, the result of applying an automatic Canny edge-

detector to sample1 to provide a Canny Ground Truth 

(CGT) image, a human expert derived set of edges to be 

used as the Expert Ground Truth (EGT) image and 

manually segmented version of the EGT to more clearly 

delineate the interesting muscle groups, respectively. We 

train and test separate CNNs on the same input image 

(sample1) but with two different ground truth images as 

the target in each case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Initially, each pixel in the original image in Fig. 2a is 

labeled as edge pixel or non-edge pixel based on ground 

truth image and its x,y-coordinates are saved as well. The 

next step is doing a random selection of the labeled pixels 

where it is possible to track any pixel in the training and 

testing. In our work, 6000 and 10000 pixels have been 

selected randomly as edge and non-edge pixels 

respectively, so that the total pixels involved are 16000. 

Training and testing datasets were chosen to have the 

same number of pixels (8000 pixels), and 8000 pixels of 

training data are disjoint from the testing pixels, so there 

is no overlap between the training and testing data (see 

Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

B.CNN configuration 

    Three main types of layers build the solid foundation of 

CNN processing. These layers are Convolutional Layers 

(CL), Max-pooling Layers (ML) and a final Fully 

Connected Layer (FCL). Some important problem-

specific CNN parameters that must be carefully chosen 

include CNN feature-map kernel size (to avoid pixel 

fractions) and the overall number and size of the 

convolutional and max-pooling layers. Each of these has 

a powerful impact on the quality of the final outputs. So, 

several kernel sizes and numbers of feature maps in 

successive CNN layers have been evaluated for overall 

classification accuracy, see below. The FCL layer is a 

standard neural network classification layer [14]; the type 

of activation function used is a sigmoid function. It can be 

bounded within the range [minimum, maximum], so 

allows simple thresholding to get the final output 

classifications [15]. 

 

C.Training 

    All of this work was implemented in MATLAB 8.6. 

The training of each CNN used the input image from Fig. 

2a, but with separate ground truth images from Fig. 2b 

and Fig 2c. The training was done on a computer with an 

Intel core i5 processer (2.5 GHz), 6GB RAM and without 

GPU support. The training dataset preparation will vary 

slightly according to the different window size and the 

CNN configurations. One of the important aspects of 

Fig .2a.  Shows input image sample1 

Fig.2c. shows CGT of sample1, it was extracted by using Matlab 

8.6 

Fig. 2c. Shows EGT image, it was drawn by expert anatomist person 

Skin 
Deltoid muscle 
Glenohumeral joint space & glenoid labrum 

Infraspinatus muscle  
Trapezius muscle 

Fig. 2d.  Illustrates 

labeling of Fig. 2c. by 
expert. 

 Fig.3. shows the process of data preparation for training and testing. 
This process depends on labelling input pixels, a random selection of 

pixels. We can track any pixel which has been selected based on its 

saved x-y coordinates, and distribute unique pixels between training 
and testing equally.  

 

Input image  

Ground truth 

image 

Labelling each pixel in the input 
image based on the ground truth 

image as edge and non-edge pixels 

and save their x-y coordinates. 
 

 

Doing random selection of these 
labelled pixels (6000 pixels from 

edge pixels and 10000 pixels from 

non-edge pixels), we can know where 

pixels are even they have been 

selected randomly because we know 

their x-y coordinates. 

Distribution edge and 
non-edge to prepare data 

for CNN 

Testing (3000 edge pixel 

5000 non-edge) 

Training (3000 edge pixel 

5000 non-edge) 

Training and testing pixels are disjoint sets 



  

CNN training is feature map weight sharing and how 

max-pooling layers can reduce the problem to higher and 

higher levels of important features from the input image. 

However, the time required to train CNNs increases when 

we increase the window size and number of training 

epochs. We have trained and evaluated CNNs on a range 

different epochs (1, 25, 50, 100, and 150) and different 

window sizes. 

 

D.Visualising output images from training and testing: 

    The total number of pixels in the training and testing 

datasets is 16000. These pixels are randomly distributed 

with respect to their x-y coordinates in the input image. 

The output image after passing the training and testing 

data through a CNN can be created respect to the x-y 

coordinates for each pixel, as described in Fig. 4 below. 

 

 

 

 

 

 

 

 

 

 

 

E. Performance measure 

    In addition to qualitatively observing the content of 

output images derived using the process from Fig 4, we 

can quantitatively evaluate the quality of each output 

image. We chose Matthews Correlation Coefficient 

(MCC) as a metric tool when tuning window size for the 

best CNN configuration. MCC is a good metric for 

unbalanced classification datasets. The MCC takes values 

[-1, +1], where: 1 indicates the absolute correlation 

between output image and ground truth image when MCC 

is 0 that means no correlation and; when there is a 

negative  correlation the MCC is -1. MCC can be 

calculated using the following equation: 

 

MCC =
Tp∗Tn−Fp∗Fn

√(Tp+Fp)(Tp+Fn)(Tn+Fp)(Tn+Fn)
                       (1) 

 

Where, Tp is True positive, Tn is True negative, Fp is 

False positive, and Fn is False negative. Tp defines 

properly detected edge pixels, Fp value gives the number 

of incorrect edge pixels, Tn pixels is complement to the 

Tp and Fn is missing edge pixels. Each of these terms can 

be calculated by following equations:- 

 

Tp = |Iout ∩ IGT|                                                        (2a) 

Fp = |Iout ∩ −IGT|                                                             (2b) 

Tn = |−Iout ∩ −IGT|                                                         (2c) 

Fn = |−Iout ∩ IGT|                                                             (2d) 

Where, Iout  is output binary image which has edge or not-

edge pixels, IGT is ground truth image, - Iout is complement 

of Iout  and - IGT is complement of IGT. [14], [16]. 

    Other valuable quantitative classification metrics are 

Specificity, Sensitivity and Accuracy [17]. Each of these 

metrics can be evaluated by the following equations: 

Sensitivity =
Tp

Tp+Fn
                                                     (3) 

 

Specificity =
Tn

Tn+Fp
                                                            (4) 

 

Accuracy =
Tp+Tn

Tp+Fp+Tn+Fn
                                            (5) 

 

F. Final Validation using previously unseen MUI 

    For each of the separate CGT and EGT trained/tested 

CNNs we used three samples of previously unseen 

ultrasound images for validation. Each CNN was 

evaluated using CGT data EGT image data respectively.  

 

III EXPERIMENTAL RESULTS 

 

    Our work has been inspired by the recent work of 

Ciresan et al where CNNs were used to analyse images 

obtained from electron microscopy [8], but our work uses 

another biomedical image source: Musculoskeletal 

Ultrasound Images. In this work, datasets have been 

prepared for training a CNN and testing (see Fig. 3) We 

used different input window sizes from 5 to 95 pixels, 

different CNN configurations and a suitable epoch 

number to illustrate which one of these properties support 

CNN to get the highest level of performance.  

    We found that the best CNN performance occurs after 

100 training epochs. Moreover, regarding tuning of 

window size, in the case of using CGT image the best 

window size was 13, whilst the best window size was 27 

when training CNN on EGT image. The selection of the 

best window size in this work for both ground truth 

images used the maximum value of MCC as the 

optimization criterion. The EGT image described 

ultrasound image edges relatively simply, while CGT 

discovered very complex, potentially spurious edges, in 

the image. So, we did not expect to get agreement in the 

optimization of the window size for the two CNNs. Fig. 6 

and Fig. 7 demonstrate that. 

 

 

 

 

 

 

 

 

 

 

 
Fig.6. Optimization of window size for CGT 
image 

Fig.4. illustrates output image from training and testing dataset 

Pixels appeared as 

red colour in the 

output image 
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and its x-y 

Coordinates 
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Coordinates 

 

   CNN 

   CNN 

Pixels appeared as 
green colour in the 

output image 

Output 

image 



  

 

 

 

. 

 

 

 

 

 

 

 

 

 

Table I and Table II illustrates CNN configurations used 

for both of the above optimal window sizes. 
TABLE I 

CNN CONFIGURATION (13x13) IN THE CASE OF USING CGT 
Window size =13x13 

 

Layer 

 

Type 

 

FM &Neuron 

 

Kernel 
size 

1 Input layer 1Map of 13x13  neurons - 

2 Convolutional  6Maps of 10x10  neurons 4x4 
3 Max-pooling 6Maps of 5x5  neurons 2x2 

4 Convolutional  12Maps of 2x2 neurons 4x4 

5 Max-pooling 12Maps of 1x1 neurons 2x2 
6 Fully connected 1neuron - 

 
TABLE II 

 CNN CONFIGURATION (27x27)IN THE CASE OF USINGEGT 

                                  Window size =27x27 

 
layer 

 
Type 

 
FM &Neuron 

 
Kernel 

size 

1 Input layer 1Map of 27x27  neurons - 

2 Convolutional  6Maps of 24x24  neurons 4x4 

3 Max-pooling 6Maps of 12x12  neurons 2x2 

4 Convolutional  12Maps of 8x8 neurons 5x5 
5 Max-pooling 12Maps of 4x4 neurons 2x2 

6 Convolutional 12Maps of 2x2 neurons 3x3 

7 Max-pooling 12Maps of 1x1 neurons 2x2 
8 Fully connected 1neuron - 

 

    After identification of the optimal CNN properties 

(window size, CNN configuration) and training with these 

properties, CNN is ready for testing. It is possible to 

visualize the output image of CNN from the training and 

testing processes combined, in the case of using EGT 

image as example. The process to obtain this image is 

shown in figure 4. Figure 5 illustrates an output image 

synthesized from training and testing data shown in 

different colors.  

 

 

 

 

 

 

 

 

Of course, in Fig. 5 we see an incomplete image due to 

selection of just 8000 pixels for training and 8000 pixels 

for testing, so not all pixels from the original input image 

are shown (see Fig. 2a). 

    The evaluation of the two CNN approaches (one using 

CGT image and the other using EGT image can be 

succinctly described in the form of two experiments, 

Experiment 1 and Experiment 2. 

 

Experiment 1 

    In Experiment 1, Canny ground truth data was obtained 

by applying a Canny edge-detection operator on the raw 

input ultrasound image [18]. The Canny operator is 

traditional method for image edge detection and is 

automatic since it does not rely on the opinion of an 

expert in the analysis of MUI. However, we do not expect 

it to produce the ideal set of edges for our purposes; it is 

susceptible to noise, and can produce some spurious 

edges: sometimes extra edges and sometimes missing 

some important edges.  

    Figure 8 represents the output image which is obtained 

from the CGT-trained CNN when (window size=13, 

epochs =100). 

 

 

 

 

 

 

 

 

The CGT-CNN output image above shows us just a full 

foreground object and its background, but it is impossible 

to discriminate any boundaries that separate the three 

most important muscles. The Tp, Fp, Tn and Fn versions 

of this output image are shown in figure 9. It is clear in 

the Fp image; there are a lot of error pixels beside real 

edge pixels, so it is easy to see why all three muscles 

seem as one full object in figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig.7. Optimization of window size for EGT image 

Fig. 8. Output image derived by the CGT-CNN using sample1 as 

the input image 

Fig. 9. From top to bottom, Tp, Fp, Tn and Fn of input MUI 

(sample1) 

 

Fig.5. A composite output image produced using the output of a 
trained CNN showing the training pixels (in green) and the 

testing pixels (in red) using the data derived from the EGT image. 

 



  

Experiment 1 Validation:-  

    Three unseen MUI images are involved in the 

validation of this experiment. Figures 10, 11, and 12 

below, show the input image (i.e. samples 2, 3 and 4), the 

CGT for each of the input images and the CGT-CNN 

derived output images respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment 2 

    The EGT images used for this experiment reflect the 

expertise of a person who can match anatomical 

structures with ultrasound imagery. Using the panoramic 

ultrasound images it is possible to see whole muscles, 

bones, and tendons. However, using the panoramic 

technique drawing all of the necessary ground truth 

images is costly. Furthermore, when gathering EGT data 

it is difficult to trace the important information of the 

succession of images and at the same time maintain the 

necessary alignment between the ground truth image and 

the original MUI image. However, training an EGT-CNN 

using this EGT image gives us a clearer set of edges with 

which to reliably differentiate each of the three muscles. 

Additionally, if we can train the EGT-CNN on a 

relatively modest number of images, and have it identify 

the outlines of muscles with good accuracy; the potential 

benefits are very large. Figure 13 shows the EGT-CNN 

output image derived using the sample1 (Fig. 2a) when 

(window size=27, epochs =100). 

 

 

 

 

 

 

 

 

 

To make a contrast to the experiment 1, Fig. 14 provides 

us idea about Tp, Fp, Tn and Fn of the output image in 

Fig.13, Fp image below tells us there is a statistically 

significant deference between Fp of this image and Fp in 

Fig.9. That leads to clear interpretation of image details in 

the case of training CNN by using EGT image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11. From top to bottom, input MUI (sample3), CGT and output  

Image. 

Fig. 10.  From top to bottom, input MUI (sample2), CGT and 

output image. 

Fig.13. Output image derived by the EGT-CNN using sample1 

as the input image 

Fig.12.From top to bottom, input MUI (sample4), CGT and output  

 
 

Fig.14. From top to bottom, Tp, Fp, Tn and Fn of input MUI 

(sample1) 



  

Experiment 2 Validation 

    Again three previously unseen MUI images are 

involved in this validation. Figures 15, 16, and 17 include 

input images of the samples (2, 3, and 4), the equivalent 

EGT images and the relevant EGT-CNN derived output 

images, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A quantitative assessment of three previously unseen 

validation MUI samples obtained from each of the two 

experiments (including data for the first MUI sample)  are 

shown in table III, below. 

 
TABLE III 

 QUANTITATIVE ASSESSMENT OF OUTPUT SAMPLES OF MUI 

Experiment1 (CGT image) 

Samples Accuracy Specificity Sensitivity 

Sample1 0.72 0.706 0.976 

Sample2 0.67 0.65 0.99 
Sample3 0.69 0.68 0.97 

Sample4 0.69 0.67 0.97 

Mean 0.69 0.676 0.976 

Standard 

deviation 

0.0179 0.0202 0.0082 

Experiment2 (EGT image) 

Sample1 0.80 0.796 0.896 

Sample2 0.815 0.823 0.638 

Sample3 0.786 0.787 0.766 

Sample4 0.812 0.817 0.694 

Mean 0.803 0.81 0.75 

Standard 

deviation 

0.0132 0.0170 0.1114 

 

IV.DISCUSSION 

 
    From the figures above, in Experiment 2 we can clearly 

observe the boundaries of three muscles in the Expert 

Ground Truth (EGT) image derived output images. 

Whereas, in Experiment 1 the Canny Ground Truth 

(CGT) derived images make it impossible to see muscle 

boundaries and instead just a solid foreground object can 

be separated from the background pixels. This means that 

qualitatively the output images of CNN by EGT allow 

better identification of individual muscle than CGT-CNN 

output images. 

    In addition Table III gives a quantitative assessment of 

musculoskeletal image samples for the output from 

Experiment 1 and Experiment 2. In Experiment 1, our 

method achieved a lower accuracy value (mean = 0.69) 

while in the Experiment 2 it is mean = 0.8: showing that 

the EGT-CNN is better able to identify muscle 

boundaries. Table III also shows a noticeable difference 

in specificity values between two experiments. The 

specificity in Experiment 2 is higher than in Experiment 1 

because the Experiment 2 output images deliver fewer 

spurious edge pixels (see figure 9 and figure 14 as 

example). This indicates that the performance of CNNs 

trained on EGT image data outperform CNNs trained on 

CGT images. 

    According to the equation (3), the number of Fn pixels 

has a significant impact on the value of the sensitivity. In 

Experiment 1, the average sensitivity value is high 

because Fn is perversely very low: and this is due to the 

output image in this experiment having all of the edge 

pixels detected in the CGT image, making the resulting 

sensitivity value approximately equal to Tp/Tp. However, 

overall better quality pixel classification is achieved in 

Experiment 2.  Experiment 2’s output images give us an 

     Fig.17. Top to bottom, input MUI (sample 4), EGT and output image. 

Fig.15. From top to bottom, input MUI (sample2), EGT and output  
image. 
 

Fig.16. Top to bottom, input MUI (sample 3), EGT and output 
image. 



  

acceptable way to determine the muscle boundary details 

of the input. Whereas, the output images of Experiment 1 

only allows us to separate foreground objects from the 

background. The standard deviation of quantitative values 

in the table III shows us there is little difference between 

values of all samples. 

 

V.CONCLUSION AND FUTURE WORK 

 
    This initial investigation illustrates that CNN has the 

potential to do pixel-based edge-detection on 

Musculoskeletal Ultrasound Images in ways that are akin 

to a human anatomist with expertise in the analysis of this 

kind of image. This is a very promising result, firstly 

because it is the first use of state-of-the-art CNNs that has 

focused on Musculoskeletal Ultrasound Image edge 

detection. Secondly, it has the potential to be a scalable 

solution that could improve the usefulness of important 

approaches in Musculoskeletal Ultrasound Image such as 

the panoramic technique. 

    This paper has reported work that is still in progress 

and for the future we propose to increase the size of the 

CNN training datasets to raise the CNN performance. 

Using GPU will help us in accelerating training and 

reduce implementation time. In addition, so far the 

current work has not used any kind of pre-processing like 

foveation [8], contrast enhancement or any active 

denoising to reduce the effects of speckle noise [4]. If 

carried out this kind of processing is likely to boost CNN 

performance, but at the expense of extra pre-processing 

computation: so a trade-off between these pros and cons 

still needs to be found to overcome the confusion that can 

happen due to speckle noise or low contrast. In this work 

we chose a sigmoid function as the activation function to 

get a simple threshold which separates two output classes. 

We plan some refinements that might improve the CNN 

performance such as changing the activation function to 

use rectified linear units (ReLUs) instead of sigmoid 

function. ReLUs have good properties such as unbounded 

range, and are good at dealing with sparsity and big 

datasets [15]. Another important issue to be addressed is 

the wider collection of Musculoskeletal Ultrasound 

Imagery from healthy persons: because healthy muscle 

fibers are organized as more uniform patterns and may 

therefore allow better ultrasound discrimination between 

muscle tissue and body fat [19]. 
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