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Abstract 

The mechanism of biological silicification in plants remains to be elucidated. There are 

strong arguments supporting a role for the plant extracellular matrix and the -1-3-glucan, 

callose, has been identified as a possible template for silica deposition in the common 

horsetail, Equisetum arvense. The model plant Arabidopsis thaliana, which is not known as a 

silica accumulator, can be engineered to produce mutants in which, following a pathogen-

associated molecular pattern challenge, callose production in leaves is either induced 

(35S::PMR4-GFP) or not (pmr4). We have grown these mutants hydroponically in the 

presence of added silicon to test if the induction of callose results in greater silica deposition 

in the leaves. Callose induction was identified throughout leaf tissue of wild type Arabidopsis 

and the mutant 35S::PMR4-GFP but not in the mutant pmr4. Similarly both wild type 

Arabidopsis and the mutant 35S::PMR4-GFP showed extensive silicification of leaf tissue 

while the pmr4 mutant deposited very little silica in its leaf tissues. Wild type Arabidopsis 

and the mutant 35S::PMR4-GFP responded to a pathogen-like challenge by producing both 

callose and biogenic silica coincidently in their leaf tissues. Trichomes in particular showed 

both callose deposition and extensive silicification. The lack of both induced callose 

deposition and subsequent silicification in the pmr4 mutant strongly suggested that the 

biochemistry of callose formation and deposition were allied to biological silicification in 

Arabidopsis. 

Keywords: Biological silicification, biogenic silica, callose, Arabidopsis, aniline blue, 

PDMPO fluorescence.  
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Introduction 

All plants take up silicic acid (Si(OH)4) via their roots and transport it throughout the tissues 

following water [1]. However, not all plants deposit Si(OH)4 as biogenic silica to the same 

degree with some plants such as Equisetum (horsetails) being considered as silica 

accumulators with as much as 5% of their tissue dry weight being attributed to biological 

silicification [2]. The biochemical machinery which differentiates silica accumulators such as 

rice and horsetail from non-accumulators such as Arabidopsis remains to be understood and 

is the subject of a significant research effort. Of particular interest is the plant extracellular 

matrix as a factor in templating biogenic silica deposition [2] and we have identified the -1-

3-glucan callose as a biomolecule involved in silica deposition in horsetail [3]. We were able 

to show that not only does silica deposition in horsetail mirror callose deposition but also that 

in vitro callose could induce the formation of silica from an under-saturated solution of 

Si(OH)4. To test a role for callose in biological silicification we obtained seeds of wild type 

Arabidopsis and two mutants with differing capabilities with respect to stress-induced callose 

formation [4]. The hypothesis being that under identical conditions of availability of Si(OH)4 

there would be significantly less silica deposition in the mutant engineered to resist callose 

induction (pmr4) than one engineered to show increased callose synthase activity 

(35S::PMR4-GFP).      

Materials and methods 

Hydroponic culture of Arabidopsis Seeds of Arabidopsis (Arabidopsis thaliana) wild type 

(Columbia) and pmr4 (allele 1) and 35S::PMR4-GFP transgenic plants were kindly provided 

by CA Voigt [4]. Seeds were germinated in the dark on 1% agar contained within the lid of a 

punctured Eppendorf tube. The lids are placed in a tube rack which in turn is placed in a tank 

filled with ¼ strength MS medium. Two growth mediums were used, one with (+Si) and one 
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without (-Si) added Si at 2 mM, at pH 5.80±0.05. The latter medium (-Si) included an 

additional 8 mM Na
+
 to account for Si addition as Na4SiO4. After 2 weeks, during which time 

roots have traversed agar plugs and entered the growth medium, the Eppendorf lids were 

placed on a polystyrene support floated on the appropriate growth medium (Figure 1a). After 

a further 3 weeks of a 14h light / 10h dark cycle at 25C growth media were supplemented 

with 35 mg/L chitosan, an elicitor mimicking fungal infection, and known to induce the 

formation of callose [5], and grown for an additional 2 weeks. At this point all plants are 

harvested for examination of both presence of tissue callose and silica deposition.  

Identification of callose in tissues We used an established method for the identification of 

callose in plant tissue using aniline blue [6]. Briefly, leaves from plants from each group are 

detached and fixed and destained in a 1/3 acetic acid/ethanol solution until approximately 

transparent. Leaves are then washed for 30min. in 150 mM Na2HPO4 and then incubated for 

2h in 150mM Na2HPO4 which included 0.01% aniline blue. Images of callose were obtained 

using an Olympus BX50 fitted with a BXFLA fluorescent attachment using a U-MWU filter 

cube (Ex: 333-385 nm; Em: 400-700 nm). A ColourView III digital camera (OSIS FireWire 

Camera 3.0 digitizer) was used to capture images in conjunction with CELL* Imaging 

software (Olympus Cell* family, Olympus Soft Imaging solutions GmbH 3.0). Callose was 

identified as distinct green fluorescence. 

Digestion of plant tissue Leaves from plants from each group were detached and dried to a 

constant weight in an incubator at 37C at which point 0.1 g of each were placed in acid-

washed 20 mL PFA teflon vessels. The samples were then digested in a 1:1 mixture of 

15.8M HNO3 and 18.4M H2SO4 using a Mars Xpress microwave oven (CEM Microwave 

Technology Ltd.). The acid digests were clear and, upon dilution with 8 mL of ultrapure 

water, were filtered and the residues washed several times with further volumes of ultrapure 
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water. Filters were then placed in plastic Petri dishes in an incubator at 37C to achieve 

dryness over several days. Dry residues off each filter were then collected into Bijoux tubes 

and stored in a dry, sealed, Perspex cabinet. 

PDMPO labelling of Arabidopsis-derived silica We used an established method for the 

identification of biogenic silica in plant tissues [3]. Briefly, silica residues collected from 

filters were suspended in 20 mM PIPES at pH 7 and containing 0.125M 2-(4-pyridyl)-5-((4-

(2-dimethylaminoethylaminocarbamoyl)-methoxy) phenyl) oxazole (PDMPO; LysoSensor 

Yellow/Blue DND-160, 1 mM in DMSO). Suspensions were left for 24h to allow the reaction 

between silica surfaces and PDMPO to achieve completion after which 50L samples were 

transferred to a cavity slide and viewed using an Olympus BX50 fitted with a BXFLA 

fluorescent attachment using a U-MWU filter cube (Ex: 333-385 nm; Em: 400-700 nm). A 

ColourView III digital camera (OSIS FireWire Camera 3.0 digitizer) was used to capture 

images in conjunction with CELL* Imaging software (Olympus Cell* family, Olympus Soft 

Imaging solutions GmbH 3.0). 

     

Results and discussion 

Germination and plant growth There were no differences in germination and plant growth 

between those treatments which were (+Si) or were not (-Si) supplemented with silicon. 

However, wild type seeds germinated better than seeds of either of the transgenic plants. 

Similarly, wild type plants grew larger than either pmr4 or 35S::PMR4-GFP plants though all 

plants appeared healthy even following challenges with chitosan (Figure 1b). 

Identification of callose in leaves Wild type plants grown in both Si treatments and 

subsequently challenged with chitosan showed significant positive callose fluorescence on 
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the leaves and especially associated with trichomes and mesophyll tissue (Figure 2a,b). Some 

callose fluorescence was associated with venation. A high level of positive callose 

fluorescence associated with similar areas of the leaf was also seen in the 35S::PMR4-GFP 

plants (Figure 2c,d). The pmr4 plants showed no positive callose fluorescence except a very 

small amount associated with venation (Figure 2e,f).  

Identification of silica deposition in leaves Biogenic silica was only observed in plants 

grown in treatments supplemented with silicon (+Si). Wild type plants challenged with 

chitosan showed significant, up to 0.5% silica/dry weight of leaf tissue, and extensive silica 

deposition in leaves. Trichomes were quite heavily silicified as were significant areas of 

mesophyll tissue (Figure 3a,b). A similar degree of silica deposition was also observed in the 

35S::PMR4-GFP plants with many silicified trichomes being collected from leaf digests 

(Figure 3c,d). In comparison hardly any silica was collected from digests of leaves of the 

pmr4 plants with only silica remnants being identified by PDMPO fluorescence (Figure 3e,f). 

We have tested the hypothesis that deposition of biogenic silica will be significantly 

enhanced in a non-silica accumulator which has been engineered to induce callose formation 

following a challenge with a pathogen-associated molecular pattern (PAMP). We grew 

hydroponically (i) wild type Arabidopsis thaliana, (ii) the pmr4 mutant which is expected not 

to produce PAMP-induced callose and (iii) the 35S::PMR4-GFP mutant which is expected to 

produce significant PAMP-induced callose and challenged all plants with chitosan. Induction 

of callose deposition in leaves was identified qualitatively using aniline blue fluorescence. 

Wild type plants showed callose deposition throughout tissues and especially in the 

mesophyll and associated with trichomes (Figure 2a,b). Callose deposition was similar in the 

leaves of the 35S::PMR4-GFP mutant (Figure 2c,d) though perhaps more extensive than in 

wild type. Callose deposition was almost completely absent in the pmr4 mutants except for 

small amounts associated with venation (Figure 2e,f). There were no substantive differences 
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in callose deposition between plants grown in silicon-supplemented (+Si) and non-silicon-

supplemented (-Si) growth media. The identification of silica deposition in the leaves of wild 

type and mutant Arabidopsis was achieved qualitatively using PDMPO fluorescence. 

Microwave-assisted acid digestion of plant tissue only leaves silica as a residue and when this 

is collected by filtration it can be viewed using fluorescence microscopy. A significant 

amount of biogenic silica, up to 0.5% of dry weight of tissue, was collected from the leaves 

of wild type Arabidopsis. Silicified structures were identified as trichomes, parenchyma and, 

occasionally, epidermal cells as well as other unidentifiable remnants (Figure 3a,b). Biogenic 

silica was similarly abundant in digests of the 35S::PMR4-GFP mutants where silicified 

trichomes were especially represented (Figure 3c,d). While both types of plant which 

demonstrated significant deposits of callose additionally showed relatively high levels of 

biological silicification the pmr4 plants showed neither significant deposits of callose nor 

extensive biological silicification. Arabidopsis has 12 genes encoding callose synthase with 

PMR4 (the subject of this study) being associated with induction of callose synthase 

following abiotic or biotic stress [4]. Therefore callose was identified associated with 

venation in the pmr4 mutants and likewise remnants of silica were obtained from digests of 

leaves of pmr4 mutants some of which had the appearance of parts of trichomes but these 

silica deposits were rare and difficult to find using fluorescence microscopy (Figure 3e,f). We 

have been able to show a clear if qualitative relationship between the induction of callose and 

deposition of biogenic silica in Arabidopsis, a plant not known for accumulating significant 

amounts of silica in its leaves. Our results for callose induction strongly support research 

identifying a role for callose in resistance to powdery mildew in Arabidopsis [4] while our 

findings for silica deposition suggest a mechanism for silicon-induced resistance to the same 

pathogen in Arabidopsis [7,8]. We reported previously that callose-associated silica 

deposition provided protection against powdery mildew in Equisetum arvense (horsetail) and 
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we speculated that biogenic silica presented a physical barrier to the entry of the pathogen 

[3]. The coincident deposition of biogenic silica and callose in Arabidopsis may provide 

resistance to powdery mildew by a similar mechanism. In horsetail we were able to 

demonstrate almost mirror-like depositions of callose and silica during the development of 

stomata [3]. Herein we have seen similarities with the development of trichomes with silica 

deposition appearing to mirror the role of callose in the development of these epidermal hair 

cells [9] (Figure 4). Silicification in the 35S::PMR4-GFP mutants was particularly evident in 

the apical part of trichomes above the Ortmannian ring (Figure 3c,d) which is known to be 

rich in callose [9]. Biogenic silica is clearly intimately associated with the machinery of the 

plant extracellular matrix [2] and almost certainly adventitiously so. However, future 

experiments will be required to confirm the nature of these relationships and whether callose 

and similar biomolecules are templates for biological silicification more generally.                 

Conclusions 

We have shown that induction of callose synthesis resulted in increased deposition of 

biogenic silica in Arabidopsis. The results support our previous observation of a link between 

callose and biological silicification in Equisetum and they add further weight to the 

suggestion that callose acts as a template for the deposition of biogenic silica in plants and 

algae.  
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Figure Legends 

Figure 1 a. Schematic of the experimental apparatus for hydroponic culture of Arabidopsis. 

b. Experimental set-up showing 5 week old Arabidopsis prior to harvesting. 

Figure 2 Fluorescence imaging of aniline blue staining of callose in leaves of 

Arabidopsis. Callose is identified as bright green fluorescence. a,b. Wild type, callose 

fluorescence is found associated with trichomes (a) and mesophyll tissue (b); c,d. Extensive 

deposition of callose throughout leaf tissues in the mutant 35S::PMR4-GFP; e,f. Callose 

fluorescence only seen associated with venation in the pmr4 mutant. Scale bars are all 

500m. 

Figure 3 PDMPO fluorescence of silica isolated from digests of leaves of Arabidopsis. 

a,b. Wild type showing extensive silicification of leaf tissue (a) and specifically associated 

with trichomes and mesophyll (b); c,d. Many heavily silicified structures in leaves taken from 

the 35S::PMR4-GFP mutant (c) and especially trichomes (d); e,f. Very limited evidence of 

silica deposition in the pmr4 mutant just small remnants of structures including trichomes. 

Scale bars are 500m for a,c,e,f and 200m for b,d. 

Figure 4 The colocalisation of callose (a) and silica (b) in trichomes. 
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