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Abstract 26 

 27 

Tenofovir disoproxil fumarate, the prodrug of nucleotide reverse transcriptase inhibitor 28 

tenofovir, shows high efficacy and relatively low toxicity in HIV patients. However, long-29 

term kidney toxicity is now acknowledged as a modest but significant risk for tenofovir-30 

containing regimens, and continuous use of tenofovir in HIV therapy is currently under 31 

question by practitioners and researchers. Co-morbidities (hepatitis C, diabetes), low body 32 

weight, older age, concomitant administration of potentially nephrotoxic drugs, low CD4 33 

count, and duration of therapy are all risk factors associated with tenofovir-associated tubular 34 

dysfunction. Tenofovir is predominantly eliminated via the proximal tubules of the kidney, 35 

therefore drug transporters expressed in renal proximal tubule cells are believed to influence 36 

tenofovir plasma concentration and toxicity in the kidney. We review here the current 37 

evidence that the actions, pharmacogenetics and drug interactions of drug transporters are 38 

relevant factors for tenofovir-associated tubular dysfunction. The use of creatinine and novel 39 

biomarkers for kidney damage, and the role that drug transporters play in biomarker 40 

disposition, are discussed. The lessons learnt from investigating the role of transporters in 41 

tenofovir kidney elimination and toxicity can be utilised for future drug development and 42 

clinical management programs. 43 

 44 
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Introduction 51 

Tenofovir, administered as the prodrug tenofovir disoproxil fumarate, is a nucleotide reverse 52 

transcriptase inhibitor which is recommended for use in first-line treatment of HIV infection. 53 

The drug has many beneficial characteristics, including once-daily dosing, high efficacy and 54 

lack of interaction with cytochrome P450 enzymes (Boffito et al., 2005). Tenofovir shows a 55 

favourable safety profile compared to other nucleoside reverse transcriptase inhibitors. 56 

However, long-term kidney toxicity is acknowledged as a modest but significant risk for 57 

tenofovir-containing regimens (Cooper et al., 2010). It has been observed in a particular 58 

clinic that tenofovir-associated nephrotoxicity is the most common single reason for HIV-59 

related referral to specialist renal services, accounting for more than 20% of consultations 60 

(Hall et al., 2011a). The mechanisms involved in the observed kidney tubular dysfunction are 61 

not fully understood, but direct mitochondrial toxicity by tenofovir, interference with normal 62 

tubular cell function, or a combination of both have been suggested (Hall et al., 2011a). Co-63 

morbidities (hepatitis C, diabetes), low body weight, older age, concomitant administration of 64 

potentially nephrotoxic drugs, low CD4 count, and duration of therapy are all risk factors 65 

associated with tubular dysfunction (Rodriguez-Novoa et al., 2010). Risk factors may also 66 

involve drug transporters expressed in renal proximal tubule cells. Indeed, evidence is 67 

emerging that high concentrations of tenofovir in plasma are associated with development of 68 

kidney damage, and it is likely that drug transporters play a role in this association (Barditch-69 

Crovo et al., 2001;Rodriguez-Novoa et al., 2009a) as well as in perturbations of the 70 

commonly used biomarker, creatinine (Fernandez-Fernandez et al., 2011b) 71 

 72 

Drug transporters can be divided into two superfamilies; the Solute Carrier (SLC) 73 

superfamily and the ATP Binding Cassette (ABC) superfamily. It is acknowledged that drug 74 

transporters play a significant role in the absorption, distribution, metabolism, elimination 75 



 

 

(ADME), efficacy and toxicity of numerous drugs. They are detectable in virtually all tissues, 76 

although the precise orientation and function of many transporters are not fully understood 77 

(Bleasby et al., 2006). Drug transporters play a key role in controlling the movement of drugs 78 

between the blood and the liver (Faber et al., 2003), intestine (Estudante et al., 2013) and 79 

kidney (Morrissey et al., 2013). Furthermore, drug transporters are involved in the 80 

penetration of drugs into target tissues such as the lymphatic system in antiretroviral 81 

treatment (Ford et al., 2004), and also act to protect tissues such as the central nervous system 82 

from potenitally toxic drugs and xenobiotics (Ballabh et al., 2004). Prior to the licensing of a 83 

new drug, the Food and Drug Administration (FDA) and European Medicines Agency 84 

(EMA) require that certain tests are performed which determine if a drug is a substrate or 85 

inhibitor of a selection of clinically-relevant transporters (Table 1). 86 

 87 

Tenofovir is predominantly eliminated via the proximal tubules of the kidney, and this review 88 

summarises our current understanding of how kidney transporter polymorphisms and drug 89 

interactions may influence tenofovir-associated nephrotoxicity. The implications and 90 

knowledge gaps are also described, along with suggestions for future transporter studies. The 91 

lessons learnt from investigating the role of transporters in tenofovir kidney elimination and 92 

toxicity can be utilised for future drug development and clinical management, which is 93 

discussed in this review. 94 

 95 

Kidney transporters 96 

The kidney, along with the liver, is a key organ involved in systemic clearance of drugs, with 97 

around 32% of currently used drugs in the USA exhibiting significant (>25%) renal 98 

elimination (Morrissey et al., 2013). Elimination can occur via glomerular filtration, tubular 99 

secretion, or a combination of both pathways. The process of tubular secretion is two-fold: 1) 100 



 

 

the drug requires access to the proximal tubule cells from the blood via the basolateral 101 

membrane, and 2) the drug is removed into the luminal fluid via the apical membrane. This 102 

process can occur passively, but in many cases drug transporter proteins are involved in 103 

facilitating drug movement across membranes and actively transporting drugs against 104 

concentration gradients.  105 

 106 

Transporters in the kidney are involved in drug-drug interactions, particularly in cases where 107 

transport is the main or rate-limiting transmembrane route for a drug. The kidney transporters 108 

which are the focus of this review are those where a functional role in drug disposition has 109 

been demonstrated or is suspected (Table 2) and have been separated into cationic 110 

transporters, anionic transporters, transporters with less or unknown specificity in substrate 111 

charge, and ATP-binding cassette efflux transporters. It is important to recognize that 112 

transporter expression is often not exclusive to a single site in the body, and many have well-113 

defined involvement in tissues other than the kidney (Kis et al., 2010;DeGorter et al., 2012). 114 

Several kidney transporters are capable of influencing the elimination of antiretroviral drugs, 115 

including tenofovir (Kis et al., 2010). The interactions between tenofovir and kidney 116 

transporters are discussed in more detail in a later section. 117 

 118 

Cationic transporters 119 

SLC22A1, SLC22A2 and SLC22A3 are organic cation transporters expressed on the 120 

basolateral membrane of proximal tubule cells. They control the entry of cationic small 121 

molecules, including creatinine and numerous drug substrates, into the epithelial cells 122 

(Gorboulev et al., 1997;Grundemann et al., 1999;Dresser et al., 2001;Kimura et al., 123 

2002;Urakami et al., 2004;Zhu et al., 2010;Ciarimboli et al., 2012;Tzvetkov et al., 2013). 124 

Transporters relevant to this review along with representative drug and endogenous substrates 125 



 

 

are shown in Table 2. Transport is driven by electrochemical potential but is not altered by 126 

sodium or proton gradients (Nies et al., 2011). SLC47A1 and SLC47A2, also known as 127 

multidrug and toxin extrusion (MATE) transporters, are efflux transporters of cationic 128 

substrates (Masuda et al., 2006;Ohta et al., 2006;Chen et al., 2007;Tanihara et al., 129 

2007;Martinez-Guerrero and Wright, 2013). SLC47A1 is highly expressed in the kidney and 130 

liver and SLC47A2 is almost exclusively expressed in the kidney, with both showing 131 

localization to the apical membrane of proximal tubule cells (Tanihara et al., 2007). Many of 132 

the substrates and inhibitors of SLC47 transporters overlap with those of SLC22A1, 133 

SLC22A2 and SLC22A3 (Nies et al., 2011). For example, SLC47A1 and SLC47A2 work in 134 

cooperation with SLC22A2 to control the concentration of several substrates within proximal 135 

tubule cells, such as creatinine (Motohashi and Inui, 2013).  136 

 137 

Anionic transporters 138 

SLC22A6, SLC22A7 and SLC222A8 are influx transporters expressed on the basolateral 139 

membrane of proximal tubule cells, where they transport small anionic molecules into the 140 

cell. SLC22A11 is a related transporter located on the apical membrane and contributes to 141 

renal excretion and reabsorption of anionic substrates, as movement of substrates can occur in 142 

both directions (Kusuhara et al., 1999;Cha et al., 2000;Kobayashi et al., 2005;Hagos et al., 143 

2007;Moss et al., 2011). Transporters relevant to this review along with representative drug 144 

and endogenous substrates are shown in Table 2. SLC22A12 is expressed on the apical 145 

surface of proximal tubule cells and, in conjunction with SLC22A11, mediates the 146 

reabsorption of uric acid from the urine, thereby regulating blood uric acid levels (Enomoto 147 

et al., 2002;Vitart et al., 2008). Disruption of SLC22A12 activity through genetic 148 

predisposition or drug interactions can cause toxicity, therefore the transporter is considered 149 

pharmacologically relevant (Shafiu et al., 2012). The bidirectional transporter SLCO4C1 is 150 



 

 

highly expressed in the kidney and is located on the apical surface of proximal tubule cells 151 

(Bleasby et al., 2006). Substrates of SLCO4C1 include steroid conjugates, thyroid hormones, 152 

anti-cancer drugs and antibiotics (Yamaguchi et al., 2010). 153 

 154 

Other transporters 155 

SLC15A1 and SLC15A2 are proton-coupled co-transporters of many diverse peptide and 156 

peptidomimetic substrates, but not amino acids (Ganapathy et al., 1995;Liang et al., 157 

1995;Ganapathy et al., 1998;Shu et al., 2001;Daniel and Kottra, 2004;Tramonti et al., 2006). 158 

SLC15A1 is expressed on the apical surface of intestinal enterocytes and, to a lesser degree, 159 

the apical surface of renal proximal tubule cells, whereas SLC15A2 is expressed 160 

predominantly on the apical surface of renal proximal tubule cells. SLC15A2 undertakes the 161 

reabsorption of peptide-bound amino nitrogen from the glomerular filtrate, which is 162 

important in nitrogen homeostasis (Kamal et al., 2008). Nucleoside transporter proteins are 163 

divided into two families; the sodium-dependent, solute carrier family 28 (SLC28) and the 164 

equilibrative, solute carrier family 29 (SLC29), where the endogenous substrates are 165 

nucleosides or nucleoside-like drugs (Nagai et al., 2006;Endres et al., 2009;Sato et al., 166 

2009;Bhutia et al., 2011;Choi et al., 2014). Again, representative drug and endogenous 167 

substrates for these transporters are shown in Table 2. 168 

 169 

ABC transporters 170 

Multidrug resistance related proteins (ABCCs) and multidrug resistance protein ABCB1 are 171 

members of the ABC superfamily, which can be identified by the presence of a highly 172 

conserved ATP binding motif (DeGorter et al., 2012). ABCCs are found in multiple tissues 173 

throughout the body, including in relevant ADME tissues such as the small intestine, 174 

lymphatic system, liver and kidney, and function in an ATP-dependent process. In the 175 



 

 

kidney, ABCC2 and ABCC4 are expressed on the apical membrane of proximal tubule cells 176 

and efflux anionic substrates such as weakly acidic drugs, glutathione, sulphates and 177 

xenobiotics (DeGorter et al., 2012). ABCC1, ABCC3 and ABCC6 are expressed on the 178 

basolateral membrane of proximal tubule cells. ABCC1 does not appear to play a significant 179 

role in the absorption or elimination of drugs, but is involved in resistance development of 180 

anticancer drugs and in the inflammatory response (Deeley et al., 2006;Bakos and Homolya, 181 

2007). ABCC3 is predominantly expressed in the liver, where it is involved in the regulation 182 

of bile salt enterohepatic recirculation, but mRNA is also detectable in numerous other tissues 183 

including the kidney (Kool et al., 1999b;Scheffer et al., 2002;Zhou et al., 2008). High ABCC6 184 

mRNA has been detected in both the liver and kidney (Kool et al., 1999a). However, the 185 

exact range of substrates for ABCC6 has not yet been determined, but preliminary 186 

investigations suggest that ABCC6 may be involved in the transport of anticancer drugs. 187 

ABCC10 is a recent addition to the potentially clinically relevant ABC multidrug resistance 188 

proteins, with high mRNA expression found in numerous tissues including the kidney, liver 189 

and intestine (Bleasby et al., 2006). Specificity of expression (ie apical or basolateral) is 190 

unknown in the proximal tubules, and substrate specificity is limited. However, increasing 191 

numbers of drugs, including anticancer and antiretroviral drugs, have been shown to be 192 

substrates (Chen et al., 2003;Pushpakom et al., 2011b;Liptrott et al., 2012;Sun et al., 2013). 193 

ABCB1 is widely distributed in the kidney, liver, small intestine and brain and is integral for 194 

limiting the absorption of potentially toxic xenobiotics into tissues. In the kidney, ABCB1 is 195 

expressed on the apical membrane and has broad substrate specificity, although substrates are 196 

usually hydrophobic and either neutral or cationic (DeGorter et al., 2012). ABCG2 plays a 197 

similar role to ABCB1 in drug disposition, is generally expressed in the same tissues, and 198 

contributes to renal excretion of some drugs (Kage et al., 2002;Jani et al., 2009;Beery et al., 199 

2011). Unlike, ABCB1, the substrate preference for ABCG2 includes hydrophilic conjugated 200 



 

 

organic anions, particularly the sulphate forms. Despite the recent progress made, several 201 

drug transporters in the kidney have not been well characterized, and expression levels, 202 

locations and substrate affinity remain undetermined.  203 

 204 

Tenofovir and kidney transporters 205 

Tenofovir is predominantly eliminated via the kidney by a combination of glomerular 206 

filtration and active tubular secretion. Both influx and efflux transporters are known to 207 

influence tenofovir elimination rate, although a complete understanding of the process has 208 

not yet been achieved. The efflux transporters ABCC2 (MRP2) and ABCC4 (MRP4) are 209 

expressed at the apical surface of proximal tubule cells and actively remove substrates into 210 

the renal lumen (Smeets et al., 2004). The level of transport of tenofovir by ABCC2 was 211 

found not to be significant (Imaoka et al., 2007;Neumanova et al., 2014). Conversely, 212 

ABCC4 has been shown to transport tenofovir and is believed to be the main tenofovir 213 

transporter on the apical surface of proximal tubule cells (Kohler et al., 2011). The efflux 214 

transporters ABCB1 and ABCG2 are expressed at many membrane barriers in the body, 215 

including at the apical surface of proximal tubule cells (Tanigawara, 2000;Woodward et al., 216 

2009). The extent of tenofovir transport by ABCB1 and ABCG2 was assessed in vitro and in 217 

rodents and found to be not significant (Ray et al., 2006;Neumanova et al., 2014). The 218 

Neumanova study also found that the tenofovir prodrug, tenofovir disoproxil fumarate, was a 219 

substrate for both transporters. However, it is unlikely that orally-administered tenofovir 220 

disoproxil fumarate is present at the blood-kidney barrier, as esterase activity rapidly 221 

degrades the prodrug in intestinal tissue and plasma following absorption (van Gelder et al., 222 

2002). Nonetheless, ABCB1 and ABCG2 are heavily expressed at the apical surface of the 223 

intestinal wall, which is therefore likely to be the major cite where orally administered 224 

tenofovir disoproxil fumerate could encounter these transporters. Therefore, it may well be 225 



 

 

that tenofovir plasma concentrations, and therefore the extent of tenofovir-exposure-226 

associated nephrotoxicity, are influenced by the actions of these transporters on tenofovir 227 

disoproxil fumarate absorption. The efflux transporter ABCC10 is known to confer resistance 228 

to several anti-cancer drugs (Hopper-Borge et al., 2009;Sun et al., 2013;Sun et al., 2014), and 229 

there is growing evidence that it plays a role in tenofovir-associated kidney toxicity. ABCC10 230 

RNA is detectable at high levels in several pharmacologically relevant tissues, including the 231 

intestine, liver, brain, and kidney (Bleasby et al., 2006), although protein expression levels, 232 

orientation at blood-tissue membrane barriers and substrate specificity are not fully 233 

understood. The transport of tenofovir by ABCC1 has been demonstrated in vitro (ABCB10-234 

transfected HEK293 cells) and ex vivo (ABCC10 siRNA knockdown in CD4+ T cells) 235 

(Pushpakom et al., 2011b). However, the potential impact of kidney expression of this 236 

transporter in vivo has not otherwise been well characterised. 237 

 238 

Tenofovir contains a phosphate group with a negative charge at physiological pH, and this 239 

gives the drug an affinity for anion-specific influx transporters. Tenofovir is transported by 240 

SLC22A6 and, to a lesser extent, SLC22A8 (Uwai et al., 2007). Although affinity of 241 

tenofovir for SLC22A6 transporter is greater, SLC22A8 shows higher expression levels in 242 

the kidney. As such, this low-affinity high-capacity SLC22A8 transport route may also be 243 

important in tenofovir elimination. There remain several kidney-expressed transporters which 244 

may be involved in tenofovir-associated nephrotoxicity but which have not been 245 

comprehensively assessed for tenofovir transport. The influx transporter SLC22A7 is 246 

expressed on the basolateral surface of proximal tubule cells and may work in conjunction 247 

with the similar transporters SLC22A6 and SLC22A8 in tenofovir excretion. SLC22A11 is 248 

expressed on the apical surface of proximal tubule cells and is able to transport substrates in 249 

both directions. The concentrative nucleoside transporters SLC28A1 and SLC28A2 are 250 



 

 

expressed on the apical surface of proximal tubule cells. Concentrative nucleoside 251 

transporters are known to transport the anti-HIV nucleoside analogue zidovudine (Hagos and 252 

Wolff, 2010) but transport of tenofovir has not been investigated.  It is unknown if SLC28A1, 253 

SLC28A2, SLC22A7 or SLC22A11 transport tenofovir, and this is certainly worthy of 254 

clarification (Hagos and Wolff, 2010). 255 

 256 

Tenofovir and kidney transporter pharmacogenetics 257 

It has been proposed that genetic polymorphisms in renal transporters may predispose 258 

individuals to have high intracellular tenofovir concentrations, thus increasing the chance of 259 

developing tubular toxicity. ABCC2 polymorphisms have been evaluated, and the haplotype 260 

‘CATC’ (a combination of the polymorphisms at positions -24 (rs717620), 1249 (rs2273697), 261 

3563 (rs8187694) and 3972 (rs3740066) within the ABCC1 gene) and the allele -24C>T 262 

(rs717620) have both been associated with an increased incidence of tenofovir-associated 263 

tubular toxicity (Izzedine et al., 2006;Rodriguez-Novoa et al., 2009b). In a study in Japanese 264 

HIV+ patients, the ABCC2 -24C>T and 1249G>A polymorphisms were found to be 265 

protective for tenofovir-induced kidney toxicity (Nishijima et al., 2012). These observations 266 

are difficult to rationalise because tenofovir is not a substrate for ABCC2, which conversely 267 

would suggest that ABCC2 activity and expression would not be relevant to tenofovir-268 

associated kidney toxicity in vivo (Imaoka et al., 2007;Neumanova et al., 2014). It may be the 269 

case that an endogenous substrate for ABCC2 exacerbates the toxicity of tenofovir or 270 

competes with tenofovir for transport by ABCC4. Also, the ABCC2 genotypes may be in 271 

linkage disequilibrium with other polymorphisms in genes coding for unidentified factors 272 

which exacerbate tenofovir toxicity.  273 

 274 



 

 

Currently, it is a matter of controversy whether ABCC4 polymorphisms alter the risk of 275 

tenofovir-induced kidney toxicity. A study in HIV+ patients found that a 669C>T (rs899494) 276 

polymorphism in the ABCC4 gene was associated with tenofovir-induced kidney toxicity, but 277 

this was not found in a subsequent study (Izzedine et al., 2006;Rodriguez-Novoa et al., 278 

2009b). Several additional single nucleotide polymorphisms in ABCC4 were investigated 279 

(559G>T (rs11568658), 912G>T (rs2274407), 951G>T (rs2274406), 969G>A (rs2274405), 280 

1497C>T (rs1557070), 3310T>C (rs11568655) and 3348A>G (rs1751034)) but no 281 

associations with tenofovir-induced kidney toxicity were found. The ABCC4 polymorphism 282 

4131T>C (rs3742106) has been associated with increased concentrations of tenofovir 283 

diphosphate (35% higher than homozygotes for the common allele) in human peripheral 284 

blood mononuclear cells (PBMCs) 24 hours post-dose (Kiser et al., 2008a). The ABCC10 285 

efflux transporter is capable of transporting tenofovir in vitro and subsequently 286 

polymorphisms of ABCC10 may influence tenofovir disposition. In patients taking tenofovir 287 

therapy, two ABCC10 polymorphisms (526G>A (rs9349256) and 2843T>C (rs2125739)) 288 

were associated with kidney toxicity (Pushpakom et al., 2011b) but no replication studies 289 

have been conducted.  290 

 291 

ABCB1 is unlikely to transport tenofovir at the kidney, but the prodrug tenofovir disoproxil 292 

fumarate may be influenced by ABCB1 activity at the intestine (as discussed above). Several 293 

ABCB1 polymorphisms (1236C>T (rs1128503), 2677G>T/A (rs2032582) and 3435C>T 294 

(rs1045642)) have been analysed and were found not to be associated with tenofovir-induced 295 

kidney toxicity or alteration in tenofovir renal clearance (Izzedine et al., 2006;Rodriguez-296 

Novoa et al., 2009b). Regarding influx transporters, SLC22A6 polymorphisms 453G>A 297 

(rs4149170) and 728G>A (rs11568626) have been analysed and were found not to be 298 



 

 

associated with kidney toxicity or alteration in tenofovir renal clearance (Kiser et al., 299 

2008b;Rodriguez-Novoa et al., 2009b). 300 

 301 

Pharmacogenetics of relevant drug transporters provides a tool for identifying patients at risk 302 

when taking tenofovir. However, pharmacogenetics studies in this context have met with 303 

mixed success. Only ABCC2 has shown strong evidence of association with kidney damage 304 

phenotypes in patients taking tenofovir. Other associations have been contradicted in further 305 

studies, been performed in too few patients to make reliable conclusions or else no replication 306 

studies have been attempted. Since non-genetic factors, such as old age, low body weight, co-307 

administered medicines and co-morbidities are important; it seems likely that transporter 308 

genetics will not be fully predictive of the toxicity.  Further investigations into the actions of 309 

drug transporters may improve our understanding of factors controlling tenofovir disposition 310 

and elimination. The pharmacogenetics of the nuclear receptors which control expression of 311 

certain transporters, such as the pregnane X receptor and the constitutive androstane receptor, 312 

may also be relevant factors, as has been shown for other pharmacological phenotypes 313 

involving transporters (Owen et al., 2004;Johnson et al., 2008;Martin et al., 2008;Siccardi et 314 

al., 2008;Schipani et al., 2010;Wyen et al., 2011). 315 

 316 

Tenofovir and kidney transporter drug interactions 317 

When co-administered with tenofovir in highly active antiretroviral therapy (HAART), 318 

ritonavir-boosted protease inhibitors have been shown to increase tenofovir plasma exposure. 319 

An increase in tenofovir AUC of 37% and 32% was observed following co-administration of 320 

atazanavir and lopinavir, respectively (Tong et al., 2007). Less substantial increases have 321 

been observed for co-administered darunavir (22%), and saquinavir (14%). Ritonavir and 322 

lopinavir inhibit relevant transporters SLC22A8 and ABCC4 in vitro, and a transporter-323 



 

 

mediated drug interaction at the kidney may explain the elevated tenofovir concentrations 324 

when using these drugs (Cihlar et al., 2007). Proteinurea, the presence of an excess of serum 325 

protein in the urine, is indicative of kidney functional impairment. The co-administration of 326 

protease inhibitors with tenofovir increased the frequency of proteinuria development by 327 

seven-fold, compared to tenofovir treatment not containing protease inhibitors (Kelly et al., 328 

2013). This is supported by a further publication that showed use of protease inhibitors to be 329 

a predictor of tubular toxicity in tenofovir-containing regiments (Calza et al., 2011). The 330 

authors hypothesised that the causes of this association include ritonavir-driven inhibition of 331 

enzymes involved in tenofovir elimination from the kidney. However, ritonavir is not known 332 

to be involved in affecting metabolism of tenofovir at the kidney, and it seems more likely 333 

that ritonavir and other protease inhibitors may inhibit the removal of tenofovir from the 334 

kidney proximal tubule cells by inhibiting kidney-expressed transporters, or by preventing 335 

tenofovir disoproxil fumarate degradation at the intestine (Tong et al., 2007). Interestingly, a 336 

further study by Calza et al found that both the development of proteinuria associated with 337 

tenofovir use was more pronounced when co-administered with atazanavir, compared to 338 

tenofovir co-administered with lopinavir (Calza et al., 2013). This data is supported by a 339 

further study showing lopinavir to have less severe toxicity-associations compared to other 340 

atazanavir, when co-administered with tenofovir (Young et al., 2012). These data suggest 341 

that, to reduce the occurance of proteinuria in patients, certain protease inhibitors may be a 342 

more suitable addition in a tenofovir-containing regiment. 343 

 344 

Other classes of antiretroviral have led to drug interactions with tenofovir. The co-345 

administration of the integrase inhibitor raltegravir with tenofovir disoproxil fumarate 346 

resulted in a moderate increase (49%) in tenofovir AUC (Wenning et al., 2008). This 347 

interaction may in part be explained by an interaction involving SLC22A6, as raltegravir is 348 



 

 

capable of inhibiting SLC22A6 in vitro (Moss et al., 2011). However, the clinical 349 

significance of this interaction is unknown. The use of tenofovir disoproxil fumarate with the 350 

nucleoside analogue didanosine has been associated with severe side effects, including a 351 

reduction in CD4+ cell count, pancreatitis and hyperglycaemia. Tenofovir and didanosine are 352 

both nephrotoxic and therefore the interaction may result from the additive toxic effects of 353 

both drugs. Additionally, tenofovir is capable of increasing didanosine AUC by 44%, which 354 

may involve inhibition of SLC22A6-mediated excretion of didanosine via the kidney (Ray et 355 

al., 2004). Due to the severity of the drug interaction, co-administration of tenofovir 356 

disoproxil fumarate and didanosine is not recommended. 357 

 358 

In addition to co-administered antiretrovirals, any other drug which has the potential to 359 

compete with tenofovir for kidney excretion via drug transporters may alter tenofovir 360 

exposure. In a study using HIV patients, co-administration of the non-steroidal anti-361 

inflammatory drug diclofenac with tenofovir led to a high (14.6%) occurrence of acute 362 

kidney injury, compared to tenofovir treatment without diclofenac (0%) (Bickel et al., 2013). 363 

Diclofenac is an inhibitor of SLC22A6 and ABCC4 and the increased frequency of acute 364 

kidney injury in the diclofenac-administered group may be due to inhibition of transporter-365 

associated tenofovir renal excretion (El-Sheikh et al., 2007;Juhasz et al., 2013). However, 366 

tenofovir plasma concentrations were not measured in the study and other mechanisms may 367 

also be responsible. Further information about drug interactions with tenofovir can be found 368 

at the Liverpool drug interactions website (www.HIV-druginteractions.org). 369 

 370 

Tenofovir alafenamide fumarate  371 

A new prodrug of tenofovir, tenofovir alafenamide fumarate, has been developed which is 372 

able to target HIV-susceptible CD4+ cells by selective intracellular hydrolysis by enzymes 373 



 

 

expressed within these cells. This has led to a greatly reduced dose of tenofovir being 374 

required for effective treatment, as the prodrug is relatively stable in plasma (Markowitz et 375 

al., 2014;Sax et al., 2014). Tenofovir alafenamide fumarate is not transported by SLC22A6, 376 

meaning that concentrations of drug in the kidney are unlikely to be high (Bam et al., 2014). 377 

A lower dose and less propensity for concentrating in the kidney suggest that tenofovir 378 

alafenamide fumarate is a potential solution to the issues associated with tenofovir disoproxil 379 

fumarate. However, it should be noted that the toxicities associated with tenofovir 380 

alafenamide fumarate have not been fully investigates in long-term studies. Furthermore, 381 

tenofovir disoproxil fumarate is about to enter the generic drugs market, making it potentially 382 

more easily available for widespread distribution in developing countries, and the use of the 383 

drug in pre-exposure prophylaxis trials has shown continued success (Bender, 2013). For this 384 

to occur successfully, it will still be beneficial for any related renal toxicities to be predictable 385 

and preferably avoidable. 386 

 387 

The emerging role of kidney transporters for other drugs. 388 

Clinically relevant renal drug interactions are rare, but drug transporters are believed to be 389 

involved in the majority of reported cases. A well-established inhibitor of anionic transporters 390 

is probenecid, which has been used to enhance the activity of penicillin by inhibiting anionic 391 

transporters (SLC22A6 and SLC22A8) in the kidney (Robbins et al., 2012). Subsequently, 392 

clinical interactions have been observed between probenecid and other drugs, where reduced 393 

renal clearance has been observed for acyclovir (↓32%), cefmetazole (↓40%), cidofovir 394 

(↓38%), fexofenadine (↓68%), and oseltamivir (↓52%), following probenecid co-395 

administration (Laskin et al., 1982;Ko et al., 1989;Cundy et al., 1995;Hill et al., 2002;Yasui-396 

Furukori et al., 2005). Metformin is a substrate for SLC22A2 and SLC47A1, and these 397 

transporters are believed to be involved in the observed reduction in metformin renal 398 



 

 

clearance when co-administered with cimetidine (↓27%) (Somogyi et al., 1987;Tsuda et al., 399 

2009). Digoxin is a substrate for ABCB1, and renal clearance of the drug is reduced when co-400 

administered with ABCB1 inhibitors ritonavir (↓35%) and quinidine (↓34%) (Fenster et al., 401 

1980;De Lannoy et al., 1992;Ding et al., 2004).  402 

 403 

There are several nephrotoxic drugs, such as didanosine (Cote et al., 2006), cidofovir (Ortiz 404 

et al., 2005), cisplatin (Goren et al., 1986) and adefovir (Izzedine et al., 2009), which cause 405 

renal failure by accumulating in proximal tubule cells. In these and other cases, targeted 406 

inhibition of cellular uptake may reduce nephrotoxicity risks. An example of this strategy is 407 

represented by probenecid (an inhibitor of SLC22A6) being used to minimise concentrations 408 

of cidofovir in proximal tubule cells (Ho et al., 2000). Prophylaxis with probenecid can be 409 

considered in patients receiving cidofovir who have a baseline creatinine serum level of more 410 

than 1.5 mg/dL (Choudhury and Ahmed, 2006). 411 

 412 

Transporters and the commonly used renal biomarker creatinine  413 

Creatinine is an endogenous waste product of skeletal muscle metabolism and is widely used 414 

as a biomarker for renal health. Excretion of creatinine occurs predominantly through 415 

glomerular filtration, with proximal tubular secretion accounting for around 15% of total 416 

renal clearance. Creatinine is transported into proximal tubule cells by SLC22A7 with a 417 

three-fold higher affinity than that seen for transport via SLC22A2 and SLC22A3, and efflux 418 

into the proximal lumen occurs via SLC47A1 and SLC47A2 by low affinity high capacity 419 

transport (Urakami et al., 2004;Lepist et al., 2014). Baseline serum creatinine concentration 420 

in the blood varies depending on multiple factors, as previously described by Goicoechea et 421 

al  (Goicoechea et al., 2008). Increase in the serum concentration of creatinine is commonly 422 



 

 

regarded as an indicator of declining renal health, although serum creatinine concentration 423 

has been suggested to poorly represent actual filtration rate (Urakami et al., 2004).  424 

 425 

When glomerular filtration rate is low, the serum creatinine concentration and creatinine 426 

clearance rate are higher than the actual glomerular filtration rate (Urakami et al., 2004) and 427 

this is due to proximal tubule cells secreting creatinine into the tubular lumen. In this 428 

circumstance it may be  necessary to measure serum creatinine concentrations alongside 429 

creatinine clearance to estimate filtration rate in the glomerulus more accurately. Estimated 430 

glomerular filtration rate can be calculated through several predictive equations, the most 431 

clinically useful being the Cockcroft-Gault and the Modification of Diet in Renal Disease 432 

(MDRD) equation (Robertshaw et al., 1989;Estrella and Fine, 2010). Both of these equations 433 

are known to have diminished precision at higher glomerular filtration rates (Estrella and 434 

Fine, 2010). The site of tenofovir toxicity is believed to be the mitochondria of proximal 435 

tubule cells and is achieved by inhibition of mitochondrial DNA polymerase γ (Pushpakom et 436 

al., 2011a). This toxicity can produce both acute and chronic kidney injury and, less 437 

commonly, Fanconi syndrome defined as tubular proteinuria, aminoaciduria, phosphaturia, 438 

glycosuria, and bicarbonate wasting (Fernandez-Fernandez et al., 2011a;Hall et al., 2011b). 439 

The effect of tenofovir on creatinine concentration is generally reversible once the tenofovir 440 

regimen has ended, but for actual tenofovir-induced kidney tubule dysfunction this is not 441 

necessarily the case and therefore the distinction between these scenarios is essential in 442 

patients taking tenofovir disoproxil fumarate as part of HAART (Gupta et al., 2014;Solomon 443 

et al., 2014). Appropriate screening for abnormal proximal tubule function is necessary 444 

throughout a tenofovir regimen and this is achieved through calculating the retinol binding 445 

protein to creatinine ratio, a widely used reliable marker for proximal tubule damage 446 

(Bernard et al., 1987;Hall et al., 2011b;Del Palacio et al., 2012). 447 



 

 

 448 

Studies investigating the relationship between tenofovir exposure and kidney function have 449 

produced mixed results (Hall et al., 2011b). Overall, tenofovir is not believed to produce 450 

glomerular toxicity (Hall et al., 2011b). As creatinine is only excreted by proximal tubule 451 

cells to a small degree, a modest decline in estimated glomerular filtration rate may be 452 

observed in tubule toxicity. In the case of tenofovir, creatinine is unlikely to be an adequate 453 

indicator of renal toxicity and may provide a false positive for reduced glomerular filtration. 454 

Further investigation is required in order to elucidate the mechanism of this 455 

tenofovir/creatinine interaction.  456 

 457 

Multiple drugs have been reported to alter estimated glomerular filtration rate with minimal 458 

evidence of actual kidney damage (Berglund et al., 1975;Van Acker et al., 1992;Lepist et al., 459 

2014). The second generation integrase inhibitor dolutegravir and the pharmacological 460 

booster cobicistat are two examples with well-characterised mechanisms of creatinine 461 

transporter inhibition in the proximal tubule. Cobicistat inhibits SLC47A1 and dolutegravir 462 

inhibits SLC22A2, which both transport creatinine through to the proximal lumen (German et 463 

al., 2012;Koteff et al., 2013;Lepist et al., 2014).  464 

 465 

Emerging biomarkers for kidney function 466 

The contribution of transporter-interaction to the apparent unreliability of creatinine as a 467 

biomarker for kidney damage necessitates further research for more appropriate biomarkers. 468 

Greater precedence has been given to the development of novel biomarkers with the aim of 469 

identifying those that can detect acute kidney injury and progression to chronic kidney 470 

damage. To avoid similar issues to those previously discussed with creatinine it is imperative 471 

that these biomarkers do not interact with kidney transporters, and this will aid successful 472 



 

 

intervention before permanent damage to the kidneys occurs. Although no consensus has yet 473 

been reached, promising novel biomarkers include cystatin C, asymmetric dimethyl arginine, 474 

neutrophil gelatinase-associated lipocalin and KIM-1 amongst others (Table 3) (Han et al., 475 

2002;Herget-Rosenthal et al., 2004;Devarajan, 2008;Estrella and Fine, 2010;Fassett et al., 476 

2011;Schwedhelm and Böger, 2011;de Geus et al., 2012).  Asymmetric dimethyl arginine has 477 

a relatively low molecular weight compared to the other biomarker in Table 3, and similarly 478 

to creatinine is showing affinity for transporters involved in drug interactions. The 479 

biomarkers in Table 3 with large molecular weights are unlikely to be a substrate for drug 480 

transporters. However, transport of albumin via the megalin/cubilin system is the topic of 481 

current research, as albumin elevation in plasma has been associated with damage to 482 

proximal tubule cells (Dickson et al., 2014).  483 

 484 

Data for other transporters with putative renal importance 485 

As our understanding of drug transporters improves, it is becoming clear that transporters can 486 

play an important role in disease development. Experiments with transgenic mice have shown 487 

that genetic knockdown of transporters can cause numerous kidney-related morbidities, 488 

developmental abnormalities and even death (Table 4). Genetic associations with disease 489 

traits (in the absence of drugs) can also be useful for defining mechanisms. The genetics of 490 

hyperuricaemia and gout is known to involve transporters expressed in the proximal tubule 491 

cells. In 2002 genetic variants in SLC22A12 were found to predict occurrence of gout, and 492 

this association was joined by further transporters in 2007 (SLC2A9), 2008 (ABCG2, 493 

SLC17A3, SLC17A1, SLC16A9, SLC22A11), and 2011 (SLC2A12) (Reginato et al., 2012). 494 

Understanding that multiple transporters are usually involved in the movement of a drug 495 

through the proximal tubule, it can be misleading or even counterproductive to focus on 496 

individual transporters in order to discover the “major” players in the elimination of the drug 497 



 

 

for future pharmacogenetic and interaction studies. There is limited understanding of how 498 

kidney transporter expression and activity differ between men and women (Morris et al., 499 

2003), and in special populations, such as in specific disease groups (Lalande et al., 2014), 500 

paediatrics (Shen et al., 2001) and geriatrics, and this area requires further investigation.   501 

 502 

Conclusion: perspectives on transporters in the kidney 503 

Despite showing a favourable toxicity profile in initial treatment, the long term use of 504 

tenofovir disoproxil fumarate in HIV therapy is currently under question by practitioners and 505 

researchers (Fernandez-Fernandez et al., 2011b). Large-scale and long-term studies are 506 

continuing to appear which suggest an association between tenofovir use and kidney damage. 507 

Despite this, tenofovir is included in first-line therapy for both treatment naive and 508 

experienced patients as it is very effective at reducing and controlling HIV replication in 509 

patients. Because of this, and due to the life-long nature of antiretroviral therapy, it is 510 

essential that a reliable strategy be developed to detect and preferably avoid tenofovir-511 

associated kidney toxicity. It is clear from the summarised evidence that tenofovir plasma 512 

concentrations are linked to renal toxicity, and it is also clear that drug transporters, 513 

particularly those expressed in the kidney, are able to influence the clearance rate of tenofovir 514 

(Figure 1) and also interfere with the utility of creatinine clearance as a biomarker.  515 

 516 

When looked at more broadly, for the majority of drugs the potential for clinically relevant 517 

renal transporter-mediated drug interactions is low, and reported cases are limited. Renal 518 

excretion of drugs may be achieved by glomerular filtration as well as tubular secretion, and 519 

transporters are only likely to be influential in drug elimination when tubular secretion is the 520 

major pathway. Additionally, transporters in the kidney often show overlapping substrate 521 

affinity (see Table 2) and therefore the inhibition of a single transporter may not produce 522 



 

 

significant alterations in drug elimination in vivo. However, in certain cases the actions of 523 

transporters in the kidney can have clinical implications, as emphasised with tenofovir. 524 

 525 

Despite decades of research into drug transporters, the recommendations for drug interaction 526 

studies provided by the FDA and EMA include testing strategies for only a small fraction of 527 

the total expressed transporters in the human body (Table 1) and it is unknown whether 528 

transporter-associated drug interactions in the kidney will obtain the same relevance as seen 529 

with drug metabolising enzymes and transporters in the intestine and liver. As the 530 

investigations into tenofovir elimination have emphasised, determination of the actions of 531 

individual transporters in drug elimination from the kidney, even when found to be relevant 532 

in vitro, often may not be clinically implementable, as drugs are often substrates for several 533 

transporters. Indeed, multiple transporters and metabolism enzymes, as well as other 534 

biological and drug-specific factors, work in concert to determine the overall disposition of a 535 

drug. This should be taken into consideration in future drug development strategies with the 536 

use of improved in vitro methodologies and the introduction of predictive physiologically 537 

based in silico modelling.  538 

 539 
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 1148 

Figure 1. Confirmed and potential transporters involved in active tubular secretion of 1149 

tenofovir into urine. Tenofovir is removed from the circulating blood and enters the proximal 1150 

tubule cells by the actions of basolaterally-expressed SLC22A6 and, to a lesser extent, 1151 

SLC22A8. Tenofovir is then removed into the tubular lumen by apically-expressed ABCC4. 1152 

ABCC2 does not transport tenofovir in vitro but pharacogenetics suggests ABCC2 has a role 1153 

in tenofovir-induced renal toxicity. The orientation of ABCC10 in proximal tubule cells is 1154 

unknown, but in vitro and pharmacogenetic data suggest that expression may be localised to 1155 

the apical membrane, facilitating tenofovir secretion. 1156 
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Tables 1159 

 1160 

 1161 

      Inhibition studies Substrate studies 

  Transporter Other 
name 

EMA FDA EMA FDA 

Efflux ABCB1 P-gp Yes Yes Consider Yes 

ABCG2 BCRP Yes Yes Consider Yes 

ABCB11 BSEP Preferred Consider Consider Consider 

ABCCs MRPs No Consider Consider Consider 

Uptake SLC22A6 OAT1 Yes Yes Consider If >25% active renal 
secretion 

SLC22A8 OAT3 Yes Yes Consider If >25% active renal 
secretion 

SLCO1B1  OATP1B1 Yes Yes If >25% clearance 
is  hepatic 

If >25% clearance is 
hepatic or biliary 

SLCO1B3 OATP1B3 Yes Yes If >25% clearance 
is hepatic 

If >25% clearance is 
hepatic or biliary 

SLC22A1 OCT1 Consider No Consider No 

SLC22A2 OCT2 Yes Yes Consider If >25% active renal 
secretion 

SLC47A1 MATE1 Consider Consider Consider Consider 

SLC47A2 MATE2K Consider Consider Consider Consider 

 1162 

Table 1. Recommendations for drug transporter testing as outlined in the EMA Guideline on 1163 

Investigation of Drug Interactions, July 2012, and the FDA Draft Guidance on Drug 1164 

Interaction Studies, February 2012. 1165 
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Transporter 

Other 
names Expression Substrates 

Cationic 
transporters SLC22A1 OCT1 

Basolateral 
(influx) 

Prostaglandin E2, choline, morphine, tetraethyl 
ammonium, metformin, aciclovir, lamivudine 

SLC22A2 OCT2 
Basolateral 
(influx) 

Creatinine, dopamine, histamine, prostaglandin 
E2, tetraethyl ammonium, pancuronium, MPP, 
lamivudine 

SLC22A3 OCT3 
Basolateral 
(influx) 

5-HT, noradrenaline, dopamine, quinidine, 
tetraethyl ammonium, MPP 

SLC47A1 MATE1 Apical (efflux) 
Creatinine, thiamine, cimetidine, quinidine, 
paraquat, cephradine, cephalexin 

SLC47A2 MATE2K Apical (efflux) 
Creatinine, thiamine, cimetidine, MPP, 
metformin, aciclovir 

Anionic 
transporters SLC22A6 OAT1 

Basolateral 
(influx) 

Amminohippuric acid, estrone sulphate, 
raltegravir, tenofovir, zidovudine 

SLC22A7 OAT2 
Basolateral 
(influx) 

Amminohippuric acid, prostaglandin E2, estrone 
sulphate, paclitaxel, 5-fluorouracil, allopurinol, 
zidovudine 

SLC22A8 OAT3 
Basolateral 
(influx) 

Amminohippuric acid, estrone sulphate, 
raltegravir, tenofovir, zidovudine 

SLC22A11 OAT4 
Apical 
(bidirectional) 

Dehydroepiandrosterone, estrone sulphate, uric 
acid, zidovudine 

SLC22A12 URAT1 
Apical 
(bidirectional) Uric acid, orotic acid 

SLCO4C1 OATP4C1 
Basolateral 
(influx) 

Steroid conjugates, thyroid hormones, digoxin, 
ouabain, penicillin 

Other 
transporters SLC15A1 PEPT1 Apical (influx) Oligopeptides, cyclacillin, valacyclovir, cefadroxil 

SLC15A2 PEPT2 Apical (influx) Oligopeptides, beta-lactam antibiotics, fosinopril 

SLC28A1 CNT1 Apical (efflux) 
Nucleosides, ribavirin, gemcitabine, zidovudine, 
zalcitabine 

SLC28A2 CNT2 Apical (efflux) Nucleosides, didanosine, cytidine 

SLC28A3 CNT3 Apical (efflux) Nucleosides, zidovudine, zalcitabine, didanosine 

SLC29A1 ENT1 
Basolateral 
(bidirectional) Nucleosides, ribavirine, 2',3'-Dideoxyinosine 

SLC29A2 ENT2 
Basolateral 
(bidirectional) Nucleosides, 2',3'-Dideoxyinosine 

ABC 
transporters ABCB1 P-gp Apical (efflux) 

Steroids, lipids, bilirubin, bile acids, digoxin, 
doxorubicin, maraviroc, HIV protease inhibitors 

ABCC1 MRP1 
Basolateral 
(efflux) 

Prostaglandins, folic acid, bilirubin, anticancer 
drugs, HIV protease inhibitors 

ABCC2 MRP2 Apical (efflux) 

Bilirubin, estradiol glucuronide, estrone 
sulphate, methotrexate, etoposide, valsartan, 
HIV protease inhibitors 

ABCC3 MRP3 
Basolateral 
(efflux) 

Bile salts, estradiol glucuronide, anticancer 
drugs 

ABCC4 MRP4 Apical (efflux) 
Taurocholic acid, cAMP, cGMP, urate, 
prostaglandins, methotrexate, furosemide 

ABCC6 MRP6 
Basolateral 
(efflux) Anticancer drugs? 



 

 

ABCC10 MRP7 Unknown 
Estradiol glucuronide, aclitaxel, tariquidar, 
tenofovir, nevirapine 

ABCG2 BCRP Apical (efflux) 
Estrone sulphate, porphyrins, anticancer drugs, 
conjugated organic anions 

 1172 

Table 2. Drug transporting proteins expressed in the proximal tubule cells of the kidney. 1173 

Endogenous substrates are in bold. Substrates list is not comprehensive, and examples are 1174 

given. 1175 
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Biomarker 
Molecular 

weight 
(g/mol) 

Nephron 
segment 

Kidney 
transporter 
interaction 

FDA 
approved1 

Creatinine 113 

Glomerulus SLC22A2 
SLC22A3 
SLC47A1 
SLC47A2 

Yes 

ADMA 202.5 
Non-specific SLC22A2 

SLC47A1 
No 

TFF3 6600  
Glomerulus 
Proximal 
tubule  

No 
No 

β2-
Microglobulin 

11,800 
Glomerulus 
and Proximal 
tubule 

No 
No 

Cystatin C 13,300 
Glomerulus 
and proximal 
tubule 

No 
No 

NGAL  25,000 
Proximal 
tubule and 
Distal tubule 

No  
No 

KIM-1 30,000 
Proximal 
tubule 

No 
No 

Clusterin 75-80,000 
Proximal 
tubule and 
distal tubule 

No 
No 

 1194 

Table 3: Comparison of creatinine with novel biomarkers associated with nephrotoxicity. 1195 

1
FDA approval defined as approved for use in clinical setting. ADMA: Asymmetric dimethyl 1196 

arginine; KIM-1: Kidney injury molecule 1; NGAL: Neutrophil gelatinase associated 1197 

lipocalin; TFF3: Trefoil Factor 3. 1198 
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 1200 

 1201 

 1202 

 1203 

 1204 

 1205 



 

 

Transporter 
Other 
names Effects of genetic knockdown of transporter Reference 

Abca1 Abc1 

Devoid of high-density lipoprotein cholesterol, 
reduction in serum cholesterol and 
membranoproliferative glomerulonephritis. 

(Christiansen-Weber et 
al., 2000) 

Slc13a1  NaSi-1 
Serum sulfate concentration reduced by 75%. 
Growth retardation and reduced fertility observed. (Dawson et al., 2003) 

Slc14a2  UT-A 
Deletion of UT-A1/UT-A3 resulted in polyuria and 
a severe urine concentrating defect. (Fenton et al., 2004) 

Slc15a2 Pept2 

Two-fold increase in renal glycylsarcosine 
clearance resulting in lower systemic 
concentrations. (Ocheltree et al., 2005) 

Slc16a2 Mct8 General hyperthyroid state of the kidneys. 
(Trajkovic-Arsic et al., 
2010) 

Slc22a12  URAT1 Decreased reabsorption of urate. (Eraly et al., 2008) 

Slc22a1 Oct1 

Combined knockout of Slc22a1 and Slc22a2 
abolished renal secretion of organic cation 
tetraethyl ammonium.  (Jonker et al., 2003) 

Slc22a2 Oct2 

Combined knockout of Slc22a1 and Slc22a2 
abolished renal secretion of tetraethyl 
ammonium. (Jonker et al., 2003) 

Slc22a6 Oat1 
Profound decrease in renal excretion of organic 
anions (e.g. para-aminohippurate). (Eraly et al., 2006) 

Slc22a8 Oat3 Decreased secretion of urate. (Eraly et al., 2008) 

SLC26A1 Sat1 

Hyperoxaluria with hyperoxalemia, 
nephrocalcinosis, and calcium oxalate stones in 
renal tubules and bladder. (Dawson et al., 2010) 

Slc26a4 Pendrin Acidic urine and increased urine calcium excretion. (Barone et al., 2012) 

Slc26a6 Pat1 
Increased renal succinate uptake, hyperoxaluria 
and hypcitraturia. (Ohana et al., 2013) 

Slc26a7  SUT2 
Distal renal tubular acidosis manifested by 
metabolic acidosis and alkaline urine pH (Xu et al., 2009) 

Slc2a9  Glut9 
Moderate hyperuricemia, severe hyperuricosuria, 
and an early-onset nephropathy. (Preitner et al., 2009) 

Slc34a1 Npt2b 
Npt2b(-/-) lethal and Npt2b(+/-) showed 
hypophosphatemia and low urinary P(i) excretion.  (Ohi et al., 2011) 

Slc42a3 Rhcg 
Urinary ammonia excretion lower and more 
susceptible to metabolic acidosis. (Lee et al., 2009) 

Slc4a8 ENaC Disrupted fluid homeostasis. (Leviel et al., 2010) 

Slc5a12 SMCT2 

Combined knockout of SLC5A8 and SLC5A12 
(c/ebpdelta-/- mice) results in marked increase in 
urinary excretion of lactate and urate. (Thangaraju et al., 2006) 

Slc5a2 Sglt2 
Glucosuria, polyuria, and increased food and fluid 
intake. (Vallon et al., 2011) 

Slc5a8 SMCT 

Combined knockout of SLC5A8 and SLC5A12 
(c/ebpdelta-/- mice) results in marked increase in 
urinary excretion of lactate and urate. (Thangaraju et al., 2006) 



 

 

Slc6a18 Xtrp2 
Higher glycine excretion and higher systolic blood 
pressure. (Quan et al., 2004) 

Slc7a8 LAT2 
Increased urinary loss of small neutral amino 
acids. (Braun et al., 2011) 

Slc7a9 BAT1 
Develop a cystinuria-like phenotype with 
hyperexcretion of cystine and dibasic amino acids 

(Feliubadalo et al., 
2003) 

Slc9a3 NHE3 

Diarrhoea and blood acidosis. HCO3- and fluid 
absorption are reduced in proximal convoluted 
tubules. (Schultheis et al., 1998) 
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