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a b s t r a c t

The apicomplexan parasite, Theileria annulata, is the causative agent of tropical theileriosis, a devastating
lymphoproliferative disease of cattle. The schizont stage transforms bovine leukocytes and provides an
intriguing model to study host/pathogen interactions. The genome of T. annulata has been sequenced
and transcriptomic data are rapidly accumulating. In contrast, little is known about the proteome of
the schizont, the pathogenic, transforming life cycle stage of the parasite. Using one-dimensional (1-D)
gel LC-MS/MS, a proteomic analysis of purified T. annulata schizonts was carried out. In whole parasite
lysates, 645 proteins were identified. Proteins with transmembrane domains (TMDs) were under-
represented and no proteins with more than four TMDs could be detected. To tackle this problem, Triton
X-114 treatment was applied, which facilitates the extraction of membrane proteins, followed by 1-D gel
LC-MS/MS. This resulted in the identification of an additional 153 proteins. Half of those had one or more
TMD and 30 proteins with more than four TMDs were identified. This demonstrates that Triton X-114
treatment can provide a valuable additional tool for the identification of new membrane proteins in pro-
teomic studies. With two exceptions, all proteins involved in glycolysis and the citric acid cycle were
identified. For at least 29% of identified proteins, the corresponding transcripts were not present in the
existing expressed sequence tag databases. The proteomics data were integrated into the publicly acces-
sible database resource at EuPathDB (www.eupathdb.org) so that mass spectrometry-based protein
expression evidence for T. annulata can be queried alongside transcriptional and other genomics data
available for these parasites.

� 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. Open access under CC BY license. 
1. Introduction

Theileria parasites belong to the Apicomplexa, are transmitted
by ticks and cause diseases with significant economic impact in a
range of domestic livestock, including large and small ruminants
(Bishop et al., 2009). Unique among eukaryotic organisms, several
members of the genus Theileria possess the ability to transform the
cells they infect. Transformation is achieved by interfering with
pivotal host cell signalling pathways that regulate proliferation
and cell survival (reviewed in Dobbelaere and Baumgartner,
2009; Chaussepied and Langsley, 2011). This is facilitated by the
fact that, immediately following entry into the leukocyte, the host
cell membrane surrounding the invading sporozoite is dissolved,
leaving the developing schizont free in the cytoplasm where it
can interact with the host cell cytoskeleton and regulatory compo-
Inc Published by Elsevier Ltd. .
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nents of signalling pathways. Analysis of leukocyte gene expres-
sion networks provided evidence that the parasite establishes
tight control over pathways associated with cellular activation by
modulating reception of extrinsic stimuli and by significantly alter-
ing the expression outcome of genes targeted by infection-
activated transcription factors (Durrani et al., 2012). Furthermore,
at each host cell mitosis and cytokinesis, the schizont co-opts the
host’s astral and central spindle microtubules, ensuring its equal
distribution between the two daughter cells (Hulliger et al.,
1964; von Schubert et al., 2010). Although significant progress
has been made in identifying the host cell pathways that are di-
rectly or indirectly targeted by the parasite, little progress has been
made in pinning down the parasite proteins that are involved in
host cell transformation. This is largely due to the fact that knowl-
edge on the spectrum of Theileria schizont proteins that could func-
tion as participants in the transformation process is very scarce. As
an important step in that direction, the genomes of two transform-
ing Theileria parasites, Theileria parva and Theileria annulata, have
been sequenced and annotated, providing a wealth of new infor-
mation on these organisms (Gardner et al., 2005; Pain et al.,
2005; Shiels et al., 2006). Analysis of the T. parva schizont tran-
scriptome using Massive Parallel Signature Sequencing (MPSS)
provided evidence for the transcription of 2,533 of the 4,036
n access under CC BY license. 
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predicted protein coding genes of T. parva (Bishop et al., 2005; Shah
et al., 2006), 405 of which encoded proteins with a predicted signal
peptide, suggesting they could be secreted. Of 3,794 T. annulata
genes analysed, 628 were predicted to encode proteins with a sig-
nal peptide (B. Shiels and W. Weir, personal communication). A
more recent study also reported on the evolution and diversity of
T. annulata secretome genes (Weir et al., 2010) and Shiels et al.
(2006) generated a list of Theileria proteins containing a predicted
signal peptide and which could be involved in manipulating the
host cell phenotype. As is the case for many parasites, the majority
of the predicted Theileria proteins (75%) are classified as hypothet-
ical proteins that show no identity to known proteins in public dat-
abases (Gardner et al., 2005; Pain et al., 2005). In the case of T.
annulata, an expressed sequence tag (EST) library prepared from
mRNA isolated from purified schizonts has been generated and
1,407 T. annulata genes (representing 37% of predicted genes)
could be identified that showed cDNA hits when screened in silico
against this library (Pain et al., 2005). As a first step towards char-
acterising the T. annulata schizont proteome, a one-dimensional
(1-D) gel-based analysis of schizont proteins followed by MS was
carried out, using purified parasites as starting material. This first
analysis underpins the notion that proteomic analysis is an
indispensable tool to study the biology of Theileria/host cell
interactions.
2. Materials and methods

2.1. Parasite strain, culture conditions and parasite purification

Theileria annulata – infected macrophages (TaC12, strain An-
kara; Shiels et al., 1992) were cultured in Leibovitz 15 medium
(Gibco, Switzerland) supplemented with 10% FCS (Bioconcept,
Switzerland), 10 mM HEPES, pH 7.2 (Merck, Switzerland), 2 mM
L-glutamine (Gibco), 70 lM b-mercaptoethanol (Merck, Switzer-
land), 100 l/ml of penicillin and 100 lg/ml of streptomycin (Lonza,
Switzerland). Schizonts were purified as previously described
(Baumgartner et al., 1999). Briefly, TaC12 cells were incubated
for 2 h with nocodazole to depolymerize microtubules. Cells were
then treated with trypsin-activated aerolysin on ice. After remov-
ing excess aerolysin, cells were exposed to a temperature of
37 �C to stimulate toxin-mediated permeabilization of the host cell
plasma membrane. Permeabilization was monitored using Trypan
blue exclusion. Schizonts were separated from host cell debris
using Percoll gradient centrifugation.
2.2. Generation of whole parasite lysates (WPL), protein digestion and
MS

Purified parasites were solubilised in 40 ll of Lämmli buffer
with four cycles of boiling at 95 �C and vortexing for 5 min. Sam-
ples were centrifuged at 12,000g for 5 min. The supernatant was
run on a 16 cm 12% v/v SDS–polyacrylamide gel at 16 mA for the
stacking gel (for �1 h) and at 24 mA for the separating gel (for
�6 h). Gels were fixed in 40% v/v ethanol, 10% acetic acid overnight
at room temperature (RT), rinsed in distilled deionised water and
stained with colloidal Coomassie (20% methanol, 0.1% W/v Coo-
massie Brilliant Blue G250, 1% v/v H3PO4 (85%), 10% w/v (NH4)2SO4

and destained in distilled deionised water. Lanes were cut, using a
scalpel, into continuous slices of approximately 1 mm thickness
and stored in 1% acetic acid at 20 �C. Gel plugs were fully destained
in 50 mM NH4HCO3, 50% v/v acetonitrile at 37 �C, and incubated at
37 �C with 10 mM DTT, 100 mM NH4HCO3 for 30 min and subse-
quently with 100 mM iodoacetamide, 100 mM NH4HCO3 for 1 h
in the dark. Gel pieces were dehydrated with acetonitrile and pro-
teolytic in-gel digestion performed at 37 �C by adding 10 ll of
10 ng/ml of sequencing grade trypsin (in 25 mM NH4HCO3). After
45 min, 25 mM NH4HCO3 was added to cover the gel pieces and
the incubation was carried out overnight at 37 �C. Samples were
stored at �20 �C until used for LC-MS/MS.

As the aim of this study was to discover and validate T. annulata
schizont proteins, rather than comparing proteins or studying dif-
ferential expression, biological replicates were not produced. On
this particular MS platform, running replicates to increase the
number of identifications typically results in improvements of no
more than 10% and often considerably less. Instead, we focussed
on improving the isolation and identification of membrane pro-
teins (see Sections 2.3 and 2.4).

2.3. Triton X-114 extraction of schizont proteins

Purified T. annulata schizonts were lysed and homogenised for
1 h at 4 �C in 1 ml of lysis buffer (10 mM Tris–HCl, pH 7.4,
150 mM NaCl, 2% Triton X-114, 1� Protease Inhibitor Cocktail).
Lysed parasites were centrifuged at 8,800g for 10 min at 0 �C to re-
move cell debris. The pellet (P) was solubilized in Lämmli buffer.
The supernatant was incubated at 37 �C for 10 min to induce phase
separation and centrifuged at 3,000g for 3 min. The upper phase
(aqueous phase, AP1) was removed and stored on ice. The lower
phase (detergent-rich phase, DP) was mixed with 1 ml of buffer
A (10 mM Tris–HCl, pH 7.4, 150 mM NaCl, 0.06% Triton X-114, 1x
Protease Inhibitor Cocktail) incubated at 10 �C for 10 min and sub-
jected to a new phase separation at 37 �C (Supplementary Fig. 1A).
The aqueous phase (AP2) was removed and the extraction was re-
peated once more with 1 ml of buffer A. The three aqueous phases
(AP1–3) and the final detergent-rich phase were precipitated by
adding 3 vol. of cold acetone at �20 �C for 30 min and then centri-
fuged at 12,000g for 20 min. Pellets were dried on the bench and
solubilized in 20 ll of Lämmli buffer at 70 �C for 5 min. Samples
were run approximately 2 cm into a 12% standard size SDS–poly-
acrylamide gel (termed short gel). The experiment was repeated
with small modifications. Proteins from the detergent-rich phase
were solubilized in Lämmli buffer at 37 �C for 15 min with short
cycles of vortexing every 5 min. The gel was run at approximately
4 cm to obtain a better protein separation (termed long gel). In
Supplementary Table S1 which lists all identified proteins, AP1 re-
fers to the aqueous phase after the first phase separation and DP1
and DP2 refer to the final detergent phase obtained in the first and
second experiment, respectively.

2.4. Identification and bioinformatic analysis of proteins

2.4.1. LC-MS/MS analysis
Frozen samples were thawed at RT and centrifuged at 20,000g

for 25 min. Thirteen microlitres of supernatant was transferred to
a 96 well plate and mixed with 3 ll of 2.6 M formic acid to reduce
evaporation.

The peptide mixtures were then analysed on a LC-MS/MS plat-
form which contained an LTQ ion-trap mass spectrometer
(Thermo-Electron, Hemel Hempstead, UK) coupled on-line to a Dio-
nex Ultimate 3000 (Dionex Company, Amsterdam, The Netherlands)
HPLC system as previously described (Xia et al., 2008). The data
associated with this manuscript may be downloaded from Prote-
omeCommons.org (https://proteomecommons.org/data-search.jsp,
Tranche hash:

3idGhZ+gXOGy4LXCSnvjqQShoEJCAy9HcfBWsYFKJmCma05n+
6t97jj130XsJybg0Xwn4GSj3GUdS+2wWQkJucvojF4AAAAAAAA
7Ew==.

2.4.2. Raw data transformation
The resulting MS/MS spectra were submitted to Mascot (Matrix

Science, (Perkins et al., 1999)) and searched against T. annulata
(Theileria_prots) and Bos taurus (Bovine_IPI) annotated proteins.

https://proteomecommons.org/data-search.jsp
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Fixed Mascot search parameters were: carbamidomethyl modifica-
tion of cysteine (C); variable oxidation of methionine (M); peptide
tolerance ±1.5 Da; MS/MS tolerance ±0.8 Da; +1, +2, +3 peptide
charge-state; single missed trypsin cleavage, decoy: yes; report
top: auto hits. Proteins with a score below 50 were removed from
the list in order to avoid false positive hits. The identified proteins
were compared with macroschizont, merozoite and piroplasm EST
information on GeneDB (Pain et al., 2005). Lists of all macroschi-
zont, merozoite and piroplasm-expressed genes were obtained
with the keyword search for a specific stage.

2.4.3. Transmembrane domain (TMD), signal peptide/anchor and GPI-
anchor signal prediction

TMD, signal peptide/anchor and glycophosphatidylinositol
(GPI)-anchor predictions are annotated for all proteins on GeneDB.
TMDs were predicted by TMHMM2.0 (Krogh et al., 2001), signal
peptide/ anchor by SignalP 2.0 HMM (Nielsen et al., 1997a,b) and
GPI-anchor signal by DGPI v2.04. Lists of all proteins with a predic-
tion were downloaded with the Complex/Boolean Query function
on GeneDB.

All identified proteins were assigned after the MIPS FunCat
(Functional Catalogue) (Ruepp et al., 2004). If possible, proteins
were categorised according to the biological process annotation
on GeneDB. If no biological process was annotated on GeneDB,
but a molecular function was available, the corresponding Gene
Ontology (GO) number of the function was sent to MIPS FunCat. If
neither a biological process nor a molecular function was available
on GeneDB, proteins were classified with the help of annotated mo-
tives/domains (Pfam, InterPro), protein names or homologues. Thei-
leria annulata protein sequences were sent to NCBI BLAST to identify
homologous proteins. GO annotations from homologues were only
trusted if the E-value was lower than 1e�25.

2.4.4. Classification of subcellular localisation
Very few proteins have a predicted subcellular localisation

annotated on GeneDB. Therefore all proteins were classified with
the help of bioinformatic tools according to a putative localisation.
If possible, proteins were classified according to their FunCat anno-
tation since some processes/categories are localisation-specific.
Unclassified proteins were then categorised with help from the
protein name, homologues and motives/domains. For the rest of
the proteins, prediction programs such as WoLF PSORT (Horton
and Nakai, 1999), TargetP (Emanuelsson et al., 2000), Plasmit
(Bender et al., 2003), PlasmoAP (Foth et al., 2003) and Pats (Zuegge
et al., 2001) were used. To avoid incorrect annotations, all proteins
without a clear result were added to the category: not classified/
multiple localisation.
3. Results and discussion

3.1. Analysis of whole parasite lysate

The analysis of WPL by 1-D gel LC-MS/MS resulted in 645 non-
redundant proteins, with a score of 50 or higher, representing 17%
of the 3,792 proteins predicted in the proteome of all life cycle
stages of T. annulata. A list of all proteins identified in this study
is provided in Supplementary Table S1 and can also be accessed
via EuPathDB (www.eupathdb.org). These results are in line with
observations made for Cryptosporidium parvum for which 16% of
�3,900 predicted proteins were identified in the sporozoite life cy-
cle stage (Sanderson et al., 2008). In a similar study on Toxoplasma,
939 of �7,800 (�12%) predicted proteins were identified with 1-DE
gel LC-MS/MS (Xia et al., 2008).

For most proteins identified in proteomic studies on Toxo-
plasma gondii, Plasmodium falciparum or Neospora caninum, corre-
sponding ESTs were found with high frequency (88.2%, 84.2% and
72.6%, respectively). For 372 of the proteins identified (58%) in
the present analysis, no corresponding ESTs were found in the
macroschizont EST library (GeneDB). For 100 proteins (16%), the
corresponding EST was present in libraries prepared from mer-
ozoites and/or piroplasms, but not from macroschizonts. For
173 proteins (27%), the corresponding ESTs were lacking alto-
gether. Such discrepancies have also been observed in other api-
complexan parasites where examples exist of readily detected
proteins whose corresponding genes display little or no detect-
able transcription (Wastling et al., 2009). With high-throughput
sequencing data now becoming more readily available the situa-
tion is much improved; for example, recent mRNA deep sequenc-
ing for T. gondii and N. caninum (Reid et al., 2012) indicates that
transcripts can be detected for nearly all proteins identified by
MS in these organisms. It is important to note, however, that this
does not mean that the correlation between transcript abundance
and protein abundance is linear; on the contrary this complex
relationship often leads to notably apparent discrepancies reflect-
ing a range of factors such as the rate of protein and/or mRNA
turnover (Wastling et al., 2012).

Proteins reported to be expressed by T. annulata merozoites or
piroplasms could also be detected. The cultures we use consist of
continuously proliferating bovine macrophages, which harbour
the transforming schizont and have been maintained for many
years in the laboratory. Merogony is a stochastic process known
to occur at low levels in cultures of T. annulata-transformed cells.
In established cultures the process is inefficient but merogony
can be induced further by increased temperature or different types
of stress, eventually resulting in the production of mature merozo-
ites (Shiels et al., 1992; Schmuckli-Maurer et al., 2008).

The presence of piroplasms, which develop solely in red blood
cells upon merozoite invasion, can be excluded under the culture
conditions that were used. There was also no obvious morpholog-
ical evidence for the presence of merozoites. The most likely
explanation for the presence of proteins encoded by genes re-
ported to be expressed by T. annulata merozoites or piroplasms
is therefore that some parasites stochastically undergo early
merogony.

Interestingly, proteins previously reported to be expressed by
Theileria sporozoites were also identified. As the schizont-infected
cells have been maintained for several years in culture, the pres-
ence of sporozoites can be excluded. TA17375 (GeneDB) is a T.
annulata ortholog of the T. parva ‘polymorphic antigen precursor’
also called p150 (UniProt Accession Number Q27028) (Skilton
et al., 1998), a sporozoite protein that contains a proline-rich re-
gion and was shown to cross-react with a T. parva polymorphic
immunodominant molecule (PIM). In this context, p104, a micro-
neme-rhoptry protein expressed in sporozoites, was also identified
in Triton X-114 extracts (see Section 3.2). In this case, we posit that
these proteins continue to be expressed by the parasite after inva-
sion and differentiation to the schizont stage.

In our analysis of WPL, only 10.9% of the identified proteins con-
tained a predicted TMD, which contrasts with the 22.2% predicted
for all proteins. In macroschizonts, 20.9% of the genes for which
transcripts could be detected were predicted to contain TMD, indi-
cating that there is no bias towards low expression of such genes
for this life cycle stage. A similar observation was made for pro-
teins containing a signal peptide/anchor. Proteins containing a sig-
nal peptide are interesting candidates for host pathogen
interactions as they may be secreted into the host cell, and parasite
proteins anchored in the plasma membrane have the potential to
interact with host cell components. Whereas 14.7% of all predicted
proteins and 13.1% of the proteins with corresponding macroschi-
zont ESTs are predicted to contain a signal peptide/anchor, this
only applies to 7.9% of the proteins found in our analysis. Only

http://www.eupathdb.org


Fig. 1. Triton X-114 extraction enhances the identification of proteins with transmembrane (TM) domains. Seventy-five additional Theileria annulata TM proteins were
identified and proteins with more than five TM domains were only observed in the Triton X-114 detergent-rich phase.
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nine, four and three proteins were detected containing two, three
or four TMDs, respectively. The fact that proteins with multiple
TMDs appeared to be strongly under-represented in the list of
identified proteins detected in WPLs pointed towards a technical
explanation. Indeed, in previous proteomics studies on Toxoplasma
and Cryptosporidium, the ratio of identified and predicted TM pro-
teins was similar to that observed in this study and most of the
proteins with multi-TM helices were first identified when a multi-
dimensional protein identification technology (MudPIT) analysis
was performed.
3.2. Analysis of Triton X-114 lysates

Considering the paucity of TM proteins, it was decided to bias
the protein extraction procedure in favour of membrane proteins
and extracted purified schizonts using the detergent Triton X-114
(Bordier, 1981) as described by Cordero et al. (2009), with some
minor modifications (Supplementary Fig. S1A). As expected, in 1-
D gel analysis the protein pattern of the aqueous and detergent
phases differed significantly (not shown). Proteins contained in
the detergent-rich phase were subjected to 1-D gel SDS–PAGE
and the corresponding lane cut into 30 continuous slices, digested
with trypsin and analysed by LC-MS/MS. Using this extraction pro-
cedure, 762 proteins with a Mascot score >50 were identified, 459
of which were non-redundant. Among these, 153 had not been de-
tected in WPL and 75 of these were predicted to have at least one
TMD. In total 125 TM proteins were found in the detergent en-
riched fraction, almost twice the number found in the analysis of
WPL (Fig. 1) and the relative number of TM proteins was increased
from 10.9% (70 of 645 proteins) to 27.2% (125 of 459). Two-thirds
of the proteins found in both samples had a higher score in the Tri-
ton X-114 extracts. Using Triton X-114 extraction, TA08425 (Gen-
eDB), a T. annulata ortholog of the T. parva microneme-rhoptry
antigen (also called p104; UniProt Accession Number Q962G6)
was also identified. This finding is particularly interesting, as
p104 was recently found to participate in parasite/host cell micro-
tubule interactions (unpublished data from our laboratory).

Fractionation by Triton X-114 also helped to identify proteins
with multiple TMDs (5–16), including different transporters. Inter-
estingly, with a share of 59.5%, proportionately more unclassified
proteins were newly identified upon detergent extraction than
was the case for WPL (34.9 %). Taken together, these findings argue
in favour of analysing Triton X-114 extracts in addition to WPL to
expand the repertoire of identified proteins, in particular mem-
brane-bound proteins.

3.3. Classification of identified proteins

Using the different lysis and extraction methods, a total of 812
proteins were identified, representing 21.4% of the predicted T.
annulata proteome (see Supplementary Table S1). Different heat
shock proteins, actin, glyceraldehyde-3-phosphate dehydrogenase,
enolase and elongation factor belonged to the most readily de-
tected proteins. This is in agreement with observations made in a
preliminary analysis of the T. parva schizont proteome using a
combination of high-resolution 2-D gel electrophoresis and MS
(Bishop et al., 2009).

A set of algorithms was used to classify proteins based on pre-
dicted subcellular localisation (Fig. 2). Whereas proteins allocated
to the cytoplasm, mitochondrion, nucleus and ribosome were
prominent, for 29.8% of the proteins a subcellular localisation could
not be allocated.

All identified proteins were assigned to a MIPS FunCat Category
(Fig. 3). With 38.3%, the unclassified proteins presented the largest
category. A large category contains proteins involved in protein
translation (14.2%). Other large categories involved proteins that
regulate protein folding, modification, processing (together
19.7%) and cellular transport (together 10.2%). Proteins with func-
tions assigned to cellular transport were under-represented in WPL
analysis, but increased from 44 to 83 when data obtained from
WPL and Triton X-114 extraction were pooled.

3.4. Glycolysis and citric acid cycle

Knowledge on the central carbon metabolism of Theileria is very
limited compared with other apicomplexan parasites such as Plas-
modium (Olszewski and Llinas, 2011) and Toxoplasma (Polonais and
Soldati-Favre, 2010). A comprehensive comparison of apicomplexan



Fig. 2. Subcellular localisation of all identified Theileria annulata proteins (whole parasite lysate (WPL) + Triton X-114 extraction). Actual numbers for each category are
presented on the pie graph.
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metabolic pathways is also available through http://www.llamp.
net. The glycolysis and citric acid cycle rely on conserved proteins
that are found in almost all eukaryotic cells (Voet et al., 2006). The
genes for all 10 enzymes of glycolysis are present in the genomes
of apicomplexans such as Toxoplasma, Plasmodium, Theileria and
Babesia. In our analysis, all corresponding enzymes were detected
(Fig. 4 and Supplementary Table S2). A transmembrane hexose
Fig. 3. MIPS Functional Catalogue (FunCat) assignment of all identified Theileria annulata
each category are presented on the pie graph.
transporter was also identified that could contribute to glucose im-
port from the host cell, as shown for Plasmodium (Slavic et al.,
2010). For these proteins, the average/median score, number of
peptide matches and sequence coverage is significantly higher
than for all other identified proteins, indirectly indicating that
these proteins are abundant. Our observations are in line with
the work of Kiama et al. (1999) who measured enzymatic activities
proteins (whole parasite lysate (WPL) + Triton X-114 extraction). Actual numbers for

http://www.llamp.net
http://www.llamp.net


Fig. 4. Almost all Theileria annulata proteins involved in glycolysis and citric acid cycle were identified in the study. The glycolysis pathway is shown on the left and the citric
acid cycle is shown on the right. Reaction products: G6P, glucose 6-phosphate; F6P, fructose 6-phosphate;F1, 6BP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone
phosphate; Gly-3P, glycerol 3 phosphate; Gly, glycerol; GAD-3P, glyceraldehyde 3-phosphate; 1, 3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-
phosphoglycerate; PEP, phosphoenolpyruvate; Pyr, pyruvate; AcCoA, acetyl coenzyme A. Enzymes with identified Theileria annulata proteins included in brackets: HK,
hexokinase (TA19800); GPI, glucose 6-phosphate-isomerase (TA04045); PPi-FPK, pyrophosphate dependent phosphofructokinase (TA13950); PBP, fructose bisphosphatase;
F1, 6BPA, fructose bisphosphate aldolase (TA20060); TPI, triosephosphate isomerase (TA08590); Gly-3PDH, glycerol-3-phosphate dehydrogenase; Gly-K, glycerol kinase;
GAPDH, glyceraldehyde phosphate dehydrogenase (TA08145, TA15530); PGK, phosphoglycerate kinase (TA06655); PGM, phosphoglycerate mutase (TA10465); ENO, enolase
(TA10425); PK, pyruvate kinase (TA11540, TA10915); LDH, lactate dehydrogenase (TA09590); PC, pyruvate carboxylase; ACO, aconitase (TA17020); IDH, isocitrate
dehyrogenase (TA10850); OGDH, oxoglutarate dehydrogenase (TA05275, TA08530); SCS, succinyl coenzyme A synthetase (TA02815, TA10625); SDH, succinate
dehydrogenase (TA19430, TA03455); FH, fumarate hydratase; MDH, malate dehydrogenase (TA18100); CS, citrate synthase (TA14450); PEPC, phosphoenolpyruvate
carboxylase; PEPCK, phosphoenolpyruvate carboxykinase (TA20590); GLUD, glutamate dehydrogenase (TA11105) (Voet et al., 2006). Transmembrane transporters: HT,
Hexose transporter (TA02480); Na+/Glu-T, sodium glutamate symporter (TA10315). Green indicates proteins that were not identified, but predicted, red shows no prediction
and grey indicates proteins that were identified and are also likely to be involved. Dashed arrows in the citric acid cycle indicate that only a branch of the cycle is active in the
schizont stage.
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in order to assess the significance of glycolysis in T. parva schizonts.
In this work, it was also found that the enzymatic activities of glyc-
erol kinase and glycerol 3-phosphate dehydrogenase were approx-
imately 16 times lower than that of the other enzymes. Together,
these results point towards a functional glycolytic pathway in Thei-
leria schizonts, with low levels of glycerol catabolism. The fructose
bisphosphatase gene, encoding an enzyme required for gluconeo-
genesis, cannot be found in the Theileria genomes. On the other
hand, phosphoenolpyruvate carboxykinase (PEPCK), an enzyme
that converts oxaloacetate to PEP, thus supplying citric acid cy-
cle-derived carbon for gluconeogenesis, is expressed. PEP carboxyl-
ase, which essentially runs the reverse reaction, however, is absent.

Aerobic glycolysis is linked to the citric acid cycle via acetyl-
CoA. Interestingly, not all of the genes encoding subunits of the
pyruvate decarboxylase, which catalyses the reaction of pyruvate
to acetyl-CoA and CO2, were found in the Theileria genome
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(Gardner et al., 2005; Pain et al., 2005). An alternative route to the
citric acid cycle is the carboxylation of pyruvate to oxoglutarate,
which is catalysed by pyruvate carboxylase, but this enzyme is also
not present in Theileria. Despite this, a form of citric acid cycle was
proposed to be present in Theileria (Gardner et al., 2005). All en-
zymes/subunits predicted from the genome were identified by
MS, except for fumarate hydrase which was, however, represented
in the EST library. In T. parva schizonts, the activities of most of the
enzymes of the citric acid cycle were found to be very low, and
only a branch of the citric acid cycle involving malate dehydroge-
nase, fumarase and succinate dehydrogenase appears to be active,
potentially operating in the reverse direction of the citric acid cycle
to synthesise succinate (Kiama et al., 1999). In our analysis, the
number of peptide matches of the citric acid cycle enzymes was
much lower compared with glycolytic enzymes. It was suggested
that glutamate could be a supplementing intermediate for the cit-
ric acid cycle (Gardner et al., 2005). Glutamate can be converted
into a-ketoglutarate by glutamate dehydrogenase. The latter was
identified with a very high score. Glutamate might thus be a crucial
intermediate and this hypothesis is underpinned by the identifica-
tion of a sodium-glutamate symporter.

Incorporation studies on Babesia rodhanini also demonstrated
the absence of a complete citric acid cycle (Rickard, 1970). In the
case of Plasmodium, it has been proposed that, despite the presence
of all enzymes, at least the asexual stages do not rely on the citric
acid cycle for energy generation (van Dooren et al., 2006). How-
ever, recent studies involving transcriptomic, proteomic and meta-
bolomic analyses suggest this model may be too simple (reviewed
in Polonais and Soldati-Favre, 2010); the citric acid cycle may be
working bidirectionally and be more prominent in different life cy-
cle stages. This also applies to Toxoplasma, in which genes for all of
the enzymes of the citric acid cycle are present and enzymes ap-
pear to be targeted to the mitochondrion (Fleige et al., 2008; Xia
et al., 2008).

Taken together, it would appear that the anaerobic pathway is
the main route of glucose metabolism in Theileria macroschizonts,
that gluconeogenesis does not occur, glycerol catabolism occurs at
low levels and that only a branch of the citric acid cycle is active
(Kiama et al., 1999) in a process that does not participate in energy
generation in the schizont. Additional studies will be required to
determine whether other stages in the Theileria life cycle yield en-
ergy from oxidative phosphorylation .

3.5. Proteins involved in host/parasite interactions

The schizont is not contained in a parasitophorous vacuole and
resides free in the cytoplasm where it interacts with host cell
microtubules (Seitzer et al., 2010; von Schubert et al., 2010). A
number of proteins have also been proposed to be secreted into
the host cell cytoplasm from where they could interfere with host
cell signalling pathways or translocate into the nucleus where they
could modulate host cell gene expression, potentially contributing
to transformation.

TaSP (the T. annulata ortholog of T. parva PIM), is abundantly ex-
pressed on the schizont surface and has been proposed to interact
with host cell microtubules (Seitzer et al., 2010); this also applies
to TaSE (GeneDB, TA20205). Surprisingly, neither of these proteins
could be detected by MS.

Further, members of the family of subtelomere-encoded vari-
able secreted proteins (SVSPs) (Gardner et al., 2005; Pain et al.,
2005) and TashATs, which contain AT-hook DNA-binding
domains and have been reported to localise to the nucleus of T.
annulata-transformed cells (Swan et al., 2001), were not detected.
With 85 members in T. parva and 48 members in T. annulata,
SVSP genes constitute the largest family observed in these organ-
isms. The general structure of SVSPs consists of a short conserved
N-terminal region, in most cases containing a putative signal
peptide for secretion, followed by a QP-rich region, which is pre-
dicted to be highly unstructured and a conserved C-terminus that
has no significant identity to known proteins. In many SVSPs a
nuclear localisation signal was also found. In T. parva-trans-
formed cells, a large contingent of the SVSP gene family was
found to be expressed at the RNA level (Bishop et al., 2005;
Schmuckli-Maurer et al., 2009) and for at least one of the mem-
bers, protein was also demonstrated using immuno-labelling
techniques (Schmuckli-Maurer et al., 2009). TashATs form an-
other intriguing family of parasite-secreted proteins, reported to
translocate to the host cell nucleus. Whether these proteins con-
tribute to transformation-specific changes in host cell gene
expression is presently unknown. There could be several reasons
why none of the SVSPs or TashATs was detected, including low
abundance because proteins are systematically released from
the schizont or unusual composition preventing detection. It is
worth noting, however, that WPL samples for analysis were
boiled up to five times in Lämmli buffer before they were sub-
jected to SDS–PAGE. In this context, we recently observed that
boiling schizont proteins often results in the formation of precip-
itates that remain in the stacking gel during SDS–PAGE. It cannot
be excluded that this led to reduced detectability of certain
proteins.

3.6. Concluding remarks

To our knowledge, we present the first characterisation of the
T. annulata schizont proteome. This was greatly facilitated by the
availability of a method to purify the parasite from the host cell
cytoplasm and the application of Triton X-114 extraction for
membrane protein isolation. This led to the identification of
812 proteins, most of which had only been predicted to exist
based on genome and transcriptome analyses. The identification
of proteins that were predicted to be expressed predominantly
by the sporozoite, such as p150 and p104, is intriguing. It could
point towards functions related to invasion, early establishment
of the sporozoite upon entry, as well as long-term persistence
of the schizont in the transformed cell. The failure to detect
well-characterised proteins such as TaSP, or potentially secreted
proteins such as SVSPs or TashATs, is surprising and potentially
emphasises the technical limitations of the approach used in this
study. With deep sequencing becoming widely accessible and
increasingly affordable, and taking into account the continuous
developments in quantitative proteomics, both the Theileria pro-
tein and transcript datasets are bound to expand and provide
valuable tools for a system-wide approach to elucidate this un-
ique host/parasite interaction.
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