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1. Introduction
Nonlocal elasticity is a basic framework for continuous modelling of micro- and nanoplates,
finding numerous applications in energy storage, chemical and biological sensors, renewable
energy devices, field emission devices, micro- and nano-electromechanical systems, etc., see Kiani
(2011a), Kiani (2011b), Shen (2011), Alibeigloo (2011), Ashoori et al. (2016) and references therein.
The general nonlocal theory is presented, for example, in the book by Eringen (2002), see also
more recent papers by Arash and Wang (2012), Schwartz et al. (2012), Benvenuti and Simone
(2013), Abdollahi and Boroomand (2013), Abdollahi and Boroomand (2014), and Salehipour et al.
(2015). In addition, here we mention publications by Owen and Paroni (2000) and Owen and
Paroni (2015) on the so-called ’structured deformations’.

The original nonlocal integral formulations can sometimes be reduced to differential ones,
taking the form of singularly perturbed equations in linear elasticity with a second order
perturbation in the microscale parameter, e.g., see Eringen (1983) and Peerlings et al. (2001).
However, such a transformation is not generally possible for tackling boundary value problems
(Fernandez-Saez et al., 2016). Indeed, near the boundaries of a non-locally elastic solid the effect of
boundary layers becomes essential. In particular, asymptotic analysis of a half-space in Chebakov
et al. (2016) reveals a first-order nonlocal correction to the boundary conditions on a free surface.
The importance of the boundary layers in nonlocal elasticity was also emphasised earlier in
Bazant et al. (2010) and Abdollahi and Boroomand (2014).

The existing 2D nonlocal models for thin elastic plates are usually based on the above
mentioned differential constitutive relations, e.g., see Lu et al. (2007), Duan and Wang (2007),
Aghababaei and Reddy (2009), Pradhan and Phadikar (2009), Malekzadeh et al. (2011), Xu et al.
(2014), Thai et al. (2014), Jung and Han (2014), and Mousavi et al. (2017). In these models, 3D
→ 2D reduction is carried out using ad-hoc assumptions neglecting the variation of nonlocal
properties across the thickness. As a result, the nonlocal corrections appear only at second-order
in the microscale parameter related to the longitudinal length-scale which considerably exceeds
the thickness. To our best knowledge, the consideration in Sajadi et al. (2017), taking into account
the variation of several nonlocal integral kernels through the thickness, is the only exception.
In the cited paper, the nonlocal bending moments and shear forces are calculated starting from
the traditional engineering hypotheses underlying the classical theory for plate bending and
extension.

In this paper we take into consideration the variation of nonlocal properties across the plate
thickness stating from the full integral constitutive relations in Eringen (1983). The long-wave
low-frequency approximations of the 3D dynamic equations in nonlocal elasticity are derived
for plate bending and extension. The asymptotic approach using direct integration through the
thickness is adapted, e.g., see Goldenveizer et al. (1993), Kaplunov et al. (1998), Kaplunov et al.
(2000), and Kaplunov et al. (2006). For the sake of simplicity, we specify a single small parameter,
which is equal both to the ratio of the thickness to a characteristic longitudinal lengthscale
and that of the thickness to a microscale size. Also, we restrict ourselves to a commonly used
exponential nonlocal kernel, see Eringen (1983).

It is established that the scaling characteristic of the local theory for plate bending and
extension (Goldenveizer et al. (1993) and Kaplunov et al. (1998)) also appears to be relevant
within the present context. At the same time, the nonlocal stresses contain specific boundary
layer components adjacent to the plate faces, along with counterparts of usual local stresses
demonstrating a polynomial variation across the thickness. The boundary layer and polynomial
stress components are related via boundary conditions. It is remarkable that such boundary layer
components of strains and displacements arise only at higher orders. In passing we note that
similar boundary layers were earlier observed in 1D problem for a nonlocal beam (Pisano and
Fuschi, 2003).

As might be expected, the leading-order approximations of 3D equations in nonlocal elasticity
are identical to the conventional ’local’ set up. The nonlocal effect due to the boundary layers
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comes at the next order. In terms of the chosen small parameter, it is four times greater than that
in the aforementioned nonlocal differential formulations for elastic plates.

The nonlocal equations of motion obtained in the paper are presented in the form of the
associated local ones with slightly modified bending and extensional stiffness. These stiffnesses
involve nonlocal first order corrections to their local analogues.

2. Statement of the problem
Consider an elastic plate of thickness 2h and microscale size a with traction-free faces, see Figure
1. The 3D equations of motion in nonlocal elasticity can be written as

smn,m = ρ
∂2un
∂t2

, (2.1)

with smn,m, n= 1, 2, 3 nonlocal stresses, un displacement vector, ρ volume density, and t time.
The nonlocal stresses are expressed though their local counterparts σmn as, e.g., see Eringen (1983)

smn(x) =
∫
V

K
(
|x′ − x|, a

)
σmn(x′) dv(x′) , (2.2)

where x = (x1, x2, x3) is a reference point, V the domain occupied by the plate, K(x, a) is a
nonlocal kernel normalised by ∫

V∞

K
(
|x′|, a

)
dv(x′) = 1 . (2.3)

In what follows, we define the nonlocal kernel as

K(|x|, a) = 1

π3/2a3
exp

[
−x · x
a2

]
. (2.4)

2h
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Figure 1. A thin plate treated in the framework of nonlocal elasticity.

The constitutive relations for an isotropic material are given by

σmn = λellδmn + 2µemn , (2.5)

with

emn =
1

2

(
∂um
∂xn

+
∂un
∂xm

)
, (2.6)

where emn are linear elastic strains, δmn the Kronecker’s delta, and λ and µ are the Lamé
constants.

The boundary conditions on the traction-free faces x3 =±h are

s3n = 0 , (2.7)

where n= 1, 2, 3.
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Let us assume that the plate half-thickness h is much greater than the microscale parameter a
and at the same time is much smaller than a typical macroscale size `, i.e., a� h� `. For the sake
of simplicity, we specify a single small parameter given by

η=
h

`
=
a

h
� 1 . (2.8)

We also assume that a characteristic time scale T is much greater than the time the shear wave
travels the distance between the plate faces, i.e., T � h/c2. It is known from the asymptotic plate
theory (Goldenveizer et al. (1993) and Kaplunov et al. (1998)) that

T = η−2
h

c2
(2.9)

for low-frequency bending motion and

T = η−1
h

c2
(2.10)

for low-frequency extensional motion.
For a plate of thickness 2h, (−∞<x1 <∞, −∞<x2 <∞, and −h≤ x3 ≤ h), (2.2) becomes

smn(x) =
1

π3/2a3

h∫
−h

dx′3

∞∫
−∞

dx′1

∞∫
−∞

dx′2 exp

[
− (x′ − x)2

a2

]
σmn(x′) . (2.11)

On expanding the stresses σmn in Taylor series in x1 and x2 about the reference point x’ =
(x1, x2, x

′
3) and neglecting O(η4) terms, we obtain

smn(x) =
1

a
√
π

h∫
−h

exp

[
− (x′3 − x3)2

a2

]
σmn(x1, x2, x

′
3)dx

′
3 . (2.12)

Below we adapt for nonlocal plate bending and extension the asymptotic approach previously
developed within the classical framework, e.g., see Goldenveizer et al. (1993), Kaplunov et al.
(1998), and Kaplunov et al. (2006) and references therein.

3. Plate bending
Let us specify dimensionless variables by

xi = `ξi , x3 = hζp = aζq , and t= Tτ , (3.1)

with the time scale T given by (2.9). Thus, nonlocal asymptotic analysis operates with two
different transverse dimensionless variables ξp and ξq related to the plate half-thickness and
microscale parameter. As a consequence, the nonlocal stresses smn are separated below into two
components pmn(ζp) and qmn(ζq), demonstrating slow and fast variation across the thickness,
respectively, m,n= 1, 2, 3. In this case the scaling is nevertheless similar to that in the asymptotic
theory for plate bending and given by

ui = η`vi , u3 = `v3 , (3.2)

eii = ηεii , eij = ηεij , e3i = η2ε3i , e33 = ηε33 , (3.3)

and
sii = ηµ(pii + qii) , sij = ηµ(pij + qij) ,

s3i = η2µ(p3i + ηq3i) , s33 = η3µ(p33 + η2q33) ,
(3.4)

where i 6= j = 1, 2 and Einstein’s summation convention is not employed; here the dimensionless
quantities v, ε, and p and q are assumed to be of the same asymptotic order.
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On inserting (3.4) into (2.12) and (3.3) into (2.5), we obtain

pij + qij =
2√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]εijdζ′q ,

pii + qii =
1√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]

(
κ−2εii + (κ−2 − 2)(εjj + ε33)

)
dζ′q ,

p3i + ηq3i =
2√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]ε3idζ′q ,

η2(p33 + η2q33) =
1√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]

(
κ−2ε33 + (κ−2 − 2)(εii + εjj)

)
dζ′q ,

(3.5)

with κ= c2
c1

. We also have from (2.6) that

εij =
1

2

(
∂vi
∂ξj

+
∂vj
∂ξi

)
,

εii =
∂vi
∂ξi

,

η2ε3i =
1

2

(
∂v3
∂ξi

+
∂vi
∂ζp

)
,

η2ε33 =
∂v3
∂ζp

.

(3.6)

In addition, the nonlocal equations of motion (2.1) and the boundary conditions (2.7) at ζp =
±1(ζq =±η−1) become

∂p3i
∂ζp

+
∂q3i
∂ζq

=−∂(pii + qii)

∂ξi
−
∂(pij + qij)

∂ξj
+ η2

∂2vi
∂τ2

,

∂p33
∂ζp

+ η
∂q33
∂ζq

=−∂(p3i + ηq3i)

∂ξi
−
∂(p3j + ηq3j)

∂ξj
+
∂2v3
∂τ2

,

(3.7)

and

p3i + ηq3i = 0 , p33 + η2q33 = 0 . (3.8)

Now we expand all the dimensionless quantities in (3.2)-(3.4) in asymptotic series as


vn
pmn
qmn
εmn

=


v
(0)
n

p
(0)
mn

q
(0)
mn

ε
(0)
mn

+ η


v
(1)
n

p
(1)
mn

q
(1)
mn

ε
(1)
mn

+ . . . . (3.9)
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Substituting these expansions into equations (3.5)1,2,4, (3.6), and (3.7), we have at leading order

∂v
(0)
3

∂ζp
= 0 ,

∂v
(0)
i

∂ζp
=−

∂v
(0)
3

∂ξi
,

ε
(0)
ij =

1

2

∂v(0)i
∂ξj

+
∂v

(0)
j

∂ξi

 ,

ε
(0)
ii =

∂v
(0)
i

∂ξi
,

ε
(0)
33 =−(1− 2κ2)(ε

(0)
ii + ε

(0)
jj ) ,

p
(0)
ij + q

(0)
ij =

2√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]ε

(0)
ij dζ

′
q ,

p
(0)
ii + q

(0)
ii =

1√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]

(
κ−2ε

(0)
ii + (κ−2 − 2)(ε

(0)
jj + ε

(0)
33 )
)
dζ′q ,

∂p
(0)
3i

∂ζp
+
∂q

(0)
3i

∂ζq
=−

∂(p
(0)
ii + q

(0)
ii )

∂ξi
−
∂(p

(0)
ij + q

(0)
ij )

∂ξj
,

∂p
(0)
33

∂ζp
=−

∂p
(0)
3i

∂ξi
−
∂p

(0)
3j

∂ξj
+
∂2v

(0)
3

∂τ2
,

(3.10)

and also, at ζp =±1 (ζq =±η−1),

p
(0)
3i = 0 , p

(0)
33 = 0 . (3.11)

First, on integrating the equations (3.10)1,2 with respect to ζp and using the obtained
expressions in (3.10)3−5, we arrive at

v
(0)
3 =w

(0)
3 , v

(0)
i =−ζp

∂w
(0)
3

∂ξi
,

ε
(0)
ij =−ζp

∂2w
(0)
3

∂ξi∂ξj
, ε

(0)
ii =−ζp

∂2w
(0)
3

∂ξ2i
, ε

(0)
33 = (1− 2κ2)ζp∆ξw

(0)
3 ,

(3.12)

where w(0)
3 =w

(0)
3 (ξi, ξj , τ) and ∆ξ = ∂2

∂ξ2i
+ ∂2

∂ξ2j
. We remark that the variation of displacements

and strains across the thickness, predicted by (3.12), is similar to that in the asymptotic theory of
plate bending as above.

Equation (3.10)6 may now be expressed as

p
(0)
ij + q

(0)
ij =

2η√
π

∂2w
(0)
3

∂ξi∂ξj

∫η−1

−η−1
ζ′q exp [−(ζ′q − ζq)2]dζ′q , (3.13)

which can be transformed to

p
(0)
ij + q

(0)
ij =−

∂2w
(0)
3

∂ξi∂ξj
ζp
{
2− erfc (η−1 − ζq)− erfc (η−1 + ζq)

}
(3.14)

by integrating by parts and omitting O(η)-terms. Thus,

p
(0)
ij (ζp) =−2ζp

∂2w
(0)
3

∂ξi∂ξj
,

q
(0)
ij (ζq) =Q1(ζq)

∂2w
(0)
3

∂ξi∂ξj
,

(3.15)

where

Q1(ζq) = ζqη
(
erfc (η−1 − ζq) + erfc (η−1 + ζq)

)
, (3.16)
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with erfc(x) = 2√
π

∞∫
x
e−t

2

dt. Here and below all the p stress components having polynomial

variations across the thickness are virtually the same as those in plate theory, while the q stress
components correspond to boundary layers with width the microscale size a and localised near
the plate faces.

Next, equation (3.10)7 becomes

p
(0)
ii + q

(0)
ii =− η√

π

(
4(1− κ2)

∂2w
(0)
3

∂ξ2i
+ 2(1− 2κ2)

∂2w
(0)
3

∂ξ2j

) ∫η−1

−η−1
ζ′q exp [−(ζ′q − ζq)2]dζ′q .

(3.17)
Similarly to the derivation above, we have

p
(0)
ii (ζp) =−ζp

(
4(1− κ2)

∂2w
(0)
3

∂ξ2i
+ 2(1− 2κ2)

∂2w
(0)
3

∂ξ2j

)
,

q
(0)
ii (ζq) =

1

2
Q1

(
4(1− κ2)

∂2w
(0)
3

∂ξ2i
+ 2(1− 2κ2)

∂2w
(0)
3

∂ξ2j

)
.

(3.18)

In what follows, we treat separately the p and q parts of the equation (3.10)8, having

∂p
(0)
3i

∂ζp
=−

∂p
(0)
ii

∂ξi
−
∂p

(0)
ij

∂ξj
(3.19)

and

∂q
(0)
3i

∂ζq
=−

∂q
(0)
ii

∂ξi
−
∂q

(0)
ij

∂ξj
. (3.20)

Integration of equation (3.19) with respect to ζp yields

p
(0)
3i = 2ζ2p(1− κ2)∆ξ

∂w
(0)
3

∂ξi
+ C(ξ1, ξ2, τ) , (3.21)

where the arbitrary function C can be found using the related boundary condition (3.11)1, thus

p
(0)
3i = 2(ζ2p − 1)(1− κ2)∆ξ

∂w
(0)
3

∂ξi
+ C(ξ1, ξ2, τ) . (3.22)

Next, we obtain from (3.10)9

p
(0)
33 = ζp

(
2(1−

ζ2p
3
)(1− κ2)∆2

ξw
(0)
3 +

∂2w
(0)
3

∂τ2

)
, (3.23)

and finally, satisfying the boundary condition (3.11)2, we arrive at the Kirchhoff equation in the
2D theory for plate bending

4

3
(1− κ2)∆2

ξw
(0)
3 +

∂2w
(0)
3

∂τ2
= 0 . (3.24)

In order to incorporate the nonlocal phenomena of interest, we also need to determine q(0)3i

from equation (3.20). Substituting q
(0)
ij from (3.15) and q

(0)
ii from (3.18) into this equation, we

obtain

∂q
(0)
3i

∂ζq
=−2(1− κ2)Q1∆ξ

∂w
(0)
3

∂ξi
, (3.25)

after neglecting asymptotically small terms resulting in

q
(0)
3i (ζq) = 2(1− κ2)R1(ζq)∆ξ

∂w
(0)
3

∂ξi
. (3.26)
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It is convenient to introduce the following notation

Rk(ζq) = (η−1 − ζq) erfc (η−1 − ζq)− (−1)k(η−1 + ζq) erfc (η
−1 + ζq)

− 1√
π

(
exp

[
−
(
η−1 − ζq

)2]
− (−1)k exp

[
−
(
η−1 + ζq

)2])
,

(3.27)

with k= 1 and k= 2 corresponding to plate bending and plate extension, respectively, with the
latter one considered in the next section.

At first order we obtain the same relations as (3.10) to within the suffix substitution (0)→ (1),
except equation (3.10)10, which can be splitted into two parts as

∂p
(1)
33

∂ζp
=−

∂p
(1)
3i

∂ξi
−
∂p

(1)
3j

∂ξj
+
∂2v

(1)
3

∂τ2
(3.28)

and

∂q
(0)
33

∂ζq
=−

∂q
(0)
3i

∂ξi
−
∂q

(0)
3j

∂ξj
. (3.29)

The related boundary conditions on the faces ζp =±1 (ζq =±η−1) become

p
(1)
3i =−q(0)3i , p

(1)
33 = 0 . (3.30)

As a result, all the formulae for the quantities v(1)i , v(1)3 , ε(1)ij , ε(1)ii , ε(1)33 , p(1)ij , q(1)ij , p(1)ii , q(1)ii , and

p
(1)
3i can be obtained from the associated formulae of the leading order approximation, see (3.12),

(3.15), (3.18), and (3.19), by the same suffix substitution (0)→ (1). In particular, substitution of the
counterpart of the formula (3.22), i.e.,

p
(1)
3i = ζ2p2(1− κ2)∆ξ

∂w
(1)
3

∂ξi
+ C(ξ1, ξ2, τ) , (3.31)

into the boundary condition (3.30)1 leads to

C = 2(1− κ2)∆ξ

[
1√
π

∂w
(0)
3

∂ξi
−
∂w

(1)
3

∂ξi

]
, (3.32)

thus

p
(1)
3i = 2(1− κ2)∆ξ

[
∂w

(1)
3

∂ξi
(ζ2p − 1) +

1√
π

∂w
(0)
3

∂ξi

]
. (3.33)

Then, we deduce from (3.28)10, using the (3.33), that

p
(1)
33 = ζp

(
2(1− κ2)

[
(1−

ζ2p
3
)∆2

ξw
(1)
3 +

1√
π
∆2
ξw

(0)
3

]
+
∂2w

(1)
3

∂τ2

)
. (3.34)

Finally, satisfying the boundary condition (3.30)2 we arrive at a PDE for the first order correction
w
(1)
3 , given by

4

3
(1− κ2)

[
∆2
ξw

(1)
3 − 3

2
√
π
∆2
ξw

(0)
3

]
+
∂2w

(1)
3

∂τ2
= 0 . (3.35)

Let us now multiply (3.35) by η and add the result to the leading order equation (3.24). We
then have the sought for 2D nonlocal equation for plate bending. In the original variables it may
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be written as
D′∆2u3 + 2ρhu3,tt = 0 , (3.36)

where u3 = `(w
(0)
3 + ηw

(1)
3 ) and the nonlocal bending stiffness D′ is given by

D′ =D

(
1− 3a

2h
√
π

)
, (3.37)

with D=
8µh3(1−κ2)

3 denoting the bending stiffness in the classical Kirchhoff theory for plate

bending. In terms of Young modulus E and Poisson ratio ν, D= 2Eh3

3(1−ν2)
.

It is worth noting that the nonlocal bending stiffness D′ in (3.37) to within higher order terms
in η, mainly exponentially small ones, coincides with that obtained in Sajadi et al. (2017) using
classical Kirchhoff hypotheses in thin plate theory 1.

4. Plate extension
Now we operate with the dimensionless variables (3.1) with the time scale (2.10) characteristic of
low-frequency extensional motion. In this case the scaling, similar to that in the above mentioned
asymptotic plate theory is given by

ui = `vi , u3 = η`v3 , (4.1)

eii = εii , eij = εij , e33 = ε33 , (4.2)

and
sii = µ(pii + qii) ,

sij = µ(pij + qij) ,

s3i = ηµ(p3i + ηq3i) ,

s33 = η2µ(p33 + η2q33) .

(4.3)

In addition, we define

γi3 =
∂ui
∂x3

= ηgi3 , (4.4)

where gi3 is assumed to be a quantity of order unity.
Similarly to the previous section, we insert the formulae (3.1), (2.10), and (4.1)-(4.3) into the

relations in Section 2 and (4.4), yielding

pij + qij =
2√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]εijdζ′q ,

pii + qii =
1√
π

∫η−1

−η−1

exp [−(ζ′q − ζq)2]
(
κ−2εii + (κ−2 − 2)(εjj + ε33)

)
dζ′q ,

η2(p33 + η2q33) =
1√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]

(
κ−2ε33 + (κ−2 − 2)(εii + εjj)

)
dζ′q ,

(4.5)

with

εij =
1

2

(
∂vi
∂ξj

+
∂vj
∂ξi

)
,

εii =
∂vi
∂ξi

,

ε33 =
∂v3
∂ζp

.

(4.6)

We also obtain
∂vi
∂ζp

= η2gi3 . (4.7)

1The expression "(3η − 2η3)" in the formulae (22) and (26) in Sajadi et al. (2017) is seemingly in error and should be "(3η−1 −
2η−3)".
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The equations of motion and boundary conditions at ζp =±1 (ζq =±η−1) take the forms

∂p3i
∂ζp

+
∂q3i
∂ζq

=−∂(pii + qii)

∂ξi
−
∂(pij + qij)

∂ξj
+
∂2vi
∂τ2

,

∂p33
∂ζp

+ η
∂q33
∂ζq

=−∂(p3i + ηq3i)

∂ξi
−
∂(p3j + ηq3j)

∂ξj
+
∂2v3
∂τ2

,

(4.8)

and

p3i + ηq3i = 0 , p33 + η2q33 = 0 . (4.9)

The strain ε33 in (4.5)2, to within the error O(η2), can be expressed from (4.5)3, resulting in

pii + qii =
1√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]

(
4(1− κ2)εii + 2(1− 2κ2)εjj

)
dζ′q

+η2(1− 2κ2)(p33 + η2q33) .

(4.10)

Let us substitute the expansions (3.9) into the relations above. Thus, we readily obtain

∂v
(0)
i

∂ζp
= 0 ,

ε
(0)
ij =

1

2

∂v(0)i
∂ξj

+
∂v

(0)
j

∂ξi

 ,

ε
(0)
ii =

∂v
(0)
i

∂ξi
,

p
(0)
ij + q

(0)
ij =

2√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]ε

(0)
ij dζ

′
q ,

p
(0)
ii + q

(0)
ii =

1√
π

∫η−1

−η−1
exp [−(ζ′q − ζq)2]

(
4(1− κ2)ε(0)ii + 2(1− 2κ2)ε

(0)
jj

)
dζ′q ,

∂p
(0)
3i

∂ζp
=−

∂p
(0)
ii

∂ξi
−
∂p

(0)
ij

∂ξj
+
∂2v

(0)
i

∂τ2
,

∂q
(0)
3i

∂ζq
=−

∂q
(0)
ii

∂ξi
−
∂q

(0)
ij

∂ξj
,

∂p
(0)
33

∂ζp
=−

∂p
(0)
3i

∂ξi
−
∂p

(0)
3j

∂ξj
+
∂2v

(0)
3

∂τ2
,

(4.11)

and at ζp =±1 (ζq =±η−1)

p
(0)
3i = 0 , p

(0)
33 = 0 . (4.12)

First, we deduce from (4.11)1−3

v
(0)
i =w

(0)
i ,

ε
(0)
ii =

∂w
(0)
i

∂ξi
, ε

(0)
ij =

1

2

∂w(0)
i

∂ξj
+
∂w

(0)
j

∂ξi

 ,
(4.13)

where w(0)
i =w

(0)
i (ξi, ξj , τ). Then, integration in (4.11)4,5 yields

p
(0)
ij =

∂w
(0)
i

∂ξj
+
∂w

(0)
j

∂ξi
,

q
(0)
ij =−1

2
Q2

∂w(0)
i

∂ξj
+
∂w

(0)
j

∂ξi

 ,

(4.14)
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and

p
(0)
ii = 4(1− κ2)

∂w
(0)
i

∂ξi
+ 2(1− 2κ2)

∂w
(0)
j

∂ξj
,

q
(0)
ii =−1

2
Q2

4(1− κ2)
∂w

(0)
i

∂ξi
+ 2(1− 2κ2)

∂w
(0)
j

∂ξj

 ,

(4.15)

where

Q2 = (ζqη)
−1Q1 , (4.16)

with Q1 given by (3.16).
Next, we integrate equation (4.11)6 with respect to ζp and satisfy the boundary condition

(4.12)1, arriving at

4(1− κ2)
∂2w

(0)
i

∂ξ2i
+
∂2w

(0)
i

∂ξ2j
+ (3− 4κ2)

∂2w
(0)
j

∂ξi∂ξj
−
∂2w

(0)
i

∂τ2
= 0 . (4.17)

Finally, integration of (4.11)7 with respect to ζq , and neglecting asymptotically small terms, gives

q
(0)
3i =−1

2

∆ξw(0)
i + (3− 4κ2)

∂2w(0)
i

∂ξ2i
+
∂2w

(0)
j

∂ξi∂ξj

R2 , (4.18)

with R2 defined by (3.27) at k= 2.
At first order, we have for p(1)3i and w

(1)
i the same equation as (4.17). It has to be considered

with the boundary conditions

p
(1)
3i =−q(0)3i (4.19)

at ζp =±1 (ζq =±η−1). The solution of the formulated boundary value problem is∆ξw(1)
i + (3− 4κ2)

∂2w(1)
i

∂ξ2i
+
∂2w

(1)
j

∂ξi∂ξj

− ∂2w
(1)
i

∂τ2


− 1

2
√
π

∆ξw(0)
i + (3− 4κ2)

∂2w(0)
i

∂ξ2i
+
∂2w

(0)
j

∂ξi∂ξj

= 0 .

(4.20)

Combining the equations (4.20) and (4.17), we have in the original variables

A′

2
((1− ν)∆u + (1 + ν) grad div u)− 2ρhutt = 0 , (4.21)

with u = `(w
(0)
1 + ηw

(1)
1 , w

(0)
2 + ηw

(1)
2 ) and

A′ =A

(
1− a

2h
√
π

)
, (4.22)

whereA= 2Eh
1−ν2 is the extensional stiffness in the classical theory for plate extension. The nonlocal

stiffness A′ also coincides to within higher order term in η with that in Sajadi et al. (2017).

5. Numerical illustrations
First, we compute the functions Qk and Rk, see (3.16), (3.27), and (4.16), characterising the
boundary layer components of the nonlocal stresses sii, sij , and s3i (i 6= j = 1, 2) for plate bending
(k= 1) and extension (k= 2). As might be expected, the functions R1 and Q2 are even, whereas
Q1 and R2 are odd in the thickness co-ordinate.



12

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Q
1

-1

-0.5

0

0.5

1
ζ p

η = 0.2
η = 0.1
η = 0.05

Figure 2. The boundary layer component of the nonlocal stresses sii and sij (i 6= j = 1, 2) for plate bending.
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Figure 3. The boundary layer component of the nonlocal stresses s3i (i= 1, 2) for plate bending.
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Figure 4. The boundary layer component of the nonlocal stresses sii and sij (i 6= j = 1, 2) for plate extension.



13

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

R
2

-1

-0.5

0

0.5

1
ζ p

η = 0.2
η = 0.1
η = 0.05

Figure 5. The boundary layer component of the nonlocal stresses s3i (i= 1, 2) for plate extension.

The graphs in Figures 2 - 5 are plotted for η= 0.2, 0.1 and 0.05, where we recall that η= a/h. All
of the plots show localisation over narrow O(η) zones of plate faces, demonstrating a monotonic
exponential decay typical for various boundary layer phenomena. The curves in Figures 2 and 5
as well as in Figures 3 and 4 have a pretty similar shape just taking slightly different numerical
values.

We also present dispersion curves for a plane harmonic wave propagating with frequency ω
and wave number k. In this case the dispersion relation associated with the derived equations of
motion (3.36) and (4.21) are

4

3
(1− κ2)K4

(
1− 3

2

η√
π

)
−Ω2 = 0 (5.1)

and

4(1− κ2)K2
(
1− η

2
√
π

)
−Ω2 = 0 , (5.2)

where Ω = ωh
c2

, K = kh, and κ=
√

1−2ν
2−2ν . At η= 0 these formulae coincide with those in the

classical theories of plate bending and extension.
Numerical data are presented in Figures 6 - 7 for η= 0, 0.1 and ν = 0.3, where we also

plot the curves corresponding to the fundamental Rayleigh-Lamb antisymmetric (Figure 6) and
symmetric (Figure 7) modes calculated from the transcendental relations

γ4
sinhα

α
coshβ − β2K2 coshα

sinhβ

β
= 0 (5.3)

and

γ4 coshα
sinhβ

β
− α2K2 sinhα

α
coshβ = 0 , (5.4)

where α2 =K2 − κ2Ω2, β2 =K2 −Ω2, and γ =K2 − Ω2

2 (Kaplunov et al., 1998).
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Figure 6. Dispersion of bending wave.
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Figure 7. Dispersion of extensional wave.

These figures confirm that the nonlocal corrections to the classical plate theories are meaningful
only at relatively low frequencies. It is also interesting to note that the curves corresponding to
the nonlocal plate theory (η= 0.1 in Figures 6 and 7) intersect with those calculated from the
Rayleigh-Lamb dispersion equations.
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6. Concluding remarks
The main outcome of the presented study is that the effect of the boundary layers, arising
due to nonlocal interactions, is just a modifying of the bending and extensional stiffness in the
classical equations of plate motion. In this case the nonlocal stiffness D′ and A′ are defined by
formulae (3.37) and (4.22), respectively, while the boundary layers are expressed in terms of the
complementary error function, given by explicit relations (3.16), (3.27), and (4.16).

The range of validity of the equations (3.36) and (4.21) is not really restricted to the considered
set up of a single small parameter, in which h/`∼ a/h� 1. In fact, these equations are also
applicable at h2/`2� a/h� 1, whereas at a/h∼ h2/`2, the terms of O(h2/l2) typical for the
asymptotic versions of Timoshenko-Reissner theories have to be retained, e.g., see Goldenveizer
et al. (1993) and Elishakoff et al. (2015).

The proposed methodology has potential to be extended to thin elastic shells and beams taking
into account anisotropy and more general nonlocal kernels. Another important area of further
development is concerned with asymptotic justification of the nonlocal constitutive relations (2.2)
in Eringen (1983) near plate faces, e.g., by homogenising the associated discrete lattice structure,
e.g., see Eringen and Kim (1977) and also Picu (2002). The 1D procedure sketched by Eringen
and Kim (1977) has potential to be extended to the 3D case; in doing so, we should apparently
assume the so-called ’an effective cut-off length’ (Eringen, 1983), (Picu, 2002) much greater than
the microscale and much smaller that the plate thickness.

It also follows from Eringen and Kim (1977) that the discrete models involving nonlocal
interactions adequately incorporate near surface phenomena, supporting boundary layers near
plate faces similar to the considered kernel normalised over 3D domain by formula (2.3). Of
course, such normalisation does not allow the classical limit near plate faces, which in apparently
might not be dictated by physics of the studied nonlocal problem. At the same time, calculation
of the alternative kernels arising from normalisation over the plate thickness (Sajadi et al., 2017)
requires extra boundary conditions which have to be properly justified.
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