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Abstract 

Dissolved organic matter (DOM) plays a central role in regulating productivity and nutrient 

cycling in freshwaters. It is therefore vital that we can representatively sample and preserve 

DOM in freshwaters for subsequent analysis. Here we investigated the effect of filtration, 

temperature (5 and 25 °C) and acidification (HCl) on the persistence of low molecular weight 

(MW) dissolved organic carbon (DOC), nitrogen (DON) and orthophosphate in oligotrophic 

and eutrophic freshwater environments. Our results showed the rapid loss of isotopically-

labelled glucose and amino acids from both filtered (0.22 and 0.45 µm) and unfiltered waters. 

We ascribe this substrate depletion in filtered samples to the activity of ultra-small (< 0.45 

µm) microorganisms (bacteria and archaea) present in the water. As expected, the rate of C, 

N and P loss was much greater at higher temperatures and was repressed by the addition of 

HCl. Based on our results and an evaluation of the protocols used in recently published 

studies, we conclude that current techniques used to sample water for low MW DOM 

characterisation are frequently inadequate and lack proper validation. In contrast to the high 

degree of analytical precision and rigorous statistical analysis of most studies, we argue that 

insufficient consideration is still given to the presence of ultra-small microorganisms and 

potential changes that can occur in the low MW fraction of DOM prior to analysis. 
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1. Introduction 

Dissolved organic matter (DOM) represents a key source of nutrients and energy for plants 

and microorganisms living in pristine low nutrient status waters (Gardner et al., 1989; Lindell 

et al., 1996; Bernot et al., 2010; Durand et al., 2011; Stutter and Cains, 2015). Conversely, 

DOM can also be seen as undesirable in freshwaters due to its potential to make pollutants 

more bioavailable, its ability to affect the hormone balance of freshwater organisms, its 

ability to generate significant reductions in dissolved oxygen concentrations owing to its 

uptake by microbial populations, and its potential to lead to the formation of carcinogens 

during chlorination of drinking water (Steinberg et al., 2008; Durand et al., 2011; McIntyre 

and Gueguen, 2013). Understanding the origin, behaviour and fate of DOM in aquatic 

ecosystems is therefore important for predicting how it will influence primary productivity 

and overall water quality. It is clear from recent studies that DOM is composed of thousands 

of individual compounds which can be biologically processed within the river network 

leading to significant changes in the quality and quantity of DOM during passage from 

catchment to coast (Battin et al., 2003; Lusk and Toor, 2016). While some high molecular 

weight (MW) compounds (>1000 daltons (Da); Kujawinski, 2011) may be relatively 

recalcitrant to microbial breakdown, some low MW compounds are highly labile, making 

representative sampling difficult due to potential losses during transport and storage prior to 

analysis.  

 DOM is operationally defined as C-containing compounds that can pass through a 

0.45 µm filter (Thurman, 1985; Nimptsch et al., 2014), this limit being historically linked to 

the microbiological standard for drinking water (Goetz and Tsuneishi, 1951). This filtering 

process is designed to remove microorganisms and organic debris from the sample, although 

the passage of nano-particulate DOM is inevitable. It is now well established, however, that 

freshwaters contain a range of ultra-small organisms (e.g. viruses, bacteria, archaea) which 



can also readily pass through a 0.45 µm apertures (Fig. 1; Comolli et al., 2009; Maranger and 

Bird, 1995). While viruses can be considered to be biologically inert from a DOM standpoint, 

the remaining ultra-small bacteria and archaea are thought to be physiologically active in a 

planktonic state (Baker et al., 2010; Luef et al., 2015). Currently, the ecological significance 

of these nano-organisms in nutrient cycling and DOM processing in natural freshwaters 

remains unknown. In addition, they also have the potential to compromise the quality of 

DOM in filtered samples destined for laboratory analysis.  

One of the main approaches for assessing DOM concentrations in water is via manual 

grab sampling, during which samples are 0.45 µm filtered in situ or ex situ prior to storage in 

pre-washed bottles. Alternatively, automatic sampling systems may be employed to reduce 

the amount of time and resources required (Cassidy and Jordan, 2011). However, 

automatically collected samples present challenges as they are not filtered after collection and 

are rarely recovered from site on a daily basis; therefore samples may be subject to 

significant periods of storage during which DOM biodegradation can occur. In addition, the 

samples may be exposed to higher temperatures than those of the river, potentially increasing 

the rate of microbial activity and loss or transformation of DOM (Ahad et al., 2006; Johnston 

et al., 2009). Although preservatives can be used to minimise nutrient transformations, these 

may interfere with subsequent metabolomics, biochemical and microbiological analysis and 

are frequently not used (Ferguson, 1994; Kotlash and Chessman, 1998). 

The three most commonly measured macronutrients that contribute to the molecular 

structure of DOM, and are key water quality parameters are C, N and P. Although the exact 

composition of all the dissolved organic C, N and P compounds in the aquatic environment is 

largely undefined, DOM can be divided into a high and low MW DOM fraction. The low 

MW DOM (< 1000 Da) fraction includes a wide range of common metabolites in either a 

monomer or oligomer form (e.g. amino acids, peptides, sugars, organic acids; Helms et al., 



2008). As these compounds may be typically present at very low concentrations (< 500 nM), 

particularly in low nutrient-status waters, their significance is frequently overlooked relative 

to the more stable high MW humic DOM fraction (Kujawinski, 2011). However, when their 

rapid rate of formation and turnover are considered, the overall flux of low MW DOM 

through the aquatic biota may be significant (Meon and Amon, 2004). As these compounds 

are likely to have a quick rate of turnover in the aquatic environment, their detection can be 

challenging especially in non-sterile samples. The aim of this study was therefore to: (1) 

compare the rate of microbial uptake of three low MW DOM components over time in 

unfiltered (whole microbial community) and filtered (ultra-small microbial community) water 

samples; (2) determine the impact of temperature on the microbial utilization of low MW 

DOM; and (3) establish whether sample acidification provides an effective preservative for 

low MW DOM. The results of the study will be used to evaluate the significance of ultra-

small microorganisms in low MW DOM turnover and also to devise potential strategies to 

representatively sample this DOM fraction.  

 

2. Materials and methods  

2.1 Field site and sampling  

Samples were collected from two contrasting sub-catchments within the Conwy 

catchment, North Wales (Fig. 2; supplementary Fig. S2). The Hiraethlyn sub-catchment is an 

area of primarily lowland improved grassland used predominantly for agricultural livestock 

production (Cooper et al., 2014; Jones et al., 2016). It has an average elevation of 56 m a.s.l., 

an annual air temperature of 8.57 ± 0.04 °C and an annual rainfall of up to 1000 mm (Emmett 

et al. 2016). The Migneint sub-catchment is an area of upland blanket peat bog supporting 

acid heathland vegetation and low intensity sheep production. It has an approximate elevation 



of 400 m and a mean annual temperature of 6.42 ± 0.05 °C and annual rainfall of 200-2500 

mm (Emmett et al., 2016). 

 Samples were collected manually in high density polyethylene (HDPE) bottles in 

March, 2015. At each site, a sample of water was either, (1) left unfiltered, (2) filtered 

through a 0.45 µm cellulose nitrate filter (Whatman, Buckinghamshire, UK), (3) filtered 

through a 0.22 µm cellulose nitrate filter (Sartorius, Göttingen, Germany), or (4) unfiltered 

and acidified with 10 ml 0.1 M HCl. Filters were rinsed by passing 60 mL of sample water 

through before the sample was collected. During transportation back to the laboratory, 

samples (1 L) were kept cool and in the dark by placing them on ice (supplementary Fig. S1).  

 

2.2 Nutrient depletion experiment 

To evaluate C, N and P depletion in the different treatments, 3 different radioisotopes were 

used: 
14

C-[U]-glucose (Lot 3632475; PerkinElmer, MA, USA), a mixture of 16 individual 

14
C-[U]-amino acids (Lot 3590279; PerkinElmer) and H3

33
PO4 (Lot 01305; PerkinElmer). 

For each isotope, three replicate 25 mL aliquots for each of the 4 treatments (acidified, 

unfiltered, 0.22 μm and 0.45 μm filtered) from the Hiraethlyn and Migneint sampling sites 

were added to sterile 50 mL polypropylene centrifuge tubes (Corning, NY, USA) and spiked 

with 0.2 kBq mL
-1

 activity. The amount of isotope added was < 1 nM and therefore not 

expected to change the intrinsic concentration of the target compound within the samples. 

After sealing with sterile caps, the samples were subsequently incubated in the dark at either 

5 or 25 °C for the duration of the experiment.  

After incubation for 2, 5, 24, 48, 72, 144 or 168 h, 1 mL subsamples were taken, 

centrifuged to remove microbial cells (20,817 g, 5 min), and 0.5 mL of the supernatant placed 

in a scintillation vial. The subsamples were then acidified with 0.1 M HCl (50 µL), vortexed, 



left to stand for 3 h and then vortexed again to remove any dissolved CO2 present. The 

subsample was then mixed with Optiphase HiSafe scintillation cocktail (4 mL; PerkinElmer) 

and the 
14

C or 
33

P quantified on a Wallac 1404 liquid scintillation counter (Wallac EG&G, 

Milton Keynes, UK). 

 

2.3 Statistical analysis  

All data analyses were carried out using SPSS 22.0 (IBM UK Ltd, Portsmouth, UK). Two-

way mixed analysis of variance (ANOVA) was used to test for significant differences 

between treatments over time, with the significance level of the P-value being set at p ≤ 0.05. 

If the data did not meet the criteria of Mauchly’s test for sphericity, the Greenhouse-Geisser 

correction was applied to the P-value. 

Data were tested for normality and homogeneity of variance using the Shapiro-Wilk  

and Levene’s tests respectively. If the data met the required assumptions a one-way ANOVA 

was subsequently used to test for differences between treatments at specific time points. Post-

hoc multiple pairwise testing was carried out using Tukey’s post-hoc multiple pairwise 

testing. Where data did not meet the assumptions for a one-way ANOVA, a Welch's test was 

used. Post-hoc multiple pairwise testing with the Games-Howell test was then carried out. All 

values are presented as means ± the standard error of the mean (SEM) (n = 3).  

 

3. Results 

3.1 Water quality characteristics 

The water samples collected from the two sub-catchments differed greatly in their chemical 

properties (Table 1). Values for pH, EC and temperature were found to be significantly lower 



in water collected from the acid heathland (Migneint) sub-catchment. Higher concentrations 

of both inorganic and organic N and P species were found in the agriculturally intensive 

(Hiraethlyn) sub-catchment.  Higher concentrations of DOC were observed in samples from 

the Migneint sub-catchment, with a greater proportion of higher molecular weight DOC, than 

in the Hiraethlyn.  These trends reflect the peaty soils of the Mignient catchment and the N- 

and P-rich soils of the Hiraethlyn sub-catchment. 

 

3.2 Microbial uptake of 
14

C-labelled amino acids 

Significant interactions between treatment (acidified, unfiltered, 0.22 µm and 0.45 µm 

filtered) and time for samples incubated at 5 °C and 25 °C for both sample sites were 

observed for samples spiked with a mixture of 
14

C-labelled amino acids, (two-way mixed 

ANOVA, P < 0.001; Table 2; Fig. 3). 

In the samples from the agricultural catchment (Hiraethlyn) incubated at 5 °C, the 

amount of amino acids remaining in the unfiltered treatment by 24 h was significantly lower 

than in the acidified, 0.22 µm or 0.45 µm filtered treatments (one-way ANOVA, F3,8 = 

207.32, P < 0.001; Fig. 3a). The latter two treatments however did not differ significantly 

from each other. In the acidified samples, the majority (91.4 ± 1.5 %) of the 
14

C-amino acid 

still remained in solution at the end of the experiment (7 d). Although filtering did slow the 

rate of amino acid depletion, there was no difference in the amount of amino acid remaining 

in solution in the filtered and unfiltered samples after 7 d. When incubated at 25 °C, the rate 

of depletion was much faster than at 5 °C across all treatments, with 81.2 ± 0.4 % amino 

acids removed from the filtered and unfiltered water samples by 24 h (Fig. 3b). Increasing the 

incubation temperature to 25 °C decreased the half-lives of the unfiltered 0.45 µm and 0.22 

µm filtered treatments from 17, 50 and 62 h to 4, 16, 17 h respectively. At 25 °C significant 



amounts of amino acid loss were also observed in the acidified samples after 3 d although the 

amount removed after 7 d was significantly less than observed in the other three treatments 

(one-way ANOVA, F3,7 = 2847.27, P < 0.001).  

In contrast to the Hiraethlyn, the rate of amino acid depletion was much slower in 

water obtained from the Migneint sub-catchment (Fig. 3). Despite this, the trends in amino 

loss were broadly similar. Acidification largely prevented the loss of amino acids from 

solution, while filtering temporarily slowed, but did not prevent, amino acid depletion (Table 

2). The rate of depletion was also much greater at 25 °C than in water incubated at 5 °C (one-

way ANOVA, F3,7 = 2847.27, P < 0.001). The increase in incubation temperature to 25 °C 

decreased the half-life of the unfiltered treatment from 139 h to 56 h. Half-lives could not be 

calculated for the filtered treatments at 5 °C, but were 70 and 90 h for 0.22 µm and 0.45 µm 

filtered treatments respectively. 

 

3.3 Microbial uptake of 
14

C-labelled glucose 

The trends in 
14

C-labelled glucose depletion from water were very similar to those observed 

for the 
14

C-labelled amino acids (Fig. 4). Again, significant interactions between treatment 

and time for samples incubated at 5 °C, 25 °C and for both the agricultural (Hiraethlyn) and 

acid heathland (Migneint) sub-catchments were observed (two-way mixed ANOVA, P < 

0.001; Table 2; Fig. 4).  

Acidification with HCl largely prevented glucose uptake at 5 °C and greatly repressed 

its use at 25 °C, relative to the unfiltered control. Passing the water through a 0.22 or 0.45 µm 

filter also slowed the microbial immobilisation of 
14

C-glucose.  

The half-life of glucose in the unfiltered Hiraethlyn water held at 5 °C was 18 h, while 

filtering to pass 0.45 or 0.22 µm extended this to 55 h and 65 h respectively. At 25 °C, the 



half-life for the unfiltered and 0.45 and 0.22 µm filtered samples was 5 h, 14 h and 15 h 

respectively. Although half-lives could not be calculated for the Migneint samples held at 5 

°C, the half-life of glucose at 25 °C was 54 h for the unfiltered samples and 59 h and 77 h for 

the 0.45 µm and 0.22 µm filtered samples respectively. 

 

3.4 Microbial uptake of 
33

P-labelled orthophosphate 

Although there was notable similarity in trends observed between the two 
14

C-labelled 

substrates, the results for 
33

P-labelled orthophosphate followed a different pattern. A 

significant interaction between treatment and time was found for samples kept at 5 °C from 

the Migneint and 25 °C from the Hiraethlyn sub-catchments (two-way mixed ANOVA, P < 

0.001; Table 2; Fig. 5).  This was observed to a lesser extent in samples incubated at 5 °C 

from the Hiraethlyn sub-catchment (two-way mixed ANOVA, P = 0.001; Fig. 5) and 25 °C 

Migneint (two-way mixed ANOVA, P = 0.026; Fig. 5). 

At 5 °C, the amount of 
33

P in the water from the Hiraethlyn sub-catchment did not 

drop below 91.5 ± 0.7 % for any treatment (Fig. 5). At 25 °C, no significant differences were 

initially found between treatments (one-way ANOVA, F3,8 = 4.39, P = 0.05). However, after 

24 h a progressive depletion was observed in the 0.45 and 0.22 µm filtered and unfiltered 

water relative to the acidified treatment (one-way ANOVA, F3,8 = 10.69, P = 0.025).  

In contrast to the Hiraethlyn, a significant loss of 
33

P was observed from the unfiltered 

water over 7 d in water from the Migneint (Fig. 5). This depletion was largely eliminated by 

passing the water through either a 0.22 or 0.45 µm filter prior to the addition of 
33

P at 5 °C. 

At 25 °C the pattern of microbial 
33

P immobilization were similar to those seen for the 
14

C-

labelled substrates. Overall, filtering slightly reduced the rate of 
33

P loss during the first 24 h, 

however, few differences were observed between the filtered and unfiltered water beyond this 



time. A small amount of 
33

P depletion was also observed in the acidified treatment, however, 

this only became apparent after 72 h and was much less than in the non-acidified treatments. 

 

4. Discussion  

4.1 Role of ultra-small organisms in the processing of low MW DOM 

Although 0.22 µm filters are often used and marketed as a method for water sterilisation, 

there have been studies indicating that microbes can even pass through 0.1 µm filters (Wang 

et al. 2007). Until recently, the identity of these organisms remained unknown, however, 

recent sequencing efforts have revealed them to contain a diverse range of taxa (Luef et al., 

2015; Wu et al., 2016; Wurch et al., 2016). In addition, genome sequencing has indicated that 

these ultra-small organisms may contain genes which have the potential to facilitate a wide 

range of metabolic processes (Wu et al., 2016). This emerging area of research, however, 

remains highly controversial (Cisar et al., 2000; Martel et al., 2014; Abrol et al., 2015). Here, 

we present strong evidence to suggest that organisms < 0.45 µm can take up sugars, amino 

acids and inorganic P from solution. In most cases, there was a lag-phase of ca. 24 h in 

substrate use in the filtered samples, indicative that the population may have become more 

active (e.g. broken from dormancy) or grown in size. Although we cannot discount the 

abiotic hydrolysis or precipitation of glucose and amino acids in solution, we expected these 

loss pathways to be minimal in our study. Firstly, the substrates are neutrally charged at the 

pH values used here and do not readily react with metals or particles that may sediment 

during the final centrifugation step. Secondly, abiotic cleavage would typically lead to the 

formation of by-products (e.g. keto acids) which would remain in solution rather than being 

completely mineralized. Thirdly, the patterns of inorganic 
33

P depletion were similar to those 



observed for the organic substrates, and in prior studies on the bulk P chemistry (Johnes and 

Hodgkinson, 1998).  

Major differences in the rates of nutrient depletion were observed between the two 

sampling sites. Overall, DOC and DON depletion were much faster in water obtained from 

the intensive agricultural sub-catchment (Hiraethlyn). In contrast, much faster P depletion 

was observed in the acid heathland (Migneint) sub-catchment. As large amounts of inorganic 

N was present in the Hiraethlyn samples, we conclude that the amino acids were being used 

predominantly as a source of C rather than for the N they contain (Jones et al., 2004). The 

lower rate of glucose use in water from the Migneint probably reflects its lower intrinsic 

microbial population relative to the Hiraethlyn (Emmett et al., 2016), rather than a 

suppression of glucose uptake by the recalcitrant DOC already present in the sample. This 

intrinsic DOC requires photo-irradiation to promote its microbial use (Jones et al. 2016). The 

greater use of P in the water from the Migneint are consistent with very low levels of 

bioavailable P in these humic waters, in contrast to the inorganic P enriched waters at the 

Hiraethlyn site (Table 1).   

Across the different treatments and land-use types, the 20 
o
C increase in temperature 

led to an increase in the rate of nutrient depletion by a factor of 3.6 ± 0.2. This would 

approximately equate to a Q10 value of 1.81, which is similar to values found for freshwaters 

and sediments in previous studies (Bergström and Jansson, 2000; Fischer et al., 2002). 

 

4.2 Filtering as a method to preserve low MW DOM 

While most studies typically measure bulk DOM in samples, advancements in analytical 

chemistry (e.g. FT-ICRMS) have seen an increasing trend towards the molecular separation 

and characterisation of individual low MW DOM compounds in freshwaters (Osborne et al., 



2013; Hertkorn et al., 2016). Typically, the waters collected in these studies are transported 

back to the laboratory prior to filtering. Our results clearly show that even short periods of 

storage will result in a loss of low MW DOC and DON from the samples, potentially 

compromising any subsequent interpretation. This contrasts with some inorganic nutrient 

species such as nitrate (though not orthophosphate) which may be stable in solution for many 

days prior to analysis provided they are stored at 4
 
°C in the dark (Johnes and Burt, 1991; 

Pearce, 1991). Although incubation at 5 
o
C reduced the rate of sugar and amino acid loss by 

ca. 50 %, it did not prevent microbial activity and the loss of low MW DOM from the 

samples. Similarly, as discussed above, filtering failed to eliminate microbial transformation 

of low MW DOM, even in the short term. In addition, filtration may also increase microbial 

activity due to the removal of larger predator species (Gasol and Moran, 1999). Our findings 

conflict to some extent with Kaplan (1994) who suggested that filtering was sufficient to 

preserve DOM for 24 h. This apparent contradiction can be explained by the typical 

dominance of high MW DOM in natural waters which is relatively recalcitrant to microbial 

attack, masking the loss of the low MW DOM fraction (Jones et al., 2016). In most cases, the 

depletion of 
14

C-labelled nutrients occurred at a similar rate in the 0.45 and 0.22 µm filtered 

treatments suggesting that either can be used to partially supress microbial activity. This is in 

agreement with Fellman et al. (2008) and Nimptsch et al. (2014) who found little influence of 

filter pore size (0.2 to 0.7 µm) on DOM concentrations in a range of freshwaters.  

 

4.3 Acidification as a preservative for low MW DOM 

Acidification is routinely employed in the analysis of metal species in water samples to 

prevent complexation with DOM compounds (McCleskey et al., 2004). In our study, 

acidification was found to halt nutrient depletion for the majority of samples kept at 5 °C, 



however, at 25 °C some nutrient depletion still occurred after 72 h. These findings are in 

agreement with Tupas et al. (1994), where acidification was found to preserve DOC samples 

best when samples were stored at 4 °C. It should be noted, however, that the use of some 

acids (e.g. HNO3) may lead to the oxidation or depolymerisation of DOM during long-term 

storage (Kaplan, 1994), and preclude the subsequent analysis of these samples for DON 

owing to the resultant N contamination.  The suitability of acidification therefore also 

depends on the parameter to be measured and the analytical procedure being used 

(McCleskey et al., 2004). 

 

4.4 Recommendations for sampling low MW DOM 

Maintaining sample integrity has been a recurring theme in aquatic science since the onset of 

water quality monitoring and formulation of legislation for environmental protection. Our 

study specifically focused on the persistence of common low MW metabolites produced and 

consumed by freshwater organisms. Based on our results, we recommend that if the rivers are 

located away from the laboratory then samples be directly filtered through pre-washed 0.45 

µm filters in the field, refrigerated, and rapidly processed in the laboratory (< 3 h). Where 

possible, the samples should also be treated with an antimicrobial agent to limit subsequent 

transformation (e.g. HCl, H3PO4; Tupas et al., 1994), though phosphoric acid should clearly 

be avoided if subsequent determination of P species and fractions is planned. Alternatively, 

samples should be passed through pre-concentration cartridges in the field rather than waiting 

to get back to the laboratory. Freezing the samples in situ with liquid N2 may also stabilise 

the samples, although freezing and thawing may induce unwanted and variable changes in the 

molecular structure of high MW DOM and in the N speciation and P fractionation if samples 

are unfiltered when frozen (Santos et al., 2010; Peacock et al., 2015). In the case of 



automated water samplers, our results strongly suggest that refrigeration and addition of a 

biocide to a filtered sample should be used during transport and storage. Whichever method 

is employed, we also recommend that low (10-100 nM) concentrations of internal standards 

(common metabolites) be added to the samples at the point of sampling to ensure that the loss 

of low MW compounds is minimal prior to their ultimate analysis. This validation process 

will be facilitated by the use of singly or dual labelled isotopically-labelled compounds (
15

N, 

13
C, 

14
C, 

33
P). It is clear from reviewing numerous studies in this area that great effort is made 

to obtaining analytical precision when quantifying DOM. In contrast, almost no attention is 

paid to ensuring that the sample is truly representative of the place from which it originated. 

While current approaches may be very satisfactory for relatively recalcitrant high MW DOM, 

our research strongly suggests that greater care is needed when sampling labile low MW 

DOM. 
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Fig. 1 Relative size of dissolved organic matter (DOM) and particulate organic matter (POM) 

components in comparison to bacteria, archaea and viruses. POM > 0.45 µm > DOM. 

0.45/0.22 µm filter cut-offs indicated by a dashed line. * Some giant viruses >1 µm exist. 
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Fig. 2 Land use map of the Conwy catchment with upland peat bog (Migneint) and lowland 

improved grassland (Hiraethlyn) sub-catchments outlined in red.  



 

Fig. 3 Effect of filtering (0.45 or 0.2 µm) and acidification on the loss of 
14

C-labelled amino 

acids for: a) Hiraethlyn sub-catchment 5 °C, b) Hiraethlyn sub-catchment 25 °C, c) Migneint 

sub-catchment 5 °C, d) Migneint sub-catchment 25 °C. Values represent means ± SEM (n = 

3). The legend is the same for all panels. 
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Fig. 4  Effect of filtering (0.45 or 0.2 µm) and acidification on the loss of 
14

C-labelled 

glucose for: a) Hiraethlyn sub-catchment 5 °C, b) Hiraethlyn sub-catchment 25 °C, c) 

Migneint sub-catchment 5 °C, d) Migneint sub-catchment 25 °C. Values represent means ± 

SEM (n = 3). The legend is the same for all panels. 
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Fig. 5  Effect of filtering (0.45 or 0.2 µm) and acidification on the loss of 
33

P-labelled 

orthophosphate for: a) Hiraethlyn sub-catchment 5 °C, b) Hiraethlyn sub-catchment 25 °C, c) 

Migneint sub-catchment 5 °C, d) Migneint sub-catchment 25 °C. Values represent means ± 

SEM (n = 3). The legend is the same for all panels. 
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Table 1 Chemical properties of water from the Hiraethlyn and Migneint sub-catchments used 

in the substrate mineralisation experiments. Values represent annual mean data ± SEM (n=66, 

except for low molecular weight fractionation parameters where n=3). 

 

Determinand   Hiraethlyn    Migneint 

pH  7.46 ± 0.09 5.36 ± 0.13 

Electrical conductivity (μS cm
-1

 )  229 ± 25.3 35.9 ± 1.90 

Temperature (°C)  11.0 ± 0.35 11.3 ± 0.50 

Dissolved organic carbon DOC (mg C L
-1

) 3.81 ± 0.24 11.7 ± 0.88 

Absorbance at 254 nm (AU cm
-1

) 0.27 ± 0.02 0.51 ± 0.00 

Nitrate NO3
-
 (mg N L

-1
) 2.64 ± 0.11 0.07 ± 0.03 

Ammonium NH4
+
 (mg N L

-1
) 0.05 ± 0.01 0.01 ± 0.00 

Dissolved organic nitrogen DON (mg N L
-1

) 0.64 ± 0.09 0.44 ± 0.02 

Particulate organic nitrogen PON (mg N L
-1

) 0.12 ± 0.06 0.03 ± 0.01 

Orthophosphate (mg P L
-1

) 0.04 ± 0.00 0.01 ± 0.00 

Dissolved organic phosphorus DOP (mg P L
-1

) 0.01 ± 0.00 0.01 ± 0.00 

Particulate phosphorus (mg P L
-1

) 0.02 ± 0.01 0.01 ± 0.00 

Percentage low molecular weight DOC (% <1 kDa) 99.7 ± 11.8 54.9 ± 4.06 

Percentage low molecular weight aromatic compounds (% <1 kDa) 59.0 ± 7.81 31.2 ± 1.15 
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Table 2 Results from a two-way mixed ANOVA for each isotopically-labelled nutrient, sub-catchment and temperature.  

* Denotes a significant P-value. The significance level was set at P < 0.05.
  

 

 

 

Sub-catchment Nutrient Temperature 

(°C ) 

Simple effect of time  Interaction time × treatment 

F P -value  F P -value 

Hiraethlyn 
14

C amino acid mix  5 2156 <0.001*  276 <0.001* 

Hiraethlyn 
14

C amino acid mix  25 826
 

<0.001*  61 <0.001* 

Migneint 
14

C amino acid mix  5 332
 

<0.001*  114 <0.001* 

Migneint 
14

C amino acid mix  25 2103 <0.001*  164 <0.001* 

Hiraethlyn 
14

C glucose 5 4441
 

<0.001*  657 <0.001* 

Hiraethlyn 
14

C glucose 25 1730
 

<0.001*  140 <0.001* 

Migneint 
14

C glucose 5 139
 

<0.001*  52 <0.001* 

Migneint 
14

C glucose 25 481
 

<0.001*  57 <0.001* 

Hiraethlyn 
33

P orthophosphate 5 15 <0.001*  4   0.001* 

Hiraethlyn 
33

P orthophosphate 25 211
 

<0.001*  42  <0.001* 

Migneint 
33

P orthophosphate 5 279
 

<0.001*  134 <0.001* 

Migneint 
33

P orthophosphate 25 43
 

<0.001*  5   0.026* 
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Fig. S1 Temperature of river water samples collected in 1 L HDPE bottles. Samples 

were collected in the field and immediately stored on ice for 4 h (representing the 

transportation time from the field to the laboratory). The samples were then removed 

from the ice and held at room temperature for 1 h (to represent dispensing time prior to 

spiking with either 
14

C or 
33

P-labelled nutrients). The 5 hour time point therefore 

equates to the start of the labelling experiment. Samples were then stored at 10 °C 

immediately after being spiked with the labelled isotopes. Temperature was recorded 

every minute using a Tinytag Talk 2 datalogger (Gemini, UK). 
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Fig. S2 Images of a) the Hiraethlyn (lowland improved grassland) and b) Migneint 

(upland blanket peat bog) sub-catchments. 

 

a) b) 


