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Abstract

Background: Researchers and funders should consider the statistical power of planned Individual Participant Data
(IPD) meta-analysis projects, as they are often time-consuming and costly. We propose simulation-based power
calculations utilising a two-stage framework, and illustrate the approach for a planned IPD meta-analysis of randomised
trials with continuous outcomes where the aim is to identify treatment-covariate interactions.

Methods: The simulation approach has four steps: (i) specify an underlying (data generating) statistical model for
trials in the IPD meta-analysis; (ii) use readily available information (e.g. from publications) and prior knowledge (e.
g. number of studies promising IPD) to specify model parameter values (e.g. control group mean, intervention
effect, treatment-covariate interaction); (iii) simulate an IPD meta-analysis dataset of a particular size from the model,
and apply a two-stage IPD meta-analysis to obtain the summary estimate of interest (e.g. interaction effect) and its
associated p-value; (iv) repeat the previous step (e.g. thousands of times), then estimate the power to detect a genuine
effect by the proportion of summary estimates with a significant p-value.

Results: In a planned IPD meta-analysis of lifestyle interventions to reduce weight gain in pregnancy, 14 trials (1183
patients) promised their IPD to examine a treatment-BMI interaction (i.e. whether baseline BMI modifies intervention
effect on weight gain). Using our simulation-based approach, a two-stage IPD meta-analysis has < 60% power to
detect a reduction of 1 kg weight gain for a 10-unit increase in BMI. Additional IPD from ten other published
trials (containing 1761 patients) would improve power to over 80%, but only if a fixed-effect meta-analysis was
appropriate. Pre-specified adjustment for prognostic factors would increase power further. Incorrect dichotomisation of
BMI would reduce power by over 20%, similar to immediately throwing away IPD from ten trials.

Conclusions: Simulation-based power calculations could inform the planning and funding of IPD projects, and should
be used routinely.
Background
Individual patient data (IPD) meta-analysis involves
obtaining and then synthesising the raw, individual
level-data from multiple studies. The approach has be-
come increasingly common over the past decade [1–3],
due to the increasing willingness (and expectation [4]) of
collaborators to share their IPD in order to answer ques-
tions previously unconsidered or not powered in their
primary studies. One typical question is whether a
patient-level characteristic modifies a treatment effect, in
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order to identify subgroups of patients who may be at
greater benefit (or harm) than others. Such stratified
medicine is a major interest of clinical decision makers
and pharmaceutical companies, looking to identify those
populations in whom treatment is more effective (or less
harmful) [5]. A single trial is usually underpowered for
this purpose. Brookes et al. [6] show that if a single trial
has 80% power to detect a particular treatment effect
(across all patients), then its power to detect an inter-
action (with a binary covariate) with the same magnitude
as the overall treatment effect will only be 29%. To en-
sure 80% power to detect the interaction, the sample size
in a single trial needs to be increased by approximately
four times. Furthermore, to have 80% power to detect an
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interaction term half the size of the overall treatment
effect there needs to be an approximately 16-fold in-
crease in sample size. Therefore a project that pools the
IPD from multiple trials is highly appealing to funders to
substantially increase the power to detect genuine
treatment-covariate interactions.
However, IPD meta-analyses are both time-consuming

and expensive to perform, requiring significant resources
to obtain, clean and harmonise the IPD from relevant
trials before then synthesising them; a process that can
take months or even years [7, 8]. Therefore, before
embarking on an IPD project, researchers and funders
should ensure that it is likely to be worth the effort. In
particular, how many studies are likely to provide their
IPD and, based on this, what is the potential power of
the planned IPD meta-analysis? In our experience,
power calculations and sample size justifications are
rarely reported in IPD meta-analysis protocols or publi-
cations. Researchers are perhaps grateful for whatever
IPD can be obtained, and appeal to any IPD meta-
analysis adding value over a single trial. However, if it
was known in advance that IPD from a particular num-
ber of studies would only increase power to 50%, then
researchers and funders may think twice before under-
taking the IPD project. Conversely, if a potential IPD
meta-analysis increases the power to over 80%, then fun-
ders will be more reassured that the IPD project is worth
resourcing. Power calculations could also reveal which
studies contribute most to the power, and thus direct
how much IPD is needed and from which studies,
although this last point is potentially contentious.
Formal power calculations for an IPD meta-analysis

are non-trivial and depend on many factors, which
perhaps explains why they are currently neglected.
The IPD cannot be considered as coming from a sin-
gle trial, and thus sample size calculations must ac-
count for the clustering of patients within trials and
the potential heterogeneity (e.g. in baseline risk and
treatment effects) between-trials. Also, the power de-
pends on the choice and specification of analysis
model (e.g. covariates to be included, number of pa-
rameters, magnitude of effects), and the parameter es-
timation method, amongst other factors. Therefore,
simple algebraic solutions are not straightforward un-
less simplifying conditions are made [9–11]. For this
reason, Kontopantelis et al. previously proposed a
simulation-based approach, where IPD meta-analysis
datasets are simulated multiple times based on a
chosen data-generating mechanism (including num-
bers of studies, effect sizes, and heterogeneity), and
then a chosen one-stage IPD meta-analysis model is
applied to each dataset, with subsequent results (e.g.
estimates and confidence intervals) summarised over
the multiple analyses [12]. In particular, the
proportion of all simulations that give a p-value < 0.
05 can be calculated, to give an estimate of the
power.
Complementary to this work, in this paper we also

propose simulation-based power calculations but
within a two-stage IPD meta-analysis framework, ra-
ther than a one-stage. The two-stage approach is
more common in practice, as the second stage en-
ables meta-analysis models (such as inverse variance
weights) and estimation methods (such as DerSimo-
nian and Laird [13] or restricted maximum likelihood,
REML) that are familiar to those working in the
meta-analysis field. Also, it avoids convergence prob-
lems that are often more problematic for one-stage
models (due to the inclusion of many study stratifica-
tion terms and/or multiple random effects), and
enables novel approaches (such as Hartung-Knapp
Sidik-Jonkmann, HKSJ [14, 15]) to deriving confi-
dence intervals that account for uncertainty in vari-
ance estimates. Crucially, it also automatically avoids
ecological bias, which occurs in one-stage models
when a treatment-covariate interaction is included
without separating out individual-level associations
from across-study associations [16, 17].
Below, we describe our new proposal and apply it to a

real IPD meta-analysis of randomised trials in preg-
nancy, where the aim is to examine an interaction be-
tween baseline BMI and treatment effect. This illustrates
how to tailor power calculations to the IPD meta-
analysis at hand, using prior information (e.g. from pub-
lished articles) and context-specific knowledge. The art-
icle is structured as follows. Section 2 briefly explains
the two-stage approach to an IPD meta-analysis of con-
tinuous outcomes from randomised trials. Section 3 then
outlines our simulation-based approach to power calcu-
lations, and Section 4 then details its application to the
pregnancy example. Section 5 concludes with discussion,
including how to extend to continuous and time-to-
event outcomes.
Methods
The two-stage approach to IPD meta-analysis
We now introduce the two-stage approach to IPD meta-
analysis of continuous outcomes, which was recently de-
scribed by Burke et al. [18]
First stage
Let us assume that there are i = 1 to K randomised trials
for the IPD meta-analysis and that a treatment effect is
of interest. In the two-stage approach, usually the first
stage involves a separate analysis in each study to derive
the K treatment effect estimates and their variances,
using an appropriate method chosen by the meta-
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analyst. In particular, a suitable regression model can be
used for the outcome of interest, as now described.
If the outcome is continuous (weight, say) then one

may use, for example, maximum likelihood (ML) estima-
tion to fit an appropriate linear regression in each study
separately. The ideal approach is an analysis of covari-
ance (ANCOVA) model [19], which regresses the final
value at end of follow-up, yFij, and adjusts for baseline
value, yBij, and treatment (xij = 0/1 for participants in the
control/treatment group) for the jth participant in the ith

trial, as follows:

yFij ¼ αi þ δiyBij þ θixij þ eij

eij � N 0; σ2i
� � ð1Þ

In this model, αi is the intercept (the expected final
value in the control group for those with a baseline value
of zero), δi is the expected effect on the final value for a
1-unit increase in the baseline value, θi is the treatment
effect (the mean difference in weight between treatment
groups after adjusting for baseline value), and σi

2 is the
residual variance of the responses after accounting for
the treatment effect and baseline value. As this model is
fitted to each study separately, the true values of all
parameters are naturally allowed to be different in each
study (hence the i subscripts).
Although ANCOVA is preferred, sometimes baseline

values are not provided in available IPD studies, and
therefore alternative analyses are required, such as a
final score model or a change score model. A final score
model is the same as model (1), except without the δiyBij
term. The change score model is sensible when only the
change score for each patient (yij , say) is provided in the
IPD, such as the weight gain during pregnancy from
baseline (e.g. first consultation during pregnancy) to end
of follow-up (e.g. last consultation before birth). The
change score is then regressed against the treatment
effect:

yij ¼ αi þ θixij þ eij

eij � N 0; σ2i
� � ð2Þ

In this model, αi is the intercept (e.g. the expected
weight gain in the control group), θi is the treatment
effect (the mean difference in weight gain between treat-
ment groups), and σi

2 is the residual variance of the
responses after accounting for the treatment effect. It is
worth noting that where interest lies in the change
rather than final score, the change score model can also
be adjusted for baseline to accurately estimate the
treatment effect and its uncertainty.
Further baseline covariates might also be included in
eqs. (1) and (2) in order to increase power or to adjust
for baseline confounding. Indeed, an IPD meta-analysis
project is usually initiated in order to go beyond the
overall treatment effect, and examine how baseline co-
variates are associated with (interact with) treatment ef-
fect, in order to identify effect modifiers. For example, to
examine the interaction between baseline BMI measured
as a continuous variable and treatment effect (i.e. a
treatment-BMI interaction), eq. (1) can be modified to,

yFij ¼ αi þ δiyBij þ βiBMIij þ θixij þ λi xij � BMIij
� �

þ eij

eij � N 0; σ2i
� � ð3Þ

and eq. (2) modified to

yij ¼ αi þ βiBMIij þ θixij þ λi xij � BMIij
� �þ eij

eij � N 0; σ2i
� � ð4Þ

where the interaction term, λi, denotes the mean in-
crease in treatment effect for a 1-unit increase in the
baseline BMI value. Estimation of eqs. (3) or (4) in
each trial then provides the meta-analyst with K
treatment-covariate interaction estimates (and their
variances) ready for the second stage. Although con-
tinuous variables such as BMI, and interactions with
BMI, could alternatively be modelled as categorical or
with non-linear trends, in this article we generally
assume that a linear relationship is appropriate. How-
ever, our approach can easily be adapted to situations
where non-linear trends are considered more
plausible.

Second stage
Following estimation of an equation such as (1) to (4) in
each trial separately, the meta-analyst obtains K parameter
estimates of interest. For example, eqs. (1) to (2) would

provide treatment effect estimates, θ̂i , and their variances,

Var( θ̂i ); whilst eqs. (3) and (4) would provide interaction

effect estimates, λ̂i , and their variances, Var(λ̂i). These can
now be combined in the second stage of the IPD meta-
analysis. Let us focus on pooling treatment-covariate

interactions (λ̂i), as these are usually the primary focus for
an IPD meta-analysis of randomised trials. However, what
follows could equally apply to any parameter estimate of
interest, such as a treatment effect or a prognostic factor
effect.
A meta-analysis model is chosen to pool the inter-

action estimates, λ̂i , typically assuming that the true
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interaction is either fixed (common) or random across

studies. The fixed effect model assumes that λ̂i are all
estimates of the same underlying interaction effect in
all studies, represented as λ. It can be written gener-
ally as [20],

λ̂i � N λ;Var λ̂i
� �� �

ð5Þ

where the Var(λ̂i) estimates are also taken from the first
stage, and usually assumed known. The most common
method to estimate λ is the inverse variance method,
which provides a weighted average, where the weight of
each trial, wi, is defined as [21],

wi ¼ 1

var λ̂i
� � ð6Þ

and the pooled interaction effect, λ, and its variance are
calculated by:

λ̂ ¼
PK

i¼1λ̂iwiPK
i¼1wi

ð7Þ

var λ̂
� �

¼ 1PK
i¼1wi

ð8Þ

The random effects model allows for between-study
variation, τ2, in the true interaction effect, and makes
the assumption that the different studies are
estimating different, yet related, interaction effects.
The random effects model can be written generally as
[20],

λ̂i � N λi;Var λ̂i
� �� �

λi � N λ; τ2
� � ð9Þ

where the Var( λ̂i ) estimates are again typically as-
sumed known, and the true interaction effect in the
ith trial, λ i, is assumed normally distributed about an
average interaction effect, λ, with between-study vari-
ance, τ2. Equation (9) reduces to equation (5) when
τ2 equals zero. To obtain meta-analysis results, an in-
verse variance approach can again be taken but with
the weights of each trial now adjusted to incorporate
an estimate of τ2:

w�
i ¼

1

var λ̂i
� �

þ τ̂2
ð10Þ

Then, the estimate of the summary interaction effect
and its variance are calculated using:
λ̂ ¼
PK

i¼1λ̂iw
�
iPK

i¼1w
�
i

ð11Þ

var λ̂
� �

¼ 1PK
i¼1w

�
i

ð12Þ

There is ongoing debate about the best method to esti-
mate τ2 [15, 22]. Traditionally, the most common
method of estimating τ2 is the non-iterative, non-
parametric methods of moments (MoM) estimator of
DerSimonian and Laird [13]. However, other non-
iterative estimators are available [23, 24], and iterative
methods such as REML are also popular.
Following estimation of the chosen meta-analysis

model, a standard 95% confidence interval for λ can be

calculated as λ̂ ± 1.96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðλ̂Þ

q
:However, this has been

criticised because it ignores uncertainty in variance esti-
mates, in particular τ̂2, and thus leads to inappropriate
coverage of confidence intervals (inflated type I errors)
[15, 25]. To address this, alternative methods have been
proposed for deriving 95% confidence intervals for the
summary effect; in particular, the HKSJ approach pro-
vides a modification to the variance (varHKSJ) of the
summary estimate [14, 26–29], and derives 95% confi-

dence intervals by λ̂� ðt0:975;k−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varHKSJ ðλ̂Þ

q
Þ , which

are usually appropriately wider than the standard
approach.

Simulation-based power calculations for a two-stage IPD
meta-analysis of continuous outcomes
We now propose our simulation-based approach to
power calculations, which utilise the two-stage IPD
meta-analysis framework. The general premise is that
an IPD meta-analysis dataset is simulated and then a
two-stage meta-analysis performed. This is repeated
many (e.g. thousands of ) times (m, say), and each
time the resulting summary estimates, confidence in-
tervals and p-values are stored. Based on a traditional
frequentist paradigm, power can then be estimated by
calculating the proportion of times the summary esti-
mate was statistically significant (e.g. as defined by
the associated 95% confidence interval excluding the
null value, or equivalently an associated p-value < 0.
05). The general step-by-step process is now outlined.

Step (i): Specification of a statistical model in each trial
Firstly, a data generating model needs to be assumed for
each trial. Ideally, this should be in accordance with the
model that will be fitted in the first stage of the two-
stage IPD meta-analysis. For example, ANCOVA model
(1) might be assumed when interest lies in a continuous
outcome and a treatment effect, or model (3) if the focus
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is a treatment-covariate interaction effect. However, if
baseline values are potentially not available, change score
models (2) and (4) may be alternatively assumed. The
choice may also be influenced by the reported informa-
tion in the publications, for example in regard whether
final score or change score summary statistics are given,
as these inform step (ii) below. Also, it may help to
centre covariates about their trial-specific mean value, to
ease the interpretation of the parameters for step (ii).

Step (ii): Choose parameter values for the statistical model
and study characteristics (e.g. number of patients, covariate
distributions)
Next, sensible parameter values need to be specified for
the chosen model. Table 1 provides a summary of the
input values required for continuous outcomes, respect-
ively, when adopting models (1) to (4) as the statistical
Table 1 Example of inputs required for simulation-based power
calculations for an IPD meta-analysis of randomised trials with a
continuous outcome

When considering the power of a summary (overall) treatment effect
with model (1) or (2) used as the data generating model in the first
stage:

• Number of simulations to conduct (recommend at least 1000)

• Number of trials in the IPD meta-analysis

• Number of patients in each trial, and proportion treated

• Method for estimating the treatment effect in each study separately

• Magnitude of control group mean outcome in each trial (‘baseline risk’)

• Between-trial distribution and magnitude of treatment effects, e.g.
normal with a particular mean (summary) effect and between-trial
variance (plus any between-trial correlation of baseline risks and
treatment effects, if considered relevant)

• Magnitude of residual variance in each trial

• For ANCOVA model: distribution and magnitude of baseline
continuous values in each trial e.g. normal with particular mean and
variance

• For ANCOVA model: between-trial distribution and magnitude of the
prognostic effect of the baseline continuous values, e.g. normal with
particular mean and variance

• Approach to use in second stage of the two-stage IPD meta-analysis
to pool effect estimates: e.g. fixed effect model or random effects
model

• Approach to derive confidence intervals and p-values (e.g. standard
normal-based method, Hartung-Knapp Sidik-Jonkman, etc)

Additionally, when considering the power of a treatment-covariate
interaction with models (3) or (4) used as the data generating model in
the first stage:

• Analysis model and method for estimating the interaction effect in
each study separately

• Distribution and magnitude of covariate values in each trial; e.g.
normal with chosen mean and variance for a continuous covariate, or
Bernoulli for a binary covariate with a chosen probability of being a 1.

• Between-trial distribution and magnitude of treatment-covariate
interaction effect, e.g. normal with a particular (summary) mean
effect and between-trial variance
model within each trial. This includes specifying the
magnitude of trial intercepts (control group responses /
baseline risk), the magnitude and distribution of treat-
ment and interaction effects, and the magnitude of
residual and between-study variances. Also required are
characteristics of the trials themselves. That is, the num-
ber of trials promising IPD, the number of patients
therein, and the distribution of covariate values (e.g. pro-
portion in the treatment and control groups; mean and
standard deviation of baseline BMI in each trial; etc).
Though this may sound onerous, it is usual to know

which trials may provide (or could be approached for)
their IPD. Then, aggregate information (summary statis-
tics) available in trial publications and reports can be
used to inform the values of parameters and characteris-
tics within trials. This is illustrated in detail in the
worked example in Section 4.

Step (iii): Generate an IPD meta-analysis dataset and
undertake a two-stage IPD meta-analysis
Following steps (i) and (ii), an IPD meta-analysis data-
set of a given number of trials and patients can be gen-
erated based on the statistical model and characteristics
specified, using the simulation approach. This requires
user-written software to randomly generate the IPD
meta-analysis dataset based on the conditions given.
Our supplementary material provides Stata code to
illustrate how this can be done for the pregnancy ex-
ample presented in Section 4 (see Additional file 1).
Once the IPD meta-analysis dataset is generated, a

two-stage IPD meta-analysis is then applied as outlined
in the previous section, to obtain the summary effect
estimate of interest, and its associated confidence inter-
val and p-value. The exact approach depends on the
preference of the user. For example, after model (4) is
applied to each trial separately, the second stage could
implement either model (5) or (9) to pool the trial inter-
action estimates using either a fixed effect or random
effects analysis, respectively. Confidence intervals and p-
values of summary estimates can then be calculated, for
example using the standard normal-based approach or
the HKSJ method.

Step (iv): Repeat multiple times and evaluate power
Step (iii) is then repeated many (thousands of) times, until
m summary effect estimates, confidence intervals and p-
values are obtained. Assuming the IPD were simulated
according to a genuine effect (e.g. a non-zero mean differ-
ence between treatment and control, or a non-zero
treatment-covariate interaction), the proportion of these m
results that were statistically significant gives an estimate of
the power of the IPD meta-analysis. Thus, it reveals the
probability that, if the IPD meta-analysis project could be
repeated identically many times, the summary result would
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detect (with statistical significance) the genuine effect. The
definition of statistical significance is of course arbitrary.
Usually p < 0.05 (or equivalently the 95% confidence
excluding the null value) will be used, but the user can
adapt this if desired (e.g. p < 0.01), for example for multiple
testing. Once the power estimate is obtained, a 95% confi-
dence interval for the power can also be calculated (for ex-
ample using an exact method [30]), which will become
narrower as m increases.
It is also sensible for steps (i) to (iv) to be repeated

after adopting different (yet still realistic) parameter
values, to ascertain if and how power changes accord-
ingly. For example, initially the assumed model may
assume no between-trial heterogeneity on treatment or
interaction effects, but this may be relaxed in subsequent
simulations. This will be illustrated in Section 4.
Applied example: Power of a planned IPD meta-analysis
of trials of interventions to reduce weight gain in
pregnant women
We now illustrate the key concepts through an applied
example. In this example, our aim is to reflect the
process researchers go through when considering or
planning an IPD meta-analysis project. We assume that
a clinical question has been identified and an IPD meta-
analysis project is desired to address it. Additionally, a
set of trials has been identified (and potentially promised
their IPD) and aggregate data (summary statistics) for
these trials have been published. The researchers want
to know, in advance of collecting IPD, whether an IPD
meta-analysis of these trials is likely to be powered to
answer the clinical question at hand.
Background for applied example
Thangaratinam et al. [31] performed a systematic review
to investigate the effects of weight management inter-
ventions on maternal and fetal outcomes. One of the
primary outcomes was maternal weight gain and their
aggregate data meta-analysis of 30 randomised trials
showed a significant average reduction in weight gain of
0.97 kg (95% CI: 0.34 kg to 1.60 kg reduction) for life-
style interventions compared with control. However,
there was a large amount of between-study heterogen-
eity, with an I-squared statistic of 87% and τ̂2 of 1.87.
Therefore, a major recommendation of Thangaratinam
et al. was that an “IPD meta-analysis is needed to pro-
vide robust evidence on the differential effect of inter-
vention in various groups based on BMI, age, parity,
socioeconomic status and medical conditions in preg-
nancy”. That is, IPD was needed to examine potential
treatment-covariate interactions.
In response to this, in 2012 the Weight Management in

Pregnancy International IPD Collaboration (i-WIP) was
established to share IPD from multiple randomised trials,
and the National Institute for Health Research (NIHR)
Health Technology Assessment (HTA) programme subse-
quently funded the project. At the time of developing the
grant application, 14 of the trials (containing 1183
patients) included in the aforementioned aggregate data
meta-analysis had provisionally agreed to provide their
IPD. These are summarised in Table 2, including informa-
tion about the weight gain in each treatment group, and
the distribution of baseline BMI values. No formal power
calculation was originally performed for the i-WIP grant
application, but it was noted that in order to detect
treatment-covariate interactions “our IPD meta-analysis
provides an efficient way to substantially increase the sam-
ple size, without the need for a new trial”.
Retrospectively, we now consider how our simulation-

based approach to power would have been useful to the
i-WIP collaborators, to provide formal quantitative
reassurance of the power of their planned IPD meta-
analysis project. Here we focus on the power to detect a
potential interaction between baseline BMI and inter-
vention effect, which was one of the primary objectives
of their study. The prior hypothesis was that those with
high baseline BMI may benefit most from weight man-
agement interventions.
What is the power to detect a treatment-BMI interaction
with 14 trials promising IPD?
We start by applying random effects meta-analysis
model (9) to the 14 published intervention effect esti-
mates shown in Table 2. This gives a summary mean dif-
ference of − 0.84 kg (95% CI: -1.63 to − 0.06), indicating
an average reduction in weight gain of 0.84 kg by using
an intervention rather than control. Heterogeneity was
large, with an I-squared statistic of 63% and τ̂2 of 1.1,
with the latter estimated by the approach of DerSimo-
nian and Laird (methods of moments) [13]. These re-
sults are very similar to those from the original
aggregate data meta-analysis of 30 trials, suggesting the
14 trials are broadly representative of the original set of
trials. Let us now apply our simulation-based approach,
following the steps described in Section 3, to quantify
the potential power to detect an interaction between
baseline BMI and intervention effect using these 14 tri-
als, with BMI measured as a continuous covariate and
linear effects and interactions for BMI assumed correct.
Methods for applied example
Step (i): Specification of the treatment-covariate model in
each trial
The first step of the simulation approach is to define an
underlying (data generating) model for each trial. It is
preferable to keep this simple and reflect the analysis



Table 2 Summary information, available prior to the IPD meta-analysis, about 14 trials that were included in the aggregate data
meta-analysis of Thangaratinam et al. [31] and had promised their IPD at the time of the IPD meta-analysis grant application

Intervention group Control group

Author Year n Mean
weight
gain (kg)

SD of
weight
gain

Mean BMI
at baseline

SD
of BMI

n Mean
weight
gain (kg)

SD of
weight
gain

Mean BMI
at baseline

SD
of BMI

Intervention effect
(difference in
weight gain)

95% CI

Wolff 2008 23 6.60 5.50 34.90 4.00 27 13.30 7.50 34.60 3.00 −6.70 (− 10.31, −3.09)

Landon 2009 476 2.80 4.50 30.10 5.00 455 5.00 3.30 30.20 5.10 −2.20 (−2.71, −1.69)

Rae 2000 67 11.56 10.80 37.90 0.70 58 9.68 11.04 38.00 0.70 1.88 (−1.96, 5.72)

Guelinck 2010 42 9.80 7.60 33.75 3.79 43 10.60 6.90 33.50 3.90 −0.80 (−3.89, 2.29)

Jeffries 2009 124 10.70 4.21 NA NA 111 11.50 4.03 NA NA −0.80 (−1.85, 0.25)

Jackson 2010 163 15.15 5.50 NA NA 164 15.24 6.67 NA NA −0.09 (−1.41, 1.23)

Hui 2006 24 14.20 5.30 23.40 3.90 21 14.20 6.30 25.70 6.30 0.00 (−3.43, 3.43)

Ong 2009 6 3.70 3.40 35.10 3.50 6 5.20 1.30 35.10 3.50 −1.50 (−4.41, 1.41)

Khaledan 2010 18 4.04 3.49 NA NA 21 5.00 3.70 NA NA −0.96 (−3.22, 1.30)

Barakat 2009 72 11.50 3.70 24.30 0.50 70 12.40 3.40 23.40 0.50 −0.90 (−2.07, 0.27)

Haakstad 2009 52 13.00 4.00 NA NA 53 13.80 3.80 NA NA −0.80 (−2.29, 0.69)

Hopkins 2010 47 8.20 3.49 25.50 4.30 37 8.00 3.70 25.40 2.90 0.20 (−1.35, 1.75)

Marquez-
Sterling

2000 9 16.20 3.40 22.80 4.00 6 15.70 4.00 24.50 4.50 0.50 (−3.40, 4.40)

Yeo 2009 60 15.90 6.80 NA NA 64 15.40 5.90 NA NA 0.50 (−1.75, 2.75)
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model that is likely to be used in the first stage of the
IPD meta-analysis. As weight is a continuous outcome,
we ideally wanted to consider an ANCOVA model (1).
However, the summary statistics reported in each trial
mainly focused on weight gain (rather than final weight),
thus it was considered sensible to focus initially on eq.
(4), to ease specification of parameter values in step (ii)
(NB extension to ANCOVA is considered in Section 4.
5). Thus the assumed model was as follows:

Y ij ¼ αi þ βiBMIij þ θixij þ λi xij � BMIij
� �

þ eij ð13Þ

Here, Yij is the weight gain during pregnancy for pa-
tient j in trial i, and this is regressed against baseline
BMI value ( BMIijÞ , the treatment group (xij), and the

interaction between baseline BMI and treatment ( xij
�BMIijÞ . Note that BMIij denotes the baseline BMI
value for patient j centred about the mean baseline BMI
in trial i. This specification greatly eases the interpret-
ation and specification of model parameters in step (ii).
We also assumed that,

eij � N 0; σ2i
� �

βi � N β; τ2β
� �

θi � N θ; τ2θ
� �
λi � N λ; τ2λ
� �

such that the residuals (eij) in each trial have a variance
of σ2

i , and the parameters of βi (the effect of a 1-unit in-
crease in baseline BMI on the mean control group
weight gain), θi (the treatment effect for a patient with
the mean baseline BMI) and λi (the effect of a 1-unit in-
crease of baseline BMI above the mean baseline BMI on
the treatment effect) are drawn from independent nor-
mal distributions with means (β, θ, λ) and variances (τ2β ,

τ2θ , τ
2
λ ). This is the simplest option, but of course differ-

ent (and dependent) between-trial distributions could be
assumed, but for parsimony the use of normal distribu-
tions was deemed sensible. If considered important,
between-study correlation could also be included be-
tween the baseline risk (αi) and overall treatment effect
(θi).

Step (ii): Choose parameter values for the statistical model
and study characteristics
In order to simulate IPD under this model structure, the
next step was to specify the assumed magnitude of αi, β,
θ, λ, σ2

i , τ
2
α , τ

2
β , τ

2
θ , and τ2λ . Though this may seem oner-

ous, it is relatively straightforward. A summary of our
chosen parameter values is given in Table 3, and we now
explain the justification.
Each αi corresponds to the mean weight gain for con-

trol individuals with the mean BMI, which we consid-
ered similar to the mean weight gain in the control



Table 3 Parameter values and trial characteristics initially chosen for the simulation-based power calculations of the IPD meta-analysis of
pregnancy trials

Parameter Chosen values Interpretation and justification

No. of trials 14 Number of studies included in a previous aggregate data meta-analysis that
had promised their IPD

Sample sizes 50, 931, 125, 85, 235, 327, 45, 12, 39, 142,
105, 84, 15, 124

Total sample size: taken from original trial publications (could breakdown
further into the number in control and treatment groups if unequal)

αi 13.30, 5.00, 9.68, 10.60, 11.50, 15.24, 14.20,
5.20, 5.00, 12.40, 13.80, 8.00, 15.70, 15.40

Mean weight gain in the control group: used values as stated in original trial
publications

β −0.28 Prognostic effect of BMI on weight gain: used estimate from a meta-
regression of mean weight gain against mean baseline BMI in the control
group

θ −0.84 Mean treatment effect across trials: used summary estimate from random
effects meta-analysis of published estimates from the 14 trials

λ Various: −0.5, − 0.4, − 0.3, − 0.2, − 0.1,
−.05, − 0.025, − 0.01

Magnitude of interaction: used range from extremely large to extremely small
interaction effect

σ2i 43.25, 15.57, 119.26, 52.69, 16.98, 37.37,
33.89, 6.63, 12.93, 12.63, 15.22, 12.93,
13.78, 40.53

Residual variance: used unweighted average of the variance values for
treatment and control groups as stated in original trial publications

τ2β 0 Between-study variance of the prognostic effect of baseline BMI: set to zero
for parsimony

τ2θ 1.1 Between-study variance of overall treatment effect: used estimate from
random effects meta-analysis of published estimates from the 14 trials

τ2λ 0 Between-study variance of interaction effect: set to zero for parsimony

Distribution of
baseline BMI
values

Study 1: N(34.75, 12.5)
Study 2: N(30.15, 25.51)
Study 3: N(37.95, 0.49)
Study 4: N(33.63, 14.77)
Study 7: N(24.55, 27.45)
Study 8: N(35.1, 12.25)
Study 10: N(23.85, 0.25)
Study 12: N(25.45, 13.45)
Study 13: N(23.65, 18.13)
Other studies had a mean drawn from N(30, 2.5) and
within-trial standard deviation set at 3.5

Distribution of key covariate of interest: assumed normality, with means and
variances as stated in original trial publication, or if unavailable, values based
on those observed from within and between other trials
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group, and was available for each trial (Table 2). For ex-
ample, α1 was set to 13.3. The residual variance (σ2i ) in
each trial was approximated from the standard deviation
of weight gain values available from the publications
(Table 2). For example, for trial 1, assuming that the
residual variance would be the same for control and treat-
ment groups, we took an average of 5.52 and 7.52, which is
43.25. We assumed that θ = − 0.84, which is the summary
treatment effect estimate from the aforementioned meta-
analysis of the 14 published estimates. Similarly, based on
the estimated between-trial variability in treatment effects
from this meta-analysis, we assumed that τ2θ = 1.1.
It was considered sensible to have a parsimonious situ-

ation where τ2β and τ2λ were zero, such that there was no

between-trial heterogeneity in the prognostic effect of
baseline BMI or in the interaction effect (this latter as-
sumption is relaxed in Section 4.4). A value for β was
also needed. Using the nine trials with baseline BMI in-
formation, a random effects meta-regression of the mean
weight gain versus the mean baseline BMI in the control
group (weighted by the inverse of the variance of mean
weight gain) was fitted, and this gave an association of −
0.28. We took this study-level association as a proxy for
the individual-level association represented by β, which
suggests that weight gain decreases by 0.28 kg for every
unit increase in baseline BMI. This agrees with guide-
lines that recommend weight gain should be lower in
those with a higher baseline BMI. In this way, the gener-
ation of an individual’s change in weight is now corre-
lated with the baseline BMI (and thus baseline weight),
as expected by definition. Furthermore, it allows individ-
uals with a high BMI to be more likely to be amongst a
small subset that actually lose weight during pregnancy,
which is plausible given the reported magnitude of the
standard deviations for weight gain relative to the mean
value (Table 2).
Lastly, we needed to choose the magnitude of λ, our

key parameter of interest in the IPD meta-analysis. Our
specification of model (13) assumes that the interaction
effect is linear, such that a 1-unit increase in baseline
BMI modifies the treatment effect on weight gain by λ.
Although categorical or non-linear relationships could
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alternatively be assumed [32], the linear effect was
chosen for parsimony. The hypothesis that the treatment
effect may be larger for those with a higher baseline
BMI implies that λ would be negative. Rather than
choosing a single value for λ, we repeated simulations
for each of a range of values between − 0.01 and − 0.5,
moving from small (and potentially not clinically import-
ant) to extremely large interaction effects. For example,
if λ was -0.05, then for a ten unit increase in baseline
BMI, there would be an extra 0.5 kg reduction in weight
gain by using the intervention rather than the control.
The number of trials in the IPD meta-analysis was set

at 14 trials, each containing the number of patients
known (Table 2), with close to an even allocation of
patients to treatment and control groups. The distribu-
tion of baseline BMI was also needed within each trial.
For nine trials, the published data gave the mean base-
line BMI and its standard deviation (Table 2), and we
assumed a normal distribution for baseline BMI in these
trials. For example, for trial 1, using the average ob-
served values for the treatment and control groups,
baseline BMI was assumed to be normally distributed
with a mean of 34.75 and variance of 12.5. For the
remaining five trials without BMI information, the mean
baseline BMI was drawn from a normal distribution with
a mean of 30 and standard deviation of 2.5, and a
within-trial standard deviation of 3.5 was assumed; this
was based on the range of baseline BMI values observed
within and across the other nine trials.
Steps (iii): Generate an IPD meta-analysis dataset and
undertake a two-stage IPD meta-analysis
We created a module within Stata that generated an IPD
meta-analysis dataset containing 14 trials based on
model (13) and the chosen set of parameter values and
trial characteristics shown in Table 3. That is, in each
trial, for each patient we randomly generated their treat-
ment group (xij), their baseline BMI value centred about
the observed trial’s mean baseline BMI (BMIij), and their
weight gain (Yij).
This enabled us, within the same Stata module, to then

immediately undertake a two-stage IPD meta-analysis.
In the first stage, model (13) was fitted to each trial sep-
arately to produce the treatment-BMI interaction esti-
mate and its variance; then, in the second stage a fixed
effect meta-analysis model (model (5)) was used to pool
the interaction estimates.
Step (iv): Repeat multiple times and evaluate power
Step (iii) was repeated until we had randomly generated
10,000 IPD meta-analysis datasets, each containing 14
trials. For each of the 10,000 datasets, the Stata module
performed a two-stage IPD meta-analysis and the
results were stored. This produced 10,000 summary
treatment-BMI interaction estimates and their 95%
confidence intervals and p-values (one for each IPD
meta-analysis dataset). Confidence intervals were de-
rived using the standard (normal-based) method. The
power of the planned IPD meta-analysis was then cal-
culated as the proportion of 10,000 meta-analyses
where the summary interaction estimate was detected
by a p-value < 0.05 (or equivalently a 95% confidence
interval that did not contain the null value).
The Stata module to implement steps (i) to (iv) is pro-

vided in the supplementary material (see Additional file 1).
This module allowed us to repeat steps (i) to (iv) for differ-
ent assumed parameter values and model approaches. In
particular, we also considered non-zero values of τ2λ and
fitted a random effects meta-analysis model (9) in the sec-
ond stage of the IPD meta-analysis, and rather calculated
p-values and confidence intervals according to the HKSJ
method, to examine if and how power was affected.
Results
Our simulation-based power estimates for the potential
IPD meta-analysis are shown in Fig. 1, across the range of
true interaction effects from − 0.01 to − 0.5. Power in-
creases as the magnitude of the interaction estimate in-
creases, which is to be expected as, other things being
equal, a p-value becomes smaller as the estimate moves fur-
ther from the null (which, here, is an interaction of zero).
Despite having IPD from 14 trials, including 2319 pa-

tients, the estimated power is less than 80% unless the
true interaction effect is about − 0.15 or more. For
example, for a true interaction effect of − 0.1, the power
is estimated to be 63.6% (95% CI: 62.6%, 64.5%) because
6360 of the 10,000 simulated IPD meta-analyses pro-
duced a significant result. For a true interaction effect of
− 0.05, the power reduces dramatically to just 20.7%.
This indicates that the planned IPD meta-analysis may
be underpowered to detect potentially clinically relevant
treatment-BMI interactions.
Of note, the mean interaction estimates across each

set of 10,000 simulations were almost identical to the
true interaction effect, across the entire range from − 0.
01 to − 0.5. Thus, the low power was not due to any sys-
tematic bias due to the IPD meta-analysis model or esti-
mation process.
Extension to consider obtaining IPD from additional trials
When faced with such findings of low power, researchers
are then likely to enquire about whether additional IPD
are available, and indeed how much IPD is required to
adequately improve the power. In the i-WIP project, fol-
lowing discussion with collaborators, IPD were addition-
ally promised from a further 10 trials that, for various



Fig. 1 Simulation-based power estimates (based on 10,000 replications) for the planned IPD fixed effect meta-analysis* of either 14, 15 or 24 trials
for detecting a treatment-BMI interaction effect (λ), across a range of values. * Based on using change score model (4) in each trial followed by
fixed effect meta-analysis model (9)
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reasons, were not included in the original published
meta-analysis of aggregate data [31]. Given that the
collection of IPD is potentially time-consuming and
resource intensive [7, 8], a dilemma is whether IPD is
needed from all of these 10 trials, or perhaps just a
representative subset. Power calculations are helpful
to resolve this. For illustration, here we consider two
options: (i) adding IPD from just the largest of the 10
additional trials, which contained 399 patients; or (ii)
adding IPD from all 10 additional trials (a total of
1761 additional patients). We repeated our simulation
approach for each of these situations. Sample sizes
for the 10 additional trials were known, but informa-
tion was often lacking about other factors (e.g. the
control group mean, or the distribution of baseline
BMI) and so we sampled these from the distributions
observed in others trials. For example, control group
mean weight gain was sampled from αi � Nðα; τ2αÞ ,
with α and τ2α set to 11 and 22 respectively, corre-
sponding to their values from a random effects meta-
analysis of the mean weight gain estimates for the
control groups from the original 14 trials (Table 2).
The results are presented within Fig. 1, and show that

adding IPD from further trials would increase the power
as expected. However, adding just the IPD from the largest
trial is not sufficient, as the power remains lower than typ-
ically desired at relevant values of the interaction effect.
For example, with a true interaction effect of − 0.1 the
IPD meta-analysis of 15 trials has an estimated power of
68.7% (67.8% to 69.6%), and with an interaction effect of
− 0.05 it has an estimated power of only 23.2% (95% CI:
22.4% to 24.1%).
Findings based on adding IPD from all 10 additional tri-

als are more promising. In particular, for a true interaction
effect of − 0.1 the IPD meta-analysis of 24 trials has an
estimated power of 83.2% (95% CI: 80.2% to 85.0%). This
is above 80% for the first time, which is a threshold often
used in power calculations for single randomised trials.
Thus, there is large power to detect interaction effects of
≤ -0.1. However, the power to detect an interaction of size
− 0.05 remains very low (31.2%). Therefore, if the true
interaction effect is − 0.05, then the IPD meta-analysis is
unlikely to have the power required even with 24 trials.
We note that sample size is not the only criteria that

will impact upon a study’s contribution toward power.
For a treatment-covariate interaction, the standard devi-
ation of covariate values is also important [9]: other
things being equal, those studies with larger variation in
covariate values will have a greater contribution. For ex-
ample, assuming a true interaction effect of − 0.1, if we
remove the Barakat study from the IPD meta-analysis of
24 trials, the power estimate is lower than if we remove
the Wolff study, even though the latter has far fewer pa-
tients. The reason is that the standard deviation of BMI
values is substantially larger in the Wolff study (Table 2).
Extension to random effects meta-analysis and alternative
confidence interval derivations
The above power calculations assume a fixed effect
meta-analysis of interaction estimates and no between-
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study heterogeneity on the interaction effect. Also, our
confidence intervals and p-values for the intervention
effect were derived using the standard normal-based ap-
proach, but options such as HKSJ are also possible, as
previously mentioned [15].
We therefore repeated our power calculations for

the IPD meta-analysis of 24 trials using the same par-
ameter values as shown in Table 3, except with non-
zero heterogeneity on the interaction effect ( τ2λ > 0)
and with trial interaction estimates pooled using ran-
dom effects meta-analysis model (9) via the DerSimo-
nian and Laird approach. Confidence intervals and p-
values were derived using the standard approach, but
also using the HKSJ approach for comparison. We
focus only on the situation where λ = − 0.1, as this
was the critical value for an 80% power as identified
from the fixed effect simulations. A range of values
for τλwas considered, from 0.01 to 0.05, which cov-
ered low heterogeneity to large heterogeneity relative
to an interaction effect of − 0.1.
The findings are shown in Fig. 2, and the mean I2

value was between 10% and 13% for all scenarios.
Immediately apparent is that the power gradually
reduces as the size of the between-trial heterogeneity
increases, and it is now about 70% or less across the
range of τλvalues. This is alarming, as it signals a
planned random effects IPD meta-analysis of the 24
trials would not have adequate power to detect an
Fig. 2 Simulation-based power estimates (based on 10,000 replications) for
ing a treatment-BMI interaction when the true effect was − 0.1, conditiona
the interaction effect, when either correctly analysing BMI as continuous or
using change score model (4) in each trial followed by random effects me
with p-values and CIs derived using standard normal-based method; HKSJ =
using approach of Hartung-Knapp Sidik-Jonkman
interaction of − 0.1, even with only low heterogeneity.
For example, with τλ = 0.01 (mean I2 = 10%), the
estimated power based on p-values and confidence
intervals is 70.8% based on the standard normal-
based approach, which is more than a 10% reduction
in power compared to that for the fixed-effect meta-
analysis given no heterogeneity (which was 83.2%, Fig. 1).
Interestingly, this is mainly due to poor estimation of the
between-study variance itself, as we observed an upward
bias in the estimate of τλ across simulations leading to
wider confidence intervals and thus reduced power than if
τλwas truly known. The bias is because τλis especially
problematic to estimate well, as the corresponding I-
squared is about 10% and the true τλof 0.01 is close to
zero. This leads to large variation in estimates of τλa-
cross the 10,000 simulated datasets, and because vari-
ance estimates are bounded at zero, their average
value has a notable upward bias. Consequently, we
observe lower power when τ

λ
is estimated than if we

truly knew τλ. This reflects the impact of using a
random-effects model.
The power is also consistently lower (by about 3%)

when using the HKSJ approach rather than the standard
approach (Fig. 2). This is expected, as standard 95% con-
fidence intervals are typically too narrow (leading to a >
5% type I error rate), and the HKSJ correction aims to
address this, usually leading to wider confidence inter-
vals and larger p-values.
the planned IPD random effects meta-analysis* of 24 trials for detect-
l on a range of values of the between-study standard deviation (τλ) of
when wrongly analysing BMI as binary (≥ 30 versus < 30). *Based on

ta-analysis model (9). Standard = DerSimonian and Laird estimation,
DerSimonian and Laird estimation, with p-values and CIs derived
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Extension to consider BMI as a binary variable
Out of interest, we also considered the power of a two-
stage IPD meta-analysis of all 24 trials that rather in-
cludes baseline BMI as a binary covariate. To do this,
the IPD were again simulated according to model [13]
and thus continuous BMI effects were set as the truth,
and with a true interaction of − 0.1 assumed between
the intervention and baseline BMI. However, upon appli-
cation to the simulated IPD the two-stage IPD meta-
analysis wrongly included baseline BMI as a binary
covariate, with a BMI ≥ 30 classed as 1 and a BMI < 30
classed as 0. This dichotomisation corresponded to a
true interaction of about − 0.65 kg between the interven-
tion effect and binary BMI, such that the group of indi-
viduals with a BMI ≥ 30 have, on average, a 0.65 kg
further reduction in weight gain by using the interven-
tion rather than control, in comparison to those with a
BMI < 30.
When there was no heterogeneity in the interaction ef-

fect, and a two-stage fixed effect IPD meta-analysis was
applied to the simulated IPD from the 24 trials, the esti-
mated power to detect this interaction was 60.5%. This
is over a 20% reduction in power compared to when
baseline BMI was analysed correctly as a continuous
variable (83.2%), emphasising a huge loss of information
by wrongly dichotomising BMI (Fig. 2). Indeed, the esti-
mated power of 60.5% is now similar to that for the ori-
ginal IPD meta-analysis of just 14 trials when baseline
BMI was analysed correctly as continuous (59.2%).
Therefore, in this particular example, the loss of power
by dichotomising baseline BMI in the IPD meta-analysis
of 24 trials is similar to throwing away IPD from 10 tri-
als. The cost of dichotomisation is well known in single
studies [33, 34], and the results here emphasise that it
also generalises to the IPD meta-analysis setting.
Findings are similar in the settings with heterogeneity

in the interaction effect, with power estimates now less
than 50% compared to about 65–70% when analysed
correctly as continuous (Fig. 2).

Consideration of an analysis of covariance approach
Due to the published information available in each trial,
our power calculations assumed interaction estimates
are derived from a change score analysis, as this was the
typical approach taken and reported for each trial. These
power estimates may be deemed conservative, as after
IPD are obtained it is probable that interaction estimates
could be derived from an ANCOVA, which is potentially
more powerful. However, the correlation between final
weight and baseline pregnancy weight is extremely high
(often > 0.9) and Vickers and Altman note that: [35] “the
efficiency gains of analysis of covariance compared
with a change score are low when there is a high cor-
relation (say r>0.8) between baseline and follow up
measurements. This will often be the case, particu-
larly in stable chronic conditions such as obesity. In
these situations, analysis of change scores can be a
reasonable alternative ...”. This reassures us that power
calculations based on the change score approach are per-
tinent here. However, we would advocate that when IPD
is obtained, the ANCOVA approach is the analysis of
choice as it adjusts for any baseline imbalance in addition
to improving power [19].
Adjustment for additional covariates
Given the potentially inadequate power (< 70%, Fig. 2)
when there is heterogeneity, it may be of interest to pre-
specify the inclusion of additional covariates (prognostic
factors) in the first stage of the two-stage IPD meta-
analysis. Inclusion of prognostic factors would reduce
the residual variance in each trial, leading to more pre-
cise interaction estimates and potentially larger power.
So far the chosen size of residual variances ( σ2i Þ was
based on the variance of weight gain, as reported in pub-
lications (Table 3); however, this is potentially conserva-
tive given that baseline BMI was also included as a
covariate in the data generating model [13]. There are
also other prognostic factors in this field, such as age
and parity, which could be included.
We therefore repeated our simulations of power in the

IPD meta-analysis of 24 trials when residual variances
were reduced by between 10% and 90% in each trial. For
brevity, we again focus on a true interaction effect of −
0.1, across a range of values on the between-study stand-
ard deviation (τλ). The results in Fig. 3 show that the
power improves as the residual variances decrease, and
thus pre-specified adjustment for prognostic factors is
recommended. However, the power only consistently ex-
ceeds 80% across the entire range of τλ values when the
reduction in residual variances is at least 40%.
Had this been known to the i-WIP researchers when

planning their IPD project, it could have motivated them
to identify the strongest prognostic factors in this field,
and ascertain what the likely percentage reduction in re-
sidual variance by including them (e.g. by obtaining IPD
from one trial and comparing the residual variances be-
fore and after inclusion of prognostic factors).
Discussion
IPD meta-analyses are widely considered the gold stand-
ard in meta-analysis, and an increasing number are be-
ing funded to examine subgroup effects and interactions.
However, it is currently rare to see power addressed in
IPD meta-analysis grant applications or protocols. Yet
power and sample size considerations are pivotal, as an
IPD meta-analysis is costly and time-consuming, and so
resources are better allocated to those projects that are



Fig. 3 Simulation-based power estimates for the planned IPD random effects meta-analysis* of 24 trials for detecting a treatment-BMI interaction
when the true effect was − 0.1, conditional on a range of values of the between-study standard deviation (τλ) of the interaction effect, and a
particular % reduction in residual variances in each trial due to the inclusion of prognostic factors. *Based on using change score model (4) in
each trial followed by random effects meta-analysis model (9) with DerSimonian and Laird estimation, and p-values and CIs derived using
approach of Hartung-Knapp Sidik-Jonkman
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adequately powered to detect effects of interest. Even
when IPD are available for all studies, the power may
not be adequate. Conversely, whilst ensuring selection
biases are avoided [36], IPD may not be needed from all
studies if a representative subset of trials has large power
(e.g. > 95%), which could save considerable time, costs
and frustration [7, 8].
To address this, here we outlined a simulation-based

approach to power calculations for IPD meta-analysis
that utilise a two-stage IPD meta-analysis framework.
We demonstrated the approach for continuous out-
comes, using a planned IPD meta-analysis of pregnancy
trials (i-WIP), and showed that IPD from 14 trials was
unlikely to have adequate power to detect a treatment-
BMI interaction unless the effect was very large (Fig. 1).
However, IPD from 24 trials was identified to have over
80% power to detect an interaction of at least − 0.1, as-
suming a fixed-effect meta-analysis was appropriate.
Had this information been available at the time, it would
have helped the i-WIP collaboration to justify the costs
and resources needed to collate and meta-analyse IPD
from 24 trials. Nevertheless, there would remain a
concern that even low heterogeneity on the inter-
action effect would have reduced the power to 70%
or less (Fig. 2) when a random-effects model was
used. Therefore, we also showed the potential gain in
power by including prognostic factors in the analysis,
which would increase power to over 80% even with
heterogeneity (Fig. 3), and thus motivates the identifi-
cation and pre-specification of prognostic factors for
inclusion in the IPD meta-analysis. If the true
relationships for BMI are linear, the power calcula-
tions also made it clear that baseline BMI should be
analysed as a continuous variable, as the power is re-
duced dramatically when BMI is wrongly (and arbi-
trarily) dichotomised at 30 (Fig. 3). Of course, after
IPD is obtained, one may rather examine non-linear
trends using splines for example. Our Stata code can
be easily modified to generate IPD assuming non-
linear trends and interactions, if that is considered
plausible. However, unless there is evidence to the
contrary, the assumption of linearity would appear a
sensible starting point when considering potential
power prior to the IPD being collected.
Our Stata module for the continuous outcome setting

of the i-WIP meta-analysis is available in the supplemen-
tary material, and requires inputs as shown in Table 1
(see Additional file 1). Users will need to tailor this for
their own IPD projects, as outlined by the four step
process of Section 3. Extension to binary or survival out-
comes would require consideration of event prevalence
and event rates, respectively, and the latter would also
require assumptions about the distribution of survival
times (shape of hazard function), censoring and length
of follow-up [37]. Table 4 provides key details about how
to extend the approach to binary and time-to-event out-
comes. Each IPD meta-analysis project is unique, and
the simulation-based approach will need to be tailored
to the information and setting at hand, as with standard
power calculations for single trials. For example, in our
application the mean and standard deviation of baseline
BMI values were not known for all trials, and thus our



Table 4 Typical inputs required for simulation-based power cal-
culations for an IPD meta-analysis of randomised trials with a
binary or a time-to-event outcome, using a two-stage IPD
framework

When considering the power of a summary (overall) treatment effect:

• Number of IPD meta-analysis datasets to generate

• Number of trials in the IPD meta-analysis

• Number of patients in each trial, and proportion treated

• Analysis model and method for estimating the treatment effect in
each study separately

• Distribution and magnitude of treatment effects across all trials, e.g.
normal with a particular mean (summary) effect and between-trial
variance

• Approach to use in second stage of the two-stage IPD meta-analysis:
e.g. fixed effect model (equation 5) or random effects model
(equation 9)

• Approach to derive confidence intervals and p-values
(e.g. conventional method, Hartung-Knapp Sidik-Jonkman, etc)

Binary outcomes

• Baseline event risk in the control group in each trial (and any
correlation between baseline risk and treatment effect across trials, if
relevant)

Time-to-event outcomes

• Maximum length of follow-up in each trial

• Distribution of event times in the control group in each trial, and
whether these are related or change across trials (corresponding to the
shape of the baseline hazard function in each trial and whether they
are the same, different but proportional, or completely distinct)

• Censoring mechanism and amount of censoring over time

• Magnitude of any non-proportional hazards in treatment effect

Additionally, when considering the power of a treatment-covariate
interaction:

• Analysis model and method for estimating the interaction effect in
each study separately

• Distribution and magnitude of covariate values in each trial; e.g.
normal with chosen mean and variance for a continuous covariate, or
Bernoulli for a binary covariate with a chosen probability of being a 1.

• Between-trial distribution and magnitude of treatment-covariate inter
action effect, e.g. normal with a particular (summary) mean effect and
between-trial variance

• Magnitude of any non-proportional hazards in interaction effect
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module needed to generate BMI values differently for
these trials compared to the others.
Simulation-based power calculations have been pro-

posed by many others before us [38–40], including for
random-effects models in general [41], and within the
IPD meta-analysis field [12]. However, the novel aspect
of our work is that it is based on a two-stage IPD meta-
analysis framework [18, 42]. One-stage and two-stage
approaches to IPD meta-analysis usually give similar re-
sults if their assumptions and estimation methods agree
[18]. The main disadvantage of the two-stage approach
is when there are rare events and/or small sample sizes,
as then continuity corrections may be required and the
assumption of ‘known’ within-study variances is likely to
be inappropriate [18]. However, the two-stage approach
also has many advantages. Firstly, it is relatively quick,
and in particular facilitated by the excellent module ‘ipd-
metan’ within Stata [43], which undertakes both stages
automatically. Secondly, in the second stage it utilises
well-known meta-analysis approaches, such as inverse
variance weighted fixed effect and random effects ana-
lyses, and enables a variety of estimation methods, such
as REML and the DerSimonian and Laird method as de-
sired. Indeed, in our applied example we showed how
the user can examine power for their own preferred ap-
proach and estimation methods. Thirdly, it allows novel
options such as HKSJ for deriving p-values and confi-
dence intervals, which have been shown to improve type
I error rates (and thus will give more appropriate power
results) [14, 15, 44]. Fourthly, and perhaps most import-
antly, it automatically avoids using across-trial informa-
tion to inform treatment-covariate interactions, as these
are estimated separately in each trial.
In contrast, one-stage models utilise both within-trial

and across-trial information toward interaction estimates
unless covariates are centred, and this would lead to
wrongly inflated power estimates, as utilising across-trial
information is strongly discouraged, being prone to eco-
logical bias and study-level confounding [16, 17]. Indeed,
two competing options to power calculations by Konto-
pantelis et al. [12] and by Kovalchik et al. [10, 11] utilise
a one-stage IPD meta-analysis framework amalgamating
within-trial and across-trial interactions. That being said,
these are otherwise excellent alternative options for con-
sidering power for IPD meta-analysis, which use simula-
tion or analytic methods. Our approach is somewhat
faster than the ‘ipdpower’ module of Kontopantelis et al.
, as the two-stage framework is typically faster than the
one-stage framework, due to the large number of param-
eters usually estimated simultaneously in the one-stage
approach. Indeed, as noted by Kontopantelis et al. in
their online help file, one-stage models are also prone to
convergence problems, and for complex models (with
multiple random effects) “non-convergence is more fre-
quent than convergence.” The analytic approach of
Kovalchik et al. is restricted to a fixed interaction effect,
and so is limited when heterogeneity is of interest, and
does not accommodate adjustment for prognostic fac-
tors. Further research comparing power in the context
of two-stage and one-stage approaches would be
welcome.
Simmonds and Higgins also provide algebraic solu-

tions for the power of an IPD meta-analysis of continu-
ous outcomes, under certain conditions, for both a one-
stage IPD meta-analysis (that amalgamates within-trial
and across-trial interactions) and a two-stage IPD meta-
analysis [9]. However, these are based on strong
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assumptions, in particular no heterogeneity of overall treat-
ment effects or interactions, the same number of patients
in each treatment group within a trial, and same residual
variances in all trials. The beauty of a simulation-based ap-
proach is that such assumptions can be easily relaxed,
whereas an algebraic approach quickly becomes intractable,
especially for non-normal outcomes. For example, simula-
tions can be adapted to allow non-continuous outcomes
(binary, survival, ordinal, etc), non-normal distributions for
continuous covariates, multiple adjustment terms, non-
linear trends, and multiple (even correlated) random-effects
terms, as desired. This is at the expense of increased com-
putational time, although 1000 simulations for our example
would rarely take longer than 3 min for a particular set of
inputs. The number of simulations required could be re-
duced in particular cases, with researchers able to calculate
the number of simulations needed to achieve a given preci-
sion on the estimated power of their IPD meta-analysis.
Our approach also could be extended to incorporate study-
level covariates in the data generating model. This would
allow true treatment and interaction effects in each trial to
be tailored to study-level covariates, whereas we currently
generate them randomly. Importantly, although we fo-
cussed on IPD meta-analysis of randomised trials, the
simulation-based approach could be equally used to esti-
mate power for other IPD meta-analysis research, such as
prognostic factor research [45].

Conclusions
In summary, we encourage researchers and funders to make
assessments of power when planning or commissioning an
IPD meta-analysis project. We propose a simulation-based
approach to do this, utilising a two-stage IPD meta-analysis
framework, as illustrated here for continuous outcomes.
This overcomes the need for deriving analytic solutions, and
is flexible enough to be tailored to each IPD meta-analysis
project at hand. In particular, the user can evaluate power
based on chosen statistical models and estimation methods,
whilst utilising existing aggregate data about the set of trials
promising their IPD. This informs how much IPD is re-
quired and helps reveal whether the IPD project is worth
the investment.
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Additional file 1: Stata simulation program code. Stata code to simulate
power for IPD meta-analysis as proposed in this article. (PDF 158 kb)
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