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Abstract
Cuticular hydrocarbons (CHCs) function as recognition compounds with the best evidence coming from social insects such as
ants and honey bees. The major exocrine gland involved in hydrocarbon storage in ants is the post-pharyngeal gland (PPG) in the
head. It is still not clearly understood where CHCs are stored in the honey bee. The aim of this study was to investigate the
hydrocarbons and esters found in five major worker honey bee (Apis mellifera) exocrine glands, at three different developmental
stages (newly emerged, nurse, and forager) using a high temperature GC analysis. We found the hypopharyngeal gland contained
no hydrocarbons nor esters, and the thoracic salivary and mandibular glands only contained trace amounts of n-alkanes.
However, the cephalic salivary gland (CSG) contained the greatest number and highest quantity of hydrocarbons relative to
the five other glands with many of the hydrocarbons also found in the Dufour’s gland, but at much lower levels. We discovered a
series of oleic acid wax esters that lay beyond the detection of standard GC columns. As a bee’s activities changed, as it ages, the
types of compounds detected in the CSG also changed. For example, newly emerged bees have predominately C19-C23n-alkanes,
alkenes and methyl-branched compounds, whereas the nurses’CSG had predominately C31:1 and C33:1 alkene isomers, which are
replaced by a series of oleic acid wax esters in foragers. These changes in the CSGweremirrored by corresponding changes in the
adults’ CHCs profile. This indicates that the CSGmay have a parallel function to the PPG found in ants acting as a major storage
gland of CHCs. As the CSG duct opens into the buccal cavity the hydrocarbons can be worked into the comb wax and could help
explain the role of comb wax in nestmate recognition experiments.

Keywords Apis mellifera . Cuticular profiles . Cephalic salivary gland . Mandibular gland . Exocrine glands . Post-pharyngeal
gland . Sociobiology

Introduction

Pheromones are involved in intraspecific chemical communi-
cation (Wyatt 2013), and the honey bee (Apis mellifera) has
long been the subject of chemical ecology studies (Breed et al.
2015; Free 1987). However, the glands associated with

compounds used in nestmate recognition in honey bees re-
main elusive. This search is difficult since nestmate cues can
arise from both within the colony, and from the environment
(Kalmus and Ribbands 1952). For example, Downs and
Ratnieks (1999) found no evidence that honey bee guards
used heritable cues; instead, guards appear to rely exclusively
on environmental cues to distinguish nestmates from non-
nestmates. However, nestmate cues can be produced by the
individual, and thus must be under genetic control (Breed
1983; Page Jr et al. 1991). A further factor is that the wax used
to build the colony is both produced and manipulated by the
bees, whichmeans it may be a medium into which recognition
cues are transferred (Breed et al. 1998). Therefore, Breed et al.
(1998) stated that no single factor is responsible for nestmate
recognition in honey bees; rather, all three factors (genetically
determined cuticular signatures, exposure to comb wax, and
environmental cues e.g. floral cues) seem to work together.

In ants, the post-pharyngeal gland (PPG) found in the head
can absorb, store, and metabolize its own lipids (Decio et al.

* Stephen J. Martin
s.j.martin@salford.ac.uk

1 School of Environment and Life Sciences, The University of Salford,
Manchester M5 4WT, UK

2 Insecta Research Group, Center of Agrarian, Environmental and
Biological Sciences, Federal University of the Reconcavo of Bahia,
Rua Rui Barbosa, 710 - Centro, Cruz das Almas, BA 44380-000,
Brazil

3 Chemical Ecology Group, School of Chemical and Physical
Sciences, Lennard-Jones Laboratory, Keele University, Keele ST5
5BG, UK

Journal of Chemical Ecology (2018) 44:650–657
https://doi.org/10.1007/s10886-018-0975-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s10886-018-0975-8&domain=pdf
http://orcid.org/0000-0001-9418-053X
mailto:s.j.martin@salford.ac.uk


2016), and the hydrocarbon profile (ratio of compounds) of
the PPG is very similar to that of the cuticle (Bagnères and
Morgan 1991; Kaib et al. 2000). The PPG may also act as a
mixing ‘gestalt’ organ (Soroker et al. 1994), since cuticular
hydrocarbons (CHCs) can be transferred to an individual’s
PPG by nestmates via the sharing of secretions (trophallaxis)
or grooming (Meskali et al. 1995; Morgan 2010). Thus, any
genetic (CHCs) or environmental differences between indi-
viduals can be smoothed out, producing a single unified
nestmate odour.

Work, predominantly on social insects, has shown that each
species of insect has a unique CHC profile (Kather and Martin
2015), which is remarkably stable over large geographical
areas (Guillem et al. 2016). In ants, qualitative differences in
these unique species profiles indicates that the CHCs can also
contain a nestmate signal (Martin et al. 2008; van Zweden and
d’Ettorre 2010). Several studies have indicated the importance
of CHCs in nestmate recognition in honey bees. For example,
newly emerged bees, which have fewer hydrocarbons in their
cuticle, are accepted more readily into an unrelated colony,
while the removal of hydrocarbons from older bees improves
their acceptance (Breed et al. 2004). Further studies indicated
that a sub-set of hydrocarbons, the long-chained alkenes, may-
be involved in honey bee nestmate recognition (Châline et al.
2005; Dani et al. 2005; Pradella et al. 2015). However, the
location where hydrocarbons, especially alkenes, are stored
prior to release onto the cuticle remains unclear.

The five major glands studied (mandibular [MG],
hypopharyngeal [HG], cephalic salivary [CSG], thoracic sali-
vary [TSG], and Dufour’s gland [DG]) (Fig. 1) are all vital to
an adult worker performing its various tasks both inside and
outside the hive successfully (Duffield et al. 1984; Katzav-
Gozansky et al. 2001; Poiani and Cruz-Landim 2017). The
MG, HG, CSG, and TSG are all paired glands whose ducts
open into the buccal cavity (Snodgrass 1956). The primary
role of the HG is providing protein rich secretions to feed
the larvae during the nursing phase (Crailsheim and Stolberg
1989; Huang et al. 1989), and in foragers these glands secrete
enzymes that aid the processing of honey (Simpson 1960).
The MG initially secretes fatty acids, again used for larval
nutrition (Plettner et al. 1997). They then switch to the secre-
tion of ‘forage-marking’ (Vallet et al. 1991) and alarm phero-
mones such as 2-heptanone in foragers. In worker honey bees,
the salivary gland develops into two glands with the CSG
found in the head and the TSG in the thorax. Simpson
(1960) noted the secretion of the TSG was aqueous, contain-
ing water soluble digestive enzymes, whereas the CSG pro-
duced an oily secretion that helps with wax manipulation.
However, Katzav-Gozansky et al. (2001) detected a series of
n-alkanes in both the TSG and CSG, which partly conflicting
with what Simpson (1960) found. Recently, and based on a
single colony, Poiani and Cruz-Landim (2017) suggested that
the CSG secretion may be used to replenish the CHCs. In

contrast the TSG secretions are important for honey matura-
tion (Maurizio 1975), possibly contain pheromones (Maurizio
1975) and help moisten pollen and wax (Simpson 1963). The
DG is associated with the sting apparatus and although well
studied in queens (Niño et al. 2013) and workers in queen-less
colonies, its role in workers from queenright colonies is not
well defined (Mitra 2013). It is known to produce hydrocar-
bons (Katzav-Gozansky et al. 2001) that are used for water-
proofing the cuticle and possibly involved in chemical com-
munication (Abdalla and Cruz-Landim 2001).

The aim of this study was to investigate the presence or
absence of hydrocarbons contained within five honey bee
exocrine glands, at three different key points in the adult hon-
ey bee worker’s life (newly emerged, nurse, and foraging
phases). This data was then compared with the CHC profiles
from workers doing the same tasks (Kather et al. 2011). This
will determine which gland is acting as a reservoir for hydro-
carbons that are detected on the surface of the honey bee i.e.
CHCs, and will also help determine whether the role of the
glands changed as the tasks of the bee changed.

Methods and Materials

Samples Collection and PreparationAll studies were conduct-
ed during the summer of 2014 using four honey bee colonies
maintained at the University of Salford apiary Manchester,
UK. Worker bees of known age were obtained by removing
a frame containing mature pupae and placing it into a temper-
ature cabinet controlled at 30 °C ± 5 °C and RH 60% ± 2%.
The thorax of approximately 500 newly born workers per
colony were marked with a non-toxic Uniposca® pen before
being returning to their natal colony. Thereafter, from each of
the four colonies, 50 workers were sampled when they
emerged (newly emerged bees [day 0]). After 10 days bees
were collected from the surface of a frame whilst feeding larva
(nurse bees), and after 30 days bees were collected returning
to the hive bearing pollen (forager bees). Since hydrocarbons
are known to be stable under a wide range of storage condi-
tions (Martin et al. 2009), all collected bees were stored at
−20 °C until their glands were removed. Only workers were
sampled since CSG glands are poorly developed in male hon-
ey bees (Poiani and Cruz-Landim 2010).

Gland Extraction The five glands (Fig. 1) were dissected out in
water using fine tweezers under a Leica binocular microscope
at ×25 magnification. The head was separated from the thorax
using micro scissors and the TSG extracted from the thorax
using fine tweezers. From the head, the buccal apparatus was
removed by creating a hole near the mandibles, which was
then extended into the ventral region to allow the removal of
the MG. The exoskeleton in the dorsal region of the head was
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removed allowing the HG and CSG to be removed. By re-
moving the stinger, the DG could easily be extracted.

Chemical Analysis Each sample was a pool of 10 glands to
ensure a clear chemical signal. For each colony, five replicates
of each age group (0, 10, and 30 days) were prepared. This
was replicated across the four colonies giving a total of 300
samples to be analysed (four colonies x five replicates x three
age groups x five glands), from 600 bee dissections. Each
sample was immersed in 30 μl of high-performance liquid
chromatography (HPLC) grade n-hexane and evaporated to
dryness at room temperature before being stored at −20 °C.
Immediately before analysis samples were re-suspended in
30 μl HPLC grade n-hexane and analysed on an Agilent
7890-GC (equipped with a Vf-5ht UltiMetal column; length:
30 m; ID: 0.25 mm; film thickness; 0.1 μm) connected to an
Agilent 5975-MSD (quadrupole mass spectrometer with 70-
eV electron impact ionization). Samples were injected in
splitless mode with the injection port at 325 °C and the MS
in scan mode. The oven temperature programme was 70 °C
(held for 1 min), 40 °C min−1 to 200 °C, 4 °C min−1 to 250 °C
and finally 25°Cmin−1 to 350 °Cwith a final five-minute hold.
The carrier gas of helium was used at a constant flow rate of
1.0 ml min−1. Compounds were identified using standard MS
databases, diagnostic ions, and Kovats indices. This method
allowed us to detect hydrocarbons and esters up to chain
lengths of forty-two carbons (n-C42). The presence of oleic
acid in samples was variable, potentially due to contamination
from other body tissues, so was excluded from the analysis.
Each peak was transformed into a relative proportion based on
the total amount of hydrocarbons (C19 to C33) plus wax esters,
if present. Any compound which was consistently less than
1% across all three age groups was excluded from further

analysis and recorded as trace (Table 1). An internal standard
was not used so all comparisons are relative.

Statistical Analysis The raw data was arcsine square root trans-
formed to reduce the range of data values, and non-metric
Multidimensional Scaling (NMDS) performed using
Euclidean distances in SPSS v23. Goodness of fit was mea-
sured using the Normalized raw stress. The lower the stress
value, the better the data are represented, with values of <0.05
considered excellent, and where values of >0.2 are considered
a poor representation of the data and should be interpreted
with caution. NMDS does not rely on the assumptions of
normality of multidimensional data, thus having the advan-
tage of omitting any distributional assumptions required for
other methods (McCune and Grace 2002). Moreover, the pre-
assumed hypothesis-driven groupings such as those used in
discriminant analysis, which can bias the final result, as can
minor compounds (Martin and Drijfhout 2009). Also, if the
number of variables is sufficiently large, which is often the
case, the canonical variates separate the groups regardless of
the actual group distributions (Mitteroecker and Bookstein
2011). The CHC profiles from workers (Kather et al. 2011)
and CSG (this study) came from the same honeybee colonies,
but the CHC profiles were analysed using a standard GC col-
umn, so before the datasets were compared the high tempera-
ture oleic acid waxy esters were removed from the data-set
(see Fig. 3b).

Results

In the TSG trace amounts of n-pentacosane (n-C25) were de-
tected, irrespective of age group and no other non-polar

Fig. 1 The position of the five glands, three in the head, one in the thorax, and one in the gaster, evaluated in this study (adapted from Tofilski 2012)
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compounds were seen. As expected no hydrocarbons were
detected in the HG, while the MG of new-born bees contained
only small amounts of the n-alkanes and alkenes typically
found in the CSG and DG, which became trace amounts of
n-C25 and n-heptacosane (n-C27) in older age groups (Table
1). The DG contained predominantly (70–88%) odd chained
n-alkanes (n-heneicosane [n-C21] to n-hentriacontane [n-
C31]), with small proportions of alkenes (3–8%), whereas
the methyl branched-alkanes occur predominantly in newly
emerged bees, and the oleic acid wax esters were found main-
ly in the foragers (Table 1).

The CSG contained, relative to the other glands, a large
quantity of n-alkanes, alkenes, methyl branched-alkanes, and
oleic acid wax esters (Table 1; Fig. 2). The proportions of
these compounds changed dramatically as the bees aged
(Table 1; Fig. 3a) and mirrored the changes seen in the adult
CHC profiles (Table 1: Fig. 3b). In newly emerged bees (day

0) 10% of the CSG consisted of methyl branched-alkanes,
which dropped to just 2% after 10 days and to trace amounts
at 30 days. The dominant hydrocarbons (47%) in newly
emerged workers were the three n-alkanes (n-C19, n-C21, and
n-C23), these were replaced by C31:1 and C33:1 alkene isomers
(30%) after 10 days, before the appearance of the oleic acid
wax esters (48%) in the 30-day old bees (foragers) (Fig. 4;
Table 1). This changing pattern was mirrored in the DG (Table
1; Fig. 3a). In the CSG gland the C31:1 and C33:1 alkene iso-
mers were present in all age groups but were a major part of
the profile in 10-day old bees (nurses). At this time colony-
specific patterns in the C31:1 and C33:1 isomer ratios were seen
in all colonies. In other words, there was little within colony
variation of the isomer pattern for all four colonies, whilst
between colony difference could be detected (Fig. 5). These
patterns cannot be detected in day 0 and day 30 bees due to the
small amounts of alkenes detected. However, such colony-
specific patternswere not seen in any other group of compounds.

Discussion

This study found that, among the five major exocrine glands
studied, the CSG was the only one to contain large amounts of
CHCs. The production, or storage, of lipids in the CSG, and
not the TSG, is supported by evidence from both physiologi-
cal (Poiani and Cruz-Landim 2010) and proteomic (Fujita et
al. 2010) studies. The CHCs detected in the CSG are typical of
those reported on the surface of adult honey bees (Table 1,
Kather et al. 2011; Pradella et al. 2015), thus supporting the
findings of Poiani and Cruz-Landim (2017). Across a wide
range of Hymenoptera the DG also contains hydrocarbons
found on their cuticle. These include bumblebees (Oldham
et al. 1994), social Polistes (Dani et al. 1996) and Ropalidia
wasps (Mitra and Gadagkar 2014), as well as solitary wasps
(Howard and Baker 2003) and solitary bees (Pitts-Singer et al.
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2017). Interestingly, in the stingless beeMelipona bicolor the
DG has been lost in the workers (Abdalla et al. 2004) but
remains in the queen and contains hydrocarbons and esters,
as found in many social Hymenoptera queens (Le Conte and
Hefetz 2008).

In this study the MG contained a range of hydrocarbons in
newly emerged bees that became reduced to only n-
pentacosane and n-heptacosane as the bees aged, with
tritriacontene (C33:1) appearing in the nurses (Table 1).
However, in the stingless bee Melipona quadrifasciata, n-al-
kanes and alkenes found in the MG persist throughout the
entire adult life and are similar to the adults CHCs (Cruz-
Landim et al. 2012). Therefore, the functions of the CSG
and MG may be interchangeable in different genera of bees.

The predominance of alkene isomers C31:1 and C33:1 found
in the CSG, especially in nurse bees, suggests a role in seques-
tering recognition compounds. It has been suggested that these
alkenes serve as nestmate recognition compounds in honey
bees (Châline et al. 2005; Dani et al. 2005; Pradella et al.
2015). Furthermore, a large diversification of alkene isomers
are uniquely found among bees (Kather and Martin 2015a)
indicating that these play an important role in chemical com-
munication in this group. Interestingly, a similar pattern of n-
alkanes, alkenes, and oleic acid wax esters found in the CSG
are also present in comb wax (Aichholz and Lorbeer 2000;
Fröhlich et al. 2000; Waś et al. 2014). Of the three age groups
studied, only the nurse bees have active wax glands, which
reach their maximum size in 5 to 15-day old workers
(Blomquist et al. 1980). The wax scale produced by the nurse
bee is manipulated into brood cells by adding a frothy saliva
substance that increases lipolytic activity, helping to change
the waxes physical structure (Kurstjens et al. 1985). During
this time compounds from the CSG could be added to the
comb wax. This may help explain why cues gained from
comb wax can affect a honey bees’ level of aggression to-
wards its nestmates (Breed et al. 1998; Downs and Ratnieks
1999). In male honey bees the CSG is poorly developed and
regress with age (Poiani and Cruz-Landim 2010). However, in
male Bumblebees (Bombus spp) the CSG is well developed
and contains species-specific sexual marking pheromones
(Šobotnik et al. 2008).
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This study and a previous one (Poiani and Cruz-Landim
2017) both found similar age-related changes in the hydrocar-
bons detected in the CSG despite being conducted in Brazil and
UK and on different sub-species of bee (Africanised and
Buckfast). This suggests these patterns of change are wide-
spread across A. mellifera. That is, the methyl branched-
alkanes associated with newly emerged bees disappear from
the CSG andCHCs after 10 days. In contrast, alkene production
peaks during the nurse phase, potentially allowing them to be
incorporated into the wax-comb. While the CSG of foragers is
dominated by several long (>C32) waxy esters. Similar heavy
(>C35) waxy esters have been detected on the surface of 11
species of insects from nine genera of Hymenoptera using high
temperature GC-MS (Sutton et al. 2013) and could be ubiqui-
tous in social insects, acting as waterproofing compounds
(Nelson et al. 2001), although they could also play a role in
communication. For example, Amsalem et al. (2009) found a
series of C24-C28 wax esters in the DG of Bombus terrestris
workers that did not lay eggs and suggested they signal a
worker’s functional sterility to other members of the colony.
Furthermore, the honey bee brood pheromone is composed of
a series of C17-C20 fatty acid esters that act as a primer phero-
mone (Le Conte et al. 2001). These esters are produced in the
salivary gland of the larvae prior to it bifurcating into the CSG
and TSG during the pupal stage.

This study indicated that the CSG in honey bees has a
parallel function to the PPG in ants and wasps (Herznera et
al. 2011), functioning as a reservoir for hydrocarbons that are
also present on the surface of honey bees. In addition, the CSG
contains a group of oleic acid wax esters whose function needs
to be elucidated in the future.
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