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Abstract—Traditional machine learning algorithms using hand-crafted feature extraction techniques (such as local binary
pattern) have limited accuracy because of high variation in images of the same class (or intra-class variation) for food
recognition task. In recent works, convolutional neural networks (CNN) have been applied to this task with better results
than all previously reported methods. However, they perform best when trained with large amount of annotated (labeled)
food images. This is problematic when obtained in large volume, because they are expensive, laborious and impractical.
Our work aims at developing an efficient deep CNN learning-based method for food recognition alleviating these limitations
by using partially labeled training data on generative adversarial networks (GANs). We make new enhancements to the
unsupervised training architecture introduced by Goodfellow et al. (2014), which was originally aimed at generating new
data by sampling a dataset. In this work, we make modifications to deep convolutional GANs to make them robust and
efficient for classifying food images. Experimental results on benchmarking datasets show the superiority of our proposed
method as compared to the current-state-of-the-art methodologies even when trained with partially labeled training data.

Index Terms—Generative Adversarial Network, Deep CNN, Semi-Supervised Learning, Food Recognition.

I. INTRODUCTION AND RELATED WORK

A substantial increase has been witnessed in the health conscious-
ness amongst masses due to increasing health risks. Diabetes, obesity
and cholesterol cases are being increasingly reported every year. World
Health Organisation (WHO) has reported that the global prevalence
of diabetes has doubled over 1980 to 2014 [1]. Improper diet and
excessive calorie intake have been major factors causing these health
risks and hence keeping a check on the calorie consumption can help
avoid this risk [2], [3]. With the advent of smart devices, apps for
multi-modal data logging mechanism, which can be used anywhere
and anytime are in high demand. At present, the existing mobile
apps like MyFitnessPal [4], LoseIt [5] and others work on manual
data entry. This is cumbersome for most people hindering the long-
term usability of such apps. Mobile cameras are used to capture
image/video data and then typically rely on expert nutritionists to
analyze the image offline (at a particular time) [6]. Crowd sourcing
has also been used as an approach to analyze the food images.
However, both these methods are costly, inefficient and slow; thus,
they are not suitable for widespread usage.

Appearance of any food is highly characterized by the recipe,
ingredients used, style of preparation and others. They exhibit large
intra-class variation in terms of size, color, shape, texture, viewpoint
and others [7], [8]. In this case, classic feature descriptors like
speeded up robust features (SURF), histogram of gradient (HOG),
spatial pyramidal pooling, bag of scale invariant feature transform
(SIFT), color correlogram, etc. can only succeed when used for
laboratory generated small datasets. Typically, a SVM is trained
using these extracted features or a combination of these features
[9]. To improve accuracy for this task, researchers have worked
towards estimating the region of the image in which the food item
is present. One way to do this is to use standard segmentation and
object detection methods or ask the user to input a bounding box
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giving this information as done in [10]. Another approach is to use
convolutional neural network (CNN) based semantic segmentation,
which has shown an increase in accuracy [11]. Some approaches use
ingredient-level features to recognize the food items [12]. Pairwise
statistics of local features have also been applied for food recognition
task [13].

Deep CNN learning algorithms overcome the drawbacks of
traditional machine learning algorithms based on hand designed
features. These algorithms have the inherent capability to mimic
human information processing systems and work very well with
images [14], in many applications [15] including food recognition
[16]. In the recent years, CNN based food recognition has shown
excellent results even on extensive and large datasets with non-uniform
background [11]. Recent reviews on recurrent neural networks (RNN)
[17], shows the similar trend for learning long-term dependencies in
sequential images (video) and time-series data. A common problem
to all these existing methodologies is that they would need large
amount of labeled training data to perform reasonably well, which
is difficult and expensive to obtain when required in large amount.

A. Related Generative Adversarial Network Architec-
tures

One of the attractive features in generative adversarial network
(GAN) based modeling is that it does not require labeled data. Its
learning approach is classified into generative and discriminative
models: A generative model is trained to learn the joint probability
of the input data and output class labels simultaneously, i.e. P(x, y).
This can be used to infer the conditional distribution P(y |x) by
applying Bayes rule. More importantly, the joint probability learned
can be used for other purposes, such as generating new (x, y) samples.
A discriminative model is trained to learn a target function that maps
the input data x to a set of output class labels y. Mathematically, it
approximates the conditional distribution P(y |x). While both types of
models: generative and discriminative have their use cases, generative
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models have the ability to model the internal nature of the input
data even in the absence of any labels. In our current generation real
world applications, unlabelled data is abundant and easy to obtain.
The cost of acquiring labeled data can sometimes be too high to
justify. In such cases, generative models provide a desirable solution.

As summarized in Algorithm 1, the principle idea behind a
GAN is to pit a discriminative framework against a generative one.
Thus, the two component neural networks in a GAN, discriminative
and generative, act as adversaries. The generative network is
given Gaussian noise as input and is trained to generate samples
indistinguishable from the real samples. The discriminator network
is given both the generated fake samples and corresponding real
samples and is trained to identify the fake sample. In the introductory
GAN work, Goodfellow et al. [18] used fully connected neural
networks for both the generator and discriminator. Consequently,
this architecture was applied to standard image datasets for testing
purposes, specifically MNIST (handwritten digits) [19] and CIFAR-10
(natural images) [20] datasets.

It is evident from the literature and benchmarking competitions that
convolutional neural networks (CNNs) are extremely well suited to
image data [14] analysis, like our case for food recognition [16]. Initial
experiments conducted on small datasets, like CIFAR-10, showed
that achieving convergence in convolutional GANs was harder than in
CNNs, with similar computational power as that used for supervised
learning. One solution to this problem was to use a cascade of
CNNs with a Laplacian pyramid framework presented by Denton
et al. (LAPGAN) [21]. This essentially decomposed the generation
process with the images generated in a coarse to fine manner. A group
of network architectures called DCGAN (deep convolutional GAN)
proposed by Radford et al. [22], showed promising results on image
datasets. Here, a pair of convolutional discriminator and generator
networks are simultaneously trained using strided and fractionally-
strided convolutions. Thus, their aim was to learn the mapping from
image space to the discriminator output space (down-sampling) and
also to learn the mapping from a lower dimensional latent space
to the image space (up-sampling). The widespread adoption of this
group of GAN architectures for a number of applications makes it
a natural choice for our semi-supervised task at hand.

II. PROPOSED SOLUTION USING GANS

Our present focus is on the food recognition system that can deal
with non-uniformity of the background and is extendable to out of
sample test images. This would ensure that the system is robust
and easy to use, the architecture has been designed for it using
a semi-supervised approach as shown in Fig 1. The architecture
has two parts: the Generator and the Discriminator. Although both
are useful, discriminator is the network which learns the nature of
the problem better and thus can be used as a multi-label classifier
to recognize different food items. Below we describe our newly
proposed semi-supervised GAN (SSGAN) architecture in detail.

A. Semi-Supervised Generative Adversarial Networks

For a general classifier, the input is the data point x and the output
is a k-dimensional vector of logits (inverse of the sigmoidal “logistic”
function): ϕ1, ϕ2, . . . , ϕk , which can be used to calculate class
probabilities using softmax function: pmodel (y = i |x) = exp(ϕi )∑k

j=1 exp(ϕ j )
,

Algorithm 1: Generative adversarial network training.
Input : I ←− Number of training iterations
begin

for number of training iterations do
for k steps do

Sample mini batch of m Gaussian noise samples
(z1, z2, ...., zm) from noise prior pg(z).

Sample mini batch of m examples (x1, x2, ...., xm)

from data generating distribution pdata(x).
Update the discriminator by ascending its
stochastic gradient.

∇θd
1
m

m∑
i=1

[logD(xi ) + log(1 − D(G(zi )))] (1)

Sample mini batch of m Gaussian noise samples
(z1, z2, ...., zm) from noise prior pg(z).

Update the generator by descending its stochastic
gradient.

∇θg
1
m

m∑
i=1

[log(1 − D(G(zi )))] (2)

where k is the number of classes. To train the model, we minimize the
negative log-likelihood between pmodel (y |x) and the observed labels
y. We add the fake generated samples from the generator G to our
dataset and also add another output class to our classifier to detect these
fake samples. Now that we have k + 1 classes, pmodel (y = k + 1|x)
determines the probability of the input data point being fake. This
formulation also provides us the capability of learning from unlabeled
data, provided it can be classified under one of the k classes of real
data by minimizing [−log pmodel (yε(1, . . . , k)|x)].

In case of even distribution of data points, the loss function can
be decomposed into two components, θ, which is the negative log-
likelihood of the label (supervised), when the data is real and δ,
which is the GAN loss (unsupervised).

L = −Ex ,y∼pdata (x ,y)[log pmodel (y |x)]

−Ex∼G [log pmodel (y = k + 1|x)].
(3)

Total loss, L = θ + δ, where

θ = −Ex ,y∼pdata (x ,y)[log pmodel (y |x, y < k + 1)] (4)

and
δ = −Ex∼pdata (x)[1 − log pmodel (y = k + 1|x)]

−Ex∼G [log pmodel (y = k + 1|x)].
(5)

The outputs from the GAN discriminator network D is an estimated
probability that the input image is obtained from the data generating
distribution. Traditionally, this is implemented with a feed-forward
network ending in a single sigmoid unit, but in this work a softmax
output layer is used as one unit for each of the real classes and
one f ake unit for generated images. It can be seen that D has
k + 1 output units corresponding to [class − 1, class − 2, ..., class −
k, f ake]. In this case, D can also act as a classifier C. We use
higher granularity labels for the half of the mini-batch that has been
drawn from the data generating distribution. Training is performed
on the discriminator/classifier network to minimize the negative log-
likelihood corresponding to the given labels.
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Fig. 1. Block diagram for semi-supervised generative adversarial network for food recognition.

The generator G is trained to maximize this negative log-likelihood.
Our proposed SSGAN framework is summarized in Algorithm 2.

Algorithm 2: Semi-supervised GAN (SSGAN) training
algorithm.
Input : I ←− Number of training iterations
begin

for i = 1 to I do
Sample mini batch of m Gaussian noise samples
(z1, z2, ...., zm) from noise prior pg(z).

Sample mini batch of m examples (x1, x2, ...., xm)

from data generating distribution pdata(x).
Perform gradient descent on the parameters of D by

calculating the gradient as:

∇θd
1

2m

2m∑
i=1

L (loss in equation 3) (6)

Sample mini batch of m Gaussian noise samples
(z1, z2, ...., zm) from noise prior pg(z).

Perform gradient descent on the parameters of G by
calculating the gradient as:

∇θd
1
m

m∑
i=1

[1 − log pmodel (y = K + 1|x)] (7)

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

We have conducted experiments on two datasets, ETH Food-101
[23] and Indian Food Dataset [16]. The experiments are performed
on an NVIDIA Quadro P4000 GPU with 8GB VRAM. Our model
details are: GAN type: DCGAN, Optimizer: ADAM, Activation:
Leaky ReLu (in all hidden layers), Sigmoid (in discriminator’s output
layer). The model was run on test data simultaneously after every 100
training epochs. To address the instability of GANs while training, we
have implemented feature matching by specifying a new objective
for the generator side that prevents it from over training on the
discriminator side, similar to as mentioned in [24]. Additionally, we
implemented one-sided label smoothing and batch normalization for
stable convergence as discussed in Salimans et al. [24]. In our case,
the stochastic layers are zero-centered Gaussian noise, with standard

deviation of 0.5 for input and 0.5 for outputs of hidden layers. During
the training process, for ETH Food-101 and Indian Food datasets,
we used 10% and 50% data of each of the classes as unlabeled
data, respectively. For comparisons, fine-tuned deep learned models
are used from the popular AlexNet [14], GoogLeNet [25], residual
network (ResNet) [26], for all the methods, procedures are used as
reported in [16]. We also compared the new method (SSGAN) with
the recently proposed Lukas et al. [23], Kawano et al. [27], Martinel
et al. [9] and the ensemble of networks (Ensemble Net) in [16].

A. Results on ETH Food-101 Dataset

ETH Food-101 [23] is a database consisting of 1000 images per
food class of 101 classes of most popular food categories picked up
from foodspotting.com. The top 101 most popular and consistently
named dishes were chosen and 750 training images were extracted.
An addition of 250 test images were collected per class. While the
collected test images were manually cleaned, the training images were
not cleaned deliberately to retain some amount of noise. The idea is
to increase the robustness of any classifier trained on the dataset. For
our experiments, we follow the same training and testing protocols
as discussed in [9], [23]. Fig. 2 (a) shows the accuracy vs ranks plots
up to top 10 ranks, where the rank r : rε{1,2, ...,10} denotes the
probability of retrieving at least one correct image among the top
r retrieved images. This cumulative matching curve (CMC) shows
the overall performance of the proposed approach as the number
of retrieved images changes. Table 1 shows the Top-1, Top-5 and
Top-10 accuracies using current state-of-the-art methodologies on
this dataset.

TABLE 1. Accuracy (%) for ETH
Food-101 & comparison with other
methods.

Network/Features Top-1 Top-5 Top-10
AlexNet 42.42 69.46 80.26

GoogLeNet 53.96 80.11 88.04
Lukas et al. [23] 50.76 - -

Kawano et al. [27] 53.50 81.60 89.70
Martinel et al. [9] 55.89 80.25 89.10

ResNet [26] 67.59 88.76 93.79
Ensemble Net [16] 72.12 91.61 95.95

SSGAN 75.34 93.31 96.43

TABLE 2. Accuracy (%) for Indian
Food Database & comparison with
other methods.

Network/Features Top-1 Top-5 Top-10
AlexNet 60.40 90.50 96.20

GoogLeNet 70.70 93.40 97.60
ResNet [26] 43.90 80.60 91.50

Ensemble Net [16] 73.50 94.40 97.60
SSGAN 85.30 95.60 98.30

From Fig. 2(a) and Table 1, it is evident that our proposed semi-
supervised GAN (SSGAN) has outperformed consistently all the
current state-of-the-art methodologies on this large real-world food
dataset.
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(a) (b)

Fig. 2. Accuracy vs rank plots using various existing CNN frameworks
and SSGAN, (a) for ETH Food 101 Database and (b) for Indian Food
Database.

B. Results on Indian Food Dataset

Indian food dataset is newly introduced in [16] as an extensive
collection of Indian food images comprising of 50 food classes with
100 images in each class. The classes were selected keeping in mind
the extensive nature of Indian cuisine. Indian food differs in terms
of shape, size, color and texture and is devoid of any generalized
make-up. Because of the varied nature of the classes present in the
dataset, it offers the best option to test a protocol and classifier for its
robustness and accuracy. It consists of images from online sources
like Food Spotting, Google in addition to images captured using
hand-held mobile devices. Similar to the ETH Food-101 database
protocol and same protocol as that in [16], we have set aside 80
food images per class for training and rest of the images are used
for testing. Fig. 2 (b) shows accuracy vs ranks plot up to top 10
ranks and Table 2 shows the Top-1, Top-5 and Top-10 accuracies
using the current state-of-the-art methodologies on this dataset. Both
of these show that our proposed SSGAN model performs better at
recognizing food images in comparison to other CNN frameworks
for this dataset. Overall, it is evident from these Figures 2 (a) & (b)
and Tables 1 & 2 that our proposed approach (SSGAN) outperforms
the other methods consistently for all ranks on both these datasets.

IV. CONCLUSION AND FUTURE WORK

Food recognition is a very challenging task due to the presence
of high intra-class variation in food appearance. This is due to
the differences in method of preparation, ingredients used, various
shapes, viewpoints and other factors. A classifier working well on
one kind of cuisine may not give as good results on another type
of cuisine. In this work, we have proposed a semi-supervised GANs
based on deep convolutional neural network architecture approach to
alleviate the shortcomings posed by lack of labeled images and also
the classical image recognition problems in food datasets. We have
performed experiments on the largest real-world food images ETH
Food-101 dataset and the Indian Food dataset with partially labeled
data. Experimental results show that the generative semi-supervised
deep CNN approach proposed in this work outperforms the current
state-of-the-art methodologies consistently for all the ranks for both
the datasets even with partially labeled data. While GANs have
the potential to improve the food recognition accuracy with partially
labeled data, it is difficult to achieve stability and convergence during
training. In future, we would try to improve the recognition accuracy
with better and robust GAN architecture that could further reduce
the usage of labeled training data.
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