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Abstract:  

Many important scientific and technical problems are best addressed using multiple, microscopy-based 

analytical techniques which combine the strengths of complementary methods. Here, we provide two 

examples from biomedical challenges:  unravelling the attachment zone between dental implants and 

bone, and uncovering the mechanism of Alzheimer’s disease.  They combine synchrotron based 

scanning transmission X-ray microscopy (STXM) with transmission electron microscopy ((S)TEM), 

electron tomography (ET), EELS tomography, and/or atom probe tomography (APT). STXM provides 

X-ray absorption based chemical sensitivity at mesoscale resolution (10-30 nm) which complements 

higher spatial resolution electron microscopy and APT. 

 

Keywords: scanning transmission X-ray microscopy, scanning transmission electron microscopy, atom 

probe tomography, titanium implants, Alzheimer’s disease.  

 

 

Introduction  

 Correlative microscopy refers to coordinated use of complementary techniques to study the same 

specimen, ideally on exactly the same area [1]. For biomedical applications correlative methods are 

often critical. Due to the hierarchically structured nature of bone and the inhomogeneous topographical 

quality of implant surfaces, multiple-length-scale 3-D characterization techniques are needed to 

visualize bone–implant interfaces [2]. Similarly, multiple techniques probing at different length scales 

are required to begin to understand the complexity of eukaryotic cells in both healthy and diseased 

states. Thus, correlative microscopy is an efficient way to complement and validate individual 

characterization techniques and to improve data analysis [3]. Figure 1 shows the relative capabilities, in 
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terms of spatial resolution and elemental/chemical sensitivity of some microanalytical methods, 

including those employed in the work described in this article. For biomedical and health challenges, 

gaining a view of the full structural and chemical details at multi-length scales is essential for 

understanding the evolution of disease, proper diagnosis, and determining best treatment options. In this 

article we highlight two recent examples that used correlative microscopy methods in biomedical 

contexts.  

 Implants. Bone interfacing implants are used worldwide in the form of hip joint replacements 

and dental implants. Despite being generally successful, there is still an appreciable frequency of 

implant failures that demand revision surgeries. Degradation of the bonding between living bone and the 

implant device, called osseointegration, is the cause of many of these failures [4]. The physical and 

chemical properties of an implant surface, such as porosity, morphology, and chemical composition are 

thought to play a crucial role in forming long-lasting load-bearing bonds [3, 5, 6].  The understanding of 

osseointegration has evolved as a consequence of many different microscopy and analytical studies of 

ever finer structures at the interface. Human bone has complex hierarchical structures with nanoscale 

building units of type I collagen and carbonated hydroxyapatite crystals. After a titanium implant is 

placed in vivo, new bone forms along the implant surface to generate a biomechanically functional 

integration. However, the mechanism of bone integration with nanostructured surfaces is not well 

understood. State-of-the-art research in this area has been generally limited to micro-scale 

morphological evaluations, with little compositional or nano-scale mapping at the interface. Correlative 

spectrometry and tomography can enable a deeper understanding of the hierarchical attachment 

mechanism of bone to implant. 

 Alzheimer’s disease. The accumulation of the peptide fragment amyloid-beta (A1-42) within the 

brain is a characteristic hallmark of Alzheimer’s disease (AD). There is evidence that metal ions, 
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including Fe, play a crucial role [7]. The co-existence of iron and A1-42  may enhance toxicity through 

redox-based chemistry and the generation of harmful free radicals, which can cause neuronal injury [8]. 

Thus, visualization of Fe-A1-42 complexes and analysis of the Fe oxidation states therein, as well as 

analysis of the peptide, could provide insights into the mechanism of AD and possibly suggest 

approaches for treatment. Until recently, the type of iron associated with plaques was not well 

characterized. Using advanced electron microscopy techniques, several groups observed mineralized 

iron in the form of magnetite nanoparticles in A plaque cores from post-mortem human cases of 

Alzheimer’s disease [7,9,10]. Magnetite is not a normal feature of the human brain so its presence 

suggests that aberrant iron redox chemistry might be involved [7,9]. Our work [11] extended this 

important study by using correlative electron microscopy and scanning transmission X-ray microscopy 

to investigate relationships between iron biochemistry and AD pathology in the intact cortex from the 

brain of APP/PS1 transgenic mice, an established mouse model which over-produces A peptide and 

reproduces the amyloid deposition characteristics of AD. We found a direct correlation of amyloid 

plaque morphology with iron type and levels, determined the oxidation states of nanoscale iron and their 

distribution in cortical tissue, supported the prior observation of magnetite involvement,  and showed 

that A-induced chemical reduction of iron in iron-amyloid complexes could occur in vivo. 

 

Materials and Methods 

 Transmission electron microscopy (TEM) is a versatile tool for probing the structure and 

composition of materials at near atomic resolution. In this work, TEM was used for imaging with 

conventional bright-field images based on mass-thickness contrast and also for high-angle annular dark-

field (HAADF) imaging in scanning TEM (STEM), which provides an image intensity roughly 

proportional to the atomic number squared, enabling compositional contrast. Both approaches are highly 
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useful for probing biomedical materials.  

 In addition to producing 2D images, TEM can be used to determine the three-dimensional 

morphology of objects using a technique called electron tomography. By tilting a sample through a 

range of tilt angles and acquiring projection images at each tilt, one can use computer algorithms to 

reconstruct a 3D image with the resolution of the reconstruction dependent on the resolution of the 

individual images, the number of projections, and the range of tilt angles. In fact, HAADF-STEM 

tomography is an efficient technique to visualize the inhomogeneous microstructures of biomaterials and 

biointerfaces in three dimensions (3D) since it provides both nano-scale resolution and compositional 

contrast [12]. However, for a conventional thin lamellae TEM sample the “missing wedge”, a limitation 

in tilt range as a result of sample thickness and shadowing at high angles, leads to two main issues: 

artifacts and elongation in the final reconstruction and limited ability to combine the tilt-series with 

spectral information (e.g., electron energy loss spectrometry, EELS). On-axis electron tomography of a 

cylindrical sample removes the missing wedge and allows acquisition of high-fidelity, quantitative 

reconstructions of osseointegration [13]. Furthermore, if a cylindrical or needle-shaped sample geometry 

is used, on-axis electron tomography becomes compatible with the collection of spectral information 

(e.g., EELS or X-ray) since the specimen thickness remains constant at all tilt angles. Transmission 

electron microscopy, STEM, and EELS analyses were done using an FEI Titan 80-300 TEM/STEM at 

McMaster University, operated at 300 keV. 

 Atom probe tomography (APT) is a 4-D tomographic technique capable of mapping element 

distributions with atomic spatial resolution and parts per million chemical sensitivity. This technique is 

based on the evaporation of surface atoms triggered by a pulsed electric field [14]. With the 

incorporation of laser pulsing and improvements in sample preparation, APT has expanded its 

application base from metal and semiconductor materials to non-conductive biomaterials and minerals 
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[15,16]. The ions of various elements removed by laser pulsing are identified by a time-of-flight mass 

spectrometer via time-gated position-sensitive detectors. The resulting APT spectra (number of ions 

versus mass-to-charge ratios) enable the identification of chemical species. These are reconstructed into 

a 3D point cloud, where every point represents an elementally identified ion in the sample volume. This 

reconstructed volume can be further analysed to extract and visualize the nanoscale chemical features of 

samples in 3D with Integrated Visualization and Analysis Software from the instrument manufacturer 

Cameca. However, the lack of chemical state information has always been a limitation of APT. By 

correlating APT with electron microscopy (i.e., electron tomography) and spectroscopy (i.e. TEM-EELS 

and STXM), complementary analyses provide chemical state and crystallinity information [17]. Atom 

Probe Tomography was done using a Cameca LEAP 4000X HR Atom Probe at McMaster University. 

 Scanning transmission X-ray microscopy (STXM) is a synchrotron-based technique which 

routinely achieves 30 nm spatial resolution, with state-of-the art performance of 10 nm [18]. By imaging 

at different photon energies, 3-D (x,y,z) and 4-D (x,y,z,E) data sets can be acquired, providing X-ray 

tomographic imaging (X-ray CT) and elemental maps through X-ray absorption spectroscopy (XAS), 

respectively. Details of the X-ray absorption near edge structure (XANES) spectra can provide 

information about the chemical state of the elements present. Multivariate statistical methods or forward 

fitting using reference X-ray absorption spectra on quantitative intensity scales can be used to generate 

quantitative maps of the chemical species present from 'stacks' of full-area images at a sequence of 

photon energies. In this case the mapping was done by converting the measured 3D (x,y,E) data cube to 

optical density (OD), then fitting the OD stack to a set of reference spectra {i} extracted from distinct 

regions in the area measured. The (x, y, i) fitting coefficients are assembled into maps of the individual 

components (i), which can then be combined into a color-coded composite [18]. In addition to 

identifying and mapping iron species from X-ray absorption spectra (XAS), magnetic properties can be 
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characterized by X-ray magnetic circular dichroism (XMCD), where changes in XAS intensities are 

recorded with left and right circularly polarized X-rays. The XMCD signal arises from preferential 

excitation of electrons from core levels with orbital angular momentum >0  (e.g. Fe L23) into partly 

filled majority or minority spin valence energy bands. XMCD is sensitive to the direction and magnitude 

of the magnetic vector, and in the case of magnetite, also to the crystal site [19].  For the work described 

here photon energies from 280 eV to 730 eV were used. The XAS and XMCD studies were performed 

using the ambient STXM on beam line 10ID1 at the Canadian Light Source at the University of  

Saskatchewan in Saskatoon. 

 

Results 

 Biomaterials Interfaces. We have used chemically sensitive correlative imaging by X-ray 

tomography (CT), TEM, STEM, electron tomography (ET), atom probe tomography (APT), and 

scanning transmission X-ray microscopy (STXM) to investigate the 4D (3D plus composition) structure 

of the interface between human bone and a Ti dental implant, which had been in place for 47 months 

[3]. Figure 2 presents results from ET, EELS tomography, and APT of a FIB-machined needle-shaped 

sample that is about 80 nm in diameter. The Z-contrast from on-axis HAADF-STEM ET (Figure 2a) 

differentiates the phases in order of decreasing density: Ti implant (brightest), hydroxyapatite, and 

collagen/organic matter (darkest). There is evidence of continuous bone growth and integration with the 

surface of the laser-modified, commercially pure, titanium dental implant. This interfacial implant was 

shown to be rich in Ti oxide by EELS tomography, as shown in detail in ref [3]. Figure 2b shows the 

tomographic reconstruction of the series of EELS element maps on the same 80 nm needle. The 

reconstruction provides higher resolution elemental mapping of the interface than single raw maps from 

the tilt-series. Specifically, the reconstruction shows the Ca of the bone apatite (green) and the organic 



 7 

collagen (red). The needle was then FIB sharpened to about 40 nm diameter and analyzed by APT. The 

atom probe tomograph of Figure 2c shows that both Ca and C are in contact with an outer Ti oxide layer 

of the implant just outside a layer of TiN at the implant surface (O and N APT maps not shown). 

Confirmation of these phase designations was accomplished by analysis of the EELS and STXM data, as 

discussed below.  

 Correlative microscopy of a dental implant-bone interface. Detailed chemical speciation was 

provided by 2D TEM-EELS at the Ca L2,3 edge, as well as STXM studies at the C K, Ca L2,3, Ti L2,3, O 

K, and N K edges. Figure 3a shows a HAADF-STEM image of a bone-implant interface, and Figure 3b 

shows a STXM optical density difference map (OD400 eV-OD396 eV) where the N-rich region is bright and 

other regions show a near-background intensity. While the bone and Ti implant regions were identified 

from Figure 3a, the STXM OD difference image in Figure 3b clearly shows the TiN band inside the Ti 

implant. The color composite (Figure 3d) combines component maps generated by fitting a N 1s image 

sequence (50 images at photon energies between 395-420 eV) to the N 1s spectra of protein in bone 

(green), the Ti implant (red) and the TiN coating (blue). It is clear that the N signal in the APT data 

(Figure 2c) is spatially correlated with the TiN band measured by STXM. This band was probably 

generated from a laser hardening surface treatment of the machined implant in air [20].  

 Figure 4 shows results from Ca L2,3  and Ti L2,3 STXM studies of the interface. The Ca L2,3 spectra 

measured by both EELS and STXM indicate the presence of multiple Ca-containing phases, with the Ca 

spectrum at the interface being similar to that of amorphous calcium apatite (ACP) while that of Ca in 

the bone was similar to that of hydroxyapatite (HA), based on detailed consideration of peak positions 

and shapes of the weaker Ca L-edge signals [3]. The Ti L2,3 signal was saturated in the region of the 

bulk implant, but not in the interface region or the bone. Two different Ti L2,3 signals were observed in 

different regions of the interface, with one having a significantly larger Ti3+ character than the other, 
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based on the amplitude of the peak at 457.1 eV relative to the far Ti L23 continuum [3]. Other changes 

were observed in the details of the signal between 459 and 461 eV, a region well known to be sensitive 

to changes in the crystal structure of titanium oxides.  Interestingly, a small but significant Ti L2,3 TiOx 

signal was observed throughout all of the bone region which was spectrally distinct from that of the 

titanium oxide in the interface region. This might indicate that migration of TiOx into bone can occur 

over long time periods. Since focused ion beam (FIB) milling can cause material redistribution, it would 

be useful to study a sample prepared without FIB to confirm that the Ti-in-bone was not an artifact of 

the FIB milling.   

 Alzheimer’s Disease. Electron microscopy and STXM were used to map protein aggregates and iron 

in tissue sections from APP/PS1 (Alzheimer-enhanced) mice and wild type mice. STXM was used to 

quantify and map iron oxidation states with nanoscale resolution. In addition, the magnetic properties of 

these iron deposits were studied using X-ray magnetic circular dichroism (XMCD). The latter results 

were found to mirror the magnetic properties of magnetite, consistent with previous work [7,9].  

 Correlative microscopy of amyloid structures.  We found that the cortex of APP/PS1 transgenic 

mice exhibited abundant iron deposits that co-localized with amyloid structures, but very few iron 

deposits were identified in cortical sections of wild-type mice. Figure 5 shows imaging results from the 

correlative TEM and STXM study of brain tissues of Alzheimer’s mice [11].  The TEM images show 

the classic morphology of A plaques, and the STXM Fe L2,3 map shows that Fe is co-located with these 

plaques (Figure 5E). Image cross-correlation analysis performed on the images shown in Figures 5D and 

5E confirmed a strong correlation of pixel intensity between the images with a coefficient, R = 0.91 (20 

nm pixel size), suggesting that the fibrils themselves contained iron as opposed to the presence of 

discrete iron foci within fibril aggregates. 

 Figure 6 reveals the Fe oxidation state distributions in some A plaques in more detail. Proximate 
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but separate regions of high Fe(II) and high Fe(III) content are identified in a region of cortical thin 

section localized in Figure 6b (red box). Figure 6f shows Fe L2,3 XANES spectra of phases containing 

mostly Fe(III) to mostly Fe(II) in regions labelled B1 through B4 in Figures 6c to 6e, respectively. These 

results provide a profile of the oxidation state of both magnetic and non-magnetic iron phases present in 

each region of the iron deposit. Further XMCD analysis of these regions (not shown) revealed that the  

B1 region contained only a non-magnetic Fe(III) phase consistent with ferrihydrite, regions B4 and B6 

contained a reduced form of magnetite together with a non-magnetic Fe(II) phase, while region B5 

contained a heavily oxidized form of magnetite, which in its normal composition is a mixed Fe(II) 

Fe(III) species (Fe2+Fe3+
2O4). The presence of different nanoscale iron oxides over a small spatial scale 

provides evidence for a possible redox cycling of the iron, possibly catalyzed by the A deposit. 

Although the section shown in Figure 6(a-f) was too thick for TEM analysis, another similar area was 

identified that was sufficiently thin for correlative TEM and STXM (Figure 6 (g-i)). Here it can be seen 

that the dense particulate structure seen in the TEM image, correlates with iron in the Fe(II) oxidation 

state, consistent with the observation of low-oxidation state iron minerals such as magnetite and wüstite 

in Alzheimer’s plaques. 

Discussion 

 The ability to perform measurements at several length scales with chemical sensitivity using 

correlative microscopy methods provides insights not available from any single method. Thus, in the 

bone-implant example, there are clear indications of several different Ti oxides at the bone-implant 

interface as well as small amounts of Ti oxide in the bone. The TiNx layer, which was observed in a very 

small region by APT, was unambiguously identified by STXM to be an intrinsic part of the implant 

surface structure. The correlative tomography workflow and associated TEM-EELS spectroscopy and 

STXM XANES spectromicroscopy has helped to visualize the inhomogeneous and hierarchical bone-
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implant interface. While the identification of Fe in the A plaques could be accomplished by STEM-

EELS (which was not available at the time of the study), the higher energy electron beam has been 

shown to cause chemical changes such as reduction of Fe(III) minerals [21]. The stronger spectroscopic 

signal and less damaging beam of STXM XANES analysis, combined with its XMCD capability, 

allowed measurements of the Fe chemical and magnetic state in typical TEM thin specimens.  

 Appropriate sample preparation is critical for these studies. It is often the case that a sample used for 

a lower resolution method may need to be thinned to be suitable for a higher resolution method. Still the 

correlative advantage is retained as long as the same sample region can be identified either from the 

intrinsic sample morphology or from fiducial markers such as letter grids. Of course the techniques used 

in the bone-implant study are not available to all researchers. Similarly the access to synchrotron STXM 

microscopes is limited. In both cases, advanced instrumentation is being acquired by many labs and 

more STXMs are being built (currently there are 20 operational with another 5 in development). Thus 

correlative approaches of the type exemplified in this article are likely to become more available in the 

near future. We note that this article summarizes the high points of references [3] and [11]. The 

interested reader should consult these references for more detail.  

Conclusion  

Correlative X-ray, electron, and ion microscopy approaches allow greater coverage of spatial resolution 

and chemical sensitivities. Such correlative microscopy often provides insights on materials structure, 

properties, and functions not attainable with any one technique alone. This article has highlighted two 

correlative studies involving scanning transmission X-ray microscopy (STXM): an ET–APT–EELS-

STXM study of a human bone-dental implant interface and a TEM–STXM study of A plaques in the 

brain cortex of an APP/PS1 trans-genetic mouse. Together these results demonstrate the power of 

STXM and electron microscopy as complementary tools for correlative, multi-scale biomedical studies. 
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Figures 

 

 
 

Figure 1.  Spatial resolution and relative chemical sensitivity of certain microanalytical 

methods, including those used for correlative studies in this work. Note that techniques that are 

higher vertically correspond to methods that are more chemically sensitive. 
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Figure 2.  (a) On-axis electron tomography (ET), (b) electron energy loss tomography (EELS ET), 

(c) atom probe tomography (APT) of the interface of human bone and a Ti dental implant. The TiO 

and TiN designations are related to detailed analysis of the O and N species from APT spectra [3].   

(adapted from ref. [3]) 



 16 

 
 

Figure 3. (a) STEM image of a FIB-milled thin section of bone-dental implant interface. (b)  

STXM optical density difference map (OD400  –OD396. (c) N K-edge XANES spectra from 

regions indicated in (b). (d) STXM color coded composite of the chemical component maps of 

the implant  (red) bone (geen) and TiNx layer (blue) derived by fitting a full N 1s stack (50 

images from 395 – 420 eV) to the spectra in (c) (from ref. [3]).  All data from STXM except (a) 

TEM. 
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Figure 4. STXM speciation of bone-implant interface. (a) Ca L2,3 spectra from regions near 

interface. (b) color coded composite of component maps of three Ca-containing components 

derived by fitting a Ca L23 stack to the reference spectra in the insert to Fig. 4a. (c) Ti L2,3 

spectra from two regions near the interface and in the bone. (d) color coded composite of 

component maps of three Ti-containing components derived by fitting a Ti L23 stack to the 

reference spectra in (c). Color coding in (b) and (d) matches spectral color coding in (a) and 

(c) (adapted from [3]) 
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Figure 5. Comparison of TEM and STXM micrographs showing a correlation of Fe with 

Amyloid-like fibril morphology. (A–C) TEM images from an unstained cortical section of 

transgenic mouse tissue measured by STXM. The high-magnification TEM image shown in (B) 

was obtained from the dotted area shown in (A). (D) shows TEM images of unstained fibrillar 

structures located in a nearby area of the same section. (E) shows a STXM-derived Fe L2,3 map 

(OD710- OD705) of the iron-containing fragment shown in (D). The higher-magnification TEM 

image shown in (F) (from dashed rectangle in (D)) is typical of A plaques. (adapted from 

reference [11]) All data from TEM except (E) STXM .  
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Figure 6. STXM spectromicroscopy identification of local Fe oxidation state variations in nanoscale 

particulate iron in a cortical section containing A plaques from a transgenic mouse sample. (a) X-ray 

microscopy protein map obtained by subtracting the resin background image (see supplemental to [11] for 

how the resin background was obtained) from an image obtained at the main protein absorption peak at 

288.1 eV, showing the area surrounding an iron oxide deposit. Higher-magnification optical density image 

(b) of the boxed region in (a) showing the micrometer-sized iron deposit (dotted red box).  Iron maps 

recorded using (c) the prominent Fe L3 peak (708 eV) and (d) the prominent Fe L2 peak (710 eV). (e) iron 

oxidation distribution map [OD710 – OD708], obtained by subtracting image (c) from image (d) showing 

localized regions of concentrated Fe(III) (bright contrast) and Fe(II) (dark contrast). (f) corresponding Fe 

L2,3 X-ray absorption spectra obtained from the regions labeled B1–B4 in (c), (d), and (e). The solid lines 

for the spectra B1–B4 correspond to best fits to Fe(II) and Fe(III) X-ray absorption spectra. (g, h) TEM 

images of an unstained section of cortical tissue from the transgenic mouse tissue sample. The boxed area in 

(g) is shown at higher magnification in (h). (i) The corresponding iron oxidation distribution map [OD710 – 

OD708] derived from STXM. Bright areas correspond to Fe(III) rich regions and dark areas correspond to 

Fe(II) regions. The labels 1–3 indicate corresponding regions in the TEM image (h) and iron oxidation map 

(i).  Most of the contrast in the TEM image (h) arises from density contrast by non-Fe components. (adapted 

from reference [11]). All data from STXM except (g,h) TEM.  
 

 

 


