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ABSTRACT 

Percentage study weights in meta-analysis reveal the contribution of each study toward the 

overall summary results, and are especially important when some studies are considered 

outliers or at high risk of bias. In meta-analyses of test accuracy reviews, such as a bivariate 

meta-analysis of sensitivity and specificity, the percentage study weights are not currently 

derived. Rather the focus is on representing the precision of study estimates on ROC plots by 

scaling the points relative to the study sample size or to their standard error. In this article, we 

recommend that researchers should also provide the percentage study weights directly, and 

we propose a method to derive them based on a decomposition of Fisher’s information 

matrix. This method also generalises to a bivariate meta-regression, so that percentage study 

weights can also be derived for estimates of study-level modifiers of test accuracy. 

Application is made to two meta-analyses examining test accuracy: one of ear temperature 

for diagnosis of fever in children; and the other of positron emission tomography for 

diagnosis of Alzheimer’s disease. These highlight that the percentage study weights provide 

important information that is otherwise hidden if the presentation only focuses on precision 

based on sample size or standard errors. Software code is provided for Stata, and we suggest 

that our proposed percentage weights should be routinely added on forest and ROC plots for 

sensitivity and specificity, to provide transparency of the contribution of each study towards 

the results. This has implications for the PRISMA-DTA guidelines that are currently being 

produced. 
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1 Introduction 

Meta-analysis is the statistical synthesis of evidence from multiple studies to produce overall 

pooled results that can aid decision making. The PRISMA statement for reporting the results 

of a meta-analysis says that one must report the summary meta-analysis result and forest plot, 

and that, “…it is preferable also to include, for each study … the percentage weight” (Moher 

et al. 2009). Percentage study weights quantify the relative contribution of each study to the 

pooled meta-analysis result. 

Study weights in standard univariate meta-analysis (e.g. of treatment effects) are well-known 

and reflect precision of the study estimates included in the meta-analysis: in a fixed effect 

model, they are inversely proportional to the within-study variances, and in a random effects 

model, they are inversely proportional to the sum of the within-study variance and the 

estimated between-study variance. In two recent articles, the study weights in more complex 

scenarios have been derived. Jackson et al. (2015) derived study weights in two-stage 

multivariate meta-analyses, then Riley et al. 2016 generalised these to any meta-analysis that 

involves a multi-parameter model, such as a one-stage meta-analysis model that uses 

individual participant data (IPD), or a meta-regression model. However, neither paper 

illustrated the importance of deriving the percentage study weights in meta-analysis of 

diagnostic test accuracy (DTA) studies, and we believe this deserves special attention in 

advance of the PRISMA guidelines being extended to DTA studies. 

A meta-analysis of DTA studies often involves a bivariate meta-analysis of sensitivity and 

specificity (Rutter and Gatsonis 2001, Reitsma et al. 2005, Chu and Cole 2006, Harbord et al. 

2007), and may be extended to a meta-regression to compare the accuracy of different tests. 

In such models, the derivation of percentage study weights is not immediately obvious, but is 

needed to reveal the contribution of each study toward the meta-analysis results of interest. 

This is especially important when some studies are considered to be outliers, at high risk of 

bias (Whiting et al. 2011), or in some sense less relevant (e.g. due to their more 

heterogeneous inclusion criteria). Currently, for example in Cochrane reviews, percentage 

study weights are not routinely displayed following a bivariate meta-analysis. Thus, the 

contribution of each study cannot be immediately ascertained by the reader. 

Sometimes, a plot of points in the receiver operating characteristic (ROC) space is used to 

display the results of meta-analyses of DTA studies as an alternative to (or in addition to) 

forest plots. The visual display of study estimates in ROC space in RevMan (The Cochrane 
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Collaboration 2014) and Stata (StataCorp 2015) is to scale them relative to the standard error 

of the study-specific estimates of logit sensitivity and specificity, or relative to the sample 

size, in order to reflect precision of study estimates. However, relative precision of study 

estimates and percentage study weights are not the same thing, and may differ considerably. 

For example, Irwig et al. explained in the context of the diagnostic odds ratio that, 

“…weighting by the inverse of the estimated study-specific variance is inappropriate, as it is 

easily shown at equivalent sample sizes to give far more weight to studies which appear to 

show poorer accuracy” (Irwig et al. 1995). Therefore, in addition to providing a visualisation 

of precision of each study within a DTA meta-analysis (e.g. via study-specific confidence 

intervals on forest plots and circle size on summary ROC plots), it is important to report and 

display the percentage study weights. 

In this article we propose how to derive and present percentage study weights in bivariate 

meta-analysis and meta-regression of DTA studies. We adopt a proposal for percentage study 

weights in multi-parameter meta-analysis models (Riley et al. 2017) based on a 

decomposition of Fisher’s information matrix. This enables percentage study weights to be 

derived and presented appropriately for summary estimates of sensitivity and specificity, and 

for estimates of study-level modifiers of tests accuracy (e.g. differences between the accuracy 

of two tests) from bivariate meta-regression. Guidance on how to present the percentage 

study weights is also given. We do not demonstrate percentage study weights for the 

hierarchical summary receiver operating characteristic (HSROC) method (Harbord et al. 

2007) since this method is the same as the bivariate normal model without covariates, and our 

focus is on the contribution towards the pooled sensitivity and specificity, rather than the 

HSROC curve. 

The paper is structured as follows. Section 2 briefly outlines the models for which percentage 

weights are illustrated and Section 3 details a summary of the derivation of percentage study 

weights for the meta-analysis of diagnostic test accuracy studies. Section 4 provides two 

examples, covering bivariate meta-analysis and meta-regression, and highlights that the 

percentage study weights are an important addition over and above representations of study 

precision. Section 5 concludes with discussion. 

2 Meta-analysis models for diagnostic test accuracy 

We begin by briefly outlining two well-known methods of meta-analysis for DTA studies: 

the bivariate normal random effects model (Reitsma et al. 2005) and the hierarchical logistic 
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regression model (Chu and Cole 2006). The bivariate normal random effects model is not 

recommended by Cochrane for meta-analyses of DTA studies when there is sparse data or 

zero cells in the 2 by 2 contingency tables. However, we include it here to highlight that 

study weights depend on the choice of model. We then extend the hierarchical logistic 

regression model to a meta-regression model. We focus on random effects models since 

heterogeneity is expected in DTA meta-analyses, and the derivation of weights in a fixed 

effect model context is a simplified case. 

2.1 The bivariate normal random effects model 

The meta-analysis of diagnostic test accuracy in a two-stage process involves the estimation 

of logit sensitivity and logit specificity with their corresponding standard errors for each 

study, followed by the calculation of a weighted average of these statistics across the studies 

(Reitsma et al. 2005). For study i (i=1, …, k), let �̂�A,i and �̂�B,i be the observed logit sensitivity 

and logit specificity, respectively, which we assume are normally distributed with true logit 

sensitivity (μA,i) and true logit specificity (μB,i) in each study, and corresponding variances sA,i
2  

and sB,i
2 , which are assumed known. If there are zero cells in the 2 by 2 contingency tables, 

then �̂�𝐴,𝑖 and �̂�𝐵,𝑖 are obtained by applying a continuity correction, usually +0.5 to each cell 

(Sweeting et al. 2004). 
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In this random effects model, the true logit sensitivities and logit specificities are assumed to 

be bivariate normally distributed with common mean values, μA and μB, and between-study 

variance-covariance matrix, Σ, where 𝜏A
2 and 𝜏B

2 are the between-study variances and τAB = 

ρ·τA·τB is the covariance between the logit sensitivity and specificity across studies (ρ is their 

between-study correlation). This model can be fitted using, for example, the multivariate 

method of moments procedure (Jackson et al. 2013) or restricted maximum likelihood 

(REML) to give the summary estimates, �̂�A and �̂�B, and the estimated between-study variance 

matrix, �̂�. 
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2.2 Bivariate meta-analysis as a generalised linear mixed model 

A generalised linear mixed model (Chu and Cole 2006) is more often used in meta-analysis 

of diagnostic test accuracy, instead of the bivariate normal model, since it directly models the 

binomial distribution of the data (Macaskill et al. 2010). This approach is important when the 

within-study normality assumption is not appropriate, for example when there are sparse data 

and when there are zero cells in the 2 by 2 contingency tables, for which an arbitrary 

continuity correction is otherwise required (Hamza et al. 2008). 

Let n11i, n00i, n01i, and n10i be the number of true positives, true negatives, false positives, and 

false negatives, respectively, in each study, i (i=1, …, K). Also, let N1i be the number of 

diseased patients (N1i = n11i+ n10i) and N0i be the number of non-diseased patients (N0i = n00i 

+ n01i). The bivariate generalised linear mixed model can be specified as follows: 

 

 n11i|ui~Binomial(N1i, Sei) 

n00i|vi~Binomial(N0i, Sp
i
) 

logit( Sei) = 𝜇𝐴 +  ui 

logit( Sp
i
) = 𝜇𝐵 + 𝑣i 

(
ui

vi
) ~N ((

0

0
) , (

τA
2 τAB

τAB τB
2

)) 

(2) 

 

where Se and Sp are sensitivity and specificity, respectively. As previously, the between-

study variances of the logit sensitivity and logit specificity are denoted by 𝜏A
2 and 𝜏𝐵

2 , 

respectively, and the between-study covariance is given by 𝜏AB = ρ𝜏𝐴𝜏B. This model is 

commonly fitted using ordinary maximum likelihood (ML), for example using an integral 

approximation approach, such as Gauss-Hermite quadrature (Pinheiro JC and EC 2006). 

Model (2) is equivalent to the hierarchical summary receiver operating characteristic method 

that is also commonly adopted in meta-analysis of DTA studies (Rutter and Gatsonis 2001, 

Harbord et al. 2007). 

2.3 Extension to bivariate meta-regression 

Bivariate meta-regression is an important extension to examine the impact of study-level 

covariates, such as type of test, on sensitivity and specificity across DTA studies. Models (1) 
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and (2) can easily be extended to include study-level covariates; for example, model (2) can 

be extended by including a set of covariates, Zi, relating to both Se and Sp (Chu and Cole 

2006). 

 

 n11i|ui~Binomial(N1i, Sei) 

n00i|vi~Binomial(N0i, Sp
i
) 

logit( Sei)=𝛼𝐴 + 𝒁𝒊𝜷𝑨 +  ui 

logit( Sp
i
)=𝛼𝐵 + 𝒁𝒊𝜷𝑩 + vi 

(
ui

vi
) ~N ((

0

0
) , (

τA
2 τAB

τAB τB
2

)) 

(3) 

 

Where the vectors 𝜷𝑨 and 𝜷𝑩 contain the coefficients for the effect of each study-level 

covariate on the true logit sensitivity and logit specificity, respectively, and αA and αB denote 

the true logit sensitivity and logit specificity, respectively, when all covariates are zero. 

3 Derivation of percentage study weights in a meta-analysis of 

sensitivity and specificity 

We now review the current presentational approach for reporting results from a meta-analysis 

of DTA studies, which includes a representation of the precision of study-specific estimates, 

and then describe our proposal for additionally deriving and presenting percentage study 

weights. 

3.1 Current approach to presenting study information in bivariate 

meta-analysis of DTA studies 

After using one of the methods detailed above, or the HSROC method (Rutter and Gatsonis 

2001), the graphical representation of the meta-analysis usually includes providing summary 

results (pooled sensitivity and specificity), alongside study estimates and a representation of 

their precision, either by a confidence interval (region) or by scaling the points based on the 

sample size (Van Houwelingen et al. 1993, Kontopantelis and Reeves 2013). For example, 

Harbord and Whiting developed a Stata module, ‘metandi’, which fits the hierarchical logistic 

regression model (2) for the meta-analysis of diagnostic test accuracy (Harbord and Whiting 

2009). This module generates a plot that presents a graphical summary of the fitted model, 
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which includes, amongst other things, the summary point and its confidence region, and the 

individual study estimates. The plot scales the point of each study estimate by the total 

number in each study and presents this on the plot by an open circle. Similarly, in RevMan, 

the study weights are represented by circles in the ROC space, where the relative size of the 

circles are based on sample size or standard error of the study specific estimates of logit 

sensitivity and specificity (Review Manager (RevMan). 2014). Also, Phillips et al. propose a 

cross-hairs plot on ROC space, which shows the confidence interval width for each study 

point in both dimensions (Phillips et al. 2010). 

Therefore, current methods focus on representing relative precision of study estimates based 

on sample size or confidence intervals standard errors. However, actual percentage study 

weights are not included, and indeed for bivariate meta-analysis or meta-regression models 

(2) and (3) no previous suggestions for deriving weights have been given. 

3.2 An approach to deriving percentage study weights 

We now suggest an approach to deriving actual percentage study weights in bivariate meta-

analysis models of sensitivity and specificity, by adopting the approach of Riley et al. (Riley 

et al. 2017), which itself extends Jackson et al. (Jackson et al. 2015). Note we are not 

proposing a new weighting or estimation scheme for fitting DTA meta-analysis models: 

rather, we are proposing how to extract study weights that are inherent within existing DTA 

meta-analysis models (1) to (3) but otherwise hidden unless our method is used to extract 

them. 

In a multi-parameter meta-analysis situation, such as models (1) to (3), we can decompose the 

variance matrix (var(β̂)) for a vector of main parameters, β, (for example, β=(μA, μB) in 

models (1) and (2)) into the sum of independent weight matrices, Wi(β̂) for each study, i. As 

described by Riley et al. (Riley et al. 2017), this is achieved by utilising a decomposition of 

Fisher’s information matrix, where the total information matrix is defined as the inverse of 

var(β̂), and where Itotal(β̂)= ∑ Ii(β̂)K
i=1  is the sum of the independent information matrices 

from each study, i=1, ... , K. This can be expressed as follows in equation (1): 

 

 var(β̂)=var(β̂)×Itotal(β̂)×var(β̂) 

= var(β̂)× ∑ Ii(β̂)
K

i=1

×var(β̂) 

(1) 



This article is protected by copyright. All rights reserved. 

= ∑ Wi(β̂)
K

i=1

 

 

Equation (1) forms the basis of our derivation of percentage study weights in all meta-

analysis models for DTA studies. It assumes independent studies, and provides study-specific 

weight matrices (Wi(β̂)=var(β̂)×Ii(β̂)×var(β̂)), which sum to give the total variance matrix 

for β̂. 

The matrix var(β̂) is immediately available post-estimation of the chosen meta-analysis 

model. However, the user must also obtain the study-specific information matrices, Ii(β̂). To 

do this, Riley et al. (Riley et al. 2017) suggest using the generalised least squares solution for 

Ii(β̂) obtained by 

 

 Ii(β̂)=(Xi
T
Vi

-1
Xi) (2) 

 

where Xi
T is the reduced design matrix for the fixed-effect parameters in the model, now just 

containing rows for participants in study i, and Vi is the reduced variance matrix 

(corresponding to just the binomial data for study i) with entries forced to be the same as 

those estimated for study i in the full analysis. As with general linear mixed model notation 

where Y=Xβ + Zu + e, V denotes the variance of Y (the response values) conditional on X 

(the design matrix) (Brown and Prescott 2015), and so Vi includes both sampling variation in 

the ith study and between-study variance. The solution in (2) follows the common estimation 

method for general linear mixed models, such as (1), but is based on a pseudo-likelihood 

estimation approach for generalised linear mixed models, such as (2) and (3). We refer to the 

Supplementary Information for more technical detail. 

Once Wi(β̂)=var(β̂)×Ii(β̂)×var(β̂) are computed for each study, the percentage study 

weights can be obtained. For each parameter estimate within β̂, percentage study weights are 

derived by comparing the corresponding diagonal entries of Wi(β̂) and var(β̂). So, if the 

parameter corresponding to row r of β̂ is of interest, then the percentage weight of study i is 

given by 
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% weight study i = 100*

Wi(β̂)
r,r

∑ Wi(β̂)
r,r

K
i=1

=100*
Wi(β̂)

r,r

var(β̂)
r,r

 
(3) 

 

where the ‘r,r’ notation refers to the element (r,r) of the corresponding matrix. For example, 

in model (2) there are two parameters, μA and μB, which give the summary logit sensitivity 

and logit specificity, and so Wi(β̂) is a 2 by 2 matrix for each study. Therefore, the Wi(�̂�)
1,1

 

and var(β̂)
1,1

, and the Wi(�̂�)
2,2

 and var(β̂)
2,2

, are needed to derive the percentage study 

weights toward the summary logit sensitivity and logit specificity estimates, respectively. It is 

important to note that the percentage weight of study i may be different for each parameter, 

and so each should be reported. 

We provide a step-by-step guide to deriving percentage study weights in Box 1. 

 

To obtain the percentage study weights for any meta-analysis or meta-regression model for 

DTA studies, one needs to: 

1. Fit the chosen meta-analysis / meta-regression model, and obtain the variance 

matrix (var(β̂)) and its inverse (Fisher’s total information matrix, Itotal(β̂)) for 

the parameter estimates (β̂). For generalised linear mixed models (e.g. logistic 

regression with random effects such as models (2) or (3)) var(β̂) and Itotal(β̂)) 

should be calculated based on the pseudo-likelihood estimation solution (see 

Supplementary Information for more detail). 

2. Derive Ii(β̂) for each study based on equation (2). 

3. Obtain a weight matrix Wi(β̂) for each study 

using Wi(β̂)=var(β̂)*Ii(β̂)*var(β̂); these weight matrices sum to give the 

variance matrix (i.e. var(β̂) = ∑ Wi(β̂)K
i=1 ), as shown in equation (1). 

4. Use equation (3) to derive a study’s percentage weight toward a particular 

parameter by comparing the corresponding diagonal elements of Wi(β̂) and 

var(β̂). So, if the parameter corresponding to row r of β̂ is of interest, we would 

derive 
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% weight of study i =100*
Wi(β̂)

r,r

var(β̂)
r,r

 

Box 1: A step-by-step guide on how to derive the percentage study weights. 

 

3.3 Estimation and software 

The percentage weights can easily be obtained for the parameters in the bivariate normal 

model (1) using the ‘wt’ option within the mvmeta package in Stata (White 2009). This also 

provides percentage study weights from a bivariate meta-regression extension to model (1). 

The hierarchical logistic regression models (2) and (3) can be fitted in numerous different 

software packages, for example, ‘meqrlogit’ in Stata. Post-estimation, matrix algebra can be 

used to derive the percentage study weights and in the Appendix we provide a worked 

example of how to do this in Stata, which follows steps 1-4 in Box 1. 

3.4 Presentation of percentage study weights 

We recommend that the derived percentage study weights should be reported and presented 

as they provide  important information for the reader of DTA meta-analysis results. 

Following model (1) or (2), the percentage study weights toward the summary sensitivity and 

specificity can be added most simply as columns within forest plots for each of sensitivity 

and specificity separately. This can be produced easily using packages such as Stata or 

RevMan. Although not customary in meta-analysis of DTA studies, the forest plots can also 

include scaled squares/circles for the study-specific point estimates, to reflect the weights. 

Stata code is provided in the Appendix to show how to use the Stata module ‘metan’ to force 

study weights to be presented on forest plots alongside the summary results and study-

specific estimates and confidence intervals. 

Additionally, the circles for each study estimate in the ROC space could be scaled according 

to the actual study weights, but this needs to be done in two directions using a rectangle or 

oval shape. The use of the oval shape to represent weight in two dimensions is already 

available in RevMan and in the metandi module in Stata, however, the ovals are currently 

scaled according to sample size or standard error of the study specific estimates of logit 

sensitivity and logit specificity. These software could be updated based on our proposal. For 

meta-regression model (3), percentage study weight toward a particular coefficient can also 

be presented in a table. Examples of all these suggestions are presented in Section 4. 
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4 Applied examples 

We now illustrate the derivation of percentage study weights with two examples. We first 

introduce the datasets. 

4.1 Datasets 

Diagnosis of fever in children: The first example considers infrared ear thermometers for 

diagnosing fever in children, and consists of 23 studies and a total of 4100 children. Rectal 

temperature was used as the reference standard as it is a well-established method of 

measuring temperature in children, and most studies defined 38°C as the cut-off value for 

fever. More details of the original study can be found elsewhere (Craig et al. 2002, Dodd et 

al. 2006). A summary of the 2 by 2 tables of diagnostic accuracy is provided in Table 1. 

Where there are zero cells in a study, an arbitrary continuity correction of 0.5 is applied to 

obtain logit sensitivity and logit specificity estimates, and their variances, for model (1). 

 

Diagnosis of Alzheimer’s disease: The second example from Hamza et al. consists of nine 

studies that assess the test accuracy of positron emission tomography (PET) in the diagnosis 

of Alzheimer’s disease (Hamza et al. 2008). There are small numbers of patients in each 

study (range: 19 to 50) with a total of 254 diseased and 210 non-diseased patients (Table 2). 

Once again, where there are zero cells, an arbitrary continuity correction of 0.5 is applied to 

enable model (1) to be applied. 

 

4.2 Percentage study weights toward summary sensitivity and 

specificity 

Models (1) and (2) were fitted to both datasets, and subsequently percentage weights derived 

for our proposal based on the step by step process outlined in Box 1. The results are shown in 

Table 3 and Table 4, alongside the relative scaling by sample size (shown in Figure 1) that is 

often currently used on the summary ROC plot. Figure 2 and Figure 3 show our suggestion 

for presenting percentage study weights within forest plots to aid interpretation of the results. 

We now discuss some important findings. 
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4.2.1 Actual percentage study weights can be very different to the 

presentation of precision based on sample size 

The relative precision of each study estimate based on sample size is very different to the 

percentage study weights. Consider the Nypaver study in the fever data, for which the relative 

precision based on sample size of sensitivity and specificity were 24.9% and 18.9%, 

respectively. These values might infer that this study carried a large weight toward the pooled 

estimates. Intuitively, this seems sensible since the study is comparatively large and is  

represented by the largest circle on the ROC plot in Figure 1, where the circles are based on 

sample size. 

However, the actual percentage study weights were much lower; for example, for the logistic 

regression model (2) the percentage weights for the Nypaver study are 5.3% and 5.4% for 

sensitivity and specificity, respectively. The reason is that the presentation based on sample 

size does not account for the magnitude of between-study heterogeneity or that the true 

sensitivity and specificity vary across studies. These modify the weight of each study because 

they both impact upon the variance of the study-specific binomial data (Riley et al. 2017). 

 

4.2.2 Percentage study weights for models (1) and (2) can differ 

In the fever data, given that the pooled estimates for sensitivity and specificity were similar 

for both models (Table 3), the percentage study weights were almost identical, with only 

slight differences due to the continuity correction in the bivariate normal model (1). This is 

not the case in the Alzheimer’s dataset, as the percentage study weights differ depending on 

the choice of bivariate model. This is not unexpected since there are small patient numbers, 

and sensitivity and specificity estimates close, or equal, to one in several studies; in such 

situations the use of logistic regression model (2) is preferable over the normal model (1) 

(Hamza et al. 2008, Macaskill et al. 2010, Debray et al. 2013). For example, for study 3, the 

percentage weight for the pooled sensitivity was 14.4% for the logistic regression model (2), 

whereas the percentage weight for this parameter in the bivariate normal model (1) was 

17.3% (Table 4). 
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4.2.3 High between-study variability leads to similar percentage study 

weights for all studies 

Another important result highlighted in the fever dataset is that, largely due to relatively high 

between-study variability (τA = 0.91 and τB = 1.07, model (1)), the percentage study weights 

were very similar across all studies for both sensitivity and specificity (between 2.1% and 

5.3% for sensitivity, and between 2.0% and 5.7% for specificity (model (1))), regardless of 

the sample size of each study (where total sample sizes range from 15 to 878). As a result, the 

pooled sensitivity and specificity estimates were similar to an unweighted average across all 

studies. This again highlights that the representation of the precision of study estimates of 

logit sensitivity and logit specificity based on sample size in the ROC space (or confidence 

intervals on a forest plot)  are not sufficient, and we need to additionally report and present 

percentage study weights. 

Indeed, if weights are not presented, there is a danger that many readers will use the relative 

precision across studies to infer the study weights wrongly. For example, in the Nypayer 

study, there were 282 true positives out of 425 diseased, and 445 true negatives out of 453 

non-diseased participants. The corresponding percentage weights were 5.3% and 5.4% for 

sensitivity and specificity, respectively, based on model (2). However, the scaling of study 

points based on relative sample size were 24.9% and 18.9% for sensitivity and specificity, 

respectively. For a trial with far fewer patients, such as the Bernardo trial where there were 

zero true positives out of three diseased, and 33 true negatives out of 35 non-diseased 

participants, the percentage weights based on model (2) were not too dissimilar to those for 

the Nypayer study, with values of 2.7% and 3.8% for sensitivity and specificity, respectively, 

due to the large between-study variance estimates. However, the relative size of the study 

points based on sample size were much smaller with values of 0.2% and 1.5% for sensitivity 

and specificity, respectively. 

 

4.3 Bivariate meta-analysis and meta-regression 

As previously explained in Section 2.3, meta-regression can be used to examine the impact of 

study-level covariates on test accuracy; for example, to compare different types of tests to 

diagnose the same disease, to compare different manufacturers of the same test, or to 

compare accuracy of the test in different populations (e.g. country). It is also possible to 
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derive percentage study weights for any parameter in a meta-regression model. We now 

illustrate this in the fever dataset using model (3). In this example, interest was in whether the 

accuracy of the test varied by the manufacturer of the device, which was either a product 

from the company, FirstTemp, or from a different company (denoted by FirstTemp=1 if 

FirstTemp, FirstTemp=0 if other device) (Craig et al. 2002). We note that each study only 

assessed one device; therefore, this represents an example of an indirect comparison of tests 

(Bossuyt et al. 2013, Takwoingi et al. 2013). 

The percentage weights for each parameter are shown in Table 5 for bivariate model (3). 

Now there are percentage study weights for each of multiple parameters: the pooled 

sensitivity (and pooled specificity) when the covariate is zero (i.e. for a device other than 

FirstTemp), and the difference in the pooled sensitivity (and the difference in the pooled 

specificity) when the covariate is one. Theoretically, the trials for which FirstTemp=1 do not 

provide a contribution toward the pooled sensitivity when FirstTemp=0. However, both 

covariate values of zero and one contribute toward the estimate of the difference in the 

pooled sensitivity when the covariate equals one. This is also true for the two parameters for 

the pooled specificity. 

The key parameter of interest is the difference in the pooled sensitivity (and pooled 

specificity), as it reveals whether there is a difference in test accuracy when using FirstTemp 

compared to the other devices. The results suggest that the sensitivity of the FirstTemp device 

was no different to that of the other devices. However, the specificity of the FirstTemp device 

was statistically significantly higher than that of the other devices (odds ratio estimate: 3.34, 

95% CI: 1.17 to 9.53). Some studies contributed more weight toward this estimated 

difference than the others, such as Akinyinka, Hoffman 1999c, Loveys 1999b, and Wilshaw, 

for which the percentage study weights were 7.7, 7.4, 7.7 and 7.9%, respectively. 

A study’s weight toward the differences in sensitivity (or differences in specificity) between 

tests may be different than its weights toward the overall sensitivity or specificity. For 

example, the percentage weight for the overall pooled sensitivity for the Akinyinka study was 

5.1% from model (2) (Table 3), whereas its percentage weight for the difference in the 

sensitivity between tests was 9.1% from model (3) (Table 5). 
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5 Discussion 

In this article we have shown how to apply the framework of Riley et al. to derive percentage 

study weights in commonly used bivariate meta-analysis and meta-regression models for 

combining diagnostic test accuracy studies, and illustrated the method with two example 

datasets. Currently, for example in Cochrane reviews, percentage study weights are not 

routinely derived in DTA meta-analysis despite the fact that they are a suggested requirement 

in the reporting of traditional meta-analyses of randomised trials (Moher et al. 2009). We 

showed how to derive percentage study weights specifically for the bivariate random effects 

models, but the same methodology can be used to produce weights for models with a fixed 

effect assumption, or for trivariate models (Ma et al. 2016). 

Our work leads to some important findings for meta-analyses of DTA studies. Firstly, in 

addition to presenting study-specific estimates and their precision, we recommend that the 

percentage study weights are routinely calculated and additionally reported and presented. 

These add important information and can be very different to comparisons of the relative 

precision of study estimates, which may otherwise be wrongly used by readers to infer the 

relative contribution of each study. For presentation of weights, further research of the best 

approach is needed, for example through communication with reviewers, patients and lay 

readers. For now, we recommend that forest plots provide summary results and percentage 

weights, and that further work is needed to enhance the ROC plot display to show the 

weights, in addition to sample size. For example, perhaps point estimates could be denoted by 

rectangles or ovals that are scaled in two dimensions to denote relative study weight for 

sensitivity and specificity for each study. 

Our percentage study weights will often be similar for both bivariate models (1) and (2), 

unless there are small patient numbers and/or zero cells in the 2 by 2 contingency table (i.e. 

sensitivity or specificity equal to zero or one), and when one must use a continuity correction 

in the bivariate normal model (1). In this case, the hierarchical logistic regression model is 

preferred (Hamza et al. 2008), and this corresponds to differences in the weighting of each 

study in this model compared to the bivariate normal model (1). When there is high between-

study variation relative to that within studies, the percentage study weights are likely to be 

very similar for all the studies, which supports the need to derive percentage study weights in 

such situations. Whilst high heterogeneity in DTA meta-analyses is common, it is not the 

rule, and sometimes a fixed effect meta-analysis may be plausible (e.g. if all studies used the 
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same threshold value and were done in the same setting). The change in the percentage study 

weights when using fixed effect or random effects models is also helpful, to reveal how the 

contribution of each study is affected by the choice of model and the magnitude of 

heterogeneity. In meta-regression models, it would be of interest to examine how study 

weights were affected by changes in the between-study variance assumptions (e.g. have 

different between study variances and correlation for each covariate in the model). 

In situations where DTA systematic reviews include informative forest or ROC plots without 

a meta-analysis, the concepts of study weights and precision of study estimates are irrelevant. 

In this case no scaling of study points on ROC plots is appropriate. For example, currently in 

Cochrane reviews, study points on a forest plot of sensitivity and specificity are unweighted 

and summary points are not shown. Without summary results, the addition of study weights is 

not necessary. However, if summary results have been derived, we suggest a more complete 

forest plot would rather include the summary results and percentage study weights. 

The illustrative examples have been for the simplest case of meta-analysis of DTA studies 

where there was no missing sensitivity or specificity data, and a common threshold in all 

studies; however the framework extends naturally to more complex scenarios, for example 

involving multiple thresholds (Riley et al. 2014). Our work, and indeed the proposal of Riley 

et al., also extends to derive percentage study weights in meta-analysis models based on 

individual participant data (IPD) (Riley et al. 2008). 

In summary, we have described and illustrated how to derive percentage study weights for 

meta-analysis models in DTA reviews. We hope that this encourages users conducting future 

meta-analyses to reveal the contribution of each study toward meta-analysis results to inform 

decision making, particularly in the presence of studies with high risk of bias. A sensitivity 

analysis is typically advocated that excludes studies which fail to meet some standard of 

quality criteria or level of evidence. Here, the percentage study weights would reveal whether 

those studies at high risk of bias are influential studies. We recommend that the PRISMA-

DTA guidelines include an item that encourages percentage study weights to be reported for 

DTA meta-analyses. Similar advice should be incorporated in the Cochrane Handbook for 

DTA reviews. Updates to the current packages in programmes, such as Stata and RevMan, 

will be explored to make the derivation and representation of percentage study weights more 

accessible. 
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APPENDIX 

Worked example using Stata to derive percentage study weights for model (2) using the 

fever dataset. 

mkmat se sp, mat(X) # create the fixed effect design matrix 

mat XT = X'  # transpose the design matrix 

 

mat Z = I(46)  # create the random effects design matrix - 23 studies, 2 random 

parameters 

 

gen invn=1/n  # Create A (diagonal matrix) using variable, n (number of diseased for 

sensitivity and number of non-diseased for specificity) in dataset 

mkmat invn, mat(colA) # make a matrix with the variable ‘invn’ 

mat A=diag(colA)  # create a diagonal matrix with the matrix, colA, above 

 

meqrlogit y se sp, nocons || trialid: se sp, ///  

nocons cov(un) binomial(n) refineopts(iterate(3)) intpoints(7) # Fit model (2) 

predict events, mu  # predict the number of events 

gen p=events/n  # create variable containing the probability of true positive and 

true negative 

gen var=p*(1-p)  # create variance of Bernoulli distribution 

mkmat var, mat(Bvec) # Create B (diagonal matrix) based on the predicted probability, 

 p̂∙(1-p̂) after fitting the model 

mat B=diag(Bvec) 

 

# Creating the G matrix containing the variances of the random effects 

estat recovariance # Stores the random effects covariance matrix 

mat G_one = r(Cov2) # G matrix for one trial 

mat list G_one  # Obtain G matrix values 

mata: 

G_one=(1.2485,-0.6779\-0.6779,1.1260) # Insert values from G_one 

G_five = blockdiag(G_one, blockdiag(G_one, blockdiag(G_one,blockdiag(G_one, 

G_one)))) 

G_twentyone = blockdiag(G_five, blockdiag(G_five, /// 

blockdiag(G_five,blockdiag(G_five, G_one)))) 

G_twentythree = blockdiag(G_twentyone, blockdiag(G_one,G_one)) 

st_matrix("G", G_twentythree) # store G_twentythree to use later, call it G 

end 

 

mat V = (Z*G*Z')+(A*syminv(B))  # create variance matrix for the observations 

mat invV = invsym(V)   # invert the variance matrix, V 

mat fish = XT*invV*X # derive Fisher’s Information matrix 

mat varb = invsym(fish) # invert Fisher’s Information matrix to obtain var(β̂) 

matlist varb  # display var(β̂) 

 

forvalues i=1/23 { # Loop over studies to obtain the study specific percentage 

weights 

 mat V`i'=V 
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 mat V`i'[(`i'*2)-1,(`i'*2)-1] = 1000000000 # Replace study i so that it has zero  

information 

 mat V`i'[(`i'*2)-1,`i'*2] = 0 

 mat V`i'[`i'*2,(`i'*2)-1] = 0 

 mat V`i'[`i'*2,`i'*2] = 1000000000 

 mat invV`i' = invsym(V`i')  # recalculate matrices when study i removed 

 mat fish`i' = XT*invV`i'*X 

 mat fish`i'_`i' = fish - fish`i' 

 mat weight`i' = varb*fish`i'_`i'*varb  Equation (1) 

 

 mat pctwgt`i'sens = 100*(weight`i'[1,1]/varb[1,1]) # derive percentage weight for 

study i for sensitivity 

 mat pctwgt`i'spec = 100*(weight`i'[2,2]/varb[2,2]) # derive percentage weight for 

study i for specificity 

} 

 

forvalues i=1/23 {  # Display the percentage weights and check they sum to 100% 

di pctwgt`i'sens[1,1] 

} 

 

forvalues i=1/23 { 

di pctwgt`i'spec[1,1] 

} 

 

  

Worked example using Stata to force percentage study weights and model results into 

the forest plot using ‘metan’ and the fever dataset. 

metan sens lcisens ucisens, xtitle(Sensitivity, size(vsmall)) first(0.71 0.59 0.80 Model(2)) 

label(namevar=trial) wgt(Wtsensmod2) nowt effect(Sensitivity) lcols(trial tp fp fn tn 

Wtsensmod2 Wtspecmod2) plotr(lc(none)) xlabel(0,0.2,0.4,0.6,0.8,1) force name(sens, 

replace) 

 

metan spec lcispec ucispec, xtitle(Specificity, size(vsmall)) first(0.96 0.93 0.98 Model(2)) 

label(namevar=trial) wgt(Wtspecmod2) nowt effect(Specificity) lcols(trial tp fp fn tn 

Wtsensmod2 Wtspecmod2) plotr(lc(none)) xlabel(0,0.2,0.4,0.6,0.8,1) force name(spec, 

replace) 
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Table 1: Summary of the 23 temperature studies in the fever dataset (Craig et al. 2002, Dodd et al. 2006). 

First Author 

Number 

of true 

positives 

Number 

of 

diseased 

Sensitivity Logit(sens) s.e.logit(sens)* 

Number 

of true 

negatives 

Number 

of non-

diseased 

Specificity Logit(spec) s.e.logit(spec)$ 

Akinyinka 77 105 0.73 1.01 0.22 259 273 0.95 2.92 0.27 

Bernardo 0 3 0.13 -1.95 1.51 33 35 0.93 2.60 0.66 

Brennan 150 203 0.74 1.04 0.16 155 167 0.93 2.56 0.30 

Davis 9 18 0.50 0.00 0.47 46 48 0.96 3.14 0.72 

Green 8 9 0.85 1.73 0.89 12 12 0.96 3.22 1.44 

Greenes 53 109 0.49 -0.06 0.19 193 195 0.99 4.57 0.71 

Hoffman 1999a 30 42 0.71 0.92 0.34 56 58 0.97 3.33 0.72 

Hoffman 1999b 36 62 0.58 0.33 0.26 32 34 0.94 2.77 0.73 

Hoffman 1999c 41 42 0.98 3.71 1.01 44 55 0.80 1.39 0.34 

Hooker 1993 10 15 0.66 0.65 0.53 24 24 0.98 3.89 1.43 

Hooker 1996 75 99 0.76 1.14 0.23 78 81 0.96 3.26 0.59 

Lanham 53 103 0.51 0.06 0.20 74 75 0.99 4.30 1.01 

Loveys 1999a 12 30 0.40 -0.41 0.37 44 46 0.96 3.09 0.72 

Loveys 1999b 37 47 0.79 1.31 0.36 74 93 0.80 1.36 0.26 

Muma 48 87 0.55 0.21 0.21 136 136 1.00 5.61 1.42 

Nypaver 282 425 0.66 0.68 0.10 445 453 0.98 4.02 0.36 

Petersen-Smith 9 10 0.90 2.20 1.05 214 222 0.96 3.29 0.36 

Rhoads 7 27 0.27 -1.01 0.43 38 38 0.99 4.34 1.42 

Robinson 1 2 0.50 0.00 1.15 13 13 0.96 3.30 1.44 

Selfridge 16 18 0.89 2.08 0.75 75 84 0.89 2.12 0.35 

Stewart 57 59 0.96 3.14 0.65 20 20 0.98 3.71 1.43 

Terndrup 91 178 0.51 0.04 0.15 105 125 0.84 1.66 0.24 

Wilshaw 16 16 0.97 3.50 1.44 60 104 0.58 0.31 0.20 

Sens, sensitivity; spec, specificity; s.e., standard error; * s.e.logit(sensitivity) estimated based on sA,i
2 = 1 N1i × 𝜇A,i × (1 − 𝜇A,i)⁄  (equations (1) 

and (2)) (Reitsma et al. 2005); $ s.e.logit(specificity) estimated based on s𝐵,i
2 = 1 N0i × 𝜇𝐵,i × (1 − 𝜇𝐵,i)⁄  (equations (1) and (2)) (Reitsma et al. 

2005). 
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Table 2: Summary of the nine studies in the Alzheimer’s dataset (Hamza et al. 2008). 

Study 

ID 

Number 

of true 

positives 

Number 

of 

diseased 

Sensitivity Logit(sens) s.e.logit(sens)* 

Number 

of true 

negatives 

Number 

of non-

diseased 

Specificity Logit(spec) s.e.logit(spec)$ 

1 33 39 0.85 1.70 0.44 35 40 0.88 1.95 0.48 

2 18 24 0.75 1.10 0.47 10 15 0.67 0.69 0.55 

3 20 33 0.60 0.42 0.35 41 41 0.99 4.42 1.42 

4 19 19 0.98 3.66 1.43 19 19 0.98 3.66 1.43 

5 44 50 0.88 1.99 0.44 19 29 0.66 0.64 0.39 

6 18 21 0.86 1.79 0.62 9 10 0.90 2.20 1.05 

7 27 28 0.96 3.30 1.02 21 25 0.84 1.66 0.55 

8 21 21 0.98 3.76 1.43 9 10 0.86 1.85 0.88 

9 18 19 0.95 2.89 1.03 20 21 0.95 3.00 1.02 

Sens, sensitivity; spec, specificity; s.e., standard error; * s.e.logit(sensitivity) estimated based on sA,i
2 = 1 N1i × 𝜇A,i × (1 − 𝜇A,i)⁄  (equations (1) 

and (2)) (Reitsma et al. 2005); $ s.e.logit(specificity) estimated based on s𝐵,i
2 = 1 N0i × 𝜇𝐵,i × (1 − 𝜇𝐵,i)⁄  (equations (1) and (2)) (Reitsma et al. 

2005). 
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Table 3: Percentage study weights for the pooled sensitivity and specificity estimates in the fever dataset. 

First author 

Percentage study weight based on equation (3) 
Relative precision based on sample 
size, irrespective of model choice Bivariate random effects normal  

model (1) 
Hierarchical logistic regression  

model (2) 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Akinyinka 5.5 5.9 5.1 5.6 6.1 11.4 
Bernardo 2.0 4.4 2.7 3.8 0.2 1.5 
Brennan 5.6 5.8 5.2 5.5 11.9 7.0 
Davis 4.5 4.2 4.4 4.1 1.1 2.0 
Green 3.0 2.3 3.3 2.6 0.5 0.5 
Greenes 5.5 4.2 5.1 4.6 6.4 8.2 
Hoffman 1999a 5.0 4.2 4.8 4.3 2.5 2.4 
Hoffman 1999b 5.3 4.2 5 4 3.6 1.4 
Hoffman 1999c 2.8 5.6 3.9 5.4 2.5 2.3 
Hooker 1993 4.2 2.5 4.2 2.8 0.9 1.0 
Hooker 1996 5.4 4.7 5.1 4.7 5.8 3.4 
Lanham 5.5 3.3 5.1 3.9 6.0 3.1 
Loveys 1999a 4.9 4.2 4.7 3.9 1.8 1.9 
Loveys 1999b 4.9 5.9 4.7 5.6 2.8 3.9 
Muma 5.4 2.6 5.1 3.8 5.1 5.7 
Nypaver 5.8 5.6 5.3 5.4 24.9 18.9 
Petersen-Smith 2.7 5.5 3.5 5.4 0.6 9.3 
Rhoads 4.6 2.5 4.6 2.5 1.6 1.6 
Robinson 2.3 2.3 2.1 2 0.1 0.5 
Selfridge 3.5 5.6 3.8 5.4 1.1 3.5 
Stewart 3.8 2.4 4.3 3.5 3.5 0.8 
Terndrup 5.7 6.0 5.2 5.7 10.4 5.2 
Wilshaw 2.2 6.0 2.8 5.7 0.9 4.3 

TOTAL 100.0 100.0 100 100 100.0 100.0 

Summary estimate 
(95% CI) 0.79 (0.35 to 1.22) 2.83 (2.30 to 3.36) 0.88 (0.37 to 1.38) 3.14 (2.54 to 3.74) - - 

Between-study 
standard deviation 
estimate (95% CI) 

0.91 (0.48 to 1.33) 1.07 (0.67 to 1.47) 1.11 (0.73 to 1.69) 1.21 (0.83 to 1.79)   

* Summary estimates are logit(sensitivity) and logit(specificity); $ between-study standard deviation estimates for logit(sensitivity) and 

logit(specificity); CI, confidence interval. 
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Table 4: Percentage study weights for the pooled sensitivity and specificity estimates in the Alzheimer’s dataset (Hamza et al. 2008). 

Study ID 

Percentage study weight based on equation (3) 
Relative precision based on sample 

size, irrespective of model choice 
Bivariate random effects normal 

model (1) 

Hierarchical logistic regression 

model (2) 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

1 15.6 16.5 13.4 13.9 15.4 19.0 

2 15.1 15.1 13 13 9.4 7.1 

3 17.3 4.9 14.4 9.5 13.0 19.5 

4 4.5 4.8 7.5 8.1 7.5 9.0 

5 15.8 18.4 13.6 14.7 19.7 13.8 

6 12.4 7.6 11.4 8.7 8.3 4.8 

7 7.4 15.1 9.8 13.1 11.0 11.9 

8 4.5 9.6 7.7 8.8 8.3 4.8 

9 7.3 7.9 9.2 10.2 7.5 10.0 

TOTAL 100.0 100.0 100 100 100.0 100.0 

Summary estimate 

(95% CI)* 
1.82 (1.03 to 2.62) 

1.77 (0.99 to 

2.56) 

2.20 (1.33 to 

3.07) 

2.27 (1.31 to 

3.23) 
- - 

Between-study 

standard deviation 

estimate (95% CI)$ 
0.75 (0.01 to 1.49) 0.73 (0 to 1.53) 

0.99 (0.43 to 

2.28) 

1.11 (0.49 to 

2.48) 
- - 

* Summary estimates are logit(sensitivity) and logit(specificity); $ between-study standard deviation estimates for logit(sensitivity) and 

logit(specificity); CI, confidence interval. 
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Table 5: Percentage study weights for the meta-regression with binary variable (FirstTemp) in the fever dataset (Craig et al. 2002). 

First author 

Percentage study weight based on equation (3) for hierarchical logistic regression model (3) 

Sensitivity for 
FirstTemp=0 

Change in Sensitivity 
when FirstTemp=1 

Specificity for 
FirstTemp=0 

Change in Specificity 
when FirstTemp=1 

Akinyinka 14.2 9.1 13.5 7.7 
Bernardo 7.2 4.6 9.4 5.4 
Brennan 0.0 2.9 0.0 4.3 
Davis 0.0 2.5 0.0 2.8 
Green 0.0 1.9 0.0 1.5 
Greenes 0.0 2.9 0.0 3.4 
Hoffman 1999a 0.0 2.7 0.0 3.1 
Hoffman 1999b 13.9 8.9 9.8 5.6 
Hoffman 1999c 10.8 6.9 12.9 7.4 
Hooker 1993 0.0 2.4 0.0 1.7 
Hooker 1996 14.1 9.0 11.5 6.6 
Lanham 0.0 2.9 0.0 2.7 
Loveys 1999a 13.2 8.4 9.9 5.6 
Loveys 1999b 13.2 8.5 13.5 7.7 
Muma 0.0 2.9 0.0 2.6 
Nypaver 0.0 2.9 0.0 4.2 
Petersen-Smith 0.0 2.0 0.0 4.1 
Rhoads 0.0 2.6 0.0 1.5 
Robinson 5.8 3.7 5.7 3.3 
Selfridge 0.0 2.2 0.0 4.1 
Stewart 0.0 2.4 0.0 2.2 
Terndrup 0.0 2.9 0.0 4.4 
Wilshaw 7.7 4.9 13.8 7.9 

TOTAL 100.0 100.0 100.0 100.0 

Summary estimate* 
(95% CI) 

Sens (FirstTemp=0):0.74 
(0.55 to 0.87) 

OR for FirstTemp=1 vs 
FirstTemp=0: 0.74 (0.26 to 

2.10) 

Spec (FirstTemp=0):0.91 
(0.82 to 0.96) 

OR for FirstTemp=1 vs 
FirstTemp=0: 3.34 (1.17 to 

9.53) 

* When FirstTemp=0, summary estimate represents sensitivity and specificity. When FirstTemp=1, summary estimate represents an odds ratio 

comparing the accuracy of the FirstTemp device to other devices; CI, confidence interval. 
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Figure 1: ROC plot for the fever data including study specific estimates and summary 

point with size of circles relative to sample size. 
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Figure 2: Forest plot for study-specific sensitivity and specificity estimates with percentage study weights from the logistic regression 

model (2) in the fever dataset. 
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Figure 3: Forest plot for study-specific sensitivity and specificity estimates with percentage study weights from the hierarchical logistic 

regression model (2) in the Alzheimer’s dataset. 

 


