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Highlights 

 A further shrimp chondroitin sulfate (sCS) was structurally characterized; 

 sCS presents the rare 3-O-Sulfo-glucuronic acid residue; 

 sCS inhibits thrombin and modulates in vivo inflammation  

 

 

Abstract 

The detailed structure of a further Chondroitin Sulfate from Litopenaeus 

vannamei shrimp (sCS) is described. The backbone structure was established by 1H/13C  

NMR, which identified 3-O-sulfated GlcA, 4-O-sulfated GalNAc, 6-O-sulfated 

GalNAc, and 4,6-di-O-sulfated GalNAc residues. GlcA is linked to GalNAc 4,6 di S 

and GlcA 3S is linked to GalNAc 4S, GalNAc 4,6 di-S and GalNAc6S residues. The 

anticoagulant properties of this sCS were evaluated by activated partial thromboplastin 

time, anti-IIa, anti-Xa and anti-heparin cofactor II-mediated activities, and sCS failed to 

stabilise antithrombin in a fluoresence shift assay. The anti-inflammatory effect of sCS 

was explored using a model of acute peritonitis, followed by leukocyte count and 

measurement of the cytokines, IL-1β, IL-6 and TNF-α. The compound showed low 

clotting effects, but high anti-IIa activity and HCII-mediated thrombin inhibition. Its 

anti-inflammatory effect was shown by leukocyte recruitment inhibition and a decrease 

in pro-inflammatory cytokine levels. Although the biological role of sCS remains 

unknown, its properties indicate that it is suitable for studies of multi-potent molecules 

obtained from natural sources. 

 

Key-words: Chondroitin sulfate, inflammation, shrimp, thrombin. 
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Introduction 

Chondroitin sulfate (CS) is a sulfated linear polysaccharide of the 

glycosaminoglycan (GAG) family, composed of β(1-4) linked disaccharide units, 

themselves comprising β-D-glucuronic acid (GlcA) (1→3) linked to N-acetyl-D-

galactosamine (GalNAc) (Prabhakar & Sasisekharan, 2006; Tomatsu et al., 2015). 

Several types of CS structures have been reported and have been classified according to 

their GlcA and GalNAc sulfation patterns. Under this system of nomenclature, GalNAc 

residues sulfated at the C-4 and/or C-6 positions give rise to CS-A [GlcA-GalNAc 4-O-

sulfate], CS-C [GlcA-GalNAc 6-O-sulfate] and CS-E [GlcA–GalNAc 4,6-di-O-sulfate] 

units respectively. GlcA residues exhibit O-sulfation at C-2 and more rarely at C-3, 

giving rise to CS-D [GlcA 2-O-sulfate-GalNAc 6-O-sulfate], CS-K [GlcA 3-O-sulfate-

GalNAc 4-O-sulfate] and CS-S [GlcA 2,3 di-O-sulfate-GalNAc 4 or 6-O-sulfate] units, 

respectively (Cavalcante et. al., 2018; Nandini & Sugahara, 2006; Pavão, Vilela-Silva & 

Mourão 2006; Volpi 2006). Furthermore, sulfated fucose branches in GlcA residues are 

common in natural CS (Kale et al., 2013; Mou et al., 2018). It should be stressed, 

however, that CS polysaccharides isolated from invertebrates are rarely so well-defined; 

different sections of the CS chains often correspond to several of these supposed 

prototypical CS types. Recently, CS polysaccharides have attracted attention due to 

their participation in various biological events. Thus, the search for naturally occurring, 

novel CS (Deepa et. al. 2007; Shetty et.al. 2009; Toida et. al. 2015) has expanded, along 

with investigations into the relationship between their structural features and biological 

functions. 

Sulfated GAGs are covalently bound to proteins to form several proteoglycans 

(PGs) that participate in numerous physiological phenomena. (Iozzo & Schaefer 2015; 

Ustyuzhanina et. al., 2018; Volpi, 2011).  The variety in the position and degree of 

sulfation, size, number and disaccharide sequences that are inserted in the CSPGs, make 

CS a heterogeneous molecules. The many biological effects of CS so far reported 

include inflammation, cell proliferation, differentiation, migration, tissue 

morphogenesis and wound repair (Krichen et. al., 2018; Mou et. al. 2018; Sugahara et 
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al., 2003). Crucially, differences in the structure of CS chains lead to distinct biological 

and pharmacological properties.  

Of all natural sources, marine GAGs stand out because of their structural 

peculiarities (Pomin & Morão, 2014). Recently, we characterized a CS from 

Litopenaeus vannamei shrimp (sCS) containing unusual 2,3-di-O-sulfated GlcA 

residues, which presented promising anticoagulant and antithrombotic activities 

(Cavalcante et. al., 2018). In addition, fucosylated CS structures obtained from distinct 

species of sea cucumber have been reported (Mou et. al., 2018; Ustyuzhanina et al., 

2016). One major difference between these resides in the sulfation patterns of the fucose 

branches, which significantly affect their in vitro antioxidant properties. Even though 

CS structures have been isolated from many vertebrate and invertebrate animal species, 

(Krishen et; al., 2018; Shetty et. al., 2009; Sugahara et.al., 1996; Volpi & Maccari, 

2007; Zhu et. al., 2018) the structural characterization of CS from invertebrate 

specimens reveals a rather narrow range of structures compared to those of marine 

species.   

Here, a further sCS from Litopenaeus vannamei shrimp, isolated under different 

conditions and structurally distinct from that reported earlier (Cavalcante et al., 2018), 

which possesses inhibitory effects on inflammation and potent anti-thrombin activity, is 

structurally characterized.   

 

Materials and methods 

 

1. Cell culture and reagents 

 

Murine macrophage cells (RAW 264.7) were grown in Dulbecco´s modified 

Eagle medium with 4.5 g.L-1 glucose supplemented with 10% fetal bovine serum and 20 

mM sodium bicarbonate (Cultilab, Campinas, SP, Brazil). All cultures were performed 

in culture plates (Falcon BD, San Jose, CA, USA). Unfractionated Sodium heparin from 

porcine mucosa was obtained from Laboratory Derivati Organici (Trino Vercellese, 

Italy). Other reagents were purchased from Sigma (St Louis, MO, USA).  

 

2. Animals 
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14 week old male Wistar rats weighing between 300 and 400 g and 12 week old 

female C57BL/6 mice (Departament of Biochemistry – Federal University of Rio 

Grande do Norte, Natal, Brazil) were used for in vivo experiments. Animals were 

housed in cages with free access to food and water and treated according to the ethical 

principles for animal experimentation. This study was carried out in strict accordance 

with the National Council on Animal Experimentation Control and specifically 

approved by the University of Rio Grande do Norte Ethics Committee. 

 

3. Extraction of glycosaminoglycans and purification of a sCS from L. 

vannamei  

 

  The extraction procedure for shrimp GAGs was performed as previously 

described (Brito et. al., 2008; 2014). Heads of Litopenaeus vannamei shrimp were 

obtained from shrimps cultivated in vivarium, kindly provided by ENSEG Indústria 

Alimentícia LTDA, Macaíba, Brazil.  Briefly, the shrimp heads were submitted to 

proteolysis and acetone treatment. The pool of GAGs obtained was fractionated using 

increasing volumes of acetone to obtain F-0.5A, F-0.7A and F-1.0A fractions. The sCS 

was then purified from F-1.0A, by further ion-exchange chromatography on DEAE-

Sephacel, followed by NaCl elution (see Supplementary Data Fig. S1A and agarose 

electrophoresis profile in Fig.S1B). The sCS compound evaluated in this present study 

was eluted with 1.0M NaCl and is a distinct population of sCS isolated from fraction F-

0,7A, previously reported (Cavalcante et al., 2018). Finally, the compounds were 

desalted by gel filtration through a Sephadex G-25 column by eluting with 10% ethanol. 

After lyophilization, this sCS sample was submitted to further analyses. 

 

4. Molecular weight determination 

The molecular weight (MW) of sCS was determined by gel permeation 

chromatography on a high-pressure liquid chromatography (GPC-HPLC) system, using 

a 300 × 7.8 mm BioSep SECTM S-2000 LC column (Phenomenex, Torrance, CA, USA). 

Twenty μL aliquots of sCS solution (10 mg/mL in 0.3 M Na2SO4 mobile phase) were 

applied into the GPC-HPLC system at a flow rate of 1 mL/min. UV detection was 

performed at 205 nm at room temperature. The column was previously calibrated with 

polysaccharides of known molecular weights; 1.7, 4.0, 10.0 and 16.0 kDa, 
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corresponding to fondaparinux sodium, enoxaparin, heparan sulfate and unfractionated 

heparin, respectively. 

 

5. Structural characterization 

Enzymatic digestion was performed as previously described by Lima et. al., 

2013. Briefly, 100 µg of the isolated compound were incubated overnight with 

chondroitinases ACII and ABC together (2.5 mIU each – TRIS-HCl PH 8.0, 60 mM 

sodium acetate). The disaccharides produced by exhaustive action of chondroitin ACII 

and ABC lyases on the chondroitin sulfate from L. vannamei and a mixture of 

disaccharide standards were resolved on a high performance liquid chromatography 

(HPLC) with 150 × 4.6 mm Phenosphere SAX column (Phenomenex, Torrance, CA, 

USA). The column was eluted with a NaCl gradient of 0–1 M during 30 min with a 1 

mL/min flux and UV detection at 232 nm. The peaks corresponded to the elution 

positions of known disaccharide standards as follows:  ΔUA β (1→3) GalNAc 6-O-

sulfate; ΔUA β (1→3) GalNAc 4-O-sulfate; ΔUA β(1→3) GalNAc 4,6-di-O-sulfate. 

However, resistance to chondroitinase digestion has been reported (Sugahara et. al., 

1996) and further investigations employing NMR spectroscopy were also undertaken. 

NMR experiments were performed on sCS in 200 µL of D2O containing 100 µM 

DSS at 343 K using a 600 MHz Bruker Avance II+ spectrometer fitted with a TCI 

CryoProbe. In addition to 1-dimensional (1H and 13C) spectra, both homonuclear 

(COSY, TOCSY and NOESY) and heteronuclear (HSQC and HMBC) 2-dimensional 

spectra were collected. TOCSY spectra were measured with a 120 ms mixing time 

while the mixing times for NOESY spectra were between 30 and 240 ms. Spectra were 

processed using Bruker TopSpin and assigned using the Collaborative Computing 

Project for NMR Analysis software (Vranken et al., 2005). 1H/13C HSQC integration 

was performed using the INFOS spectrum fitting software (Smith, 2017). Proton 

spectrum integration was performed using Bruker TopSpin software to calculate the 

proportion of each residue variant present within the polysaccharide sample. Full 

acquisition parameters are provided in Supplementary Data, Table ST1. 

 

6. Anticoagulant Activity assays  
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Activated partial thromboplastin time (aPTT) assays were carried out according 

to the aPTTest manufacturer’s instructions (Labtest, Lagoa Santa, MG, Brazil). 

Unfractionated Heparin and sCS were diluted in saline and incubated with 90 µL of 

plasma and 100 μL of cephalin at 37 °C for 3 minutes. CaCl2 was added and the 

coagulation time was measured. The anti-IIa and anti-Xa activities were performed in 

96-well microplate according to the kit instructions Actichrome heparin (anti-fIIa) 

(American diagnostica Inc. Greenwich, CT, USA) and Biophen heparin anti-Xa kit 

(HYPHEN Biomed, ref: 221010), respectively. Antithrombin and thrombin were 

incubated with mammalian heparin or purified sCS at various concentrations at 37 °C 

for 2 min. After incubation, purified bovine factors Xa or IIa were added, mixed and 

incubated at 37 °C for 2 min. Next, the chromogenic substrate for factors Xa or IIa were 

added and the mixture incubated again for 2 min at 37 °C. Then, to stop the reaction, 

30% acetic acid was added and absorbance measured at 405 nm against a corresponding 

blank using a microplate reader (BioTek Epoch, Winooski, USA). A thrombin 

inhibition HCII-mediated assay was performed with the following reagents: 70 nM 

heparin cofactor II, 15 nM thrombin and 0-100 µl of the test sample and heparin in 25 

µl of 0.02 M Tris/HCl, 0.15 M NaCl (pH 7.4). Then, 25 µL of thrombin were added and 

incubated for 1 minute at 37 ºC. Thereafter, 25 uL of the chromogenic substrate N-

benzoyl-Phe-Val-Arg-p-nitroamilidahydrochloride (100 mM) were added and the 

mixture was incubated for 1 minute at 37 °C. 25 µL of 30% acetic acid were added to 

stop the reaction and the absorbance was read at 405 nm.   

 

7. Bleeding effect 

 

The residual hemorrhagic effect of the sample was analyzed by a modified model of 

topical scarification in rat tail (Cruz & Dietrich, 1967). A scarification was made 

(surgical blade) in the distal portion of the rat tail. Next, the scarified tail was dipped 

vertically in physiological saline solution, and dipped again in fresh saline to observe 

bleeding. Then, the tail was dipped in a solution containing the sCS or heparin at 

different concentrations over 2 mins and washed extensively with saline solution. The 

treated tail was immersed in new saline solutions over 40 mins, and the amount of 

protein from the lesion was determined by Bradford assay (Bradford, 1976). The results 
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were expressed as the sum of the protein values of each tube minus the amount of 

protein present before the exposure to the test substance. 

 

 

8. LPS-induced peritonitis 

 

C57BL/6 mice were injected with 100 µL of lipopolysaccharide (LPS, 055:B5 

strain, 3.3 mg Kg-1) or Phosphate-buffered saline (PBS), referred as ‘PBS control 

group’, into the peritoneal cavity. After 15 minutes, animals induced with LPS were 

injected intravenously with mammalian heparin, sCS (300 µg Kg-1 in PBS) or PBS 

alone (treatment control), referred as ‘PBS group’. 4 hours later, the peritoneal cavity 

was washed with 2 mL of PBS containing 0.5 % bovine serum albumin and 1 mM 

ethylenediaminetetraacetic acid (EDTA) in PBS. The total number of cells in the 

peritoneal lavage fluid was measured by hemocytometer. The differential count of 

polymorphonuclear leukocytes (PMN) was determined by cytospin preparations fixed 

with hematoxylin and eosin. 

 

9. Cytokine quantification  

 

 The peritoneal liquid of each treated group was collected after 4 hours of 

induction of inflammation with LPS and stored at -80 °C. The IL-1β, IL-6 and TNF-α 

levels were measured using enzyme immunoassay kit (ELISA) (eBioscience, San 

Diego, CA, USA) according to the manufacturer’s instructions. Each sample was 

measured in triplicate and the optical density of each well (assay performed in 96 well 

plates) was determined at 450 nm. 

 

10. Cell viability assay  

 

 RAW 264.7 cell viability was determined by the MTT (3- (4,5-

Dimethylthiazol-2-yl) -2,5-bromo diphenyltetrazolium) method (Mosmann, 1983). Cells 

were plated in 24 well plates (4.8 x 105 cells per well) and treated with different 

concentrations of GAGs. After 24 hours 350 µL per well of MTT solution (5 mg/mL) 
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were added. After 4 hour of incubation, cell supernatant was removed and 500 µL of 

dimethylsufoxide (DMSO) were added to all wells to lyse the cells and solubilize the 

crystals. The absorbance was determined at 570 nm. 

 

11. Nitric Oxide production quantification 

 

 RAW 264.7 cells (4.8 x 105 cells.100μL-1) were plated and induced with LPS 

(O55:B5 strain) and 1 hour later, treated with sCS or heparin (0.1, 1.0, 10 and 100 

μg/mL). After 24 hours, the supernatant was aspirated and submitted to nitric oxide 

(NO) dosage. In order to determine the total NO concentration, 50 µL of Griess reagent 

(1% sulfanilamide in 5% phosphoric acid and 0.1% naphthylethylenediamine 

dihydrochloride in water) were added to 50 μL of cell supernatant from each well. After 

30 minutes of incubation at room temperature, the absorbance was determined at 545 

nm with a microplate reader. 

 

12. Statistical analysis 

 

 Results were analyzed by two-way ANOVA and Bonferroni post-test and 

post-hoc Tukey test. Values of p < 0.01 and < 0.001 were considered indicative of 

statistical significance. 

 

Results and discussion 

 

1. Structural characterization 

The sCS from the shrimp cephalothorax isolated and fractionated as described above 

was purified using ion-exchange column, eluting with a NaCl stepwise (0.5 M; 0.8 M 

and 1.0 M) gradient. The sub-fraction eluting at 1.0 M NaCl, provided the sCS sample 

of the present study, which was then subjected to structural characterization. The 

molecular weight (Mw) was determined by GPC-HPLC as 12 kDa, corresponding to just 

under half of the average molecular weight (26 kDa) for another sCS isolated from L. 

vannamei shrimp under distinct conditions (Cavalcante et. al., 2018) and for bovine 

tracheal CS (Tomatsu, 2015). The present polysaccharide also differs from other CS 
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polysaccharides in terms of its composition and chain length (Sugahara et. al., 2003).  

Following treatment with chondroitinases ACII and ABC, products comprised 25.9 % 

of ΔU-GalNAc non-sulfated and 74.1 % of disaccharides bearing a sulfate ester at 4 or 6 

positions and both 4,6 (ΔU-GalNAc-4-O-sulfate; ΔU-GalNAc-6-O-sulfate and ΔU-

GalNAc-4,6 di-O-sulfate, respectively) (Fig.S2).  

Although the presence of significant proportions of the disaccharide ΔU-GalNAc-

4,6 di-O-sulfate by chondroitinase digestion and HPLC initially suggested a so-called 

CS-E type structure, following NMR, other structures were evident and these were 

investigated further. 

Structural characterization was performed using a combination of 1-dimensional (1H 

and 13C), homonuclear 2-dimensional (COSY, TOCSY and NOESY) and heteronuclear 

2-dimensional (HSQC and HMBC) NMR spectroscopy. The assignments for the 

hydrogen and carbon resonances and the chemical shift map of 1H/13C atoms (2-

dimensional 1H/13C HSQC) are shown in Fig. 1.  NMR characterization generated 1H 

and 13C assignments for eight constituent monosaccharide variants termed here; GlcA, 

GlcA-3Si, GlcA-3Sii, GalNAc4Si, GalNAc-4Sii, GalNAc-6Si, Gal-NAc-6Sii and 

GalNAc-4,6S present in the 2-dimensional 1H/13C HSQC spectrum (Fig. 1), where ‘S’ 

represents–O-sulfate and the superscripts i and ii denote signals from the same residue 

type, but in slightly different environments (most likely distinct adjacent residues). 

GlcA β(1→3) GalNAc linkages evident in both 1H/1H NOESY and 1H/13C HMBC 

spectra reveal four disulfated and one trisulfated disaccharide variants (continuing the 

nomenclature used above); GlcA β(1→3) GalNAc-4,6S, GlcA-3Si β(1→3) GalNAc-

4Si, GlcA-3Si β(1→3) GalNAc-4Sii, GlcA-3Si β(1→3) GalNAc-4,6S and GlcA-3Sii 

β(1→3) GalNAc-6Si. Inter-disaccharide linkages, GalNAc β(1→4) GlcA, were also 

observable in the 1H/1H NOESY and 1H/13C HMBC spectra between GalNAc-4Si and 

GlcA, GalNAc-4Sii and GlcA-3Si, GalNAc-4,6S and GlcA-3Sii, GalNAc-6Si and GlcA 

and GalNAc-6Sii and GlcA. The unusual GlcA-3S residue was identified through 

characteristic chemical shifts patterns in agreement with the literature (Ustyuzhanina et 

al., 2016). The proportions for each of the five constituent residues identified were 

determined from the 1H/13C HSQC spectrum. Integration of the key anomeric signals 

(between 4.4-4.7 ppm in 1H and 102-108 ppm in the 13C dimension) indicated a 

composition of: GlcA 40.4%, GlcA-3S 59.6% and GalNAc-4S 46.2%, GalNAc-6S 

2.5% and GalNAc-4,6-diS 28.3%.  
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      The GlcA β(1→3) GalNAc-4,6S disaccharide linkage was ascertained from cross 

peaks present at 4.472, 4.012 ppm of NOESY spectra collected with NOE interaction 

times of 120 and 240 μs. This linkage was further identified via cross peaks present in 

the HMBC spectrum at 4.472, 79.10 and 4.016, 106.68 ppm. Similarly, linkages present 

within the GlcA-3Si β(1→3) GalNAc-4Si, GlcA-3Si β(1→3) GalNAc-4Sii and GlcA-

3Si β(1→3) GalNAc-4,6S disaccharides were also observed via NOESY cross peaks at 

4.593, 3.997; 4.593, 3.986 and 4.593, 4.010 ppm respectively, however, these were 

partially overlapping. Two broad HMBC cross peaks, covering the region of the GlcA-

3Si linkage with GalNAc-4Si, -4Sii and -4,6S, were present at 4.593, 79.11-80.01 and 

3.968-4.018, 106.64 ppm suggesting a linkage between these residues, but they were not 

resolved into three pairs of cross peaks. The combination of NOESY and HMBC 

spectra also indicated GlcA-3Sii β (1→3) GalNAc-6Si disaccharide linkages via 

NOESY cross peaks at 4.550, 3.801 and 4.555, 3.698 ppm respectively. The NOESY 

cross peak for the GlcA-3Sii β (1→3) GalNAc-6Si disaccharide linkage was 

supplemented by HMBC cross peaks at 3.802,106.54 and 4.546,83.72 ppm. 

 

No signals corresponding to the disaccharides containing GlcA-2,3S were 

identified. This residue has been reported as part of another naturally-occurring CS from 

the same organism that was isolated under different conditions (Cavalcante et. al., 2018) 

and as the chemically over-sulfated CS, which was a contaminant of pharmaceutical 

heparin (Guerrini et al., 2008), but the characteristic 1H and 13C signals are not present 

in the present sample, thereby establishing the unique character of the present sCS 

polysaccharide. 

Chondroitin sulfate chains containing 3-O-sulfated GlcA are resistant to the 

action of chondroitinase AC-II, and chondroitinase ABC digestion of such 

oligosaccharides has been reported to result in the apparent disappearance of 3-O-

sulfated GlcA containing disaccharide residues (Sugahara et. al., 1996). Thus, it is likely 

that after chondroitinase ACII and ABC treatment of the present sCS polysaccharide 

that significant portions of the molecule remain undigested and are not be detected by 

absorbance at 232 nm on HPLC. In contrast, NMR analysis permitted all structural 

variants to be detected and, through correlation spectra, their assignments to be made 

(Table 1), even for previously rarely-reported substituents, such as the 3-O-sulfated 
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glucuronic acid the chemical shift patterns allowing sulfated positions to be inferred 

owing to the highly electronegative properties of the sulfate group. 

The natural occurrence of 3-O sulfated GlcA residues in CS chains is rare and it 

has been reported in only a few marine animal sources (Kitagawa, 1997; Mou et. al., 

2018; Sugahara at. al., 1996; Shetty et. al., 2009; Ustyuzhanina et al., 2016), suggesting 

that this pattern may require a specific enzyme. It has been shown that 3-O-sulfate 

groups at the non-reducing terminal GlcA residue of trombomodulin from human urine 

samples can be recognized by an HNK-1 (human natural killer-1) monoclonal antibody 

(Nadanaka et. al., 1998). Recently, HNK-1 sulfotransferase (HNK-1ST) that catalyzes 

3-O-sulfation of terminal GlcA in the HNK-1 carbohydrate antigen precursor has been 

also shown to be involved in the 3-O-sulfation of the linkage region of GlcA, leading to 

the generation of an unique HNK-1 epitope (Hashiguchi et. al., 2011; Nakagawa et. al., 

2011). 3-O-sulfated GlcA residues were described in other glycoproteins and glycolipid 

saccharide sequence in mammals (Ilyas, Dalakas, Brady, & Quarles, 1986). In all cases, 

it has been shown that this unique sulfation pattern requires the same 3-O-

sulfotransferase (Hashiguchi et. al., 2011; Nakagawa et. al., 2011), however, so far, no 

3-O-sulfotransferase responsible for the 3-O-Sulfation pattern in GlcA residues has 

been characterized for CS molecules obtained from marine sources. The CS 

biosynthesis is dictated by multiple enzymes, which can display organism-type specific 

patterns of expression, potentially leading to functional diversity of CSPGs among 

different animal species. The peculiar structural features of these compounds distinguish 

the biosynthetic process from the classical model of GAG biosynthesis, suggesting a 

relation between the pattern of GAG sulfation and animal evolution. 

ACCEPTED M
ANUSCRIP

T



 

Fig. 1. A 1H/13C HSQC spectrum of sCS with 1-dimensional 1H and 13C external 

projections obtained at 600 MHz in D2O at 343 K and referenced to 100 µM DSS. The 

letter G represents glucuronic acid and 3-O-sulfate groups are indicated by superscript 

3S while the letter A (aminosugar) represents N-acetyl β-D-galactosamine with 4-O-, 6-

O- and 4,6 di-O-sulfate groups indicated by superscripts 4S, 6S and 4,6S respectively. 

The superscripts i and ii represent the same residue type with different neighbouring 

residues, hence slightly different chemical shifts. Minor signals, including unsulfated 

GalNAc can also be detected (Supplementary Data Information). 

 

Table 1. 1H and 13C NMR HSQC assignments of sCS from Litopenaeus vannamei 

(Values in ppm at 70 °C). 

Residue  1 2 3 4       5 6 -COCH3 

GlcA 
1H 4.467 3.388 3.570 3.788 3.704 --- --- --- 
13C 106.681 75.367 76.846 83.749 79.557 --- --- --- 

GlcA-3Si 
1H 4.589 3.647 4.376 4.048 3.773 --- --- --- 
13C 106.637 75.301 84.947 80.998 80.025 --- --- --- 

GlcA-3Sii 
1H 4.551 3.625 4.372 4.052 3.829 --- --- --- 
13C 106.506 75.301 84.269 79.993 79.988 --- --- --- 

GalNAc-4Si 
1H 4.596 3.991 3.996 4.727 3.803 3.834 3.759 2.020 
13C 104.028 54.773 79.347 79.429 77.665 64.173 64.151 25.702 

GalNAc-4Sii 
1H 4.633 4.034 3.986 4.757 3.736 3.785 3.730 2.020 
13C 104.295 54.695 79.724 79.361 77.595 64.147 64.100 25.702 

GalNAc-6Si 1H 4.547 3.987 3.804 4.126 4.031 4.207 4.167 2.020 
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13C 104.109 54.018 83.825 70.572 78.692 70.391 70.400 25.702 

GalNAc-6Sii 
1H 4.577 3.996 3.692 4.136 4.076 4.269 4.208 2.020 
13C 104.503 54.001 77.909 70.232 75.566 70.905 70.837 25.702 

GalNAc-4,6S 
1H 4.671 4.007 4.006 4.778 3.962 4.268 4.241 2.020 
13C 103.223 54.734 79.114 79.480 75.405 70.120 70.078 25.702 

1Combined values for signals denoted i and ii in HSQC spectrum (Figure 1). 

 

2. Effect on coagulation time and mediators    

 

The anticoagulant activity of GAGs seems to be related, besides the degree of 

sulfation, to differences of GAG-ligand proteases or conformational changes during 

GAG-protein interactions (Nandini & Sugahara, 2006; Tiedemann et. al., 2005). The 

clotting time of sCS was investigated using an aPTT test, which assesses the intrinsic 

pathway of the coagulation cascade and by factor IIa and Xa directly and HCII-

mediated inhibition chromogenic assays. In the aPTT assay, sCS presented reduced 

anticoagulant activity (30 UI.mg-1) compared to commercial heparin (190 UI.mg-1), 

known for its high anticoagulant activity (Brito et. al., 2014) (Fig.2). A CS from the 

smooth hound shark (mustelus) composed mainly of monosulfated disaccharides in 

position 6 and 4 of the N-acetyl β-D-galactosamine (Krichen et. al., 2018), showed six 

times lower anticoagulant activity compared to sCS.  

Unlike heparin and its mimetics, which are capable of binding to both HCII and 

antithrombin and inhibiting proteases, the anticoagulant activity of CS usually arises 

through direct and HCII-mediated inhibition of thrombin (Casu, Guerrini, & Torri, 

2004; Karamanou et. al., 2017. In order to investigate the ability of sCS to promote FII 

inhibition chromogenic assays were carried out and the sCS achieved 80% anti-IIa 

activity at 1.0 µg/mL (Fig.3A). A similar effect (96% inhibition) was observed for a 

previously reported sCS (Cavalcante et. al., 2018), suggesting a particular anti-thrombin 

activity for marine CS that could be related, not only to coagulation mechanisms, but 

also to other biological effects displayed by marine CS. Furthermore,  although Xu and 

co-workers (Xu et. al., 2018) describe that the degree of fucosylation is an important 

feature for the anti-HCII-mediated thrombin activity of CS compounds, the sCS has 

achieved about 90% of anti-HCII-mediated thrombin activity at 100 µg/mL 

concentration (Fig.3B). Another protease that plays an important role in anticoagulant 
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activity, factor Xa, was evaluated. Figure 3C shows that the anti-Xa activity of sCS is 

notably lower than heparin, probably due to its inability to interact and stabilize AT 

(Fig.4). It was previously reported that there is a close relationship between AT thermal 

stabilization and anticoagulant activity of polysaccharides (Lima et al., 2013). These 

data could explain the moderate anticoagulant activity seen in the aPTT test. Similarly, 

no anti-Xa effect was described for other forms of sCS from L. vannamei (Cavalcante et 

al., 2018), suggesting a particular anticoagulant route for marine CS. Together, these 

findings emphasize the complex multifactorial relationships implicated in the inhibitory 

activities of sCS on the different mechanisms of blood coagulation. 

 

Fig. 2. Anticoagulant activity of sCS (●) and unfractionated heparin (○) measured by 

activated partial thromboplastin time (aPTT). Values are the mean of three independent 

experiments. 
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Fig. 3. Anti-IIa activity (A), thrombin inhibition mediated by HCII (B) and anti-Xa 

activity (C) of sCS (●) and unfractionated heparin (○).The tests were conducted using 

chromogenic methods as mentioned in methods. Values are the mean of three 

independent experiments. 
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Fig. 4 Effect of sCS on thermo-stabilization of antithrombin evaluated by differential 

scanning fluorimetry. Melting curve profile (first derivative) of 30 nM antithrombin in 

the presence or absence of different ligands. Antithrombin (black solid line); 

antithrombin+sCS (grey solid line); antithrombin+heparin (red solid line); 

antithrombin+pentasaccharide (blue dotted line).  

 

3. Hemorrhagic effect 

 

 Since the use of unfractionated heparin leads to disturbances in hemostasis, 

leading to hemorrhagic events, the residual hemorrhagic effect of sCS was investigated. 

Even at 5 times higher concentration (500 μg/mL), sCS exhibited no significant change 

in its effect on the residual bleeding when compared to its effect at lower concentration 

(100 μg/mL), showing almost no hemorrhagic activity (Fig.5). The strong binding of 

heparin to myosin ATPase receptors that were exposed during wounding, results in 

uncontrollable bleeding. The insignificant hemorrhagic activity presented by this sCS 

could be explained by the lack of binding or interaction to these receptors. Such a 

feature of sCS suggests that this compound has minimal bleeding effects. The structural 

differences of these GAGs influence their abilities to bind and control the functional 

interactions with biologically important proteins (Pomin & Mourão, 2014). Although 

various GAG structures have been characterized in several marine animals, including 

other L. vannamei GAGs (Brito et al., 2008, 2014; Cavalcante et. al. 2018; Chavante et 
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al., 2014), the biological roles of these unique structures have not been yet fully 

disclosed.   

 

 
Fig. 5. Hemorrhagic activity in a rat-tail scarification model. 100 μg/mL (●) and 500 

μg/mL of sCS (▲) or unfractionated heparin (○) was applied topically and the bleeding 

potency measured after 2 min following up to 40 min. The bars indicate the standard 

error of the measurements. 

 

 

4. Effect on LPS-induced peritonitis and cytokine production  

 

The structural peculiarity of CS enables it to display a wide range of biological 

activities, including anti-inflammatory effect (Lauder, 2009; Volpi, 2011). Previously, 

CS compounds obtained from several marine sources have been studied as potential 

anti-inflammatory agents (Cunha et. al., 2017; Krylov et. al., 2011; Mou et. al., 2018; 

Ustyuzhanina et. al., 2018).  

In this context, the in vivo anti-inflammatory effect of sCS was evaluated. The 

analysis of total leukocytes present in the peritoneal lavage showed a three-fold 

decrease in mice treated with sCS or heparin compared to untreated animals (PBS and 

PBS control groups)  (Fig. 6A). The sCS showed significantly reduced leukocyte 

recruitment, mainly PMN in approximately 60%, compared to the PBS group, while 

heparin achieved only 30% inhibition (Fig. 6B). Another GAG obtained from the same 

shrimp, also inhibited the leucocyte infiltration, as well as the activity of enzymes 

involved in this process (metalloproteinase 9 and pro-metalloproteinase 2) (Brito et. al., 

2008). Moreover, 45% of migratory inhibition were observed for a fucosylated CS 
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obtained from Cucumaria djakonovi sea cucumber, while a low fucosyl branched CS 

from another sea cucumber species presented 31% of leukocyte recruitment inhibition 

(Ustyuzhanina et. al, 2018). The interesting fact is that sea cucumber CS shares the 

presence of GalNAc-4,6 di-O-sulfate with this form of sCS. However, although the 

presence of fucosyl branches and a higher degree of sulfation are often reported as 

essential structural features for the more pronounced anti-inflammatory effects of CS 

compounds, the high PMN inhibition activity of this sCS suggests that there are other 

biochemical characteristics involved in this effect. 

There is supporting evidence that signaling through coagulation proteases makes 

an important contribution to the inflammatory response (Foley & Conway, 2016). As 

the main coagulation protease, thrombin is capable of inducing the expression of a 

variety of biological molecules mediated by PAR receptors modulating physiological 

and pathological process such as inflammation and cancer development, respectively 

(Coughlin, 2000; Zigler et. al. 2011). During the inflammation process, thrombin 

activates PAR-1, its signaling triggers the expression of pro-inflammatory cytokines 

(such as IL-1β, IL-6 and IL8), chemokines (such as MCP-1) and cell adhesion 

molecules, promoting the activation of leukocytes, leading to attachment, rolling and 

adhesion to endothelial surface, thus contributing to leukocyte recruitment (Foley & 

Conway, 2016; López et. al., 2014; Strande & Phillips, 2009). 

Furthermore, it is known that GAGs, including CS compounds are capable of 

binding cytokines, thereby mediating inflammatory responses (Lever, Mulloy, & Page, 

2012). Therefore, pro-inflammatory cytokine levels were quantified from peritoneal 

liquid. In animals treated with sCS, cytokine levels were sigficantly reduced, almost 

reaching the basal cytokines levels found for the PBS control group (healthy animals). 

IL-1β levels were about 64 % lower compared to PBS-treated animals, while for TNF-

α, the inhibition was approximately 82 % (Fig. 7). Inhibitory activity was also observed 

for IL-6 levels, in which the sCS reached about 64 % inhibition compared to the PBS 

group. The LPS injected into animals is adsorbed through interstitial fluid and serum 

and is degraded into the O-antigen, core protein and lipid-A, which is highly pro-

inflammatory. Lipid-A binds the CD14/TLR4/MD2 receptor of tissue macrophages and 

serum monocytes to trigger the activation of NF-κβ protein family, via a complex 

multiple step intracellular process, initiating the production of pro-inflammatory 
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cytokines, such as TNF-α, IL-1β, IL-6 and IL8 (Jaffer, Wade & Gourlay, 2010; 

Lawrence, 2009).  

 

The binding of cytokines to different GAGs is well-known and a minimal chain 

length seems to be required for this interaction. Mammalian CS has an IC50 value of 22 

mg/mL in cytokine interactions (Kuschert et. al., 1999). In joints, CS can reduce the 

concentrations of pro-inflammatory cytokines, such as TNF-α (Campo et. al., 2003) and 

IL-1β (Chou et. al., 2005). The link between coagulation and inflammatory process 

seems to have a refined molecular basis. Thrombin-treated monocytes exhibited 

increased transcriptional activation of NF-Κβ p50/p65, a triggering factor of 

inflammatory process (Zhang, 2010). These data could suggest a mechanism which by 

those compounds modulate their anti-inflammatory effect, either by direct cytokine-

binding or thrombin inhibitory signaling, such as activation of transcriptional factors 

involved in regulation of the immune response.  

 

Fig. 6. Polymorphonuclear cells (PMN) recruitment, in an inflammation model of 

peritonitis LPS-induced is inhibited by sCS. The mice were treated intraperitoneally 

with 100 µl of LPS 15 min before the intravenous injection of sCS, unfractionated 

heparin (300 µg Kg-1), or no treatment (PBS control group). After 4 hours, the 

peritoneal lavage fluid was evaluated for total cell number (A) and the percentage of 

PMNs (B). PMNs were identified by staining with hematoxylin and eosin. Statistical 

significance was determined by ANOVA (two-way) test and Bonferroni post-test (***p 

<0.001). The bars indicate the standard error of the measurements. Bar: 20 µM. 

 

ACCEPTED M
ANUSCRIP

T



 
Fig. 7. IL-1β (A), IL-6 (B) and TNF-α (C) levels production stimulated by LPS in 

C57BL/6 mice after treatment with shrimp sCS, unfractionated heparin or no treatment 

(PBS). The results represent the average levels of cytokine (pg/ml) and standard 

deviations of the animals in each group when compared with each cytokine control. 

Statistical significance was determined by ANOVA (one-way) test and post-hoc Tukey 

test (** p < 0.01; *** p < 0.001). The bars indicate the standard error of the 

measurements. 

 

5. Inhibition of in vitro NO production and RAW 264.7 cell viability 

 

The rise in NO levels is stimulated through TNF-α production, activating a variety 

of biological effects such as platelet activation, bactericidal potential and immune 

system modulation (Bogdan, 2015). Once TNF-α production is inhibited, a decrease in 

NO levels was also expected. Thus, the NO production by macrophages was measured 

in the presence of different concentrations of the compounds. Both heparin and sCS 

reduced the NO production by macrophages at all tested dosages, however, at 100 

µg/mL, sCS achieved 55 % and heparin, 43 %, inhibition (Fig.8A). Importantly, this 

inhibition was not induced by cell toxicity, since the MTT viability test demonstrated 

that none of the GAG concentrations evaluated were able to induce cell death (Fig. 8B). 

ACCEPTED M
ANUSCRIP

T



Although it is clear that the GAGs bind to cytokines, it is still unclear which structural 

properties provide the high NO inhibiton potential of this polysacharide. Differences in 

chain length, disaccharide compositon or sulfation pattern might be implicated in these 

distinct biological activities. A fucosylated CS isolated from sea cucumber has 

exhibited similar NO reduction in a hepatic endoplasmatic reticulum stress-associated 

inflammation assay in obese mice (Hu et. al., 2015). These findings indicate that there 

are some notable characteristics among GAGs from marine sources, that remain to be 

unveiled. 

 

Fig. 8. Effects of unfractionated heparin and sCS on nitrite (NO) production in LPS-

stimulated RAW 264.7 macrophages. NO production was measured by the Griess 

reaction assay and expressed as a percentage of control (LPS alone) (A).  Effects of 

GAGs on cell viability. Cell viability was evaluated by MTT assay 24 h after GAG 

treatment in RAW264.7 macrophages (B). Values are the mean ± SD of the three 

independent experiments. Statistical significance was determined by ANOVA (two-

way) test and Bonferroni post-test (* p < 0.05; ** p < 0.01). The bars indicate the 

standard error of the measurements  

 

 

 

 

Conclusion  

 

Studies on the anti-inflammatory effects of non-fucosylated CS compounds are 

still scarce. The biological properties herein presented by the present sCS suggest its 

importance within the context of inflammation and hemostasis. Although oversulfated 

CS products derived from semi-synthetic routes were associated with the heparin 
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contamination crisis (Guerrini et. al., 2008), the peculiar structural composition of sCS 

(lacking 2, 3 di-sulfated GlcA residues or extensive per-sulfation of GalNAc residues) 

and the interesting biological effects reported here for this form of sCS suggest it as a 

biotechnological target for further exploration of the relationships between structure and 

function of GAGs. 
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