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Abstract

Renzini wrote an influential critique of “overshooting” in mixing-length theory (MLT), as used in stellar evolution
codes, and concluded that three-dimensional fluid dynamical simulations were needed. Such simulations are now
well tested. Implicit large eddy simulations connect large-scale stellar flow to a turbulent cascade at the grid scale,
and allow the simulation of turbulent boundary layers, with essentially no assumptions regarding flow except the
number of computational cells. Buoyant driving balances turbulent dissipation for weak stratification, as in MLT,
but with the dissipation length replacing the mixing length. The turbulent kinetic energy in our computational
domain shows steady pulses after 30 turnovers, with no discernible diminution; these are caused by the necessary
lag in turbulent dissipation behind acceleration. Interactions between coherent turbulent structures give multi-
modal behavior, which drives intermittency and fluctuations. These cause mixing, which may justify use of the
instability criterion of Schwarzschild rather than the Ledoux. Chaotic shear flow of turning material at convective
boundaries causes instabilities that generate waves and sculpt the composition gradients and boundary layer
structures. The flow is not anelastic; wave generation is necessary at boundaries. A self-consistent approach to
boundary layers can remove the need for ad hoc procedures of “convective overshooting” and “semi-convection.”
In Paper II, we quantify the adequacy of our numerical resolution in a novel way, determine the length scale of
dissipation—the “mixing length”—without astronomical calibration, quantify agreement with the four-fifths law of

Kolmogorov for weak stratification, and deal with strong stratification.
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1. Introduction

The standard treatment of convection in stellar evolution
theory is “mixing-length theory” (Bohm-Vitense 1958, MLT),
which uses a semi-empirical, “engineering” approach, based
upon an approximate model due to Prandtl (Prandtl 1925; also
Clayton 1968; Kippenhahn & Weigert 1990; Hansen et al.
2004). It is local, requires calibration, and has little connection
to modern methods used by the turbulence community (e.g.,
Pope 2000; Davidson 2004).

The main sites of convection in stars are (1) thermonuclear
burning zones (with depths of a few pressure scale heights or
less), (2) stellar envelopes (with depths often of 20 pressure scale
heights or more), and (3) stellar atmospheres, which are also
highly stratified, but in addition have dynamically important
magnetic fields and require the radiative transfer (rather than
radiative diffusion) to describe photon escape. Burning occurs in
or near the hottest regions (the cores), where density gradients
tend to be small, while envelopes occur near the coolest regions,
where density gradients are large, and atmospheres at stellar
surfaces, where density gradients are also large. The simpler
case, convection in weak stratification, is relevant to burning
shells and cores, which have composition gradients. Strong
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stratification will be dealt within Paper II. As we will show,
MLT, which has zero net flux of kinetic energy, is a weak
stratification theory and ignores composition gradients.

Since its introduction, many attempts to improve MLT have
been made (Spiegel 1971, 1972), involving many issues such as
non-locality, turbulence, and time dependence (e.g., Gough 1967;
Unno 1967; Amett 1968; Kufuss 1986; Xiong 1986; Canuto &
Mazzitelli 1991; Canuto 2012a). Despite these efforts, and the
widespread conviction that MLT needs improvement, some
version of the original MLT is at the heart of almost all modern
stellar evolutionary codes.

We consider numerical simulations of the classic Bohm-
Vitense problem, which is standard for stellar evolution and
interiors, thus avoiding complications such as atmospheres,
rotation, and magnetic fields. We do consider turbulence, wave
generation, composition gradients, and boundary physics,
which were not part of the original Bohm-Vitense solution,
but should have been.

In Section 2 we summarize Renzini’s critique of the misuse of
MLT. In Section 3 we discuss computational results for flows and
formation of boundary layers, while in Section 4 we show
behavior of the turbulent kinetic energy (TKE), including multi-

° We avoid the terminology hallow and deep for stratified convection in stars,
which may seem to be reversed in the stellar case. Weak stratification tends to
occur deep in the central regions of stars (which typically contain a few
pressure scale heights), while convection at or near stellar surfaces is highly
stratified (often ~20 pressure scale heights).
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modal behavior and wave generation. In Section 5 we present
implications of computational results in Section 3 and Section 4,
including those for non-analytic behavior at boundaries, and how
that may be removed by analytic continuation and wave
generation. In Section 6 we discuss composition gradients and
boundary layer structure. In Section 7 we summarize this paper
and indicate extensions to be found in Paper II (Arnett et al. 2019).

2. Renzini’s Critique

It is appropriate here to warn the reader that two assumptions
of MLT already are violated by the 3D simulations: (1) the
turbulent velocity field is nonlocal, and (2) the net radial TKE
flux is not always negligible.

2.1. The “Embarrassments”

To guide our discussion of MLT, we use the critique by
Renzini (1987), who focused on convective “overshooting,” a
term that denotes attempts to deal with boundaries in a merely
local theory. In discussing some proposed overshooting
algorithms, Renzini identified several fundamental problems
with MLT that he labeled as “embarrassing”:

1. The ends problem: infinite accelerations and decelera-
tions are required at the beginning and end of the MLT
trajectory. MLT does not define a boundary, so that
additional physics must be assumed, usually involving
the Schwarzschild or the Ledoux linear stability
condition.

2. The two lengths problem: are the path length and the size
of the “blob” the same?

3. The resolution problem: are lengths resolved which are
smaller than the mixing length ¢ (or a pressure scale
height Hp)? Is a convective cell of the order of the
zone size?

4. The fluctuations problem: turbulent fluctuations are
ignored even if not small, so that MLT does not deal
with a “storm of the century” event, nor the accumulated
effects of fluctuations.

5. The origin problem: what is the flow pattern near the
center of the star? Conservation of baryons requires that
any flow into the central regions must be balanced by a
flow out; if the radial velocity is nonzero at the origin,
then its gradient must be zero.

6. The braking problem: what causes the flow to turn and be
contained in the convection zone? This requires buoy-
ancy braking, which is not in MLT, and is often patched
by “overshoot” prescriptions.

7. The dynamics problem: Renzini’s “wind and waterline”
problem, or “boundary layer” dynamics. How are waves
generated? How do convective boundaries grow and
recede?

8. The non-locality problem: what are the turbulent
trajectories, and do distant regions affect local motion?

9. The flux of TKE problem: this is ignored in MLT but has
been demonstrated to be non-negligible for strongly
stratified flows (e.g., surface convection zones in stars).

10. The composition problem: composition is assumed to be
homogeneous in MLT, which is violated in regions
having nuclear burning or element diffusion, for example.

Basing our analysis on 3D simulations, which involve
minimal assumptions for this problem, we focus on the
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question: why does MLT work at all, and what is still
missing? It has become traditional to complain about the flaws
of MLT, but as Renzini (1987) emphasized, MLT works
surprisingly well in some respects.

3. Simulation Methods
3.1. Navier-Stokes Finite Differences and Artificial Viscosity

Early 3D simulations of stellar convection involved stellar
atmospheres (e.g., Atroshchenko & Gadun 1994; Asplund et al.
1999), their focus being on the formation of stellar spectra.
Following the pioneering work of Nordlund and Stein,
Nordlund et al. (2009) performed an extensive series of
implicit large eddy simulations (ILES) by the STAGGER code,
which uses hyperviscosity to stabilize the hydrodynamic
equations and did not include the lower boundary of the
convection zone. Composition homogeneity was assumed.

The hyperviscosity method is a descendant of the pseudo-
viscosity method (von Neumann & Richtmeyer 1950) for
capturing shocks. High frequency motions are strongly damped
by a chosen numerical viscosity (much larger than true
viscosity of stellar plasma), which causes a strong bottleneck
in the turbulent velocity spectrum (Haugen & Brandenburg
2004); compare Figure 1 in Haugen & Brandenburg (2006) to
Figure 8 in (Cristini et al. 2017). A goal of the method is to
move any motion away from a grid boundary, hopefully
minimizing the importance of boundary effects. It appears that
this method is consistent with our simulations (at least away
from our composition gradients and boundaries), but seems to
require more zones to attain the same resolution (Sytine et al.
2000; Haugen & Brandenburg 2004, 2006).

In general, higher resolution allows higher effective Reynolds
numbers to be simulated, an important issue for stellar interiors
that are highly turbulent (Arnett & Meakin 2016).

3.2. Euler Equations and Finite Volumes

We have taken a different approach: we perform numerical
simulations of the Bohm-Vitense problem, with no other
approximations except those inherent in finite computational
power (i.e., spatial resolution; Meakin & Arnett 2007b; Arnett
et al. 2009, 2015; Arnett & Meakin 2011; Viallet et al. 2013;
Mocik et al. 2014, 2018; Cristini et al. 2017, 2019).

To capture turbulence we use ILES, which have sufficient
resolution to be turbulent, are large enough to capture the integral
scale of the flow, and extend down to smaller scales that are well
inside the turbulent spectrum. We exploit the fact that the
turbulent spectrum is determined by its large scales, so that still
smaller scales need not be specified explicitly. For a fixed volume,
greater spatial resolution implies a higher effective Reynolds
number (i.e., more realistic turbulence; discussed later). The
simulations extend in resolution from above the integral scale of
turbulence, down to well inside the inertial range of the cascade
(Cristini et al. 2017); see also Sytine et al. (2000), Grinstein et al.
(2007), Woodward (2007), and Amett et al. (2015). The full
cascade is represented because the method used (PPM, Colella &
Woodward 1984) solves the Riemann problem for nonlinear flow
at the individual zone level. This method and others of its class
(finite-volume monotonic solvers; Leveque 2002; Grinstein et al.
2007) automatically result in a description of the turbulent cascade
down to a dissipation scale at the grid level.

This happens because these ILES methods use Riemann
solvers to capture shocks at the scale of a zone Ar. They relate
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the change in TKE (Av)? and traversal time Ar/Av across the
shock to the rate of specific entropy production across the

shock —Z—S ~ (Av)}/Ar. This resembles the Kolmogorov
t

expression for a turbulent cascade, so these methods auto-
matically (“im]plicitly”) match motion to a turbulent cascade at
the grid scale.'® Conservation of mass, momentum, and energy
are enforced to machine accuracy, so that numerical error is
concentrated in the calculated shape of the flow field, not the
conservation laws. Turbulent kinetic energy is “fed into a
smaller scale of the cascade” at the grid level. At larger scales,
the cascade is directly computed. Fluctuations at the grid scale
are treated as Riemann discontinuities. No explicit model for
“sub-grid turbulence” is needed; only a Riemann solution at the
grid level, which the shock-capturing algorithm provides
automatically. Kolmogorov theory is not an added constraint,
but simply an approximation to the numerical result of the
conservation laws; see further discussion of Kolmogorov’s
four-fifth’s law in Frisch (1995) and Paper II.

These simulations solve the Euler equations (with Riemann
boundary conditions), not the Navier—Stokes equations with
explicit viscosity, so the question of turbulent instability is
determined by the effective Reynolds number. The formal
Rayleigh number may be infinity (no explicit radiative
diffusion'' for cases dominated by neutrino cooling). The 1D
model used for guidance (Cristini et al. 2017) had a very high
Péclet number (Pe ~ 10%), but the turbulent cascade implies
that the results are insensitive to Pe (see also Orvendahl et al.
2018). The convective Mach numbers are small (<0.02).

For these simulations, the effective Reynolds numbers are
roughly Re ~ (n/2)4/ ®, where n/2 is the number of zones
across the turbulent domain in an »n° simulation. With n = 128
to 1536, Re is ~256 to more than 7 x 10°. This allows us to
compute from the integral scale of fully turbulent flow, down
into the inertial range of the cascade,'? with no additional
assumptions concerning flow geometry.

The ILES approach is a natural complement to the more
traditional Direct Numerical Simulation (DNS), which resolves
the dissipation scale (Pope 2000) but generally cannot deal
with turbulence at those scales that generate motion in stars. In
contrast, ILES resolves these large scales, but approximates (by
a cascade) the behavior downward to a much smaller
dissipation scale. DNS and ILES have different strengths and
weaknesses, so that taken together they provide a fuller picture.

3.3. Methods: ILES and Reynolds Averaging (RA)

To tame the turbulent fluctuations, we integrate over the
angle (or the horizontal dimension of the convective region),
and over several turnover times, to obtain the average behavior
over a spherical shell. A novel and key feature of our procedure
is that it avoids the classical closure problem of the Reynolds-
averaged Navier—Stokes (RANS) equations (Tritton 1998).
Also, the numerical simulations do not have the unphysical

10 gee Chapter 2 in Grinstein et al. (2007), and Section 4 in Paper II, Arnett
et al. (2019).

1 Some simulations had realistic radiative diffusion added, but it was too
small to have a noticeable effect on the neutrino cooled cases. For the cases
dominated by radiative cooling, radiative diffusion was obviously important,
but the boundary composition profile seems to remain the same, perhaps due to
the stronger effects of turbulence; see Section 6.

12 We explicitly confirm that this range is attained, using both turbulent
velocity spectra (Figure 8, Cristini et al. 2017), and dissipation rates (see
Paper II).
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Figure 1. Vertical slice of a 3D, 1024° simulation of a carbon-burning shell
(Cristini et al. 2017). The energy generation rate is scaled by 10* so the Mach
number for convection is Ma ~ 1072, The convective region comprises about
three pressure scale heights. We estimate the numerical Reynolds number to be
Re ~ 4 x 10°. Velocity magnitudes are shown (red is high; white is medium;
blue is low). This figure illustrates the complexity of the turbulent flow, which
fills the volume available, and strikingly shows the boundary layers (blue
arrows) which form at top and bottom of the convective region. The structures
—rolls and plumes—are intermittent: forming, breaking apart, and re-forming
elsewhere. Thin boundary layers (horizontal arrows) form naturally as surfaces
of separation between turbulent and potential flow; they are dynamic and
radiate waves (gravity waves are most clearly visible at the top).

non-dynamic fluctuations found in unconstrained statistical
methods, and therefore provide exact averages, limited only by
the granularity of the spacetime grid. To be precise, we call our
method “Reynolds-Averaged ILES,” or RA-ILES (Mociék et al.
2018). The RA-ILES method allows an accurate and separate
assessment of dissipation due to (1) turbulence and (2)
resolution error, as we show in Paper II. A comparison of
simulations with different resolution shows the effects of finite
zoning.

3.4. Numerical Results

Our numerical method uses microphysics (equation of state
for stellar matter, reaction networks, neutrino emissivities, and
radiative opacities) comparable to current usage in stellar
evolution codes. Composition gradients and boundaries are
calculated in detail.

Our method has internal tests of numerical resolution, which
we examine in detail in Paper II (Arnett et al. 2019). These tests
suggest that at our highest spatial resolution, the errors from
finite cell size are already small, even in the challenging lower
turbulent boundary.

Our set of 3D numerical simulations'® are “box-in-star”
computations that range from “very low resolution” (128>
zones) to “very high resolution” (now 1536 x 1028 and 1536°
zones). These are ILES; see Grinstein et al. (2007), Woodward
(2007), Apsden et al. (2008). They include two stable layers
sandwiching a turbulent convective region; see Figure 1, which
shows a cross-sectional slice through a representative case.

13 See Meakin & Arnett (2007b); Arnett et al. (2009, 2015); Arnett & Meakin
(2011); Viallet et al. (2011); Cristini et al. (2017, 2019); Mocék et al. (2018);
C. Georgy et al. 2019, in preparation.
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Velocity magnitudes are shown (red is high; white is moderate;
blue is low). This figure illustrates the complexity of the
turbulent flow and strikingly shows the boundary layers that
form along the top and bottom of the turbulence. The boundary
layers are thin and not step functions but sigmoids (Arnett &
Moravveji 2017; Cristini et al. 2017). Coherent structures—
rolls and plumes—are strongly dynamic: forming, breaking
apart, and re-forming elsewhere. Both boundary layers are also
dynamic. They bend and stretch, and radiate gravity waves
(which are most clearly visible at the top). There is
intermittency (Tennekes & Lumley 1972) in both space and
time, as the “patchiness” in Figure 1 indicates; intermittency is
related to nonlinear interactions of coherent structures
(Warhaft 2002).

This is confirmed by movies of (1) the evolution in time
(“Very high resolution movie of the C shell”) and (2) a fly-
through of the computations at a given instant in time (“Carbon
shell [1024°] simulation: fly-through movie”).'* To the extent
that the simulations are in a statistical steady state in time, and
statistically homogeneous in space, the movies will have a
similar visual appearance (as they do here). This allows
averaging procedures to be robust.

3.5. Kolmogorov and Intermittency

ILES methods were initially considered as an alternative to
sub-grid methods (SGS) in that a sub-grid model is replaced by
a turbulent cascade (see Section 3.2; Grinstein et al. 2007).
Kolmogorov theory is one of the success stories of turbulence
(Frisch 1995), but it too is not perfect, as it does not contain the
direct influence of the large scales on small scales (Warhaft
2002) and the phenomena of intermittency (Tennekes &
Lumley 1972). We were pleased to find that our simulations
naturally develop intermittency and a turbulent velocity
spectrum resembling Kolmogorov (see Paper II; Cristini et al.
2019); these are not imposed. This is accomplished at least
in part by the nonlinear interaction of large-scale coherent
structures (multi-modes, Figure 2), with regions of large time
dependency (waves), giving intermittency (Tennekes & Lumley
1972; Holmes et al. 1996, Section 3).

3.6. Limitations: Rotation and Magnetohydrodynamic (MHD)

Even a perfect solution to the Bohm-Vitense problem would
not solve the more general issue of convection in stars.

Featherstone & Hindman (2016) suggest that supergranula-
tion is a rotationally constrained flow; to add rotation goes
beyond the Bohm-Vitense formulation. Rotation requires a
star-in-box approach to capture the largest scale (Porter &
Woodward 2000). Rotation forces non-locality (Arnett &
Meakin 2010) and symmetry breaking (Viallet et al. 2013).

To the extent that MHD is important, symmetry is broken
again. This symmetry is that upon which Kolmogorov and
we rely; this problem is an issue for future research.'’
Turbulence makes and stretches vortices (e.g., Pope 2000); a
seed magnetic field will be compressed (doing work against
magnetic pressure) and stretched (doing work against magnetic

' The time evolution and the fly-through movies may be found at http://
www.astro.keele.ac.uk /shyne /321D /convection-and-convective-boundary-
mixing/visualisations.

15 A preliminary step (Arnett & Meakin 2010) suggests that mild rotation
causes turbulent flow to tend toward conservation of specific angular
momentum, with dissipation provided by the turbulent cascade.
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tension; see Parker 1979; Davidson 2001). Fluid kinetic energy
is therefore converted into magnetic field energy, and fluid flow
is retarded, giving a dynamo. Magnetic fields are buoyant and
will rise in a gravitational field. Unless all the field escapes, it
strengthens. Stronger magnetic fields tend to stop the flow,
which then no longer generates magnetic field, allowing
convection to reassert itself. There is a tendency for a magnetic
cycle, reminiscent of the solar cycle.

Stars are made of high energy-density plasma,'® so that
magnetic fields will be ubiquitous in stars, but what geometry,
strength, and dynamic behavior will they have? Geometry is
evidently important: 2D turbulent flow develops a reverse
cascade in which strong vortices form, merge, and grow in size,
while in 3D such vortices are shredded into the extra degrees of
freedom.

We have chosen the simplest version of this problem: non-
rotating, non-magnetic Bohm-Vitense convection. We have
added turbulence, stratification, non-uniform composition, time
dependence, non-locality, and boundary physics, but incorpor-
ating rotation and magnetic fields remains a challenge for
the future.

6

4. Numerical Evolution of TKE

Kolmogorov dissipation is derived for a homogeneous,
isotropic turbulent medium (Frisch 1995), where boundaries
are not important. Consequently, we first examine the behavior
of specific TKE in bulk, reserving a discussion of boundaries
until later (Section 6).

How much kinetic energy is involved in the convective
motion? This is Renzini’s flux of TKE problem. Figure 2, top
pane, shows the evolution in time of specific TKE in the
carbon-burning simulations (Cristini et al. 2017, 2019), for
resolutions of 128%, 2567, and 512°. Multi-mode behavior, like
that seen in Meakin & Arnett (2007b; Figure 4) and Arnett
et al. (2009; Figure 5), is evident. Simulations of 7683, 1024°,
and 1536 were not continued for such long times, but they
tracked the 256° and 5127 results; a short segment of the 1024°
case is shown in cyan. All simulations are consistent with an
approach to a quasi-steady state, but with significant and
continuing fluctuations around that average value. Such
behavior, while typical of turbulent flows, is not in MLT
(Renzini’s fluctuation problem), but is a feature of high
resolution simulations; see also Figure 5 in Woodward et al.
(2015).

4.1. Initial Transient

Each simulation is initiated from a hydrostatic state,
recalculated on the grid to machine accuracy. It is then overlaid
with very small random perturbations in density, with
amplitudes that were 10> of the initial static density.
Convection grows gently in the unstable region, forming a
nonlinear chaotic flow (the turbulent cascade plus coherent
structures). The convective Mach numbers rise to NlO*Z; these
kinetic energies are 10" times larger than implied by the initial
seeds. Such small perturbations quickly disappear in the stable
regions.'”

16 See Tzeferacos et al. (2018) for a recent experimental attempt on the Omega
laser to address this problem.

17 For the C+C shell simulations, the perturbations were only put in the
convective layer. In the O+O simulations, the perturbations were put in stable
layers too but quickly disappear from these regions.
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Figure 2. Top panel: specific turbulent kinetic energy (TKE) for the carbon-burning shell (Cristini et al. 2017, 2019) versus radius for 18,000 s. This shows “Irez”
(1283, red), “mrez” (256°, green), “hrez” (5123, blue), and “vhrez” (1024°, cyan) simulations. Fluctuations in TKE are seen, as found by Meakin & Arnett (2007b).
Multi-mode behavior is evident. The 128° simulation shows effects of lower resolution (higher numerical viscosity), but 256* and 512° seem unaffected. Wave kinetic
energ}y (same colors but thin lines) is much smaller and is plotted (multiplied by a factor of 25) along the bottom. Higher resolution simulations (768>, 1024°, and
1536”) have not been done for such long times, but agree fairly well with the 256> and 512° cases. Bottom two panels: mode analysis of 256> simulation, for
frequencies 1.6, 0.23, 1.8, 0.81, and 2.1 mHz. A trend of (5.26 X 10°2 — 4.41 x 107t + 1.56 x 10'?), tin s, was divided out; it corresponds to an evolutionary change
(see text). While the pulses are not sine waves, they are periodic, so we separate out a few (five) frequencies that are shorter than the turnover time, as expected for a
turbulent cascade. Even five modes begin to capture the “pulses” moderately well (bottom panel). These low order, multi-mode fluctuations are robust features of the

TKE; see Holmes et al. (1996).
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Figure 3. Two-dimensional schematic of the average structure of an upper convective boundary. The length b corresponds to the radius of curvature needed to reverse
(contain) the flow (v, — —v;). The centrifugal acceleration is provided by negative buoyancy. The radial direction is denoted by r and the transverse by A. The
boundary layer lies between r, and r;. Imagine the whole system undulating due to turbulent fluctuations.

4.2. Multi-modal Behavior

Initially there is no turbulent dissipation, only driving by
buoyancy. A large first pulse develops due to this delay in the
turbulent cascade.'® After this pulse, driving balances dissipa-
tion on average, but not exactly: there is a phase lag (Arnett &
Meakin 2011), so that the pulses do not disappear because
damping always lags driving."”

There is an evolutionary growth in TKE due to a slight
mismatch of thermal balance between initial conditions based
on a 1D MLT model and the energetically scaled 3D model
(Cristini et al. 2017). The heating was 10? of its realistic value;
although it hastened the evolution correspondingly, the heating
per turnover is still very small in comparison to the internal
energy. This enhanced the slow evolutionary rise, both for
efficiency in computation and for visibility in the figure. This
trend is shown as a line in the middle pane and is removed in
order to extract frequencies of the dominant modes (bottom
panes). A few (five) modes are sufficient to capture most of the
multi-mode behavior, as suggested by Holmes et al. (1996).

Movies of the simulations support the view that the
fluctuations in Figure 2 are caused by turbulent break-up of
multiple 3D rolls. Such multi-modal behavior also causes
motion of the convective boundaries, driving waves into
neighboring regions and causing variations in TKE. These
pulses are clearly seen in Figure 2 and do not attenuate
noticeably over ~30 turnover times. There is no evidence that
the pulses are transient.

Oxygen burning required no scaling of the heating rate so the
consumption of fuel was explicitly followed. However, the
interaction of turbulence, burning, and mixing of Ne and O is

18 Because the first pulse also depends on interactions between multiple modes
of flow, there is no guarantee of simple behavior. However, compare Figure 2
to the similar Figure 5 in Woodward et al. (2015), which represents apparently
different physics: H entrainment at the top of He-shell flash.

19 This computational domain was chosen to study separate convective cells;
an average over a larger domain (e.g., 47 steradians) would contain more
chaotic cells, and might not resolve the pulse behavior so well (Arnett &
Meakin 2011), but it still appears (Jones et al. 2017).

more complex than generally realized (Mocdk et al. 2018), so
that we simplify at this point by focusing on C burning, which
is similar but has no Ne ingestion. On these timescales
2 x 10* s), little carbon is consumed, even with the
enhanced rate.

The middle pane in Figure 2 shows the original TKE curve
and a flatter one after “detrending” to remove the effect of a
slow thermal evolution (see caption). The bottom pane shows
the reconstruction for 5 frequencies, which resembles the “de-
trended” curve; at 10 frequencies (not shown) the fit is
excellent, but even a few modes are sufficient to capture the
basic behavior. A proper orthogonal decomposition should
allow a better representation (Holmes et al. 1996), but for now
we simply want to emphasize the robust nature of the pulses in
time and across different simulation resolutions. The pulses,
which are comparable to a transit time in duration, imply that
statistical estimates of turbulent properties will be modulated
by multi-mode behavior, unless averaged over many transit
times.

Figure 2 illustrates the problem for stellar evolution: how do
we integrate over the pluses in TKE (the weather) without
losing the slower evolution of the “detrending curve” (the
climate)? In Section 5 and the Appendix, we will (1) separate
the velocity field into a 3D turbulent component u’, which
varies rapidly, and a slowly varying radial velocity U, of the
spherical mass shells of the stellar model; (2) integrate over the
rapid variations in time and space of u’ to obtain average
properties and second order correlations needed for stellar
evolution; and (3) connect these to a stellar evolution
framework (321D).

4.3. Resolution

With each new level of spatial resolution, synchronization is
lost, so that each simulation is an independent member of a
ensemble, all of which are attracted to the cascade in the long
term. The RA-ILES integrated values are reproduced with
surprising accuracy even at crude resolution (128%) and are well
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resolved at (256%) and above (Meakin & Arnett 2007b; Viallet
et al. 2013; Arnett et al. 2015; Cristini et al. 2017, 2019).

The lowest resolution case (128%) has the highest numerical
dissipation; it settles toward a quasi-steady state with the lowest
TKE in Figure 2. This higher dissipation may also be
responsible for the reduced amplitude of the TKE peaks in
1283 relative to, for example, the 256° simulation. While high
resolution and long evolution are both desirable, they are in
conflict for a finite computer budget, so the highest resolution
runs are relatively short.

4.4. Linear Stability Theory

Figure 2 contains another implication for stellar physics. In
linear stability theory (Unno et al. 1989; Aerts et al. 2010), it is
not possible to include a realistic treatment of convective
driving and damping because these terms are inherently
nonlocal and nonlinear (see discussion of the 7-mechanism in
Arnett & Meakin 2011). Pulses such as those shown in Figure 2
drive “stochastic” stellar variability.

This issue is sometimes called the “time-dependent convec-
tion” problem. Because of intermittency, convection is only
“steady state” in an average sense, if at all. Turbulent
convection drives waves that, once launched, may then be
described by linear theory. A sequence of increasingly stronger
waves (increasing convective Mach number) transforms
pulsations into explosions (Cristini et al. 2017, 2019).

4.5. Wave Generation

The kinetic energy in waves is shown as thin lines, scaled up
by a factor of 25 for better visibility, at the bottom of the top
pane in Figure 2. Arnett et al. (2015) showed that the boundary
of convection has a particular, dynamically required structure,
which implies a particular rate of wave generation. In order for
matter to turn and remain in the turbulent zone, outgoing flows
must be decelerated. Buoyancy braking requires that the square
of the Brunt—Viisild frequency change sign (Equation (11)), so
waves are supported, with their amplitude depending upon the
stellar structure and the vigor of convection. The buoyancy
braking provides a direct connection between convective and
wave motion.

The behavior is complicated by intermittency caused by
large-scale waves interacting nonlinearly (e.g., Figure 2, top
panel, thin lines).

Thus the physics of a convective boundary requires the
generation of waves (see also Section 5.4). It is a complex
dynamic problem, involving the chaotic and nonlinear behavior
of turbulence, wave motion, and boundary flexing. In this case,
the energy in the waves is small relative to that in convective
motion, as Figure 1 shows. See also Section 6, Figure 4, where
at r < 0.43 x 10° cm, the blue curve gives evidence for a
background of gravity waves.

5. 321D Analysis

Baryon conservation and the assumption of a quasi-static,
quasi-spherical background place strong general constraints on
the nature of convective flow in stars.

The simulations in Figure 1 have no net accumulation or
deficit of mass due to turbulent motion. In Figure 2 we see a
steady pulsing behavior, which recurs on a short timescale, and
a much slower evolutionary change. Over an intermediate
timescale, the combined space and time average of (Jp,) is
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Figure 4. Comparison of the '°0O composition profiles (black), at a lower
boundary, averaged over angle, for different resolutions (“med-res” [384 x 2562,
triangles] and “hi-res” cases [768 X 5122, heavy triangles] of Viallet et al.
2013, and a “very-hi-res” case [1536 x 10242], heavier triangles, the “Perth”
simulation; see Arnett et al. 2015), at the bottom boundary (which seems to be
approaching numerical convergence; see Paper II, Arnett et al. 2019). This
shape has striking similarity to that inferred from asteroseismology (Arnett &
Moravveji 2017) for convective cores of red giants. See also discussion of the
C+C shell in Cristini et al. (2017, 2019). Overdrawn are the rms velocity profiles
averaged over a spherical shell and normalized arbitrarily to fit the graph; red is
radial and blue represents the two horizontal directions. Notice the excess of
horizontal velocities over radial at the shear boundary, characteristic of turning
flow. Instantaneous profiles are not exactly spherical or constant but dynamic.
The velocities do not go to zero outside the convective zone (r < 0.43 X 10°cm)
because of significant but small wave motion (see Figure 1), which was
generated in the shear region.

small and slowly varying (true evolution would be at least 10°
longer; see Section 4), so from baryon conservation, these
simulations imply

V) ~ 0, (M

where the angle brackets denote an average over a spherical
shell, an overline implies an average over a few turnover times,
u' is the vector representation of the 3D velocity fluctuations
relative to a 1D spherical, co-moving (Lagrangian) frame, and
p = po + p' is the total mass density, including fluctuations, so
the equation is nonlinear. Because of the time dependence,
compressional waves are supported and may be necessary
(although weak, as in Figure 2).

5.1. The Anelastic Approximation of Gough

Although superficially similar,”® Equation (1) differs from
the simpler anelastic approximation of Gough (1969),

(V- pu) =0, @

which suppresses compressional waves because the term 0,p in
the continuity equation is set to zero for all times (not just on
average). Equation (2) requires homogeneity in composition,
weak stratification, and does not deal with compressible effects
of turbulence, fluctuations, or boundary dynamics, as does
Equation (1).

20 Equation (1) has two averages (angle and time) rather than the one (angle)
average seen in Equation (2).
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Verhoeven et al. (2015) compare anelastic and compressible
simulations, ignoring the effects of composition. Their Figure 2
appears similar to some of our simulations (e.g., Meakin &
Arnett 2007a, 2007b) having a numerical Reynolds number
of Re ~ 650 to 10° or so. As they point out, unfolding such
parameters from different computational methods is difficult,
so our estimate is only suggestive. This might explain why our
simulations in Figures 1 and 2 seem more turbulent than theirs.
A second point of difference is their treatment of boundaries.
They have no stable layer (above or below) on their grid, and
there is no indication of a boundary layer or wave radiation.

Brown et al. (2012) analyze why some formulations of
anelastic approximations exhibit failures of energy conserva-
tion; we have avoided imposing anelasticity (‘“sound proofing”)
so we could maintain strict obedience to conservation laws. See
also (Gough 1969), whose original formulation avoided the
energy non-conservation problem.

Our simulations use the complete fluid-dynamic equations
and are sufficiently general to have produced consistency with
Equation (2), but preferred Equation (1) instead. In our
simulations, sound waves are merely weak (Equation (1)),
not zero (Equation (2)). This weakness (see Figure 2) is
associated with the low Mach number of the flow, not an
imposed mathematical condition.

In our simulations, compressional waves may be necessary
for convective boundary conditions and boundary layers, as
breaking water waves and shock waves need thin layers of high
dissipation; see Section 5.4.1.

5.2. Stratification and Length Scales

Averages are necessary to deal with the significant
fluctuations due to turbulence. Equation (1) is more general
than Equation (2); it allows solutions, which violate
Equation (2) for part of a cycle, but cancel this error for the
remainder, maintaining the average (i.e., compressional
waves).

A measure of stratification is the density scale height,
H, = —(9,Inpy)~", so roughly,

V.u' ~ul/H, 3)

The simulations support Equation (3) as an approximation
which connects the structure of 3D convective velocity
fluctuations u’ to a length scale of stratification without any
explicit MLT assumption (Viallet et al. 2013).

For uniform density, H, — co. For a medium of weak
stratification, the length scale increases to become the size of
the convection zone. Viallet et al. (2013), in their Section 4.2.1,
have confirmed that these approximations apply to a turbulent
stellar medium, for both a red-giant (strongly stratified) and an
oxygen burning (weakly stratified) model, and are generally
true for low Mach-number convection, as we confirm.

This gives a characteristic length scale for a quasi-steady
flow in a stratified medium (such as stellar convection).
However, this equation is linear in velocity, so that the velocity
scale is not constrained; another equation is required (e.g.,
involving convective enthalpy flux).

Any form of “rotational” flow (Equation (1)) can remove the
ends problem because such flow turns back to remain in a finite
volume. Lorenz (1963) showed that the simplest version of
such a flow (a 2D convective roll) is an example of
deterministic chaos; the flow chaotically flips from clockwise
to counterclockwise. In 3D, the angular momentum vector is
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not restricted to only two orientations (as in 2D), but may
wander through 47 steradians.”’ Such instabilities associated
with one or several strange attractors seem to act as seeds for
turbulence (see Section 5 and Arnett & Meakin 2011).

5.3. Turbulent Acceleration Terms

In Appendix A we show how to transform from an Eulerian
coordinate system appropriate to 3D simulations to a co-
moving 1D system appropriate to stars. We now develop
“321D” equations, which capture some of the 3D behavior, for
use in a stellar evolution code.

In Appendix B we derive from the Navier—Stokes (or, for
ILES, the Euler) equations an expression that connects average
rate for dissipation of TKE eg, with turbulent driving by
buoyancy and pressure dilation, minus the divergence of
acoustic flux:

(pex) = (pu' - g) + (P'V -u'y — (V- (P'u)),
=B+P+ A 4)

which is confirmed by ILES (Viallet et al. 2013). The three
terms on the right-hand side (rhs) are “buoyancy power” B,
“pressure dilatation” P, and “divergence of acoustic flux” A.

MLT is a weak stratification theory and as such uses only the
buoyancy power term B from Equation (4). In MLT, the TKE
production is best understood as due to the “buoyancy power”
term,”? which is directly related to the enthalpy flux (Arnett
et al. 2009). Strong stratification requires pressure dilatation P
as well; see Paper II. Although missing in MLT, waves are
produced by any turbulent 3D simulation that is general enough
to support them (e.g., Meakin & Arnett 2007b; see Figures 1
and 2).

5.4. Weak Stratification: Balance between Driving and
Damping

The chaotic driving of turbulence causes large fluctuations
and requires that we average instantaneous properties to obtain
useful variables for stellar evolution; see Section 2.6 in Arnett
et al. (2015) and Meakin & Arnett (2007b). Fluctuations are not
part of MLT; see the fluctuations problem in Section 2. When
performed on even modestly resolved numerical simulations of
convection, such averaging shows a balance over the turbulent
region, between (1) large-scale driving and (2) dissipation at
the small-scale end of the turbulent cascade.

For weakly stratified convection zones (and MLT), the
buoyancy driving (the work done by buoyant acceleration B
acting on the turbulent velocity fluctuation u’) is

(W - B) = (pu - g) ~u/gfrAV, )

where the gravitational acceleration vector is g, the super-
adiabatic excess is AV =V — V,, and (7 is the thermal
expansion coefficient (Kippenhahn & Weigert 1990). The
entropy excess AV may contain contributions from composi-
tion differences, which are ignored in MLT. To evaluate these,
the problem of mixing must be solved consistently with that of

2! See Arnett & Meakin (2011) for a roll model, and also Gabriel & Belkacem
(2018) for a plume model.

Mass conservation used alone causes the buoyancy term to be canceled
(e.g., Nordlund et al. 2009), but the combined constraint of hydrostatic
equilibrium causes it to reappear (Arnett & Meakin 2011).
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convection, complicating the problem (Arnett et al. 2015;
Woodward et al. 2015; Mocdk et al. 2018).

The rate of dissipation for TKE due to the turbulent cascade
is, on average,

(u' - D) =~ e, (6)

which is essentially the Kolmogorov value for homogeneous
isotropic turbulence.”® This is both a theoretical prediction
(Kolmogorov 1962) and, independently, a numerical result
(Section 3; Meakin & Arnett 2007b; Arnett et al. 2009).

For weak stratification, our RA-ILES numerical simulations
(Arnett et al. 2009; Arnett & Meakin 2011) satisfy a local
balance on average, between acceleration and deceleration,

(B) ~ (D), @)

over the convection zone (Meakin & Arnett 2007b; Arnett et al.
2009, 2015). Thus, on average,

v/t~ gBr AV, )

which is something like MLT (Kippenhahn & Weigert 1990),
but here v is a velocity related to Kolmogorov damping. This
equation is nonlinear in velocity and therefore can set a velocity
scale for Equation (3), but with the well-defined Kolmogorov
damping length ¢, replacing the adjustable parameter (mixing
length).

5.4.1. Avoiding Non-analytic Behavior

Equation (8) has several flaws: (1) it is independent of
composition, (2) it is undefined for AV < 0 (stable regions),
(3) it is local, and (4) it is static. The simulations are free of all
these problems. The velocity in Equation (8) is multi-valued,

v =+.liglBr AV, ®

and ill-behaved at AV = 0 due to the non-analytic nature of
the square root (Section 5.11, Whittaker & Watson 1927). This
is the algebraic branch point of the square root function, at
which v can have multiple values and an undefined derivative.
We note that if v = w, then dv/dw = ﬁ, which is singular

as w — 0. These features of MLT cause kinks (cusps) in the
velocity field at points where the velocity is not differentiable
(e.g., infinite acceleration as AV changes sign; see also
Section 9 in Gough 1977). We refer to such non-analytic
behavior as “singular.”

Such regions may be avoided by analytic continuation using
the acceleration equation. Physically this corresponds to the
reintroduction of an inertial term (the total time derivative of
the velocity). Such singularities also appear in treatment of
boundary layers in Prandtl theory (Section 40, Landau &
Lifshitz 1959), as the velocity perpendicular to the surface goes
to zero. In a star, the motion does not go to zero but becomes
wave-like>* (e.g., Section 4.5; Figure 4).

This is related to the phenomenon of separation Landau &
Lifshitz (1959), Section 39, and the formation of boundary

2 The idea of homogeneous isotropic turbulence may be oversimplified.
Intermittency and anisotropy observed at small scales may require refinement
of the basic Kolmogorov theory (Warhaft 2002); the ILES do provide evidence
for these changes. See Section 3.3; Frisch (1995).

2 If the Mach numbers are low, gravity (g—) modes dominate over
compressional (p—) modes outside the boundary layer.
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layers, whose width is proportional to 1/+/Re , where Re is the
Reynolds number. Our ILES develop narrow boundary layers
(see Figure 1), which do become narrower with higher
resolution (larger effective Reynolds number). The condition
v =0 at a convective boundary in MLT separates potential
from rotational flow and should be treated as a boundary layer
(Section 40, Landau & Lifshitz 1959). Such boundary layers
differ from the classical case studied by Prandtl (Anderson
2005) in that the interface is fluid-fluid, not fluid-solid, and
turbulent, not laminar. Non-slip boundaries are not appropriate.

5.4.2. Acceleration Equation

Avoidance of the non-analytic behavior gives (recovers) an
acceleration equation (Gough 1967; Arnett 1968) for the
turbulent velocity fluctuation u’ to replace Equation (8),

du'/dt =0u' /Ot +u' - Vu'
~B - D, (10)

whose solutions may be related to the simulation results for weak
stratification. The addition of the inertial term du’/dt avoids the
singularity at the boundary as intended, at the price of requiring
wave generation at turbulent boundaries; even if weak, waves
are required for reasonable behavior of the acceleration variable,
as well as energy conservation. Equation (10) is basically a
statement of Newtonian mechanics, with driving by buoyancy and
damping by drag.

Equation (10) applies to wave regions too, where the
convective drag term D is negligible, as it is in wave domains
of stars and our simulations. The Brunt—Viisild frequency
squared is

N?=g[(dInP/dr)/T} — d1np/dr]
~ —gBrAV/Hp = B/Hp (11)

(Aerts et al. 2010, Equation (3.73) for the first expression, and
Kippenhahn & Weigert 1990, Equation (6.18) for the second).
Here the adiabatic exponent is I} = (0InP/J1Inp)s. The
second expression requires the assumption® that the composi-
tion gradient is zero (composition homogeneity), using the
Schwarzschild discriminant AV. Chapter 6 gives an example
of the general case (see also Meakin & Arnett 2007b; Cristini
et al. 2017; Mocdk et al. 2018).

For —HpN? <0 we have wave motion, while for
—HpN? > 0 we have convective flow that is turbulent.

Gough (1977) gives a historical context going back to
Prandtl and to Biermann. The early attempts (and most of the
recent ones) have used a kinetic theory of “blobs” model, in
which the mixing length was a sort of mean free path. To
connect with numerical results, we prefer a model using the
momentum equation from fluid dynamics, involving structures
such as waves, convective rolls, or plumes (see Figure 1).

2 In our simulations, we find that convective mixing is efficient inside the
convection zone, but that composition gradients may develop on the non-
convective side of boundaries. However, see the ingestion of a Ne plume in
Mocik et al. (2018). Milder convection, and slower burning stages (e.g., H and
He) also may be different.
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5.4.3. Turbulent Kinetic Energy Equation

Taking the dot product of Equation (10) with #’ gives a TKE
equation

d((u'?/2)/dt ~ u' - gBr AV — ek, (12)

which is satisfied by the ILES simulations (Meakin &
Arnett 2007b). Formally there is a steady-state solution®® if
there is an exact balance between driving and damping, with
l; = b 1/8Hp for MLT and AV > 0. In Equation (12),
negative values of AV are allowed; this permits buoyant
deceleration (Arnett et al. 2015).

The flow is relative to the grid of the background stellar
evolution model (see Appendix A), so the co-moving
(Lagrangian) time derivative of TKE may also be written as

dw' -uy/2)/dt = 0, -u')/2 + V - Fx, (13)

where Fx = pu'(u' - u') /2 is a flux of TKE. The generation of
a divergence of the kinetic energy flux in this way is robust for
dynamic models; it occurred in the RANS approach as well
(Meakin & Arnett 2007b). This flux acts to spread locally
driven turbulence more evenly over the turbulent region, to be
dissipated as Kolmogorov suggested. Equations (12) and (13)
together comprise a simple form of the TKE equation (Meakin
& Arnett 2007b) for weak stratification.

Use of the turbulent cascade removes the two lengths
problem. The damping length is not a size but a measure of the
rate of damping due to turbulence. Further, the cascade
approximates all scales down to the dissipation scale of
Kolmogorov, so that the resolution problem also disappears.

These results are reminiscent of some previous work—for
example, Canuto & Mazzitelli (1991), Canuto et al. (1996),
who developed a theory of full-spectrum turbulence, and
Canuto (2012a, 2012b, 2012c¢, 2012d, 2012e), who made
further progress with a Reynolds-stress approach. These earlier
suggestions, like the 3D numerical simulations, shift the focus
from the original MLT picture of blobs to one involving a
turbulent cascade.

5.5. A Major Flaw in MLT

MLT has a major flaw, associated with use of Equation (8),
which may have biased stellar evolution theorists toward a
belief that stellar convection is more placid than it is likely to
be. As we saw in Figure 2 (Section 4), phase lags between
driving B and damping D cause large pulses in TKE (Meakin
& Arnett 2007b; Arnett & Meakin 2011). These are ignored in
MLT but have been prominent in all of our ILES work.

Stellar convection is better thought of as a “chaotic ensemble
of storms,” as ILES shows, rather than a steady, well-behaved
flow. Setting B = D as a universal condition, instead of an
average one, will filter out these large fluctuations, but not
account for all their effects. This flaw is related to some of the
mixing issues found when using MLT (e.g., in the sdB stars;
Schindler et al. 2015).

In order to converge, stellar evolution codes require that such
fluctuations be integrated over to get a sufficiently stable,
quasi-steady target state. These ILES fluctuations are not
negligible. For example, fluctuations in TKE were a prominent

26 The steady-state solution is actually unstable because of phase lag between
damping and driving in ILES. This is an important part of the physics, which
drives intermittency and waves.
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new result of the first 3D simulations of an oxygen burning
shell (Meakin & Arnett 2007b). These began from an initial 1D
model constructed using the Ledoux criterion, which is the
correct choice for linear stability theory with composition
gradients. The nonlinear simulations immediately extended the
mixed region, roughly equivalent to having used the Schwarzs-
child criterion at first. Because of fluctuations, this is evidently
more nearly correct for the nonlinear case (Mocdk et al.
2011, 2018). The Schwarzschild criterion is widely used in
stellar codes instead of that of Ledoux, but without the
theoretical justification that the fluctuations provide.

6. Composition and Boundaries

Boundaries, which figured prominently in Renzini’s critique,
were not directly addressed in MLT. We now return to the
issue: what is the nature of convective boundaries in our self-
consistent simulations?

6.1. Dynamics at Stellar Boundaries

Boundaries of stellar convective regions are assumed to be
adjacent to regions of convective stability (“radiative” regions
assumed to have zero flow velocity). Thus convective flow
must be joined to zero flow, which leads to the infinite
accelerations and decelerations in MLT (the ends problem of
Section 2) and to the singularity issue in Section 5.4.

The treatment of boundaries requires a consideration of
dynamics not included in MLT: the boundary layer. The
development of boundary layers is a prominent feature of our
ILES (Figure 1). Because of fluctuations, convective flow at a
boundary can only be zero on average, not always. This implies
that the boundary moves and is a source of waves. Pure radial
motion gives compression and sound waves. Non-radial motion
is also nonzero, giving shear and gravity waves. At low Mach
numbers, the g-waves dominate outside the boundary layers;
only these are visible in Figure 1. Blue arrows indicate the
boundary layers at top and bottom of the convective region.
While evidence for waves is faint in this figure*’ below the
bottom boundary layer, g-waves cause horizontal structures
that are clearly visible above the top boundary layer.

Terrestrial experiments and numerical simulations show
that convective and non-convective regions are separated by
a boundary layer, which is required to join rotational
(V xv=0) and potential (V x v =0) flow patterns
(Landau & Lifshitz 1959, Section 44). Rotational flow is
associated with mixing and potential flow is not. Such layers
require large gradients to perform the joining of these very
different flows, and thus the layers are often thin. These layers
provide buoyancy braking to turn the flow, which implies
negative buoyancy and thus a Brunt—Viisdld frequency that is
real (Lighthill 1978, Section 4.1), so that these layers support
waves (see Equation (10)). They are well mixed by the
turbulent flow. In such layers, convective fluctuations must
be coupled to wave production. Beyond these layers, in the
radiative zone which may support a composition gradient,
the Brunt—Viisild frequency is also real, so internal waves
are supported, and directly coupled to the boundary layer
fluctuations. Because they can carry vorticity, g-waves can
induce some mixing beyond the boundary layer; such mixing is
energetically limited.

%7 Such waves are robust and may be seen more clearly simply by using color
maps chosen to emphasize them.
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“One of the properties of the region of rotational turbulent
flow is that the exchange of fluid between this region and the
surrounding space can occur in only one direction. The fluid
can enter this region from the region of potential flow, but can
never leave it” (Landau & Lifshitz 1959, Section 34). Mixing,
which increases entropy, gives the uni-directional nature of the
exchange. Such entrainment of material from a radiative zone is
a necessary aspect of convective boundaries, and one not
included in MLT. This does not preclude receding convective
regions, which could shed sub-regions of decaying turbulence
that have been exposed to mixing; see also Holmes et al.
(1996).

6.2. Distinct Boundary Regions

Based upon our 3D simulations, we construct a cartoon to
clarify discussion of average properties; see Figure 3, which
shows the upper boundary of a convection region (convective
to the left, radiative to the right). There are five distinct regions,
only two of which (1 and 5) are recognized in MLT:

1. Turbulent Convection. Inside r;, the superadiabatic
excess is positive, as are the buoyant acceleration and
the enthalpy flux. In this region, there is a balance
between buoyant driving and turbulent dissipation
(Section 5.4). This is the “convective” region of MLT
(Bohm-Vitense 1958).

2. Braking. Between r; and r, the superadiabatic excess
becomes negative, and the flow can turn and reverse
direction. This is the “braking” region that is required
dynamically. It has a negative enthalpy flux, is well
mixed, and generates waves. This region does not exist in
MLT, and is discussed in Arnett et al. (2015).

3. Shear. Between r, and r; is a boundary layer such as
marked by arrows in Figure 1, and shown on an expanded
scale in Figure 4. As horizontal components of the
velocity grow at the expense of radial components
(baryon conservation), the boundary layer develops high
shear and is subject to shear instability (Drazin 2002).

4. Composition gradient. Between r; and r4 is the region
that can develop a composition gradient (see Figure 4),
perhaps maintained at the margin of shear instability
(Drazin 2002). This is not part of the original MLT
(Bohm-Vitense 1958); it is the composition problem of
Section 2. A “fix”” must be added (e.g., “semi-convection”
and/or “overshoot” regions). This has led to a search for
algorithms to extend MLT, whose justification is that they
are at least empirically desirable if not always self-
consistent.

5. Radiative. Beyond ry is the “radiative” region of MLT.
Unlike MLT, waves are automatically implied by flexing
of the boundary layers (r| to ry).

This crude cartoon is to be understood as a snapshot, which
flexes and bends; its average properties are to be identified with
stellar properties. The layers between r; and r, may be
relatively thin in radial extent (see Figure 4). Regions 2 and
3 are not defined within MLT; they are part of the ends problem
of Section 2. Region 4 is not defined within MLT because MLT
assumes homogeneous composition (Bohm-Vitense 1958); in
MLT, additional physics must be assumed concerning
composition gradients to bridge this gap. This region is often
treated as ‘“‘semi-convective,” or partially mixed by “over-
shoot.” Mocak et al. (2011) used 2D simulations to examine
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hydrodynamic mixing below shell convection zones; in this
case, 2D is in qualitative agreement with 3D. Real overshoot
involves regions 2, 3, and 4. Regions 2, 3, 4, and 5 all support
waves and relate to the wind and waterline problem (Section 2).
Any improvement over MLT will certainly affect regions 2, 3,
and 4.

6.3. Composition Profile

To the extent that they are resolved, the 3D ILES simulations
automatically produce dynamically self-consistent boundary
physics for turbulent flow, with no additional assumptions
required. In Paper II we show that our simulations with best
spatial resolution do have small numerical error. Because the
dynamic timescales for turbulent motion are usually so much
faster than radiative diffusion timescales in stellar interiors,
such boundary structure is set up rapidly. Figure 4 shows a
composition profile of '°O at the lower boundary of the
turbulent oxygen burning shell.

The rms velocity profiles are shown for radial (red) and
horizontal (blue) motion. The dominance of horizontal velocity
(blue) for r < 0.43 x 10° cm indicates g-waves. The boundary
dynamics are those discussed in Arnett et al. (2015). The need
for a turning flow requires that the radial velocity (red)
approach zero faster than the horizontal velocities (blue), which
have a peak near the boundary. There is a well-mixed region in
which this braking and turning occur, and which is sub-
adiabatic. Here the Brunt—Viisild frequency is real; waves are
generated by convective fluctuations and propagate from this
region (see Section 4.5; Woodward et al. 2015, Figure 14).

The asymmetric behavior of convective boundaries, similar
to that discussed in Gabriel et al. (2014) and Montalban et al.
(2013), can naturally arise in this braking region (0.43 x
10° < r < 0.44 x 10° cm in Figure 4). It is a consequence of
carefully joining turbulent flow to motion in a radiative region.

The sigmoid shape of the boundary is strikingly similar to
that of the averaged mean flow of Garaud et al. (2017),
obtained with DNS for a shear flow setup; see their Figure 3
(our use of the bottom boundary requires a flip in orientation).
Arnett et al. (2015) showed that a turning plume would have
such a shearing interface, even without differential rotation.
The boundary conditions for differential rotation and convec-
tion seem to have a deep family resemblance.

Cristini et al. (2017, 2019) obtain a similar “sigmoid-like”
profile for a carbon-burning shell. This shape from simulations
has striking similarity to that inferred from asteroseismology
(Arnett & Moravveji 2017) for the outer boundaries of
convective cores of red giants. At first sight, this is puzzling;
radiative diffusion has a very minor role in carbon and oxygen
burning, but is important in red giants (Viallet et al. 2013). It
suggests that the shape of the composition gradient may be
insensitive to the effects of radiative diffusion. A clue appears
in Figure 4, which shows a significant shear due to the
horizontal velocities (blue curve), which may drive Kelvin—
Helmholtz (KH) instabilities (Arnett et al. 2015). In the low
Mach-number limit, this is a kinetic instability, driven just by
the shape of the horizontal velocity in the radial direction
(Drazin 2002, see Figure 8.3), and would be insensitive to
radiative diffusion. See Section 3.3 in Woodward et al. (2015)
for further discussion.

Our problem is more complex than the classical Rayleigh—
Fjgrtoft condition for KH instability (Drazin 2002), because
our shear layer is bathed in pre-existing chaotic wave and
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convective motions (due to fluctuations, Section 4). Rayleigh’s
theorem states that a necessary condition for instability is that
the radial velocity has an inflection point in radial coordinate
(which the red line in Figure 4 suggests), so it is plausible that
mixing occurs at the shearing boundary, as the numerical
results indicate. Quantifying the rate of such mixing in stars
deserves further study.

Consider a global perspective: as nuclear burning proceeds,
the composition gradient steepens until KH instabilities induce
some mixing to flatten it again. The gradient in velocity profile
evolves toward neutral stability and lies near the composition
profile that it sculpts, as shown in Figure 4. The finest
resolution simulation seems to be approaching an asymptotic
value; more evidence for this may be found in Paper II (Arnett
et al. 2019). This asymptote is approached quickly, on a local
timescale for turbulence.

An increase in entropy inside the convective zone tends to
increase the size of the turbulent region. However, the effect of
this increase may be sensitively dependent upon the gradients
of thermal and compositional entropy in the boundary regions,
as well as the turbulent velocity. A decrease in entropy gives a
tendency to shed turbulent layers, which dissipate when no
longer driven (Arnett et al. 2009). Again there may be a
sensitive dependence upon the gradients of thermal and
compositional entropy in the boundary regions, as well as the
turbulent velocity. This is essentially the Richardson criterion
for stability for a layered system (Turner 1973, Section 10.2.3).

7. Conclusion

We have (1) performed 3D turbulent ILES (Grinstein et al.
2007) of the classical Bohm-Vitense problem of stellar
convection (Bohm-Vitense 1958), which have no other
restrictions than zoning for this problem; (2) applied RA to
these numerical results; and (3) developed several analytic
approximations (321D) to illustrate the physics involved. We
have systematically re-examined some unphysical aspects of
MLT and of boundary physics in 1D stellar evolution, which
were summarized in Renzini (1987).

We find that narrow boundary layers form to enclose the
turbulent region, pulses of TKE are not significantly damped in
30 turnover times, and are associated with a few dominant rolls
for weakly stratified convection, and although a Kolmogorov-
like velocity spectrum forms, anisotropy is sufficient to give
intermittency (Warhaft 2002).

It is not feasible in general to simulate stellar evolution in 3D
at present, so that physically accurate approximations for
longer times need to be developed. ILES work such as this, and
the various simpler mathematical models we discuss, provide a
foundation for refining and correcting such stellar evolution
algorithms. While the ILES methods may be able to describe an
explosion, for example, they become too expensive to deal with
much of the previous, slower evolution that sets up the
explosion.

The RA-ILES combination is “exact” to the word length of
the computer used, unlike the RANS which are not closed
(Tritton 1998). This advantage is a consequence of the sub-grid
behavior of ILES, which mimics a Kolmogorov turbulent
cascade, allowing both stellar size scales and turbulent scales to
be described.

The evolution of the TKE is chaotic, involving a few
dominant modes (unstable 3D rolls, Lorenz 1963). Driving and
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damping of turbulent convection are out of phase; this makes
interpretation of time aspects of numerical convergence a
challenge, but provides insights into the dynamics of
turbulence and stellar variability. These pulses of TKE are
not an artifact of unphysical initial conditions. Stellar
convection can quickly attain a dynamic steady state, with
chaotic fluctuations.

The ILES simulations automatically provide a self-consistent
structure at boundaries, including profiles of composition and
velocity, structure of the deceleration region, and basis for
study of wave generation. ILES allows us to describe a
turbulent boundary layer, which uses a shear instability to
sculpt a composition profile similar to that already inferred
from astereoseismology (Arnett & Moravveji 2017). Entrain-
ment of stable matter occurs at these dynamic boundary layers
(Meakin & Arnett 2007b), at a rate dependent upon the
particular stellar conditions. The process of turning the flow at
the boundary also ensures that waves are generated, connecting
the convective motion to the wave generation.

In Paper II (Arnett et al. 2019) we quantify the resolution
errors due to cell size, and predict the turbulent dissipation
length (the “mixing length”) from the simulations. We examine
the unexplored case of strong stratification, in which the mixing
length approaches an asymptotic limit close to that indepen-
dently favored by the stellar evolution community.
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Appendix A
Baryon Conservation

In an inertial frame,28 with fluctuations, we have p =
po+ 0 (p) =py (p) =0 and v = vy + v/, (v) = and
(v'y = 0. Thus

(ov) = (powa) + (pv') = 0

requires the net mass flux from fluctuations to balance that of
the base flow (e.g., Nordlund et al. 2009), giving a condition
which conserves baryons.

The fluid-dynamic equations in an Eulerian coordinate
system describe the flow of material through a fixed grid. In
a Lagrangian system, a given amount of fluid is enclosed by a
boundary that moves. The latter is awkward in more than 1D
because of “grid tangling,” but is useful for stars, which
approximate 1D spheres to some extent. Almost all stellar
evolution codes are written on a 1D spherical Lagrangian grid
in a “co-moving frame.” Let us examine how to map from a
true 3D frame to a non-rotating 1D spherical frame (321D) and
what this entails. Because information is lost, our result will be
approximate to this extent.

Consider a spherical boundary (a “zone edge”) in a stellar
evolutionary code. It is (1) spherical, and (2) except in special
cases has zero net flow through it. In spherical coordinates, the
net mass flow through radius R(k) of the kth shell is

(14)

4
dm (k) :R(k)zfo p(R(k), 0, 9)[v(R(K), 0, §) — U (k)]dQ,

dt
5)

where U(k) = dR(k)/dr is the radial velocity of the boundary
relative to the origin, and py(R(k)) is the average density at
radius R(k). We identify the angle average as (p(r, 0, ¢)) =
Po(r).

To be co-moving, {pv) /{p) — U (k) = 0, so we choose the
difference u — U(k) to be the radial component of fluctuation
in velocity, v,/. By this choice of coordinates, the average of the
mass flux, over the whole solid angle is

{(povo) = 0, (16)

2 See Chapter 1, Weinberg (1927).
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so that there is no net mass flux across the boundaries, in the
base state of the stellar model, as we require for the co-moving
spherical grid.

Now u’ is the 3D turbulent velocity fluctuation relative to the
co-moving (stellar) grid of radius R(k), and

(p'u') =0,

in this coordinate system, so fluctuations also cause no net transfer
of baryonic mass, as designed. Thus u’ is the 3D velocity
fluctuation relative to the center of momentum of the computa-
tional cell of the stellar model. For an inhomogeneous medium,
correlations between velocity fluctuations and fluctuations of, for
example, composition or enthalpy, will drive interesting currents
(Arett 1996, Section 4.6; Mocdk et al. 2018) through the grid.

We have projected from 3D down to a static 1D spherical
grid, and used a linear Galilean transform to the co-moving
grid. Some information is lost (stars are not perfect spheres); an
essential part of the 321D approximation is the projection of
appropriate averaged quantities, which is guided by ILES and
RA. Baryons are exactly conserved, but the complexity of non-
spherical geometry is averaged over. Our coordinate system is
now specified, and additional equations are required to define
other fluxes through this grid.

a7)

Appendix B
Momentum Conservation

We now transform the Navier—Stokes equation” to the co-
moving frame. We have

Opv + V- pw=—VP + pg + pvVv, (18)

where pvv is the Reynolds-stress tensor and v the kinematic
viscosity. One term, pvv, is nonlinear in v, but this may be
written in the co-moving frame by using mass conservation and
taking a dot product with the velocity v, which gives a kinetic
energy equation,

di(pv - v/2) = —v - (VP — pg + pvV?p), (19

where we have compressed the left-hand side into a co-moving
time derivative and taken the gravity vector to be appropriate
for spherical geometry with g’ = 0. We replace the viscous
term with a Kolmogorov expression ex for its average
(turbulent dissipation happens at small scales and we treat its
average as local). Taking averages over a spherical shell
(angles), and a few turnover times (overline), we have

di{pv -v/2) = (—v - VP — prg) — pek. (20)

See Meakin & Amett (2007b); Nordlund et al. (2009); Viallet
et al. (2013). An interesting result of the simulations is that the
numerical result for ex agrees quantitatively with Kolmogorov’s
analytic result for weak stratification, without this being explicitly
imposed on the ILES results (see Kolmogorov 1941; Arnett et al.
2009, Paper II).

Using Equation (14) and integrating over a spherical shell gives
(pu - g) = 0 in a co-moving (Lagrangian), 1D coordinate system.
Hydrostatic “equilibrium” (momentum balance in the co-moving
stellar radial coordinate) is —dPy/dR — p,g = p,dU /dt, which
may be subtracted from Equation (20). In a steady state, this

29 See, e.g., Equation (15.7) in Landau & Lifshitz (1959).
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equation becomes

—W ™ VP") = {pex). @1
Now we use the identity
u-VP +P'V-u=V-(Pu), (22)

so, after using hydrostatic equilibrium and mass conservation,
Equation (21) becomes

{pex) = (p'u’ - g) + (P'V - ) — (V- (Puh).  (23)

ELIY3

The three terms on the rhs are “buoyancy power,” “pressure
dilatation,” and divergence of ‘“acoustic flux.” For weak
stratification and small Mach number, the second and third
terms of the rhs (the “pressure dilatation” and divergence of
“acoustic power”) are nearly zero (the turbulent pressure is
small). This is not true for strong stratification, for which all
three terms may be important (Paper II).

MLT is formulated in the weak stratification limit; the TKE
production is then best understood as due to the remaining
“buoyancy power” term, which is directly related to the
enthalpy flux (Arnett et al. 2009). Mass conservation used
alone causes the buoyancy term to be canceled (e.g., Nordlund
et al. 2009), but the combined constraint of hydrostatic
equilibrium causes it to reappear (Arnett & Meakin 2011).
The pressure dilatation term in Equation (4) will prove
important for strong stratification (Paper II, Arnett et al. 2019).
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