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Abstract

Mayaro virus (MAYV) is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South
America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection,
we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant,
immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong
induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect
mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical
development of this vaccine candidate is warranted to protect against this important emerging disease.
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Introduction

Mayaro virus (MAYV) is an important and growing human

health concern in the neotropics. First isolated in Mayaro county,

Trinidad in 1954, cases of Mayaro fever (MAY) have since been

reported in 9 different countries in northern South America [1]. In

addition, serological surveys suggest that MAYV has expanded

into the Central American countries of Costa Rica, Guatemala,

and Panama [2]. Typical presentations of MAY consist of an acute

febrile illness accompanied by headache, retro-orbital pain,

myalgia, vomiting, diarrhea, and rash [3]. However, the hallmark

manifestation of MAY is arthralgia [4], which is often severe and

debilitating, and can persist for up to a year, with recurring

relapses possible. The high incidence of dengue fever in the same

areas in which MAYV circulates, and the similarity of the initial

signs and symptoms, leads to the misdiagnosis and underreporting

of MAY cases [5,6]; therefore, MAYV is typically neglected as an

important cause of tropical diseases. For example, in several areas

of northern South America approximately 1% of all febrile illness

that is clinically similar to dengue is caused by MAYV [7].

MAYV is a zoonotic pathogen that circulates in an enzootic

cycle involving Haemagogus spp. mosquitoes and as yet uniden-

tified vertebrate hosts [3]. Although seropositivity has been

detected in birds and rodents, non-human primates have

consistently demonstrated the highest rates of antibodies, suggest-

ing that they are the principal reservoir hosts. Infection of humans

typically occurs in communities near humid tropical forests, and is

often associated with logging or other forest activities [1,8–10].

However, as land use and demographic changes in South America

lead to human populations expanding within regions of tropical

forest, an increasingly higher percentage of the population may be

at risk [11]. In addition, the demonstration that the urban

mosquito, Aedes aegypti, can transmit MAYV after exposure to

bloodmeals with titers approximating human viremia levels [5,12]

raises the concern that the virus could emerge into an urban

transmission cycle similar to that of its close relative, chikungunya

virus (CHIKV).

MAYV belongs in the family Togaviridae, genus Alphavirus.
Despite circulating exclusively in the New World, MAYV belongs

genetically, antigenically [13,14]. The genome of MAYV is a

single-stranded, positive sense RNA, approximately 11.45 Kb in

length that encodes 4 nonstructural proteins (nsP1-4) on the 59 end

and 3 structural proteins on the 39 end, including the capsid and

envelope glycoproteins, E1 and E2 (Fig. 1) [13,15]. Genomic RNA

includes 2 open reading frames (ORFs); the nonstructural

polyprotein ORF is translated in a cap-dependent manner from

genomic RNA, while the structural polyprotein ORF is translated

from a subgenomic RNA transcript, which is also capped [16,17].

There is no licensed vaccine available for MAY, and current

control strategies rely on reducing human exposure to potentially

infected mosquito vectors. Only one attempt to generate a vaccine

for MAYV infection is described in the literature [18]. Formalin

inactivation of wild-type (wt) MAYV strain TRVL15537 was

tested in immunocompetent CD-1 mice using a single vaccination.
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This vaccine was immunogenic, and some efficacy was demon-

strated via passive transfer of immune mouse sera to infant mice,

followed by lethal challenge.

The ideal MAYV vaccine would produce rapid, long-term

immunity after a single dose to rapidly control outbreaks, with a

low risk of adverse side effects. The vaccine would also need to be

cost effective for use in resource-poor parts of Latin America, and

easy to produce. For a live-attenuated vaccine, which typically

meets most of these criteria, mosquito-transmission incompetent

would also be highly desirable for use in non-endemic locations.

To produce such a vaccine, we employed an attenuation

strategy involving an encephalomyocarditis virus (EMCV) internal

ribosome entry site (IRES), which has been successfully used for

other alphavirus vaccines [19–24]. Replacement of the subge-

nomic promoter reduces expression of the structural proteins,

which are now translated via the IRES from genomic RNA, and

the inefficient recognition of the IRES by insect ribosomes results

in a phenotype that is also incapable of replicating in mosquito

cells [25]. For this study, we tested the efficacy of an IRES-based

vaccine candidate for MAYV (henceforth called MAYV/IRES),

which was highly attenuated, efficacious, and safe when tested in

murine models.

Materials and Methods

Design and production of the MAYV/IRES vaccine
candidate

A full-length genomic cDNA clone was generated from MAYV

strain CH using RT-PCR and standard cloning methods as

described previously [20]. The virus strain, a 2001 human isolate

from Iquitos, Peru, was obtained from the World Reference

Center for Emerging Viruses and Arboviruses at the University of

Texas Medical Branch. It was passaged once on Vero cells before

RNA extraction. Details on primers and restriction sites are

available upon request.

To produce an attenuated MAYV that was capable of replicating

in vertebrate cells, but not in invertebrate cells, the translation of

viral structural proteins was placed under control of the EMCV

IRES, directly downstream from the subgenomic promoter. The

subgenomic promoter was also inactivated with 14 synonymous

mutations using standard PCR-based mutagenesis methods (Fig. 1).

These mutations were chosen to inactivate the promoter while

preserving the amino acid sequence of the nsP4 C-terminus. A

single PCR-derived amplicon containing mutated subgenomic

promoter and IRES sequence was cloned into wt MAYV plasmid

at SanDI – NcoI sites. The complete cDNA clone was sequenced to

ensure that no errors occurred during PCR amplifications or

cloning. Plasmid DNA was linearized with PacI prior to in vitro
transcription, semi-quantified by gel electrophoresis, and recombi-

nant viral RNA was electroporated into Vero cells using conditions

described previously [20]. Titers of rescued wt MAYV and MAYV/

IRES were both 4.06107 PFU/mL at 28 h post electroporation.

Cell culture supernatants were harvested 28 h post electroporation,

centrifuged to pellet cell debris, and stored at 280uC.

Animals
All mice were purchased from Charles River Laboratories

(Wilmington, MA). Animal studies were approved by the

University of Texas Medical Branch Institutional Animal Care

and Use Committee.

Figure 1. Genetic characteristics of MAYV vaccine strain. A. Wild-type genome including subgenomic promoter; B. Vaccine strain with
inactivated subgenomic promoter; C. Subgenomic promoter sequence (red lettering) with synonymous mutations indicated by lower-case letters.
The deduced amino acid sequence is shown between the nucleotide sequences.
doi:10.1371/journal.pntd.0002969.g001

Author Summary

Mayaro virus (MAYV) is a mosquito-borne alphavirus that
causes severe and sometimes chronic arthralgia in persons
in South America, where it circulates in forest habitats. It is
widely neglected because it is typically mistaken for
dengue due to the overlap in the clinical signs and
symptoms, and the lack of laboratory diagnostics in most
endemic locations. Furthermore, MAYV has the potential
to initiate an urban transmission cycle like that of dengue,
which could result in a dramatic increase in human
exposure. Because there is no effective vaccine or specific
treatment, we developed a candidate vaccine to protect
against MAYV infection. We used an attenuation approach
based on the elimination of the MAYV subgenomic
promoter and insertion of a picornavirus internal ribosome
entry site to mediate translation of the structural proteins.
This vaccine was well attenuated in mouse models, highly
immunogenic, and protected against fatal MAYV infection.
Our results indicate that this MAYV strain is promising for
further development as a potential human vaccine.

Mayaro Vaccine Candidate
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Cell culture
African green monkey kidney (Vero) and human fetal lung

fibroblast cells (MRC-5) cells were purchased from the American

Type Culture Collection (ATCC, Manassas, VA) and maintained

in culture with Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 5% fetal bovine serum (FBS) and gentamicin

sulfate and incubated at 37uC with 5% CO2. Aedes albopictus-
derived C6/36 cells were maintained in DMEM supplemented

with 10% FBS, 1% tryptose phosphate broth (TPB) solution, and

an antibiotic mixture of penicillin/streptomycin at 29uC and 5%

CO2.

Virus replication assays
Vero and MRC-5 cells were used to assess the replication

kinetics of the MAYV/IRES vaccine candidate and wt MAYV.

Cells were grown to 95% confluency in 6-well plates. Virus was

added to each well at a multiplicity of infection (MOI) of 0.1

plaque forming units (PFU)/cell in triplicate and incubated with

the cells for 1 h. The cells were then washed twice with phosphate

buffered saline (PBS) to remove residual virus, and 2 mL of

medium were added to each well. At designated timepoints (6, 12,

24, 36 and 48 hours post infection (hpi) for Vero cells, and 24, 48,

72, and 96 hpi for MRC-5 cells), the culture supernatant was

harvested for virus titration by plaque assay, then fresh medium

(2 mL) was added to replace the volume.

Virus passaging
To assess the stability of the MAYV/IRES vaccine candidate, 5

passages were performed in duplicate on both Vero and C6/36 A.
albopictus cells in T25 flasks, with the cells at 95% confluency

before infection at a MOI of 0.1 PFU/cell. As a control, wt

MAYV was also passaged. Vero cells were incubated at 37uC and

5% CO2 for 48 h, while the C6/36 Ae. albopictus cells were

incubated at 29uC and 5% CO2 for 72 h. Culture supernatants

were then collected and used to infect a new flask at the same

MOI. Virus titers from each passage were measured by plaque

assay.

Sequencing
To evaluate the genetic stability of the MAYV/IRES vaccine

candidate, viral genomes from Vero passages 3 and 5 of both

MAYV/IRES and wt MAYV were fully sequenced. Viral RNA

was extracted using a QIAamp Viral RNA Mini Kit (Qiagen,

Valencia, CA). This was followed by RT-PCR which was

performed in a two-step reaction process involving SuperScript

III One-Step RT-PCR System (Invitrogen, Grand Island, NY) in

conjunction with Phusion High-Fidelity DNA Polymerase (New

England Biolabs, Ipswich, MA). PCR amplicon sizes were

confirmed by gel electrophoresis and then purified by a QIAquick

PCR Purification Kit (Qiagen). A BigDye kit (Applied Biosystems,

Foster City, CA) was then used to prepare the samples for Sanger

sequencing. Thirty-nine overlapping amplicons were used to cover

the entire genome; primer sequences are available from the

authors.

Animal studies
Infant outbred CD1 mice have been shown to develop disease

similar to humans for the arthralgic alphavirus CHIKV [26], and

were therefore chosen as a model to evaluate the MAYV/IRES

attenuation. Cohorts of six-day-old outbred CD1 mice were

infected over the dorsum subcutaneously (SC) with 104 PFU, a

dose used previously [26], and were subsequently monitored daily

for 10 days for survival and body weight. To evaluate

immunogenicity, cohorts of adult 28-day-old CD1 mice were also

infected SC with 105 PFU, and survival and body weights were

monitored daily until day 28 post infection. Mice were bled on days 1–

3 after infection, and serum was tested for viremia by plaque assay [27]

to assess attenuation. On day 28 post infection, the animals were bled

and a plaque reduction neutralization test (PRNT) was performed on

the sera to measure antibodies as described previously [27].

MAYV produces no detectable disease in adult, immunocom-

petent mice. Therefore, to assess attenuation, cohorts of ca. 5–8-

week-old interferon type I receptor-deficient A129 mice were

infected intradermally (ID) on the left footpad (FP) with 104 PFU.

The animals were monitored for survival, body weight changes,

and viremia. Footpad swelling was also measured using a caliper at

the site of inoculation. At day 28 post infection, sera were collected

and PRNTs were performed. On day 29 post infection, the mice

were challenged SC with 104 PFU of wt MAYV strain CH. The

mice were monitored the following 7 days for survival, change in

body weight, and viremia.

Ethics statement
The University of Texas Medical Branch (UTMB) Institutional

Animal Care and Use Committee approved the animal experi-

ments described in this paper under protocol 02-09-068. UTMB

complies with all applicable regulatory provisions of the U.S.

Department of Agriculture (USDA) - Animal Welfare Act; the

National Institutes of Health (NIH), Office of Laboratory Animal

Welfare - Public Health Service (PHS) Policy on Humane Care

and Use of Laboratory Animals; the U.S Government Principles

for the Utilization and Care of Vertebrate Animals Used in

Research, Teaching, and Testing developed by the Interagency

Research Animal Committee (IRAC), and other federal statutes

and state regulations relating to animal research. The animal care

and use program at UTMB conducts reviews involving animals in

accordance with the Guide for the Care and Use of Laboratory
Animals (2011) published by the National Research Council.

Statistical analysis
Analysis of variance (ANOVA) followed by a Tukey’s post-hoc

test, Kruskall-Wallis with Bonferroni correction for multiple

comparisons, Kaplan-Meier, and Mann-Whitney test were per-

formed using Prism 5 (GraphPad Software, La Jolla, CA). P-

values,0.05 were considered significant.

Results

Replication kinetics of the MAYV/IRES vaccine candidate
To assess the replication kinetics, virus derived from electropo-

rated Vero cells was compared to wt MAYV after infection of

Vero cells (Fig. 2A). Infections were performed in triplicate (n = 3)

at a MOI of 0.1 PFU/cell. Both MAYV/IRES and wt MAYV

titers peaked 36 hpi, but wt MAYV had a slightly higher titer of

1.16108 PFU/mL while MAYV/IRES had a peak titer of

7.86107 PFU/mL. Significant differences were seen only at the

48 hpi timepoint (ANOVA, p,0.05). Plaque morphology was

consistent throughout the experiment, with wt MAYV having a

slightly larger (0.5–3 mm) and more diffuse plaque morphology

than MAYV/IRES (0.5–2 mm) under 0.4% agarose in MEM

(48 h incubation).

MRC-5 cells are well characterized and widely used in cell

culture-based vaccine production. Therefore, we also measured

the replication kinetics of the MAYV/IRES vaccine candidate, as

well as wt MAYV on this cell line in triplicate wells (n = 3) at a

MOI of 0.1 PFU/cell (Fig. 2B). The MAYV/IRES virus reached

a peak titer of 106.7 PFU/ml at 72 hpi, which was much later and

Mayaro Vaccine Candidate
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at a lower titer than wt MAYV. Plaque morphology measured on

Vero cells of MAYV/IRES virus derived from MRC-5 or Vero

cells was comparable.

Stability of the MAYV/IRES vaccine candidate
The stability of MAYV/IRES was tested in vitro by 5 serial

passages in Vero cells, in duplicate at an MOI of 0.1 PFU/cell.

MAYV/IRES maintained a slightly lower titer than wt MAYV

throughout the passages, with a range of 4.26107 PFU/mL after

passage 2, to a peak of 1.96108 PFU/mL after passage 3; wt

MAYV titers remained between 108 and 109 PFU/mL (data not

shown). To evaluate the genetic stability of the MAYV/IRES

vaccine candidate, the complete consensus sequences of passages 3

and 5 were determined using overlapping amplicons generated by

RT-PCR, and no mutations were detected.

MAYV/IRES was also serially, blind passaged 5 times in C6/

36 A. albopictus mosquito cells to confirm its lack of mosquito host

range. As expected, the virus was not detected during any passage,

while wt MAYV replicated to high titers (data not shown).

Assessment of MAYV/IRES attenuation in Infant CD1 Mice
Cohorts of 6-day-old CD1 mice were infected SC with 104 PFU

of either MAYV/IRES (n = 14), wt MAYV (n = 15), or were

sham-infected with PBS (n = 15). Mice infected with wt MAYV

began to die starting 3 dpi and complete mortality was seen by day

8 (data not shown). All MAYV/IRES- and sham-infected mice

survived until the study was terminated 10 days after inoculation.

As expected, the wt MAYV-infected cohort did not gain weight as

quickly as the MAYV/IRES- or sham-infected animals, and the

average weight of wt-infected animals declined rapidly beginning 4

days post-infection. There was no significant difference in weight

change between MAYV/IRES- and sham-infected animals

(Kruskall-Wallis with Bonferroni correction for multiple compar-

isons).

Assessment of MAYV/IRES in Adult CD1 Mice
Due to the high mortality in infant CD1 mice infected with wt

MAYV, adult CD1 mice (28 days-old) were also tested as a potential

virulence model. Mice were infected SC with 105 PFU of either

MAYV/IRES (n = 10) or wt MAYV (n = 10), and negative controls

were sham (PBS)-infected (n = 6). Unlike the infant 6-day-old CD1

mice, the 28-day-old mice all survived infection with wt MAYV

until the study was terminated 28 days after infection. To assess with

greater sensitivity signs of disease, the animals were weighed post-

vaccination (Fig. 3A). The MAYV/IRES- and sham-infected

cohorts gained weight steadily throughout the experiment, while

Figure 2. Replication kinetics of MAYV/IRES and wt MAYV after infection of A) Vero or B) MRC-5 cells at a multiplicity of infection
(MOI) of 0.1 PFU/cell. n = 3. * = p,0.05. Error bars indicate standard deviations.
doi:10.1371/journal.pntd.0002969.g002

Mayaro Vaccine Candidate
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the wt MAYV-infected mice lost some weight initially, but

recovered by day 5 post-infection, then proceeded to gain weight

in a manner similar to the other cohorts. However, these differences

in weight change were not significant (p$0.07, Kruskall-Wallis with

Bonferroni correction for multiple comparisons).

To quantify viral loads of the MAYV/IRES vaccine candidate,

viremia was assessed post-vaccination (Fig. 3B). Both MAYV/

IRES and wt MAYV produced a peak viremia titer at day 2 post-

infection, but MAYV/IRES viremia was of shorter duration and

of significantly lower mean peak titer, just over 103 PFU/mL,

compared to 107 PFU/mL for wt MAYV.

Serum neutralizing antibody titers were measured at 28 days

post-infection using an 80% PRNT. MAYV/IRES titers ranged

from 160 to $640 (mean = $304), and were not significantly

different from those of wt MAYV-infected animals (Kruskall-Wallis

with Bonferroni correction for multiple comparisons) (Fig. 3C).

Assessment of MAYV/IRES attenuation in A129 Mice
A129 mice lack functional type 1 interferon receptors and are

therefore a very sensitive model for human arthritic alphavirus

infection [28]. They have been used as a lethal model for

alphavirus vaccine safety and challenge studies [20]. Cohorts of

adult A129 mice (n = 8) were infected with MAYV/IRES or wt

MAYV, or sham-infected with PBS. Injections were performed

intradermally on the left footpad with 104 PFU. All MAYV/

IRES- and sham-infected mice survived until the experiment was

Figure 3. Infection of 28-day-old CD1 mice with 105 PFU of MAYV/IRES or wt MAYV. A) percent change in body weight, B) viremia, and C).
PRNT80 titers for each cohort. * = p,0.05. Error bars indicate standard deviations.
doi:10.1371/journal.pntd.0002969.g003

Mayaro Vaccine Candidate
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terminated on day 28, while all wt MAYV-infected mice died by

day 5 (Fig. 4A). Both the MAYV/IRES and wt MAYV cohorts

lost weight initially, but wt MAYV-induced loss was more

dramatic and significantly greater than that of the MAYV/

IRES-infected animals (Fig. 4B) (p,0.01, Kruskall-Wallis with

Bonferroni correction for multiple comparisons). There was no

significant difference in footpad swelling among cohorts until 3

days after infection, when wt MAYV-infected mice showed a large

increase in footpad diameter, which was significantly greater than

mean swelling of both MAYV/IRES- and sham-infected cohorts

(Fig. 4C) (p,0.01, Kruskall-Wallis with Bonferroni correction for

multiple comparisons).

Viremia was measured post-vaccination to quantify the viral load

(Fig. 4D). Both MAYV/IRES and wt MAYV cohorts reached high

titers in the peripheral blood, with MAYV/IRES peaking at day 3

post-infection with a titer of 5.56108 PFU/mL and wt MAYV

reaching a slightly higher titer of 1.46109 PFU/mL. Differences

were significant only on day one post-infection (p,0.001, Kruskall-

Wallis with Bonferroni correction for multiple comparisons).

Immunogenicity and efficacy in A129 mice
At day 28 post-infection, 7 of the 8 MAYV/IRES-vaccinated

A129 mice had neutralizing antibody titers $640, while the

remaining mouse had a titer of 320 (mean = $604). The mean

Figure 4. Infection of A129 mice with 104 PFU of MAYV/IRES or wt MAYV. A) percent survival, B) percent change in body weight, C) Footpad
swelling, and D) viremia for each cohort. * = p,0.05. Error bars indicate standard deviations.
doi:10.1371/journal.pntd.0002969.g004

Mayaro Vaccine Candidate

PLOS Neglected Tropical Diseases | www.plosntds.org 6 August 2014 | Volume 8 | Issue 8 | e2969



PRNT antibody titer for A129 mice was significantly higher than

that for CD1 immunocompetent mice (Student’s T-test, p,0.01),

possibly reflecting greater vaccine replication in the former

(although the ages were not exactly matched). The sham-

vaccinated A129 mice (n = 3) did not have detectable antibodies

(,20). Mice were then challenged SC with 104 PFU of wt MAYV

to assess the efficacy of the MAYV/IRES vaccine. All vaccinated

mice survived, while all of the sham-vaccinated mice were dead by

day 7, representing a significant difference in mortality (p,0.01,

Kaplan-Meier; see Fig. 5A).

To monitor disease in a more sensitive manner, weight was

measured post-vaccination (Fig. 5B). The sham-vaccinated, chal-

lenged cohort lost weight more quickly and dramatically than the

MAYV/IRES-vaccinated group (p,0.01, Mann-Whitney). To

assess viral load, viremia post-challenge was also measured

(Fig. 5C). The MAYV/IRES-vaccinated group showed a de-

creased viremic response upon challenge compared to the sham-

vaccinated animals, only reaching a mean titer of 2.06102 PFU/

mL at day 3 post-challenge, while the control group reached a

much higher titer of 4.86108 PFU/mL 3 days post-challenge (p,

0.05, Mann-Whitney).

Discussion

It has been over 60 years since the discovery of MAYV in

Trinidad, and there is still no licensed vaccine available despite

continued outbreaks, and the potential for urban transmission in a

dengue-like cycle [5,12] that could expose millions of people. Our

MAYV/IRES vaccine was designed to offer single-dose, rapid

protection to protect people both in endemic regions and in the

event of an urban outbreak. Previous attempts to generate a vaccine

to protect against MAY focused on inactivated wt virus [18]. A

single vaccination proved immunogenic in adult CD1 mice, and

efficacy was demonstrated indirectly via passive transfer of the

immune mouse sera to infant mice, followed by lethal challenge.

However, no further testing of this vaccine has been reported.

To capitalize on the advantages of live-attenuated vaccines,

including rapid and long-lasting immunity as well as ease of

manufacture, we used the IRES-based attenuation approach that

has been demonstrated to offer highly stable and predictable

attenuation for alphaviruses [19–24]. Unlike traditional alphavirus

attenuation derived from cell culture passages that typically relies

on unstable point mutations, resulting in reactogenicity and the

potential for reversion to wt virulence and transmissibility [29–32]

the IRES-based rationale approach suppresses structural viral

protein expression by elimination of the subgenomic promoter

using multiple inactivating mutations. Thus, reversion is highly

unlikely because the promoter sequence is very specific and

intolerant of change [33], resulting in superior attenuation stability

following serial mouse passages compared to traditional point

mutation-dependent attenuation [22]. Further safety is achieved

through the use of the encephalomyocarditis virus IRES, which

inefficiently mediates translation in insect cells [25], and thus

eliminates the possibility for mosquito transmission. Finally, the

titers of nearly 108 PFU/cell of MAYV/IRES produced by

vaccine substrate-approved Vero cells should be adequate for

large-scale manufacture, and the stability we demonstrated

following Vero cell passages will be critical for licensure.

Like previous studies using the IRES-based alphavirus attenua-

tion approach, our results showed that MAYV/IRES is stable in

cells of mammalian origin (Vero), but incapable of efficient

replication in a C6/36 A. albopictus cell line. Previous studies have

showed that other IRES-based attenuated alphaviruses are also

incapable of replication after intrathoracic inoculation into A.
albopictus mosquitos [20,22]. In every murine model we tested,

MAYV/IRES was highly attenuated, only producing minimal signs

of disease in the highly stringent A129 model that cannot mount an

effective interferon response. This vaccine candidate was also highly

immunogenic, inducing high levels of neutralizing antibody titers in

both adult CD1 and A129 mice at 28 days post-vaccination.

Challenge of A129 vaccinated mice at 29 days post-infection with a

high dose of wt MAYV showed complete protection from detectable

disease, despite the high virulence and complete lethality of MAYV

in unvaccinated animals. These murine studies indicate that

MAYV/IRES is highly attenuated, highly immunogenic, and

provides strong protection against MAYV challenge. Further

studies in another animal model are needed. Typically, nonhuman

primates such as macaques reproduce human-like disease after

alphavirus infection [24,34–39]. These animals should be evaluated

as models for human MAYV to determine if they will be useful for

the next steps in preclinical evaluation of MAYV/IRES.

A variety of alternative vaccine development approaches are

available for alphaviruses including inactivated virus, subunit

Figure 5. Response to challenge of MAYV/IRES-vaccinated
A129 mice. A) percent survival, B) percent change in body weight, and
C) viremia for each cohort following challenge. Error bars indicate
standard deviations.
doi:10.1371/journal.pntd.0002969.g005
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protein, DNA and virus-like particles (VLP) as well as traditionally

attenuated and chimeric vaccines [40,41]. All of these approaches

emphasize safety but have significant drawbacks including a

multiple dose requirement for efficacy, short-lived immunogenicity

necessitating boosters, challenging delivery (DNA via electropora-

tion) and complex, expensive manufacture (VLPs) and the risk of

residual live virus after inactivation, which was shown to result in

the death of an eastern equine encephalitis-vaccinated horse in

California [42]. Our MAYV/IRES candidate overcomes all of

these shortcomings to generate rapid immunity following a single

dose, and should have greatly reduced reactogenicity due to its

robust, highly stable attenuation design. Although further testing

should be done to evaluate the duration of protective immunity,

other IRES-based alphavirus vaccines have generated completely

protective immunity in macaques for over one year (C. Roy,

S.C.W., unpublished). MAYV/IRES therefore should be ideal for

inducing rapid, long-lived immunity after a single dose for use in

developing countries where MAYV is endemic, as well as for a

traveler’s vaccine for persons visiting South America.

In summary, our MAYV/IRES vaccine candidate is highly

attenuated and immunogenic, unable to infect mosquito cells, and

provides protection from lethal challenge in murine models. These

results indicate that further preclinical development of MAYV/

IRES is justified for its evaluation as a potential human vaccine

that could protect people from MAY in South America, but also

on other locations if the virus spreads and urbanizes like the closely

related CHIKV [5,43–46]. Furthermore, MAYV/IRES should be

evaluated for its ability to protect against CHIKV and Ross River

viruses, other closely related alphaviruses that cause epidemics in

Africa and Asia, or Australia and Oceania, respectively. CHIKV is

of particular concern because in December of 2013 it invaded the

Caribbean, representing the first autochthonous transmission in

the Western Hemisphere [47–49]. This event could portend a

major epidemic throughout the Americas if spread to the

mainland occurs into dengue-endemic regions where both A.
aegypti and A. albopictus mosquito vectors are present along with a

nearly naı̈ve human population. The latter vector is highly

susceptible to Asian CHIKV strains with adaptive mutations that

dramatically enhance its vectorial capacity [50–55], and it is

unknown if similar mutations could enhance MAYV urbanization

in a similar manner. An effective vaccine could greatly mitigate

these risks and have a major impact on public health in South

America.
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