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Abstract

This paper focusses on the relationship between the heat release rate and the acoustic field, which is a crucial element in

modelling thermoacoustic instabilities. The aim of the paper is twofold. The first aim is to develop a transformation tool,

which makes it easy to switch between the time-domain representation (typically a heat release law involving time-lags)

and the frequency-domain representation (typically a flame transfer function) of this relationship. Both representations

are characterised by the same set of parameters n1, n2, . . ., nk. Their number is quite small, and they have a clear physical

meaning: they are time-lag dependent coupling coefficients. They are closely linked to the impulse response of the flame

in the linear regime in that they are proportional to the discretised (with respect to time) impulse response. In the

nonlinear regime, the parameters n1, n2, . . ., nk become amplitude-dependent. Their interpretation as time-lag dependent

coupling coefficients prevails; however, the link with the impulse response is lost. Nonlinear flames are commonly

described in the frequency-domain by an amplitude-dependent flame transfer function, the so-called flame describing

function. The time-domain equivalent of the flame describing function is sometimes mistaken for a ‘nonlinear impulse

response’, but this is not correct. The second aim of this paper is to highlight this misconception and to provide the

correct interpretation of the time-domain equivalent of the flame describing function.
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1. Introduction

Power generation systems based on combustion of fuels

to extract energy operate with lean premixed flames in

order to reduce the environmental pollution by exhaust

gases. However, such systems are susceptible to ther-

moacoustic instabilities that are characterised by high-

amplitude oscillations caused by the feedback between

oscillations in pressure and heat release rate. These

oscillations lead to excessive vibration of structures

and, in extreme cases, major hardware damage.
The relationship between the heat release rate and the

acoustic field is a crucial element in modelling thermo-

acoustic instabilities. A common way to describe this

relationship is by the flame transfer function (FTF),

which is a frequency-domain concept, relating the (nor-

malised) rate of heat release to the (normalised) acoustic

velocity. The corresponding time-domain concept is the

impulse response (IR), which can be obtained from the

FTF by applying an inverse Fourier transform. The two

descriptions contain exactly the same information,1 but
may serve different purposes: The FTF is frequently used
in experimental settings because it is relatively straightfor-
ward to measure. The IR is more suitable for theoretical
studies, where insight into the influence of time-delayed
processes on the flame dynamics is a priority.

The FTF and IR are both linear concepts. They are
valid if the response of the flame to an excitation with a
given frequency and amplitude satisfies the following
criteria:

1. the response does not contain any frequency other
than the excitation frequency;
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2. the response amplitude is proportional to the exci-

tation amplitude.

These criteria are satisfied if the velocity amplitude

of the excitation is sufficiently small compared with the

velocity of the mean flow.
High-amplitude oscillations are an important phe-

nomenon in thermoacoustics. In order to model these,

the concept of the flame describing function (FDF) was

introduced byNoiray et al.2 and has since then been used

by a multitude of researchers in thermoacoustics.3–6 The

FDF is an extension of the FTF in that it also includes

the dependence on the amplitude (not just frequency).

However, it gives no information on new frequencies

that might be generated by nonlinear effects. The FDF

can be seen as a semi-nonlinear concept, which ignores

the generation of new frequencies. Nevertheless, it is a

powerful tool of great practical importance and has been

used by many researchers to model nonlinear effects,

such as limit cycle oscillations, hysteresis behaviour

and mode hopping.2,4,7–11

Of course, it is possible to apply an inverse Fourier

transform to any given FDF and transform it into the

time-domain. However, the physical interpretation of

this time-domain function is not obvious. Some

authors regard it as an ‘amplitude-dependent impulse

response’,6,10 but this is misleading. In fact, this time-

domain function is not an amplitude-dependent IR, if

one takes the literal meaning: the response to an

impulse with a given peak value (amplitude).
In the nonlinear regime, the direct correspondence

between FDF and IR as Fourier transform pair no

longer exists. This raises the following question: What

is the physical meaning of the Fourier transform part-

ner of the FDF? The current paper seeks to answer this

question.
To this end we develop a transformation tool which

makes it easy to switch between the time-domain and

frequency-domain. In both domains, the same set of

parameters appears in the mathematical representa-

tions. These parameters have a clear physical meaning,

and their number is quite small (typically 10–20). Our

starting point will be the well-known ns-law,12 which

relates the heat release rate linearly to a time-delayed

velocity (time-lag s) by a proportionality constant

(coupling coefficient n). We extend the ns-law in two

successive steps:

1. we introduce s-dependent coupling coefficients

involving a range of time-lags,
2. we introduce an additional amplitude-dependence.

Studies of time-lags and time-lag distributions go

back to 2001. A comprehensive review can be found

in Polifke.13 In the five paragraphs below, we give a
brief overview for the linear regime.

Polifke et al.14 used Lagrangian particle tracking to
find the histograms of fuel particles convected by the
flow from the nozzle to the flame front. By investiga-
ting different nozzle geometries, they found that an
elliptical premix nozzle produces a wider time-lag dis-
tribution with a smaller mean than other nozzles. The
IR of a swirl burner studied by Huber and Polifke15,16

clearly showed a distribution of time-lags around sev-
eral central values. These IRs were responses to
impulses in velocity and equivalence ratio.

Flohr et al.17,18 showed an approach to calculate the
FTF of a conical turbulent flame by assuming a time-
lag mechanism. They used steady-state CFD to calcu-
late the travel times of individual premix particles to
reach the flame surface to derive the FTF. The distri-
bution of their time-lags was a smooth curve, similar to
a superposition of two Gaussians, centred around two
peak values.

From the measured FTF of a swirl-stabilised indus-
trial flame, Schuermans19 developed a model with dis-
tributed time-lags. This model included the effects of
flame shape, diffusion and distributed fuel injection. In
a subsequent study of the same flame, Schuermans
et al.20 found that the distribution of time-lags is a
superposition of two Gaussians. The position of the
Gaussians along the time-lag axis turned out to corre-
spond to two different transport phenomena: fluctua-
tions in turbulence intensity and fluctuations in fuel
concentration.

Komarek and Polifke21 combined CFD with system
identification to study a swirl burner for impulse exci-
tation of the swirl number and velocity. They identified
different transport mechanisms (convective and acous-
tic), and from this insight they developed a simple ana-
lytical model for the impulse response in terms of three
Gaussian time-lag distributions, in both time- and fre-
quency-domains.

There are also several studies by industrial research-
ers who have found time-lag laws and time-lag distri-
butions. Krebs et al.22 measured the response of a
premixed swirl flame to forced pulsations of the
burner flow and found that it almost follows a simple
time-lag law. In the process of studying the acoustic
energy generation by a premixed swirl burner,
Gentemann and Polifke23 considered a measured
FTF and fitted a simple analytical model to it; this
model featured a superposition of two Gaussian distri-
butions and represented two transport phenomena
with individual time-lags and dispersion. Kaess
et al.24 described a laminar premix flame with the
same analytical model in order to perform a thermo-
acoustic stability analysis. Mensah et al.25 performed a
numerical study of the thermoacoustic modes in an
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industrial annular combustion chamber; for the FTF

they assumed a ‘r� s’ model, i.e. a single Gaussian

distribution (width parameter r, central time-lag s) of
time-lags. They then explored the effect of r on the

stability behaviour.
Studies of nonlinear flame dynamics with time-lag

distributions and amplitude-dependence are relatively

rare and recent.
Iurashev et al.6 extended the approach by Komarek

and Polifke21 into the nonlinear domain. Their FDF

data came from CFD simulations and comprised a

total of 16 data points (four excitation frequencies

with four excitation amplitudes). These data were

approximated analytically by a superposition of three

Gaussian functions with amplitude-dependent fitting

parameters.
Gopinathan et al.26 developed a conversion tool that

is rooted in the time-domain. It involves a superposi-

tion of Gaussian distributions containing physically

meaningful fitting parameters: prominent time-lags, as

well as the width and height of the distributions around

these time-lags. The same parameters appear in the

frequency-domain representation, which is obtained

analytically by Fourier transform. This frequency-

domain representation is then fitted to given FDF

data, and that way the amplitude-dependence of the

fitting parameters is ascertained. The method works

well if there is a small number of prominent time-lags

(no more than five), but not if the time-lags are distrib-

uted fairly evenly. A classic case of evenly distributed

time-lags is a long laminar flame. The dynamics of such

a flame is determined by perturbations that travel from

a reference position (typically the point where they are

generated) to a particular location at the flame surface.

This leads to an evenly distributed range of travel dis-

tances, and a corresponding evenly distributed range of

time-lags.
Semlitsch et al.10 calculated the FDF of flames

described by the nonlinear G-equation, assuming sev-

eral forcing mechanisms with different forcing frequen-

cies and amplitudes. They then expressed these FDFs

as a sum of time-lag terms with discrete time-lags. Each

term included a ‘time-delay constant’ (similar to a

coupling constant), which corresponded to a particular

time-lag. In order to get good accuracy, it was neces-

sary to include a large number of such terms (of the

order of 800).
There is still a need for a method to determine an

analytical approximation for a given flame response

that satisfies the following requirements:

1. It makes no a-priori assumptions about prominent

time-lags. This would address the limitation of the

method in Gopinathan et al.26

2. It can be fitted to imperfect FTF or FDF data, such
as data with poor frequency resolution. Methods
based on the Fourier transform are not a good
option in such a situation.

3. It has a relatively small number of fitting parameters
so that it can be built into a larger analytical model
(e.g. a network model) for a whole combustion
system. An early attempt at such an analytical
approximation can be found in Subramanian
et al.,27 who have used rational fitting functions
with a small number of parameters; these functions
are mathematically convenient, but have no physical
basis, and give unreliable results.

As mentioned earlier, the current paper aims to get a
physical understanding of the time-domain partner of
the FDF. An associated aim is to present a new method
by which a given FTF or FDF can be approximated
with a simple analytical expression, while satisfying the
requirements listed in the previous paragraph.

The paper is structured as follows. In Section 2, we
will develop our transformation tool. This will turn out
to have a practical advantage over the Fourier trans-
form: it can be tailored to scenarios where the available
FTF or FDF data are sparse and/or given at irregular
frequency intervals. We will validate our transforma-
tion tool in Section 3, where we apply it to a laminar
conical flame in the linear regime and use results from
the G-equation as benchmark. The nonlinear regime is
covered in Section 4. There we will demonstrate our
transformation tool by applying it to a conical flame
with two different models for the (high-amplitude)
velocity field that excites the flame. A summary of the
paper will be given in Section 5, together with conclu-
sions and recommendations.

2. Transformation tool between time-
and frequency-domain

2.1. Motivation

The procedure to convert a FTF, which is a frequency-
domain relation, into a heat release rate law, which is a
time-domain relation, is described in this section. We
assume that the FTF is known a priori, obtained
through measurements, numerical simulations or even
from analytical expressions.

The rationale behind a heat release rate law with a
distribution of time-lags is explained by the scenarios in
Figure 1(a) and (b). Figure 1(a) shows flow perturba-
tions travelling with uniform velocity towards an
extended flame; the flow perturbations do not all
cover the same distance and therefore arrive at the
flame front at different time instances, leading to a dis-
tribution of time-lags in the flame response. Figure 1(b)
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shows the case of a (convectively) compact flame
impinged on by flow perturbations with non-uniform
velocity; again, there is a distribution of time-lags –
in this case because of the different propagation
velocities. Generally, any unsteady behaviour of the
incoming mean flow can create a distribution of time-
lags in the system. Since the local heat release rate
fluctuations are functions of the local velocity fluctua-
tions, the coupling coefficient n must be a function of
the time-lag s, and we denote this by nðsÞ.

A generalised heat release rate law in the time-
domain can be written as

Q0ðtÞ
�Q�

¼ 1

schar

Z 1

�1
nðsÞ u

0ðt� sÞ
�u

ds (1)

where the (normalised) heat release rate fluctuations
(Q0ðtÞ= �Q) are related to the (normalised) acoustic veloc-
ity fluctuations (u0ðt� sÞ=�u) through a generalised
coupling coefficient n, which is not a constant, but a func-
tion of the time-lag s. n is a real number and can have a
positive or a negative value. schar is a characteristic time of
the system, for example, the time taken by the distur-
bance to travel from the base of the flame to its tip.

Owing to the causality condition, the heat release
rate fluctuations cannot occur before their cause (i.e.
the velocity perturbation), so only positive time-lags
are possible, and the lower integration limit in equation
(1) must be zero. For the upper limit, we assume that
there is a finite value smax which corresponds to the
maximum delay between the impulse (acoustic fluctua-
tions at the reference plane) and its response (heat
release rate fluctuations at the flame). In our analysis,
we use the maximum time-delay as the characteristic
time. Therefore, equation (1) can now be written as

Q0ðtÞ
�Q

¼ 1

smax

Z smax

0

nðsÞ u
0ðt� sÞ

�u
ds (2)

The corresponding FTF is obtained by Fourier
transforming equation (2) and then rearranging it in

the form of a ratio of normalised heat release rate fluc-
tuations to normalised velocity fluctuations in the
frequency-domain.

Though at this stage, we do not know the depen-
dence of n on s, we proceed with our analysis by assum-
ing that such a dependence exists. We assume a
hypothetical nðsÞ as illustrated by the red curve in
Figure 2, and approximate it by a piecewise constant
function illustrated by the blue curve. The integration
range ½0; smax� has been divided into k equal intervals of
width Ds, and n is uniform in each of these intervals.

Using this piecewise constant function for nðsÞ, we
can approximate the integral in equation (2) as a sum
of k integrals, i.e.

Q0
kðtÞ
�Q

¼ 1

smax

�
n1

Z Ds

0

u0ðt� sÞ
�u

dsþ n2

Z 2Ds

Ds

u0ðt� sÞ
�u

ds

þ � � � þ nk

Z kDs

ðk�1ÞDs

u0ðt� sÞ
�u

ds

�
(3)

where Q0
kðtÞ denotes the approximation of Q0ðtÞ by k

terms. The parameters smax and Ds are deduced from
the given FTF according to a selection procedure
described in Section 2.4. It should be noted that the
only unknowns in equation (3) are the coupling coef-
ficients n1, n2, . . ., nk. These coefficients are determined
from the given FTF through an error minimisation
technique, as described in Section 2.2.

(a) (b)

Figure 1. Mechanisms leading to a distribution of time-lags. (a) Extended flame; uniform velocity and (b) compact flame; non-uniform
velocity.

Figure 2. Schematic representation of the piecewise approxi-
mation of the coupling coefficient.



Since equation (3) is an approximation of the
heat release rate law in the time-domain, its Fourier
transform is an equivalent approximation in the
frequency-domain. The Fourier transform, when per-
formed analytically for each individual integral (see
Appendix 1), leads to

Q̂kðxÞ
�Q

¼ 1

smax
e�ixDs

2
2

x
sin x

Ds
2

� �
n1e

ixDs þ n2e
2ixDs þ � � � þ nke

kixDs
� �� 	

ûðxÞ
�u

(4)

The analytical expression for the FTF from equa-
tion (4) is

T kðxÞ ¼
Q̂kðxÞ

�Q



ûkðxÞ

�u

¼ 1

smax
e�ixDs

2
2

x
sin x

Ds
2

� ��
n1e

ixDs þ n2e
2ixDs

þ � � � þ nke
kixDs

�
(5)

where T kðxÞ denotes the FTF corresponding to equa-
tion (3). We will refer to it from now on as the ‘ana-
lytical approximation’.

2.2. Method to determine the coupling coefficients

The coupling coefficients n1, n2, . . ., nk are determined
by minimising the discrepancy between the original
FTF, T ðxÞ and its analytical approximation, T kðxÞ.
We express this discrepancy by the mean square error
(MSE), given by

�k ¼
1

xmax

Z xmax

0

½T ðxÞ � T kðxÞ�2dx (6)

in the frequency range ½0;xmax�, where xmax is taken as
the maximum angular frequency for which the FTF
data are available. In practice, FTFs tend to decay
strongly beyond a certain cut-off frequency (low-pass
filter), and often FTF data are available for the whole
frequency range of interest, i.e. above this cut-off fre-
quency. Since the MSE in equation (6) is integrated
over x, the number of parameters k is not limited by
the number of data points available in the range
½0;xmax�. However, a higher number of data points
will improve the output of the MSE minimisation. A
generic example of an FTF is shown in Figure 3,
with the gain plotted in Figure 3(a) and the phase in
Figure 3(b). The markers symbolise the data available,
and using these data we intend to evaluate the coupling
coefficients n1, n2, . . ., nk by the minimisation of the

MSE. The minimisation is done with respect to the

coupling coefficients, i.e. we evaluate @�k=@n1 ¼
0; @�k=@n2 ¼ 0; . . . ; @�k=@nk ¼ 0. This leads to a set

of k simultaneous equations that can be represented

in matrix form as

A11 A12 � � � A1k

A21 A22 � � � A2k

..

. ..
. . .

. ..
.

Ak1 Ak2 � � � Akk

2
6664

3
7775

n1
n2
..
.

nk

2
6664

3
7775 ¼

B1

B2

..

.

Bk

2
6664

3
7775 (7)

The matrix elements Apq and the vector elements Bp

are given by

Apq ¼
Z xmax

0

jUðxÞj2cosðjp� qjxDsÞdx; p; q ¼ 1; . . . ; k

(8)

and

Bp ¼
Z xmax

0

<fT ðxÞU�ðxÞe�p ixDsgdx; p ¼ 1; . . . ; k

(9)

where

UðxÞ ¼ 1

smax
e�ixDs

2
2

x
sin

xDs
2

� �
(10)

(a)

(b)

Figure 3. Gain and phase of a generic FTF. (a) Gain and (b)
phase. Markers: mock data. FTF: flame transfer function.
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and U�ðxÞ is its complex conjugate. These elements are
best calculated numerically (e.g. by using the trapezoi-
dal rule).

2.3. Comparison of nðsÞ distribution and IR

The FTF T ðxÞ is the frequency-domain representation,
and the unit IR, h(t) is the time-domain representation
of the flame dynamics.1 For a linear flame, they are
directly related by Fourier transform: T ðxÞ ¼ F½hðtÞ�.
Our time-lag distribution nðsÞ is directly proportional to
the unit IR; this can be seen by applying an impulsive
velocity excitation

u0ðt� sÞ
�u

¼ dðt� sÞ (11)

to the flame described by equation (1)

hðtÞ ¼
Z 1

�1

nðsÞ
smax

dðt� sÞds ¼ nðtÞ
smax

� nðtÞ (12)

In the nonlinear regime, the situation is less straight-
forward. The FDF T ðx; aÞ (a is the amplitude of the
excitation velocity) is a simplified frequency-domain
representation of the flame dynamics in that new fre-
quencies generated by nonlinear effects are ignored.
Our time-lag distribution nðsÞ is the time-domain
representation of this simplified flame description.
This is not to be confused with the true IR of a non-
linear flame.

2.4. Practical considerations for the choice of
smax and Ds

The quantities smax and Ds have to be chosen carefully,
and in this section we give guidelines on how to safe-
guard against spurious results.

As explained in Section 2.1, we assume that smax is
the maximum time-delay between the impulse and its
response. This is a finite time interval. In many cases,
smax is the time it takes an impulse to travel from the
base of the flame to the tip of the flame; an example is
the laminar linear flame studied by Blumenthal et al.28

However, smax can be larger than the travel time along
the flame; an example is the flame studied by Albayrak
et al.,29 where dispersion prolongs the flame response.
In any case, smax is within a range, which has a definite
lower bound and some finite upper bound.

Information about travel times is often not avail-
able, and then the question arises how smax can be
determined just from the FTF or FDF data. An initial
estimate for smax can be obtained from the slope of the
phase curve of the FTF near x¼ 0 (see dashed line in
Figure 3(b)). If the resulting T kðxÞ does not match the

original FTF, then this is a sign that the initial smax was
an underestimate, and the calculation should then be
repeated with a higher value. If the T kðxÞ resulting
from the initial estimate for smax does match the orig-
inal FTF well, then this initial estimate may either be a
good value or an overestimate. An easy way to check
this is to examine the nk values resulting from the
approach described in Section 2.1. If these are zero
beyond a certain k value kmax, then this is an indication
that smax can be reduced to kmaxDs.

The time interval Ds also needs to be chosen with
care – in order to avoid aliasing. This phenomenon
can occur when a finite number of data points are trans-
formed between the frequency-domain and the time-
domain. It manifests itself by a distortion of
the transformed data and is due to a mismatch between
the highest frequency in the signal and the sampling
interval in the time-domain. The Nyquist theorem gives
a criterion to avoid this mismatch: the sampling frequen-
cy, Fs ¼ 1=Dt (Dt is the sampling interval) has to satisfy

Fs � 2� fmax (13)

fmax is the maximum frequency for which FTF data are
available and it corresponds to the angular frequency
xmax appearing in equation (6) and Figure 3.
The sampling interval Dt has to satisfy

Dt 	 1

2fmax
(14)

and hence our time-lag interval Ds must not be less
than Dt.

3. Validation against a linear conical flame

3.1. Test data

In order to illustrate our method, we apply it to a fun-
damental flame: a conical flame which is perfectly pre-
mixed and laminar. Conical flames have been studied
by several researchers, most notably by Schuller et al.30

who solved the G-equation analytically and derived
explicit expressions for the FTFs. Using these FTFs,
we will now validate our method by evaluating the
approximations to the FTFs and subsequently by esti-
mating the corresponding heat release rate laws.

Conical flames are formed when the flame (or the
combustion zone) anchors on the rim of a circular
burner. This is illustrated schematically in Figure 4.
Since the burner set-up is axisymmetric, only one half
of the cross-section is shown. Here, �u is the mean flow
velocity of the fuel–air mixture, SL is the laminar flame
speed (which is a constant for a given mixture) and R is
the radius of the burner. The steady-state position of
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the flame is determined by the kinematic balance
between the laminar flame speed SL and the flame-
normal component �V of the mean flow velocity �u; the
half-angle a of the flame is given by a ¼ sin�1ðSL=�uÞ.
Small flame angles represent long pointed flames and
large flame angles represent short flames, and as the
flame angle tends to 90
, the flame becomes flat.

Schuller et al.30 found the FTFs of conical flames
subjected to a convective velocity perturbation

uðy; tÞ ¼ �u½1þ �sinðxt� kyÞ� (15)

vðy; tÞ ¼ 0 (16)

where the convecting wave travels from the base of the
flame to its tip with a wavenumber k ¼ x=�u, and � is
the amplitude of the velocity perturbation. This is an

axial convective velocity perturbation where the veloc-

ity fluctuation in the radial direction is not considered.

The corresponding FTF is given by30

T ðxÞconical ¼
2

x2
�

1

1� cos2a

�
1� expðix�Þ þ

expðix�cos
2aÞ � 1

cos2a

�
(17)

wherex� ¼ xR=ðSLcosaÞ is called the reduced frequency.
The test data (T ðxÞconical) for a conical flame of radius

R¼ 11mm and a flame speed SL ¼ 0:39m=s were gener-
ated for 20 data points at regular intervals for a range of

reduced frequencies (x*¼ 0.1, . . . , 100) and for three

different flame angles (a ¼ 20
; 45
 and 88
).

3.2. Results from our method in the time- and

frequency-domain

We apply our analytical approximation to the FTFs of

conical flames given in equation (17). The parameters

smax and Ds described in Section 2.4 are evaluated from

the original FTFs with the value of smax chosen to be

the time taken by a uniform velocity perturbation to

travel along the flame front (characteristic time of con-

ical flame), given by spert ¼ R=ðSLcosaÞ28 and divided

into 16 divisions (Ds ¼ smax=16). The number of divi-

sions was chosen according to the criteria described in

Section 2.4. The analytical approximation of the FTFs

of the form shown in equation (5) and their corre-

sponding nðsÞ distributions for conical flames subjected

to the perturbations described in equations (15) and

(16) are shown in Figure 5(a) to (c) for three different

flame angles a ¼ 20
; 45
 and 88
. The gain of the FTF

(Figure 5(a)) and the phase of the FTF (Figure 5(b))

are plotted against the reduced frequency x�, where the

(a) (b) (c)

Figure 5. Results for the conical flame with different flame angles a subjected to convective perturbation. (a) Gain and (b) phase of
the FTF as a function of x� and (c) time-lag distribution. In figures (a) and (b), markers represent the gain and phase of the FTF
calculated using equation (17) and the curves represent the gain and phase of the FTF calculated using the analytical approximation.
FTF: flame transfer function.

Figure 4. Schematic representation of a conical flame.
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markers denote the FTF data obtained using equation
(17) and the curves denote the analytical approxima-
tion (T k). The plots show that there is good agreement
between the two data sets.

The nðsÞ distributions associated with the analytical
approximation of FTFs for the conical flame and three
flame angles are plotted in Figure 5(c), where the x-axis
is the time-lag normalised with respect to smax. We
observe that the overall trend in the nðsÞ distribution
is such that at first the value of n increases with increas-
ing s=smax, reaches a maximum, and then decreases.
For small flame angles, the peak in the nðsÞ distribution
is at a larger time-lag, and the peaks shift towards
smaller time-lags as the flame angle increases. The
peak in the nðsÞ distribution points to the most prom-
inent time-lag associated with the flame and can be
considered as the time taken for any perturbation, orig-
inating at the burner rim to convect along the full
length of the flame front. Small flame angles represent
long flames and hence the time-lags will be larger. This
is the reason why the peaks in the nðsÞ distribution shift
towards smaller time-lags as the flame angle increases.
For flame angles close to 90



(e.g. a ¼ 88
), the convec-

tive time is very small and therefore the effects of con-
vective perturbation are not visible in the nðsÞ
distribution. Detailed explanations and physical insight
into the flame dynamics can be found in Blumenthal
et al.28 and Preetham et al.31

4. Application to a conical flame in the
nonlinear regime

4.1. Background

So far in our analysis, we had considered only linear
flames where only one FTF existed for every flame,
irrespective of the amplitude of the exciting velocity
fluctuation. In this section, we extend our analysis
and apply the proposed analytical approximation to
nonlinear flames that are characterised by a FDF, i.e.
by a collection of FTFs for different amplitudes of
excitation.

In order to illustrate the application of our analytical
approximation to a FDF, we consider a conical flame
described by the nonlinear G-equation. We generate the
test data with the G-equation solver tool GFLAME

32 for
a range of frequencies (x� ¼ 0, . . ., 80) and a range of
amplitudes (� ¼ 0.02, . . ., 0.68), where � ¼ a=�u is the
ratio between velocity amplitude and mean flow veloci-
ty. The flame is a methane/air flame described by the
following parameters: / ¼ 0:95 (equivalence ratio), R ¼
12:5mm (radius of the tube anchoring the flame or the
flame base radius), �u ¼ 1:26m=s (mean flow velocity
upstream of the flame); the flame angle for this case is
a ¼ 18:1
. These parameters simulate the flame studied

experimentally by Karimi et al.,33 who provided physical

insight into the nonlinear mechanisms of their flame; we

will refer to that in the next sections. We consider only

fluctuations in velocity and neglect fluctuations in quan-

tities like equivalence ratio and curvature dependent

flame speed (for details see Lieuwen34). In the nonlinear

regime, we apply our analytical approximation to flames

subjected to two different velocity perturbations, 1-D

and 2-D velocity fields. Using the FDF obtained from

GFLAME, we now construct the corresponding analytical

approximations of the FDFs obtained for the two veloc-

ity models.

4.2. Flame excited by 1-D velocity field

Our analytical approximation is first applied to a FDF

using a 1-D velocity model that considers axial velocity

perturbations given by equations (15) and (16). The gain

and phase from GFLAME and the analytical approxima-

tion for this velocity model are compared in Figure 6(a)

and (b), respectively. The markers denote the simulation

results from GFLAME and the curves denote their corre-

sponding analytical approximations. The plots show

good agreement between the original FDF and the

analytical approximation of FDF. However, the phase

predicted for higher x� at high � shows some deviation

from the simulation values.
The nðsÞ distribution of the FDF is plotted in

Figure 6(c) where the x-axis shows the time-lags and

the y-axis shows the coupling coefficient nðsÞ. The thin
dotted lines represent the discretised or the piecewise

nðsÞ distribution obtained using our analytical approx-

imation and the solid curves represent their smooth-

ened version to highlight the shape of the nðsÞ
distribution.

The number of divisions k (in equation (3)) in smax is

taken as 24 (Ds ¼ smax=24) and this satisfies the criteria

described in Section 2.4. The value of smax was chosen

in a two-step procedure: first, the nðsÞs were calculated
with smax ¼ spert ¼ R=ðSLcosaÞ, but this value of smax

did not produce a good approximation of the FTFs.

The value of smax was then increased to 2R=ðSLcosaÞ,
which gave good approximations of all the individual

FTFs shown in Figure 6. From Figure 6(c), we observe

that the nðsÞs, when compared to the distribution in

Figure 5(c), have dispersion29 as the amplitude �
increases, i.e. the time instant beyond which nðsÞ
remains zero increases with amplitude as opposed to

the fixed value of spert ¼ R=ðSLcosaÞ in Figure 5(c).

Therefore, we have to choose a higher smax that encom-

passes the whole range of dispersed nðsÞs. The discrep-
ancy in the phase at x� values above 20 is due to the

low gain (close to zero) at these x� values which make

the phase calculations quite inaccurate.
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4.3. Flame excited by 2-D velocity field

In this section, we apply our analytical approximation
to a FDF using the 2-D velocity model that considers
both the axial and radial perturbations in the velocity.
Here, the axial velocity perturbation is given by equa-
tion (15) and the radial component v(y, t) is determined
by solving the incompressible continuity equation

@v

@x
þ @u

@y
¼ 0 (18)

Figure 7(a) and (b) shows the gain and phase of the
FTFs for this 2-D velocity model at the different ampli-
tudes considered. The markers denote the simulation
results from GFLAME and the curves denote their cor-
responding analytical approximations. The plots show
good agreement between the original FDF and the ana-
lytical approximation. An exception is the phase at x�
values above about 45 for � ¼ 0:02 where the analytical
approximation over-predicts the phase. This is due to
the low gain values at those x� as discussed in the 1-D
velocity case. Nevertheless, the agreement is very good

for low x� values. The nðsÞ distribution of the FDF is

plotted in Figure 7(c) and in this figure too, the

thin dotted lines represent the discretised or the piece-

wise nðsÞ distribution obtained using our analytical

approximation and the solid curves represent their

smoothened version to highlight the shape of the nðsÞ
distribution. We use smax ¼ 2R=ðSLcosaÞ for the 2-D

velocity model also, as discussed in Section 4.2.

4.4. Discussion

For the lowest amplitude considered (� ¼ 0:02) in the

1-D velocity model, the nðsÞ in Figure 6(c) has a behav-

iour similar to that of the linear nðsÞ obtained for a ¼
20
 in Figure 5. For higher amplitudes, we observe

both dispersion as well as a reduction of the peak

of nðsÞ as � increases. The peak of the nðsÞ curves in

Figure 6(c) shifts to lower time-lags as � increases. The

nðsÞ for � ¼ 0:02 for the 1-D velocity model in Figure

6(c) is comparable to the linear results in Figure 5.

However, the nðsÞ distributions for the 1-D velocity

model and the 2-D velocity model are not comparable

(a) (b)

(c)

Figure 6. Results for the conical flame with different amplitudes � of the 1-D velocity excitation model. (a) Gain and (b) phase of the
FTF as a function of x� and (c) time-lag distribution. In figures (a) and (b), markers represent the gain and phase of the FDF from
GFLAME and the curves represent the gain and phase of the FDF calculated using the analytical approximation. The flame angle is
a ¼ 18:1
. FTF: flame transfer function; FDF: flame describing function.
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due to the axial velocity component in the 2-D velocity

model.
For the two low-amplitude cases in the 2-D velocity

model, � ¼ 0:02 and 0.15, nðsÞ in Figure 7(c) increases

initially with s, reaches a maximum, switches sign to a

negative minimum and then increases to zero as s
approaches smax. For all other � values, nðsÞ in Figure

7(c) increases initially and then decreases gradually to

zero as s approaches smax. It can also be observed that

the peak value of nðsÞ moves to lower time-lags as the

perturbation amplitude increases. This behaviour of

nðsÞ can be explained with the experimental observa-

tions of Karimi et al.33 (in Figure 14 and Section 3.3.2

of their paper). In a conical flame, any distortions of

the flame front have the greatest impact near the flame

tip, where flame front sections are very close to one

another. The flame tip is associated with the longest

travelling times and the largest time-lags. As the ampli-

tude of the flame front distortions increases, their

impact spreads to regions, where the flame is wider

and which take less time to reach than the flame tip.

As a result, the prominent time-lags shift to lower

values as the amplitude is increased. This feature is

captured well by our analytical approximation and is

evident in Figure 7(c). Another trend in the flame

behaviour was observed by Karimi et al.33 when they

increased the frequency of the perturbations, while

keeping the amplitude constant. An increase in fre-

quency leads to a more curvy flame surface. Again,

the impact, which is greatest at the flame tip, spreads

to wider regions of the flame that are reached more

quickly by the perturbations. This phenomenon leads

to a saturation of the phase of the FTF as the frequen-

cy is increased. Our analytical approximation captures

this effect well, as can be seen in Figure 7(b).
Therefore, the nðsÞ distribution predicted using our

analytical approximation gives good insight into the

behaviour of the flame in the nonlinear regime and

also the behaviour in the linear regime as discussed in

Section 3.2. Our analytical approximation captures the

key flame dynamics which can now be easily incorpo-

rated into low-order network models, both in the fre-

quency as well as in the time-domain. This in turn

facilitates faster stability predictions and parametric

studies in combustion systems prone to thermoacoustic

instabilities.

(a) (b)

(c)

Figure 7. Results for the conical flame with different amplitudes � of the 2-D velocity excitation model. (a) Gain and (b) phase of the
FTF as a function of x� and (c) time-lag distribution. In figures (a) and (b), markers represent the gain and phase of the FDF from
GFLAME and the curves represent the gain and phase of the FDF calculated using the analytical approximation. The flame angle is
a ¼ 18:1
. FTF: flame transfer function; FDF: flame describing function.
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5. Conclusions

The well-known ns-law, Q
0ðtÞ
�Q

¼ n u0ðt�sÞ
�u , and correspond-

ing FTF, T ðxÞ ¼ neixs, describe the flame response in

terms of a single time-lag s and coupling coefficient n.

We extended this description by introducing multiple

time-lags with corresponding coupling coefficients n1,

n2, n3, . . .. The coupling coefficients form a set of

parameters that appear both in the time-domain and

frequency-domain description, and they provide ana-

lytical expressions for the flame response. We intro-

duced a tool with which these analytical expressions

can be determined, from FTF data in terms of gain

and phase at a range of frequency values (obtained,

for example, from experiment). This description is

physically meaningful in that it captures transport phe-

nomena and their effect on the flame response. We val-

idated our method by applying it to a laminar conical

flame, the FTF of which is known,30 and found that it

was very accurate. We subsequently applied it in the

nonlinear regime, to study the flame response to exci-

tation not only with different frequencies, but also with

different amplitudes. Test data were generated numeri-

cally, in form of a FDF, using the code GFLAME.32,35,36

Our method then gave us an analytical approximation

of the GFLAME results, both in the time- and frequency-

domain. The time-domain results revealed that the set

of coupling coefficients n1, n2, n3, . . . is dependent on

the amplitude of excitation. From this we gained

insight into how the excitation amplitude affects the

flame response. In particular, we observed that the

peak in the nðsÞ curve shifts to lower s-values as

the amplitude was increased; this suggests that trans-

port phenomena take place over shorter distances.
Incidentally, our findings from GFLAME are in line

with the experimental observations by Karimi et al.,33

who visualised a laminar conical flame, which they had

excited with various frequencies and amplitudes. Our

description of the nonlinear flame response in terms of

amplitude-dependent coupling coefficients offers new

physical insight into experimental observations, such

as those in Karimi et al.33

Our approach provides a convenient tool to find

analytical expressions for a nonlinear flame response;

this is useful in several situations:

• The flame response can be incorporated easily into

low-order models, in order to make stability predic-

tions of thermoacoustic systems.
• If FDF data are missing for certain amplitude or

frequency values, the gaps in the data can be inter-

polated in a natural way.
• It is also possible to extrapolate FDF data to large

frequency and amplitude values.

However, the method introduced in this paper is

more than a convenient modelling tool: it also provides

a physical interpretation of the time-domain equivalent

of the FDF. The current understanding of nonlinear

flame responses in the time-domain is incomplete: in

the linear regime, the IR is the time-domain equivalent

of the FTF; in the nonlinear regime, however, this

equivalence is lost. The gap is filled by our representa-

tion of the flame response by time-lag dependent cou-

pling coefficients. We have demonstrated that this

representation is equal (apart from a constant factor)

to the IR in the linear regime, we have extended it to

the nonlinear regime and we have shown that it is the

time-domain equivalent of the FDF. Moreover, our

representation is physically meaningful in that it gives

insight into how the amplitude of excitation modifies

transport processes. We therefore expect that our

method can be applied to any flame whose response

is affected by convected perturbations.
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Appendix 1. FTF for the generalised heat release rate law

In order to convert the approximate heat release rate law of equation (3) into the frequency-domain, we apply the
Fourier transform (denoted by F) to both sides of the equation

F
Q0ðtÞ
�Q

� �
¼ 1

smax

�
F n1

Z Ds

0

u0ðt� sÞ
�u

ds

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term 1

þF n2

Z 2Ds

Ds

u0ðt� sÞ
�u

ds

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term 2

þ � � �

þF nk

Z kDs

ðk�1ÞDs

u0ðt� sÞ
�u

ds

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term k

� (19)

where t is the independent Fourier transform variable. The Fourier transform of the individual terms can be
calculated analytically. For Term 1, we get

F n1

Z Ds

0

u0ðt� sÞ
�u

ds

 !
¼ n1

Z Ds

0

1

�u
F½u0ðt� sÞ�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼ûðxÞeixs

ds ¼ n1
ûðxÞ
�u

Z Ds

0

eixsds (20)

The last integral in equation (20) is straightforward to calculate

Z Ds

0

eixsds ¼ 1

ix

h
eixDs � 1

iDs
0

¼ eixDs=2
2

x
sin

xDs
2

� �
(21)

Therefore

F n1

Z Ds

0

u0ðt� sÞ
�u

ds

 !
¼ n1

ûðxÞ
�u

eixDs=2
2

x
sin

xDs
2

� �
(22)

In the same way, we obtain for Term 2

F n2

Z 2Ds

Ds

u0ðt� sÞ
�u

ds

 !
¼ n2

ûðxÞ
�u

e3ixDs=2
2

x
sin

xDs
2

� �
(23)
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and for Term k

F nk

Z kDs

ðk�1ÞDs

u0ðt� sÞ
�u

ds

 !
¼ nk

ûðxÞ
�u

eðk�1=2ÞixDs 2

x
sin

xDs
2

� �
(24)

Hence, the complete Fourier transform of equation (19) reads

Q̂kðxÞ
�Q

¼ 1

smax
e�ixDs

2
2

x
sinðxDs

2
Þ½n1eixDs þ n2e

2ixDs þ � � � þ nke
kixDs�

� 	
ûðxÞ
�u

(25)
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