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Abstract

Generalized behavior is a long standing goal for evolution-
ary robotics. Behaviors for a given task should be robust to
perturbation and capable of operating across a variety of envi-
ronments. We have previously shown that Lexicase selection
evolves high-performing individuals in a semi-generalized
wall crossing task–i.e., where the task is broadly the same,
but there is variation between individual instances. Further
work has identified effective parameter values for Lexicase
selection in this domain but other factors affecting and ex-
plaining performance remain to be identified. In this paper,
we expand our prior investigations, examining populations
over evolutionary time exploring other factors that might lead
to generalized behavior. Results show that genomic clusters
do not correspond to performance, indicating that clusters of
specialists do not form within the population. While early
individuals gain a foothold in the selection process by spe-
cializing on a few wall heights, successful populations are
ultimately pressured towards generalized behavior. Finally,
we find that this transition from specialists to generalists also
leads to an increase in tiebreaks, a mechanism in Lexicase,
during selection providing a metric to assess the performance
of individual replicates.

Introduction
Robotic systems should exhibit robust behaviors that are re-
silient to perturbation and operate effectively across a wide
variety of conditions. However, realizing these goals is a
continuing challenge from an algorithmic standpoint. In this
paper, we expand our earlier investigation into Lexicase Se-
lection in the context of evolutionary robotics (ER). Lexi-
case is a many-objective selection operator (Spector, 2012)
which we applied as part of a generational genetic algo-
rithm (GA) to an established wall-crossing task (Moore and
Stanton, 2017). Figure 1 illustrates this generalized con-
trol problem where individuals are challenged to express a
gait capable of reaching a target position by crossing a wall
whose height varies on a per-trial basis. Our initial investi-
gation demonstrated that a GA with Lexicase selection reli-
ably discovered generalized controllers capable of crossing
the majority of wall heights, significantly exceeding the per-
formance of custom algorithms designed for the task (ibid.)

We then attempted to identify the underlying mechanisms
responsible for the high performance of Lexicase in this

Figure 1: The wall crossing task examined in this study orig-
inally introduced in Stanton and Channon (2013). The ani-
mat must cross a wall of varying height to reach the target
cube.
wall-crossing task (Moore and Stanton, 2018). Two key
factors contributing to the success of Lexicase were iden-
tified. First, effective Lexicase parameter configurations ex-
perience an increasing frequency of tiebreaks. That is, if two
or more individuals are tied after going through all objec-
tives considered during the selection event, a random selec-
tion from the tied set of individuals is performed. Tiebreak
events encourage an increase in population diversity be-
cause the choice is not based on performance. With a suf-
ficient number of environments (>= 5) considered during
a selection event, the frequency of tiebreaks increases over
time in effective replicates. The second factor is that high-
performing individuals evolve in populations that settle into
a specific range of population diversity. Still, as we demon-
strated in Moore and Stanton (2019), tiebreaks appear to be
one of the key factors of Lexicase selection. These exper-
iments pushed the limits of Lexicase to understand when
it breaks down. Lexicase exhibits a surprising resilience,
maintaining high performance even when the range of wall
heights considered in a selection event is heavily restricted
to only a narrow band of adjacent wall heights. Under these
constraints, tiebreaks continue to increase over time, but
their correlation to performance breaks down as the search
is biased towards small areas of the objective space.

The two prior investigations into Lexicase’s effectiveness
explored performance metrics aggregated across many repli-
cates and their effect on population diversity. Another direc-
tion is to examine population genetics and the performance
of ancestral populations across the 100 wall heights over
the course of evolution identifying trends that might indi-
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cate successful versus unsuccessful conditions. Here, we
look for possible speciation in genome space. We hypothe-
size that since Lexicase evolves specialists (Pantridge et al.,
2018), individuals that are high performing in one or a lim-
ited set of objectives, clusters will form in genome space
exhibiting similar performance characteristics to each other
but different from those of other clusters. Second, we eval-
uate performance of populations at different points in evo-
lution to see how individuals, and the populations at large,
transition from specialists to generalists.

In this paper, we expand our investigation further on data
originally reported in Moore and Stanton (2018). We focus
on exploring the assumption that initial populations contain
specialists, individuals whose performance is poor on all
but a few task configurations. These individuals may then
begin to produce offspring that carry this genetic informa-
tion forward, adding additional competencies resulting in a
more general capability that comes to dominate the popu-
lation. Alternatively, specialist genetic information may be
ephemeral and persist in the population only until generalists
evolve that can out-compete specialists. We examine ances-
tral populations over evolutionary time to determine what
features arise that could indicate the procession of evolving
species from sparse specialists to converged generalists. We
look specifically at two areas. First, whether clusters of indi-
viduals (putative sub-species) in genotype space correspond
with clusters in performance space (indicating specialists)
and whether changes in these clusters over evolutionary time
are indicative of the emergence of generalists in the popula-
tion. Second, we consider whether the number of tiebreaks
provide insight into the transition of species from being pri-
marily specialists to primarily generalists.

Results of this paper are as follows. First, we find that in-
dividuals clustered by genomes do not exhibit similar perfor-
mance, in contradiction of our initial hypothesis. There are
also no apparent performance differences between clusters.
Instead, populations transition from individual specialists to-
wards generalized wall crossing behavior over the course of
5,000 generations. We also find additional evidence sup-
porting earlier observations that a high number of tiebreaks
is indicative of successful behavioral generalization.

Background and Related Work

Evolutionary robotics (Nolfi and Floreano, 2000) applies
evolutionary principles to the optimization of robotic sys-
tems. ER applications include legged locomotion con-
trol (Baydin, 2012; Clune et al., 2009), morphological
optimization (Paul and Bongard, 2001), and the transfer
of controllers to reality (Ruud et al., 2016; Koos et al.,
2010) among others. In many cases, ER approaches
are moving beyond single objective fitness metrics to en-
hance the resilience, robustness, and generalizability of con-
trollers (Pinville et al., 2011). For example, a legged animat
might typically be assessed on locomotive performance by

using distance traveled as the primary metric, but secondary
objectives such as efficiency can also be considered if mul-
tiple objectives are employed (Moore and McKinley, 2016).
Other robust controllers consider evolving multiple behav-
iors for a single robotic platform (Doncieux and Mouret,
2013).

These pursuits of robustness (Lehman et al., 2013),
resilience (Kriegman et al., 2019), behavioral diversity
and generalized behavior thus involve multi-objective (Deb
et al., 2002) or many-objective algorithms like Lexicase se-
lection (Spector, 2012) that evaluate performance of individ-
uals on more than one metric. Generalized behavior involves
the expression of multiple robust behaviors, for example
forward locomotion, turning, and reversing (Cully et al.,
2015). In this paper, we continue to investigate the semi-
generalized, many-objective task explored in Stanton and
Channon (2013) and Moore and Stanton (2017, 2018, 2019)
wherein individuals evolve to express a robust behavior ca-
pable of crossing a wall of varying heights with the same
controller. We consider the behavior to be semi-generalized
as individuals are evolved on different wall heights, each
height constituting a unique objective. However, the over-
all goal for all objectives is similar, each being a variant of
a general wall-crossing task, thus the composite problem re-
quires generalization.

In our earliest work to address the generalized wall-
crossing task, individuals were exposed to a variety of objec-
tives over evolutionary time, according to a number of dif-
ferent presentation strategies (Stanton and Channon, 2013).
It was found that commonly used strategies such as random
presentation of the individual objectives are inferior to cus-
tom strategies that take into account linkage between wall
heights. In these strategies, evolutionary pressure to adapt
is thus maintained, whilst ensuring that species do not for-
get previously learned behaviors that address specific wall
heights. However, these strategies all used single-objective
selection mechanisms, albeit with the full spectrum of task
parameterisations explored through environmental change
over evolutionary time. In contrast, Lexicase accommodates
a number of objectives simultaneously during a single se-
lection event. The generalized wall-crossing task provides
a problem which has been well explored in other work, and
one that decomposes easily into the sub-components neces-
sary to examine the application of Lexicase selection.

Methods
Quadrupedal Animat Figure 3 shows a wireframe of the
animat including joint ranges of motion. The animat has 12
degrees of freedom (DOF) with 2-DOF hinges in the hip and
1-DOF hinges at the knee. The hips can sweep horizontally
and extend the legs from parallel with the ground to vertical.
When the legs are fully vertical, the maximum wall height
is 67% of total leg length. In practice, the wall is typically
higher relative to the animat as the legs are flexed during
locomotion lowering the torso.
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Figure 2: To-scale front and top schematics of animat mor-
phology with legs at various positions within their range of
motion. Figure adapted from Moore and Stanton (2019).

Animat’s Environment The quadrupedal animat walks
on a flat high-friction surface with a target placed 10 body
lengths in front of the animat’s starting position. A wall
is placed between the animat and the target. Prior to
a simulation, wall height is determined from 100 possi-
bilities. Heights range from almost non-existent (< 1%
of the animat’s extended leg) to a maximum height of
67% of the animat’s leg length. The Open Dynamics En-
gine (ODE) (Smith, 2013) handles physics in the simula-
tion including: friction between the animat and the surface,
operation of hinges connecting various components of the
quadruped, and collisions between the various rigid bodies
in the simulation.

Figure 3: To-scale schematic of animat (left and top), target
(right) and wall (centre and front), illustrating relative sizes
and positions. Wall is shown at maximum height. Figure
adapted from Moore and Stanton (2019).

Controller Controllers are Feed-Forward Artificial Neu-
ral Networks (ANN) with 16 inputs, 12 hidden nodes and
12 outputs. Table 1 lists the inputs providing the animat
with: periodic signals promoting regular oscillating move-
ment, the animat’s position relative to the target, and feed-
back on the current state of the 12 leg joints. Genomes con-
sist of 336 evolved weights (16 inputs * 12 hidden nodes +
12 hidden nodes * 12 outputs).

1 Oscillator: sin(2πt)

2 Oscillator: cos(2πt)

3 Animat Balance Angle

4 Animat Orientation to Target

5–12 Hip Joint Angles

13–16 Knee Joint Angles

Table 1: ANN controller inputs.

Wall Crossing Task Each wall height is a unique objec-
tive. An individual animat’s distance from the target at the
end of simulation is the fitness for one objective. Within a
generation, individuals are simulated only on the environ-
ments drawn for the Lexicase selection step. In Moore and
Stanton (2018), we found that 10 environments per genera-
tion is sufficient to select an individual to be a parent. The
analysis conducted in this study therefore samples 10 envi-
ronments during the Lexicase selection step. If there is a tie
after 10 environments, a tiebreak occurs.

Evolutionary Algorithm with Lexicase Selection Evo-
lutionary runs employ a generational genetic algorithm run
for 5,000 generations with a population of 50 individu-
als. Offspring are created from two parents using one-point
crossover with a gene mutation frequency of 2

GenomeLength .
Parents are selected each generation using Lexicase selec-
tion where performance in up to 10 environments is consid-
ered. An individual selection event samples a set of 5 poten-
tial parents, comparing them based on the shuffled order of
the 10 selected environments. The best potential parent for
the first environment is identified, and other potentials are
considered “tied” if they are within 10% of performance.
Any tied individuals are then compared on the second en-
vironment with a similar tie consideration. If two or more
potential parents are tied in all 10 environments, a tiebreak
occurs. A tiebreak is a random event where one of the re-
maining potential parents with similar performance across
all 10 environments is selected. For a full description of
the Lexicase algorithm employed in this paper we refer the
reader to Moore and Stanton (2017).

Clustering In Genome Space Population genetics over
evolution are considered to see if there are characteristics
in the population that indicate the effectiveness of Lexicase.
We evaluate genetics by clustering populations. Genomic
and performance information across all 100 wall heights
of the population is logged every 5 generations. Next, we
perform a two-step dimensionality reduction of the genome
space. First, a principal component analysis (PCA) captur-
ing 95% of the variation in the replicate’s population. This
typically reduces dimensionality from 336 genes down to
10-20 dimensions depending on the replicate. The PCA-
reduced genome dataset is then run through the t-SNE algo-
rithm (Maaten and Hinton, 2008) with parameters: 2 com-
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ponents, n dimensions, and perplexity of 5 for the genome
space, reducing dimensionality to 2 dimensions suitable for
visualization. n dimensions indicate how many dimensions
are the result of the PCA. Once the t-SNE projection is com-
plete, we run the HDBScan clustering algorithm (Campello
et al., 2013) with minimum cluster size of 4. This generates
a clustering in genome space, identifying genomes that are
similar to each other.

A second t-SNE is run on the performance of each in-
dividual with parameters: 2 components, 100 dimensions
corresponding to the 100 wall heights, and perplexity of 10.
We do not conduct a PCA on the performance space as 100
objectives are within the recommended parameter bounds of
t-SNE.

Results and Discussion
The following analysis presents results from the highest
and lowest performing replicates from the Lexicase 1.1F
10E 1.0D 100B treatment originally examined in Moore and
Stanton (2019). Results from these two replicates are similar
in the remaining replicates. Due to the nature of analyzing
the population over time in this study, we do not present
aggregated plots summarizing results across replicates. We
observe similar results across the other treatments conducted
in Moore and Stanton (2019) but due to space we present re-
sults only from a single treatment.
Cluster Analysis Figures 4a and 4b plot the populations
at generation 5,000 in both genome and performance space.
Our hypothesis is that if specialists are present in the popula-
tion, clusters in genome space will map to clusters in perfor-
mance space. The populations cluster in genome space read-
ily, with outliers indicated by diamonds. However, genome
based clusters do not map to performance space as seen
in the right side of the figures. Instead, clustered individ-
uals are evenly dispersed across the space with generally
poor performance in Figure 4a and high performance in Fig-
ure 4b. Contrary to our hypothesis, it appears that the ge-
nomic clustering does not in fact map to performance space
at this late generation.

Figures 5a and 5b show the performance of every indi-
vidual in the generation 5,000 populations across the 100
wall heights. Clusters from Figures 4a and 4b are carried
into these two plots. Individual clusters are separated by the
white horizontal lines. The populations are primarily gen-
eralists with similar performance across environments. No
single cluster exhibits a level of performance in any segment
of wall heights that other clusters do not. If such a situation
were to exist, with a cluster showing high performance in a
specific range of wall heights, it would support the idea that
clusters are specialized groups of individuals. In the lowest
performing replicate, Figure 5a, all clusters evolve gener-
alists for the lower half of wall heights. Whereas, in the
highest performing replicate, Figure 5b, all clusters evolve
individuals that express high generalizability typically capa-
ble of crossing all but the tallest of wall heights.

The final populations discussed above are the result of
5,000 generations of evolution. It may be that specialist
clusters transition to generalists sometime in earlier gener-
ations. Figures 6a and 6b show the evolutionary history of
the two replicates. Shapes indicate clusters formed from the
t-SNE/HDBScan. Shapes are reused at different generations
as no clusters persist over 1,200 generations. Each gener-
ation is thus a unique set of clusters. In the two figures,
no single cluster exhibits large differences in performance
compared to other clusters. Instead, each replicate depicts
snapshots of the evolutionary trajectory that arrive at Fig-
ures 5a and 5b respectively. Examining the ancestral pop-
ulations at these generations we notice similar performance
to that shown in Figure 7. That is, within a cluster, there
are a number of high performing individuals relative to the
population but there are also a number of low performing
individuals. We do not observe a single cluster dominating
others in terms of performance across wall heights.

Although clustering doesn’t indicate that groups of indi-
viduals are specializing on specific wall heights, it does ap-
pear that individual specialists emerge in the first few hun-
dred generations of evolution. Figure 7 plots the ancestral
population at generation 125 of Replicate 10. At this early
point in the evolutionary process it is unlikely that every en-
vironment has been used for a Lexicase selection event. In-
deed, there is a high prevalence of stuck on wall or lower per-
formance across the wall heights. However, the figure also
shows that some individuals exhibit effective performance
on wall heights that are not adjacent to each other. These
are likely the initial specialists that emerge in the early gen-
erations of Lexicase selection. (Bright colors in columns
with primarily dark colors.) If one of these wall heights is
an objective and the specialist is a potential parent, it has a
higher likelihood of being selected. More individuals in fu-
ture populations will then share the specialist’s genetic ma-
terial. With many individuals having the genetic material,
they will likely also have high performance on the previous
specialist’s niche wall heights. In order to maintain com-
petitiveness, future individuals will likely then be driven to-
wards specializing on other wall heights. We hypothesize
that this process continues over time, eventually resulting
in specialists transitioning to generalists as more individuals
in the population exhibit effective performance across wall
heights. Thus, high performance sweeps through the popu-
lation across environments, see Figure 5b.

Additionally it may be that some specialists exist in the
population only until a generalist appears with capability
that includes that exhibited by the specialist. In this view,
specialists regularly appear in the population due to muta-
tion, but do not persist beyond a few generations. This view
does not require these independent specialists contribute
their genetic material toward future generalists; they sim-
ply provide evolutionary pressure towards the general solu-
tion by competing with potential generalists in specific wall
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(a)

(b)

Figure 4: Final populations after 5000 generations of evolution. Left side depicts the t-SNE projection with HDBScan clustering
algorithm applied in genome space. Colors indicate the average fitness of the individual as measured across the 100 objectives
after evolution has concluded. Darker shades indicate poor performance. Shapes indicate the assigned cluster. Diamonds are
outliers. Right side depicts t-SNE applied to performance space. Shapes are the clusters projected from genome space. (a)
Worst performing replicate. (b) Best performing replicate.

(a) (b)

Figure 5: (a) A replicate with clusters in genome space but subpar performance. No distinct performance differences be-
tween clusters. Clusters separated by white horizontal lines. (b) A replicate with clusters formed in genome space yet high
performance across the entire population.

heights.

Tiebreak analysis In previous work (Moore and Stanton,
2018) we noted that tiebreaks are an indicator of success
in the wall crossing domain. Here, we find additional re-
lationships to tiebreaks in that when specialists are heavily
present in the early populations, the number of tiebreaks are
low. Figure 8 plots the rolling average of tiebreaks during

selection per generation. In very early generations (< Gen-
eration 25) the number of tiebreaks are high as randomly
generated individuals all have similar poor performance. Se-
lection thus cannot readily distinguish performance between
individuals resulting in Lexicase exhausting the 10 environ-
ments used for selection. However, as specialists emerge
and those environments are chosen as objectives in Lexi-
case selection, the number of tiebreaks drops to almost 0
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(a) (b)

Figure 6: (a) Genome clustering of the population every 1,200 generations for the worst performing replicate. Diamonds
indicate outliers. Color shading indicates the average fitness of the individual across all 100 wall heights. (b) Genome clustering
of the population every 1,200 generations for the best performing replicate. No apparent relationship between clusters and
performance is evident in either replicate.
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Figure 7: Early generations show that a few individuals have
evolved effective wall crossing strategies for some, but not
all wall heights. High performance is indicated by the bright
shading in columns.

in both replicates for the first 800 generations. As the per-
formance across the populations increases, the number of
tiebreaks also increases. For the worst performing replicate,
the number of tiebreaks remain low as the population fails
to generalize performance across all environments primarily
failing to evolve effective strategies for high wall heights.
In this case, specialists are still present for the higher wall
heights as the population has not transitioned to generalists
as shown in the contrast between Figures 5a and 5b. We
hypothesize that a high number of tiebreaks in a replicate
might be an indicator that the population has transitioned
from primarily specialists to generalists. We plan to test this
hypothesis in future work.

Figure 8: 25 generation rolling average of the number of
tiebreaks for the two replicates over evolutionary time.

Conclusions and Future Work
We have previously shown that Lexicase selection evolves
generalized performance for robot controllers in this wall
crossing task. Prior results identified parameter configura-
tions enabling Lexicase to perform effectively as a selection
mechanism. Tiebreaks have been a key contributor allowing
for small random selection events during evolution. Here,
we expand on our earlier observations noting that special-
ists do not arise as a cluster of individuals in genetic space.
Instead, a small number of individuals specialize on an envi-
ronment and their genetic material is then spread throughout
the population during the evolutionary process. When eval-
uating specific replicates, it appears that the transition from
specialists to generalists might be indicated by the overall
frequency of tiebreaks that occur during the selection step.
As generalized behaviors emerge across the population, the
number of tiebreaks increases. In addition, when a repli-
cate does not evolve generalized performance, the number
of tiebreaks is substantially lower than that of a successfully
generalized replicate.

Our ongoing and future work continues altering the Lex-
icase selection algorithm to better understand factors that
drive its behavior. First, we will examine the relationship be-
tween tiebreaks and behavioral generalization as discussed
earlier. We also plan to examine strategies that influence
how the population is evaluated on the various objectives to
approach specialization versus generalization. Finally, we
will examine task environments wherein animats are evolved
to perform a variety of distinct tasks similar to Lexicase’s
original introduction of modal problems in Genetic Pro-
gramming and see if our findings on the wall crossing task
extend to other domains.

Acknowledgements
The authors would like to thank William La Cava, Thomas
Helmuth, Edward Pantridge, Emily Dolson, and Lee Spec-
tor for their conversations about various aspects of Lexicase
selection. We would also like to acknowledge Keele Univer-
sity and Grand Valley State University for supporting this
research.

References
Baydin, A. G. (2012). Evolution of central pattern genera-

tors for the control of a five-link planar bipedal walking
mechanism. Paladyn. Journal of Behavioral Robotics,
3(1):45–53.

Campello, R. J. G. B., Moulavi, D., and Sander, J. (2013).
Density-based clustering based on hierarchical density
estimates. In Pei, J., Tseng, V. S., Cao, L., Motoda, H.,
and Xu, G., editors, Advances in Knowledge Discovery
and Data Mining, pages 160–172, Berlin, Heidelberg.
Springer Berlin Heidelberg.

725



Clune, J., Beckmann, B. E., Ofria, C., and Pennock, R. T.
(2009). Evolving coordinated quadruped gaits with
the HyperNEAT generative encoding. In Proceedings
of the IEEE Congress on Evolutionary Computation,
pages 2764–2771, Trondheim, Norway. IEEE.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B.
(2015). Robots that can adapt like animals. Nature,
521(7553):503–507.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182 –197.

Doncieux, S. and Mouret, J. B. (2013). Behavioral diver-
sity with multiple behavioral distances. In Proceedings
of the 2013 IEEE Congress on Evolutionary Computa-
tion, pages 1427–1434, Cancun, Mexico. IEEE.

Koos, S., Mouret, J. B., and Doncieux, S. (2010). Cross-
ing the reality gap in evolutionary robotics by promot-
ing transferable controllers. In Proceedings of the 2010
ACM Genetic and Evolutionary Computation Confer-
ence, pages 119–126, Portland, Oregon, USA. ACM.

Kriegman, S., Walker, S., Shah, D. S., Kramer-Bottiglio, R.,
and Bongard, J. (2019). Automated shapeshifting for
function recovery in damaged robots. In Antonio Bic-
chi, H. K.-G. and Hutchinson, S., editors, In Proceed-
ings of the Robotics: Science and Systems XV, Freiburg
im Breisgau, Germany.

Lehman, J., Risi, S., D’Ambrosio, D., and Stanley, K. O.
(2013). Encouraging reactivity to create robust ma-
chines. Adaptive Behavior - Animals, Animats, Soft-
ware Agents, Robots, Adaptive Systems, 21(6):484–
500.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of machine learning research,
9(Nov):2579–2605.

Moore, J. M. and McKinley, P. K. (2016). A Comparison
of Multiobjective Algorithms in Evolving Quadrupedal
Gaits, pages 157–169. Springer International Publish-
ing, Aberystwyth, UK.

Moore, J. M. and Stanton, A. (2017). Lexicase selection
outperforms previous strategies for incremental evolu-
tion of virtual creature controllers. In Proceedings of
the 14th European Conference on Artificial Life, pages
290–297, Lyon, France. MIT Press.

Moore, J. M. and Stanton, A. (2018). Tiebreaks and diver-
sity: Isolating effects in lexicase selection. In Proceed-
ings of the 16th International Conference on the Simu-
lation and Synthesis of Living Systems, pages 590–597,
Tokyo, Japan. ACM.

Moore, J. M. and Stanton, A. (2019). The limits of lexicase
selection in an evolutionary robotics task. In The 2019
Conference on Artificial Life: A Hybrid of the Euro-
pean Conference on Artificial Life (ECAL) and the In-
ternational Conference on the Synthesis and Simulation
of Living Systems (ALIFE), pages 551–558, Newcastle-
Upon-Tyne, UK. MIT Press, MIT Press.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics:
The Biology, Intelligence and Technology of Self-
Organizing Machines. The MIT Press.

Pantridge, E., Helmuth, T., McPhee, N. F., and Spector,
L. (2018). Specialization and elitism in lexicase and
tournament selection. In Proceedings of the Genetic
and Evolutionary Computation Conference Compan-
ion, pages 1914–1917, Kyoto, Japan. ACM.

Paul, C. and Bongard, J. C. (2001). The road less travelled:
Morphology in the optimization of biped robot loco-
motion. In Proceedings of the 2001 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
pages 226 – 232, Maui, Hawaii, USA.

Pinville, T., Koos, S., Mouret, J.-B., and Doncieux, S.
(2011). How to promote generalisation in evolutionary
robotics: The progab approach. In Proceedings of the
13th Annual Conference on Genetic and Evolutionary
Computation, pages 259–266, Dublin, Ireland. ACM.

Ruud, E. L., Samuelsen, E., and Glette, K. (2016). Memetic
robot control evolution and adaption to reality. In
Proceedings of the 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), pages 1–7, Athens,
Greece. IEEE.

Smith, R. (2013). Open Dynamics Engine,
http://www.ode.org/.

Spector, L. (2012). Assessment of problem modality by
differential performance of Lexicase selection in ge-
netic programming: A preliminary report. In Proceed-
ings of the 14th Annual Conference Companion on Ge-
netic and Evolutionary Computation, pages 401–408,
Philadelphia, Pennsylvania, USA. ACM.

Stanton, A. and Channon, A. (2013). Heterogeneous com-
plexification strategies robustly outperform homoge-
neous strategies for incremental evolution. In Proceed-
ings of the 12th European Conference on Artificial Life,
pages 973–980, Taormina, Italy.

726


